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Abstract

We present a study analyzing the effects of001
prompt loss weighting (PLW) on supervised in-002
struction fine-tuning. We recreated Stanford’s003
Alpaca experiment with both LLaMA 1 and004
LLaMA 2 and multiple instruction datasets.005
We found that performance of models fine-006
tuned on our short-completion dataset had a007
statistically-significant negative quadratic rela-008
tionship with PLW, but performance of models009
fine-tuned on medium- and long-completion010
data did not show any relationship with PLW.011
I.e., prompt loss can be safely ignored for012
many datasets. For short-completion data,013
small values (0.01− 0.1) of PLW were optimal014
for multiple-choice and short-generation tasks015
while large values (≈ 1.0) of PLW were opti-016
mal for long-generation tasks. We concluded017
that low non-zero PLW encourages models to018
not diverge from pre-trained model weights dur-019
ing training and high PLW reduces overfitting.020
Finally, we present a rough guide for selecting021
PLW values based on the completion-prompt022
length ratio of fine-tuning data.023

1 Introduction024

Recent research in language modeling has made025

huge advances in training instruction-following026

agents. Both supervised fine-tuning and reinforce-027

ment learning have been employed to much success.028

However, our understanding of optimal hyperpa-029

rameters and standards of practice have been slow030

to catch up. This research intends to contribute to031

hyperparameter selection for supervised instruction032

fine-tuning (SIFT) via an in-depth analysis of a sin-033

gle training hyperparameter: prompt loss weight034

(PLW).035

The goal of SIFT is to teach a model to per-036

form a language task given a prompted instruc-037

tion. While training, model parameters are updated038

by optimizing for next-token maximal likelihood039

classification. However, it is unclear if this opti-040

mization should be performed on the entire prompt-041

completion sequence or only on the target comple- 042

tion. 043

Most open sourced solutions for supervised fine- 044

tuning (SFT) either mask the prompt loss or use the 045

entire sequence loss. On the other hand, OpenAI 046

previously supported a prompt_loss_weight pa- 047

rameter that allowed users to specify PLW during 048

SIFT. 049

We make the following contributions related to 050

this parameter: 051

• We show that PLW has a statistically sig- 052

nificant negative quadratic relationship with 053

model performance when fine-tuning on short- 054

completion instruction data. 055

• We show that PLW and prompt masking pa- 056

rameters can be safely ignored when fine- 057

tuning on medium- or long-completion data, 058

streamlining the fine-tuning process. 059

• We provide evidence that the benefits of PLW 060

for short-completion data are due to a regu- 061

larizing effect and not due to previously sus- 062

pected mechanisms. 063

• We present a baseline for PLW selection for 064

short-completion fine-tuning. 065

We provide relevant background and hypotheses 066

in section 2 and section 3, respectively. We resent 067

our methodology in section 4. Descriptive and 068

regression analysis and an exploration of causal 069

mechanisms are presented in section 5. We extend 070

the experiment to additional datasets and present 071

a basic model for prompt loss weight selection in 072

section 6. We present conclusions in section 7. 073

2 Background 074

2.1 Definitions 075

We define instruction data as one or many instances 076

of structured text data, each containing an instruc- 077

tion text, an optional context or input text, and a 078
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target output text. For the rest of the paper, we use079

the term prompt to refer to the concatenation of080

instruction and input texts and the term completion081

to refer to the target output text. SIFT attempts to082

train a model to generate an appropriate completion083

for a given prompt.084

We define the generation ratio Rg as the ratio085

of completion length to prompt length. We then086

divide instruction data into two broad categories.087

Data with Rg < 1 are short-completion data, and088

data with Rg ≥ 1 are long-completion data. When089

applied to an entire dataset, we take Rg to be the090

mean completion-prompt ratio.091

2.2 Relevant Research and Libraries092

HuggingFace’s Transformers library (Wolf et al.,093

2020), the de facto library for training LLMs,094

allows users to mask select tokens when calcu-095

lating loss. In Transformers, optimizing next-096

token prediction on prompt tokens is therefore bi-097

nary—either token loss is masked (PLW = 0) or it098

is unmasked (PLW = 1).099

Until recently, OpenAI supported a100

prompt_loss_weight parameter in their fine-101

tuning API, but it was officially removed as part of102

the v1 fine_tune API deprecation in early January,103

2024. This prompt_loss_weight parameter104

used a default value of 0.01 with the following105

parameter explanation:106

“This controls how much the model tries to learn107

to generate the prompt (as compared to the108

completion which always has a weight of 1.0),109

and can add a stabilizing effect to training when110

completions are short. If prompts are extremely111

long (relative to completions), it may make sense to112

reduce this weight so as to avoid over-prioritizing113

learning the prompt.”114

Though we could not find a study validating115

OpenAI’s claim or any literature that presents an116

analysis of PLW, there were several studies that re-117

ported parameter values for prompt_loss_weight118

when fine-tuning OpenAI models.119

Though they do not provide their reasoning,120

Kozachek (2023) reported that they fine-tuned121

GPT-3 with a prompt_loss_weight of 0.1. Dodg-122

son et al. (2023) reported using the default value123

of 0.01 when fine-tuning GPT models. Wang124

et al. (2023b) reported that a PLW of 0 performed125

best for them when working on the Self-Instruct126

framework. Interestingly, Wutschitz et al. (2023)127

reported hyperparameter search results for next-128

sentence-prediction on Elsevier data using PLWs129

of 0.1 and 0.5 and found 0.5 to give the best results. 130

Similar to OpenAI’s deprecated API, BLoomAI’s 131

API supports a prompt_loss_weight parameter 132

with a default value of 0.01. 133

3 Hypotheses 134

Based on OpenAI’s documentation for 135

prompt_loss_weight, we expect PLW to 136

have a stabilizing effect on LLM SIFT when 137

using short-completion data. Our expectation was 138

that PLW preserves the hidden representation 139

learned for next-token-classification when most 140

embeddings are being used to predict tokens at 141

the end of the sequence (as is the case when 142

fine-tuning on short-completion data). This would 143

represent a positive relationship between PLW and 144

downstream performance. 145

However, unless the model is expected to gen- 146

erate prompt-like data in downstream tasks, the 147

training and downstream sequence contexts will 148

not match. In other words, training a model to 149

maximize next-token-prediction on prompt tokens 150

should be most useful for generating instruction 151

data. Due to this train-test mismatch, we expect 152

PLW to also have a negative influence on down- 153

stream performance. 154

Based on the assumption that some amount of 155

PLW is beneficial for short-completion SIFT, we 156

expect these two competing factors to result in 157

a downward curved relationship between down- 158

stream performance and PLW. Limiting PLW to 159

the range of [0, 1], we postulate that there is a crit- 160

ical value λ for PLW with 0 <= λ <= 1. For 161

PLW less than λ, the positive effect dominates the 162

negative effect and for values greater than λ, the 163

negative effect dominates the positive effect. If 164

λ = 0, then PLW’s contribution to model perfor- 165

mance is strictly negative. Conversely, if λ = 1, 166

then PLW contributes strictly positively to model 167

performance. 168

We postulate that both λ and the magnitude of 169

the effect are inversely proportional to Rg since 170

there will be Rg as many completion token loss 171

terms than prompt loss terms. Note that λ is not 172

an intrinsic characteristic of the dataset, model ar- 173

chitecture, or training algorithm. Rather, it would 174

depend on numerous factors and change for each 175

task. 176

We tested the relationship between PLW and 177

model performance using three fine-tuning datasets 178

spanning a range of Rg values: 0.327, 7.83, and 179
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Mean (Std) Tokens

Dataset Instruction Input Completion Total Tokens Rg

AlpacaData 13.40 (4.97) 6.25 (14.38) 64.51 (64.85) 4,376,482 3.27
AlpacaDataCleaned 14.21 (9.95) 6.42 (17.65) 162.74 (150.89) 9,490,837 7.83
AlpacaDataShort 16.93 (13.10) 162.34 (151.69) 14.62 (10.99) 10,035,667 0.082

Table 1: Dataset statistics: mean tokenized instruction, input, and completion sequence lengths (standard deviations
in parentheses), total token counts for each dataset, and the generation ratio Rg .

0.082. We present the following hypotheses to be180

tested against each dataset.181

Null Hypothesis (H0) Prompt loss weight has no182

relationship with model performance.183

Alternative (H1) Prompt loss weight has a184

quadratic relationship with model performance.185

We fixed the threshold α = 0.05 significance186

level, and we expected to be able to reject H0 for187

models trained on short-completion data.188

4 Methodology189

To evaluate the effect of PLW on downstream per-190

formance, we used a factorial design methodology191

and repeated the Alpaca experiment (Taori et al.,192

2023) with three experimental variables. We tested193

ten discrete levels of PLW, two pre-trained lan-194

guage models (PTLMs), and three instruction fine-195

tuning datasets for a total of sixty experimental196

training runs and evaluated each run on thirteen197

benchmarks.198

We used the original Alpaca code and Transform-199

ers library, only modified to add PLW. Training was200

performed exactly as per the original Alpaca exper-201

iment, and we used the hyperparameters suggested202

by the authors, modifying only the three exper-203

imental parameters (PLW, PTLM, dataset) with204

each run.205

We provide additional details for reproducibility206

in appendix C and will release our trained models207

on HuggingFace’s Hub.208

4.1 Prompt Loss Weight209

We limited our evaluation of PLW to factors in the210

range [0, 1], focusing on values close to zero:211

212

PLW ∈{0.0, 5×10−4, 2.236×10−3,213

1×10−2, 2.463×10−2, 5×10−2,214

1×10−1, 2.463×10−1, 5×10−1, 1.0}215

Note that PLW = 0.0 is identical to the masking216

used in the original Alpaca project, and PLW = 1.0217

is equivalent to unmasked training.218

For all analysis, we transformed our PLW values 219

to be closer to uniform on the interval [0, 1] using 220

a power function 221

f :

{
[0, 1] → [0, 1],

v 7→ vp
222

where the power p = 0.30103 was chosen semi- 223

arbitrarily such that f(0.1) = 0.5. We denote the 224

transformed PLW values as wp 225

4.2 Pre-Trained Language Model 226

We fine-tune both LLaMA 1 7B (Touvron et al., 227

2023a) to recreate the original Alpaca experiment 228

and LLaMA 2 7B (Touvron et al., 2023b) to pro- 229

vide more relevant results. 230

4.3 Fine-Tuning Dataset 231

We ran all experiments with three datasets: Al- 232

pacaData (the instruction dataset from the original 233

Alpaca experiment), AlpacaDataCleaned, and Al- 234

pacaDataShort. 235

AlpacaDataCleaned (Ruebsamen, 2023) is a 236

cleaned and curated version of AlpacaData that 237

has recently been combined with data from the 238

GPT4 LLM dataset (Peng et al., 2023). 239

Cleaning is noted as ongoing and includes fixes 240

for the following issues in AlpacaData: hallucina- 241

tions, merged instructions, empty outputs, empty 242

code examples, instructions to generate images, 243

N/A outputs, inconsistent input fields, wrong an- 244

swers, nonsensical instructions, and extraneous 245

control characters. 246

We generated AlpacaDataShort from AlpacaDat- 247

aCleaned by swapping instructions and comple- 248

tions for all long-completion instances and rephras- 249

ing the task as an instruction-prediction task. 250

For instances with empty input, we used 251

“Predict the prompt that generated the 252

following AI output.” 253

as the new instruction field. For instances with non- 254

empty input, we used 255

“Predict the prompt that generated the 256

below AI output given the following 257
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Task V. Shots Split Type

ARC Challenge* 0 25 Test MC
PIQA 0 0 Val MC
TruthfulQA-MC2* 1 6† Val MC
WinoGrande* 0 5 Val MC
TruthfulQA-Gen 1 6† Val GS

WMT14 En→Fr 1 0 Val+Test GS

WMT14 Fr→En 1 0 Val+Test GS

WMT16 En→De 1 0 Val+Test GS

WMT16 De→En 1 0 Val+Test GS

WMT16 En→Ro 1 0 Val+Test GS

WMT16 Ro→En 1 0 Val+Test GS

Alpaca Eval (Mixtral) 1 1 Test GL

PandaLM 1 0 Test GL

Table 2: Benchmark tasks used for evaluation. All
benchmarks were scored using Eleuther AI’s Language
Model Evaluation Harness, the AlpacaEval 1 frame-
work, and the PandaLM framework. validation splits
were used when test splits were unavailable, and valida-
tion and test splits were combined for noisy benchmarks.
Benchmark completion type is noted here as “MC” for
multiple choice, “GS” for short generation, and “GL” for
long-generation.
*Task used in HuggingFace’s Open LLM Leaderboard.
†This benchmark was calculated with num_fewshot
= 0 but uses a built-in minimum of 6 shots.

context. Context: <original_input>”258

as the new instruction field. In all cases we then259

used the original completion as the new input field260

and the original instruction as the new completion261

field.262

Descriptive statistics for tokenized instruction,263

input, and completion sequences are presented in264

table 1. Note that AlpacaDataCleaned is strongly265

long-completion with an Rg of 7.83 while Alpaca-266

DataShort is short-completion with an Rg of 0.082.267

4.4 Performance Evaluation268

We evaluated each model on thirteen instruction269

benchmarks covering both multiple choice and text270

generation tasks. We attempted to select bench-271

marks that were relatively cheap to compute and272

covered a range of tasks. We used three evaluation273

frameworks: EleutherAI’s Language Model Eval-274

uation Harness (EEH) (Gao et al., 2023), Alpaca275

Eval 1 (Li et al., 2023), and PandaLM (Wang et al.,276

2023a, 2024). See table 2 for details on benchmark277

tasks.278

Eleven benchmarks were run using EEH. Four279

benchmarks weremultiple choice tasks: ARC Chal-280

lenge (Clark et al., 2018), PIQA (Bisk et al., 2020),281

TruthfulQA-MC2 (Lin et al., 2022), and Wino-282

Grande (Sakaguchi et al., 2019). Seven bench- 283

marks were short generation tasks: TruthfulQA- 284

Gen (Lin et al., 2022) and six WMT14 and WMT16 285

translation benchmarks (Bojar et al., 2014, 2016), 286

limited to four languages the PTLMs learned dur- 287

ing pretraining (English, French, German, and Ro- 288

manian). For WMT benchmarks, we used the 289

instruction “Translate the following from 290

<src_lang> to <tgt_lang>” and evaluated over 291

both the validation and test sets to reduce variance. 292

Long-generation performance was evaluated us- 293

ing Alpaca Eval 1 and PandaLM, which are both 294

LLM-as-a-judge frameworks. 295

The default auto-evaluator for Alpaca Eval 1 is 296

GPT4, but evaluation of all training runs would be 297

beyond the scope of this research, so we used Mix- 298

tral 8X7B (Jiang et al., 2024) as an auto-evaluator. 299

Mixtral performed the best of all available LLMs 300

that we tested on Alpaca Eval’s evaluator test 301

dataset (Dubois et al., 2023), scoring 64.9 for agree- 302

ment with human evaluators, just below Claude’s 303

(Anthropic, 2023) 65.3 agreement. For reference, 304

the default GPT4 auto-evaluator scored a 70.99 305

human agreement. 306

5 Results and Discussion 307

5.1 Performance Trends 308

A visualization of the simple and relative perfor- 309

mance aggregates by wp and dataset is presented in 310

figure 1. The simple aggregate is the unweighted 311

mean of all task scores for given wp and dataset 312

values. For the relative aggregate, we first min-max 313

normalized benchmark scores over each dataset- 314

benchmark group and then performed aggregation. 315

The simple aggregate is dominated by large perfor- 316

mance changes on the AlpacaEval 1 and PandaLM 317

benchmarks. Therefore, all analysis was performed 318

using the relative aggregate and the simple aggre- 319

gate was visualized only for completeness. 320

For both the simple aggregate and the relative ag- 321

gregate, only models trained on AlpacaDataShort 322

showed a visual relationship with wp. On ARC 323

Challenge, PIQA, TruthfulQA-Gen, and Wino- 324

Grande, performance of AlpacaDataShort models 325

showed a negative quadratic relationship with wp, 326

with performance reaching or exceeding that of Al- 327

pacaDataCleaned models. Optimal PLW values for 328

these four benchmarks vary from PLW = 0.01 to 329

PLW = 0.1. On TruthfulQA-MC2, AlpacaEval 1, 330

and PandaLM, performance of AlpacaDataShort 331

models steadily increased with wp before leveling 332

4



0.0

5×
10 −

4
2.236×

10 −
3

1×
10 −

2

2.463×
10 −

2

5×
10 −

2

1×
10 −

1

2.463×
10 −

1

5×
10 −

1

1.0

Loss Weight

0.28

0.30

0.32

0.34

0.36

C
om

p
os

it
e

P
er

fo
rm

an
ce

AlpacaData

AlpacaDataCleaned

AlpacaDataShort

LLaMA 1

LLaMA 2

(a) Simple Aggregate

0.0

5×
10 −

4
2.236×

10 −
3

1×
10 −

2

2.463×
10 −

2

5×
10 −

2

1×
10 −

1

2.463×
10 −

1

5×
10 −

1

1.0

Loss Weight

min

max

R
el

at
iv

e
P

er
fo

rm
an

ce

AlpacaData

LLaMA 1

LLaMA 2

(b) AlpacaData Relative Aggregate

0.0

5×
10 −

4
2.236×

10 −
3

1×
10 −

2

2.463×
10 −

2

5×
10 −

2

1×
10 −

1

2.463×
10 −

1

5×
10 −

1

1.0

Loss Weight

min

max

R
el

at
iv

e
P

er
fo

rm
an

ce

AlpacaDataCleaned

LLaMA 1

LLaMA 2

(c) AlpacaDataClean Relative Aggregate

0.0

5×
10 −

4
2.236×

10 −
3

1×
10 −

2

2.463×
10 −

2

5×
10 −

2

1×
10 −

1

2.463×
10 −

1

5×
10 −

1

1.0

Loss Weight

min

max

R
el

at
iv

e
P

er
fo

rm
an

ce

AlpacaDataShort

LLaMA 1

LLaMA 2

(d) AlpacaDataShort Relative Aggregate

Figure 1: Performance by transformed PLW. (a) A simple performance aggregate score (the unweighted mean of
benchmark scores). (b), (c), (d) Relative aggregate performance scores where scores per task for each task and
group are min-max scaled to show common trends, regardless of scale. Note that aggregate scores for only the
AlpacaDataShort models show a relationship with transformed PLW. Best viewed in color.

off to maximum values near wp = 1. For these333

seven benchmarks, wp > 0 was always better than334

wp = 0 (i.e., complete masking led to the worst335

performance) for AlpacaDataShort models.336

Identification of trends on the six translation337

benchmarks was less clear due to the high level of338

noise relative to performance range. Aggregating339

scores from benchmarks translating from English340

to the paired language benchmarks is suggestive of341

an increasing relationship, but is incredibly noisy.342

The performance difference across wp values for343

the two long-generation benchmarks was around344

twenty percentage points, in stark contrast to the345

less than two percentage point change for short- 346

generation and multiple choice benchmarks. This 347

suggests that PLW plays an important role in the 348

ability to generate high quality text, and the opti- 349

mal PLW for short-generation and long-generation 350

benchmarks is clearly different. 351

Finally, performance of LLaMA 2 models was 352

higher than that of LLaMA 1 models and perfor- 353

mance of AlpacaDataCleaned models were higher 354

than that of AlpacaData models, validating the im- 355

provements of LLaMA 2 and AlpacaDataCleaned 356

over their predecessors. 357

See Appendix A for detailed figures for each 358
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Coeff

P-Value wp wp2 (Int)

AlpacaData 0.237 1.185 -0.917 (-0.131)
AlpacaDataCleaned 0.0861 1.238 -0.812 (-0.231)
AlpacaDataShort <0.001 5.590 -4.284 (-1.043)

Table 3: wp p-values and coefficients by training dataset.
Statistically significant results are in bold. Note that
though convergence warnings were raised for regression
on both AlpacaData and AlpacaDataCleaned, coeffi-
cient and p-value scores are reported for completeness.

benchmark.359

5.2 Regression360

For each data group, we fit a generalized lin-361

ear mixed model (GLMM) predicting min-max362

transformed benchmark scores. As with the min-363

max transformation for the relative aggregate,364

benchmark scores were min-max transformed over365

dataset-benchmark groups.366

We expected a quadratic relationship between367

the score and wp, so we included a second order368

polynomial of wp as a fixed effect. Furthermore,369

we knew that the performance-PLW relationship370

varies by benchmark and that scores were min-max371

normalized over each benchmark, so we used a372

random slope with respect to benchmark. Since373

we did not min-max normalize over PTLM groups374

and since we saw consistent improvement when375

using LLaMA 2, we modeled a random intercept376

for PTLM. This resulted in the following equation377

that we fit with the R library glmmTMB:378

score ∼ pol(wp,2) + (0+pol(wp,2)|b) + (1|m)379

where score is the min-max transformed scores, b380

is the benchmark task factor, and m is the PTLM381

factor. Since score is bounded and thus introduced382

heteroskedasticity, we used a beta distribution as383

the conditional distribution of the response variable.384

Model fit was evaluated with the DHARMa library385

and glmmTMB’s Anova method.386

P-values and coefficients are presented in table 3.387

Regression on both AlpacaData and AlpacaData-388

Cleaned produced convergence warnings and ap-389

propriate models could not be adequately fit. We390

tried reducing the complexity of the model, but391

no significant relationship with wp could be found.392

However, the model fit on AlpacaDataShort con-393

verged and passed residual normallity, homoscedas-394

ticity, and other checks for soundness. For the395

AlpacaDataShort case, min-max transformed per-396

formance showed a statistically significant nega-397

tive quadratic relationship with wp at our target 398

α = 0.05 significance level. 399

This means that while wee could not reject the 400

null hypothesis for the AlpacaData and Alpaca- 401

DataCleaned scenarios, for the AlpacaDataShort 402

scenario, there was sufficient evidence to reject the 403

null hypothesis in favor of the alternative hypothe- 404

sis H1. 405

Using the fixed effect coefficients, we can predict 406

the critical PLW value λ for AlpacaDataShort fine- 407

tuning that maximizes the min-max transformed 408

benchmark scores. The coefficients for wp2, wp, and 409

the intercept were -4.28, 5.590, -1.043, respectively. 410

We can rewrite this relationship as: 411

score = −4.284(wp − 0.652)2 + 0.781, 412

which has a global maximum at wp = 0.652. Re- 413

versing the power transformation yields a critical 414

value for PLW at λ = 0.242. We verified that λ 415

overlaps with the visualized maximum value range 416

for the relative aggregate in figure 1d. 417

5.3 Causal Mechanism & Interpretation 418

To identify possible causal mechanisms, we first 419

investigated the effects of PLW on training stability 420

by analyzing training loss relative standard devi- 421

ation (RSD) over all five-step windows. See fig- 422

ure 2a for a boxplot of mean RSD for each model. 423

For all dataset and PTLM factors, increasing PLW 424

from zero led to a sharp increase in mean RSD and 425

then a slow decrease to a minimum mean RSD at 426

PLW = 1. There is no obvious explanation for why 427

training loss RSD would initially increase before 428

decreasing. 429

If training loss stability was the primary factor in 430

improved performance, we would expect stability 431

to be best for PLW between 0.01 and 0.1 and for 432

performance at PLW = 0 to be similar with perfor- 433

mance at PLW = 0.01 since mean RSD at these 434

values are similar. However, mean RSD drops by 435

a factor of two across the PLW ∈ [0.01, 0.1] range, 436

and performance at PLW = 0.01 is significantly 437

higher than the masked prompt loss scenario. Train- 438

ing loss mean RSD is lowest at PLW = 1, but per- 439

formance on ARC Challenge, PIQA, WinoGrande, 440

and TruthfulQA-Gen show clear decreasing trends 441

at this value. Furthermore, the three tasks show- 442

ing positive trends at PLW = 1 cannot be ade- 443

quately explained by this factor since performance 444

increases regardless of loss stability. 445

There is likely either a tradeoff between training 446

loss stability and some other factors that affects 447

model performance or model loss stability is not 448
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Figure 2: Analysis of causal mechanism. Boxplots use the 0.25, 0.5, and 0.75 quantiles with whiskers at 0.09
and 0.91 quantiles. Best viewed in color. (a) Training Loss Stability: Relative Standard Deviation (RSD) of
five-step training loss windows show increase instability for small (non-zero) PLWs. (b) Weight Distance: Distance
between learned weights and PTLM weights is smaller for small (non-zero) PLWs. (c) Train Data Memorization:
Completion Sacre BLEU scores on training data prompts as an indicator for overfitting. (d) AE Generation Length:
Generation lengths on the Alpaca Eval test set for varying PLW values.

an important factor. Considering that both Alpaca-449

Data and AlpacaDataCleaned models also showed450

a negative quadratic trend for mean loss RSD, we451

tentatively concluded that loss stability is not the452

driving factor for the modeled relationship.453

We then checked if PLW was providing regu-454

larization to the weight update step, possibly im-455

proving performance by keeping weights close to456

the PTLM. See figure 2b for a visualization of457

weight distance from PTLM. Interestingly, for Al-458

pacaDataShort, fine-tuned weights were closer to459

those of the PTLM for small values of PLW but460

were much farther for PLW < 0.0005 and PLW461

> 0.1. We would expect weights to change more462

when loss is erratic, but the range of PLW values463

that better preserved PTLM weights was similar464

to the range of increased training loss RSD. Un-465

fortunately, we do not have an explanation for this 466

apparent contradiction and simply conclude that 467

PTLM model weights were better preserved for 468

small non-zero PLW despite high loss instability. 469

We next explored how PLW affected training 470

data memorization. We sampled 10,000 unique 471

prompts from the AlpacaDataShort training set, 472

generated completions from each prompt, and cal- 473

culated corpus BLEU-4 scores. We found that for 474

PLW from 0.0 to around 0.1, models memorized 475

most of the training data, consistently scoring near 476

80 corpus BLEU. Corpus BLEU then decreased as 477

PLW increased from 0.1. We also analyzed genera- 478

tion length on the AE1 test set which showed high 479

deviations in generation length for the high loss 480

RSD PLW values for LLaMA 2 only and a gener- 481

ally increasing length trend with PLW. Considering 482
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Figure 3: Ratio-PLW Relationship

that AlpacaDataShort contains short completions,483

this strongly suggests that PLW contributes a regu-484

larizing effect and helps decrease overfitting.485

The positive relationship between performance486

and PLW on Alpaca Eval and PandaLM as op-487

posed to the negative quadratic relationship seen488

on several of the other benchmarks can then be489

explained by a tradeoff between longer generations490

and decreased overfitting for high PLW and better491

preservation of PTLM weights for low PLW.492

6 Predicting Prompt Loss Weight493

We have shown that PLW is an important hyper-494

parameter when fine-tuning on short-completion495

data but is effectively irrelevant when using long-496

completion data. We now present a model for pre-497

dicting an optimal PLW given a dataset’s Rg.498

We first extended the previous experiments to499

two additional datasets: AlpacaDataMedium and500

AlpacaDataTiny to increase coverage of the pa-501

rameter space. AlpacaDataMedium and Alpaca-502

DataTiny have Rg values of 1.0 and 0.042, respec-503

tively, and were generated similarly with Alpaca-504

DataShort, but with different target completion-505

prompt ratios.506

We then fit several generalized additive model507

(GAMs) with a tensor smooth for the interaction508

between PLW and Rg. GAMs offer more flexible509

modeling than linear models but at the expense of510

interpretability. We fit our models using the R li- 511

brary mgcv and the following equation: 512

“score ~ te(w, r, k=3) + factor(b)”, where 513

te is a full tensor product smooth, w is the un- 514

transformed PLW parameter, r is the Rg, k is the 515

number of splines, and b is the benchmark task. 516

Using the fitted w-r interaction, we can now esti- 517

mate an optimal PLW value for a given completion- 518

prompt ratio Rg. See figure 3 for a visualization. 519

Roughly, the fitted interaction term recommends 520

using PLW = 0.155 for small completion-prompt 521

length ratios (Rg ≤ 1) and up to PLW = 0.278 522

for a Rg = 1.5 for optimal performance across all 523

tasks. This prediction is close to our regression- 524

predicted value of 0.242. The interaction term also 525

confirms our conclusion that PLW is less important 526

for data with relatively long completions. 527

This is a rough guide, and we recommend using 528

it as a starting point. See appendix B for additional 529

plots using different benchmark tasks. 530

7 Conclusion 531

In this study, we explored the downstream effects 532

of prompt loss weight (PLW) for LLM supervised 533

instruction fine-tuning (SIFT). 534

We showed that performance is unaffected for 535

the two long-completion datasets (AlpacaData, the 536

original Alpaca dataset, and AlpacaDataCleaned, 537

an updated version of AlpacaData) while perfor- 538

mance had a negative quadratic relationship with 539

prompt loss weight on our short-completion dataset 540

(with a completion-prompt ratio Rg ≈ 0.08). 541

Interestingly, the highest scores on the ARC 542

Challenge, PIQA, and WinoGrande benchmarks 543

were all from models trained on short-completion 544

dataset. This suggests that given a good choice of 545

prompt loss weight, long-completion training data 546

may not be necessary for instruction fine-tuning 547

LLMs for language understanding and short gen- 548

eration tasks. Conversely, using long-completion 549

data should be more robust as prompt loss weight 550

and masking parameters can be ignored. 551

We further analyzed the AlpacaDataShort mod- 552

els and found that low non-zero PLW discourages 553

deviation from the PTLM weights and high PLW 554

reduces overfitting and encourages longer genera- 555

tion. We suggest that these two factors are responsi- 556

ble for the negative quadratic relationship between 557

performance and PLW. 558

Finally, we estimated optimal PLWs over a range 559

of completion-prompt length ratios. 560
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Limitations561

1. We analyzed prompt loss weighting (PLW)562

for instruction fine-tuning LLMs. We char-563

acterized three fine-tuning datasets by their564

relative completion-prompt length ratios and565

reported on the effect of PLW when training566

on each dataset. It would be helpful to extend567

this research to a wider range of datasets to568

increase the strength of our conclusions and569

create more complete guidelines for prompt570

loss weighting.571

2. We used a fixed seed = 42 for all experiments.572

Since we used pre-trained models and no lay-573

ers were freshly initialized, there was little574

variance in initial experiments. Therefore, we575

decided to limit runs to a single seed.576

3. Suggested values for PLW from section 6 are577

based on the included experiments. Best PLW578

values when fine-tuning different models or579

using different datasets or training regimes580

may vary from the relationships shown here,581

though we are still confident that performance582

will not vary significantly by PLW for long-583

completion data.584

4. LLM-as-evaluator approaches like PandaLM585

and Alpaca Eval 1 are still relatively new, and586

these approaches are still being actively de-587

veloped. We chose to use Mixtral as an auto-588

evaluator for Alpaca Eval. Although this is589

not the recommended auto-evaluator, we felt590

its performance on the human-labeled test set591

was good enough to justify its use.592

5. A more confident conclusion about the593

causative mechanism could not be made. As594

with most techniques in machine learning,595

the suggested causative relationship should596

be validated through numerous experiments597

and projects. Unfortunately, since we ex-598

pect most instruction fine-tuning datasets to599

be long-completion datasets, further research600

into PLW will likely be limited.601

Ethical Considerations602

In this paper, we presented an analysis of the603

prompt loss weight hyperparameter for supervised604

instruction fine-tuning. We did not rely on human605

evaluators, and at no point in our research did we606

expose anyone to risk of harm.607

We do acknowledge that standard deep learning 608

training methods have a high carbon footprint, and 609

we performed a total of 100 fine-tuning training 610

runs. Model outputs cannot be predicted in ad- 611

vance, and, while we release our model weights in 612

the spirit of transparency and collaboration, mod- 613

els may hallucinate or produce offensive output. 614

Our synthetic dataset was generated from another 615

publicly released dataset and we did not perform ad- 616

ditional content filtering. A warning about both of 617

these issues will be released along with the model 618

and dataset. 619
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A Benchmark Performance Figures762

This appendix contains individual benchmark per-763

formance plots and additional discussion of perfor-764

mance trends and results.765

Overall, models trained on AlpacaDataCleaned766

performed best on the selected benchmarks, with767

models trained on AlpacaDataShort meeting or out-768

performing these models on numerous benchmarks769

for optimal selection of PLW. The general PTLM770

trend was for LLaMA 2 models to outperform771

LLaMA 1 models, again with some exceptions. In772

general, models trained on AlpacaData and Alpaca-773

DataCleaned did not show consistent relationships774

with PLW on the tested benchmark.775

The rest of this section focuses on Alpaca-776

Datashort models. We divide the benchmarks into777

three groups based on the relationship between Al-778

pacaDataShort model performance and PLW.779

Group I benchmarks showed a negative780

quadratic relationship with the transformed PLW781

variable wp: ARC Challenge, PIQA, TruthfulQA-782

Gen, and WinoGrande. See figure 4 for results.783

Group II benchmarks showed an increasing re-784

lationship between performance and wp on Alpaca-785

DataShort: TruthfulQA-MC2, Alpaca Eval 1 (Mix-786

tral), and PandaLM. Interestingly, Alpaca Eval787

1 (Mixtral) and PandaLM are both long genera-788

tion benchmarks, but the generation version of the789

TruthfulQA benchmark is in the first group while790

the multiple choice benchmark is in this group.791

Group III are high noise benchmarks, limited to792

the six WMT translation tasks. See figure 6 for in-793

dividual plots. In general WMT tasks showed very794

small variance, at most varying across only a few795

percentage points. To reduce the noise, these bench-796

marks were calculated over both the validation and797

test sets, but noise still precludes making clear con-798

clusions about performance on any benchmark. Of799

note, combining benchmarks that translate from En-800

glish produces a trend line suggestive of a positive801

relationship with wp. See figure 6a for an exam-802

ple. Figure 6b portrays into English translation803

benchmarks, but no trends could be identified.804
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Figure 4: Group I benchmark performance. Note the negative quadratic relationship with transformed PLW.
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(c) PandaLM

Figure 5: Group II benchmarks showed increasing performance with PLW.
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(a) Translation From English
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(b) Translation To English
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(d) En→De Translation

0.0

5×
10 −

4
2.236×

10 −
3

1×
10 −

2

2.463×
10 −

2

5×
10 −

2

1×
10 −

1

2.463×
10 −

1

5×
10 −

1

1.0

Prompt Loss Weight

0.050

0.055

0.060

0.065

0.070

b
le

u

(e) En→Ro Translation
0.0

5×
10 −

4
2.236×

10 −
3

1×
10 −

2

2.463×
10 −

2

5×
10 −

2

1×
10 −

1

2.463×
10 −

1

5×
10 −

1

1.0

Prompt Loss Weight

0.098

0.100

0.102

0.104

0.106

0.108

b
le

u
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(g) De→En Translation
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Figure 6: Group III benchmarks showed little relationship between performance and PLW.
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B Recommended Prompt Loss Weight805

In this section, we present additional figures and ta-806

bles related to optimal prompt loss weights (PLWs)807

as predicted by fitted generalized additive models808

(GAMs).809

The optimal PLW predictions from the paper810

body were based on all benchmarks. Here we811

present three different relative aggregates: all812

benchmarks (labeled “All”), multiple choice bench-813

marks (labeled “MC”), and non-translation genera-814

tion benchmarks (labeled “Gen”). We found that815

the translation benchmarks contributed little to the816

predictive power of the fitted GAMs. In an attempt817

to predict PLW values in a more relevant context,818

we did not include the translation benchmarks in819

the “Gen” model. However, they are still included820

in the “All” model to capture a wider range of tasks.821

See figures 7,8,9 for contour plots for the “All”,822

“MC”, and “Gen” benchmarks, respectively. The823

“All” contour plot is identical to the contour plot in824

the main body.825

See table 4 for a list of optimal PLWs over a826

range of completion-prompt ratios. Note that the827

predicted optimal PLWs confirm the conclusions828

from our regression analysis in section 5.2. Namely829

that PLW is important for short-completion data,830

but can be ignored for long-completion data.831

Rg
Optimal PLW

All MC Gen

8.0 1.000* 1.000* 0.654
7.5 1.000* 1.000* 1.000*
7.0 1.000* 1.000* 1.000*
6.5 1.000* 1.000* 1.000*
6.0 1.000* 1.000* 0.000*
5.5 1.000* 1.000* 0.000*
5.0 0.000* 1.000* 0.000*
4.5 0.000* 1.000* 0.000*
4.0 1.000* 1.000* 0.000*
3.5 1.000* 1.000* 0.000*
3.0 1.000* 1.000* 1.000*
2.5 1.000* 1.000* 1.000*
2.0 0.239 1.000* 0.679*
1.5 0.183 0.278 0.385*
1.0 0.155 0.183 0.321*
0.5 0.155 0.155 0.292*

Table 4: Optimal prompt loss weight (PLW) per
completion-prompt length ratio Rg on all benchmarks
(“All”); multiple choice benchmarks (“MC”); and the
combination of TruthfulQA-Gen, Alpaca Eval 1, and
PandaLM benchmarks (“Gen”). Predictions are based
on the ratio-PLW interaction term of fitted generalized
additive models.
*The difference between the maximum and minimum
predicted values at this ratio is less than 5% of the score
range.
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Figure 7: “All” Ratio-PLW Interaction for all benchmarks.
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Figure 8: “MC” Ratio-PLW Interaction for multiple choice benchmarks.
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C Reproducibility832

This section provides technical details on all ex-833

periments and benchmarks for transparency and to834

encourage reproduction of results. To help with re-835

producibility, also uploaded the fine-tuned models,836

test generation outputs, and the AlpacaDataShort837

dataset to xx.yy.zz.838

C.1 Model Fine-Tuning839

Model fine-tuning was performed with the Stanford840

Alpaca GitHub repository at www.github.com/841

tatsu-lab/stanford_alpaca/tree/761dc5b.842

To experiment with prompt loss weight, we843

modified HuggingFace’s Transformers library to844

allow specifying a loss_weights parameter for845

LlamaForCausalLM’s forward method.846

We used the following commit of Trans-847

formers https://github.com/huggingface/848

transformers/tree/3b7675b.849

All models were trained on a single four A100850

80GB node and we used the first set of hyperparam-851

eters recommended in the Fine-tuning subsection852

of Stanford Alpaca’s README.md file, except for853

the three experimental variables: pretrained model,854

prompt loss weight, and training dataset.855

AlpacaData is available from the Stan-856

ford Alpaca repository. AlpacaDataCleaned857

can be found at www.github.com/gururise/858

AlpacaDataCleaned/tree/791174f and is859

labeled “alpaca_data_cleaned.json”. As noted860

above, we released AlpacaDataShort at xx.yy.zz.861

C.2 Model Evaluation862

We used three evaluation frameworks: EleutherAI’s863

Language Model Evaluation Harness (EEH), Al-864

pacaEval 1, and PandaLM.865

In an effort to match the current HuggingFace866

Open LLM leaderboard, we evaluated ARC Chal-867

lenge, TruthfulQA-MC2, WinoGrande, and PIQA868

on the same EEH commit that the HuggingFace869

leaderboard uses: www.github.com/EleutherAI/870

lm-evaluation-harness/tree/b281b09 We871

also matched the number of shots with the number872

used for the HuggingFace leaderboard for ARC873

Challenge, TruthfulQA-MC2, and WinoGrande.874

TruthfulQA-Gen and all translation875

tasks were evaluated using a more recent876

commit at www.github.com/EleutherAI/877

lm-evaluation-harness/tree/b93c3bc. We878

modified the translation tasks at this commit879

to include an appropriate prompt to support880

zero-shot translation. These changes can be seen at 881

xx.yy.zz. 882

Though version 2 of AlpacaEval has re- 883

cently been released, we used version 1 from 884

the following commit https://github.com/ 885

tatsu-lab/alpaca_eval/tree/495b606. To 886

use Mixtral 8x7B as an auto-evaluator for 887

AlpacaEval 1, we modified the Guanaco-33b 888

evaluator’s config and prompt minimally to match 889

Mixtral’s format. Models were evaluated on the 890

default test set which can be found at https: 891

//huggingface.co/datasets/tatsu-lab/ 892

alpaca_eval/blob/main/alpaca_eval.json. 893

We plan on submitting a pull request with these 894

additions in the near future. 895

For PandaLM, we used the commit at https:// 896

github.com/WeOpenML/PandaLM/tree/eb758c4 897

and evaluated on version 1 of the default test set 898

(found at “data/testset-inference-v1.json” in the 899

PandaLM repository). 900

C.3 Regression 901

All statistical analysis and regression modeling was 902

performed with R, version 4.3.0. We used the 903

glmmTMB library, version 1.1.8, to perform general- 904

ized linear mixed modeling (GLMM) and validated 905

results with the same library and with DHARMa, ver- 906

sion 0.4.6. 907

C.4 Causal Mechanism 908

Most of the analysis performed to shed light 909

on the causal mechanism should version and 910

implementation agnostic. However, BLEU score 911

implementations vary widely, and we used sacre 912

BLEU to evaluate memorization of the training set. 913

We used Corpus BLEU from the sacreBLEU library 914

at https://github.com/mjpost/sacrebleu. 915

Instead of a commit hash, we share the metric 916

signature: 917

“nrefs:1|case:mixed|eff:no|tok:13a| 918

smooth:exp|version:2.4.0” 919

C.5 Predictive Model 920

We fit several generalized additive models (GAMs) 921

using the mgcv library, version 1.9-1 and the same 922

version of R as above, version 4.3.0. 923

19
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D Artifact Licensing924

We respected all licenses for artifacts and resources925

used in this research. Please see table 5 for an926

overview of primary resources and licenses.927

Resource License Application

Transformers Apache 2.0 Model Training
Stanford Alpaca Apache 2.0 Model Training

LLaMA 1 LLaMA License Pre-trained model weights
LLaMA 2 LLaMA 2 Community License Pre-trained model weights

Mixtral 8x7B Apache 2.0 Model Evaluation
EleutherAI’s LM Evaluation Harness MIT Model Evaluation

AlpacaEval 1 Apache 2.0 Model Evaluation
AlpacaEval Dataset CC BY-NC 4.0 Model Evaluation

PandaLM Apache 2.0 Model Evaluation
ARC Challenge CC BY-SA 4.0 Model Evaluation

PIQA AFL 3.0 Model Evaluation
TruthfulQA Apache 2.0 Model Evaluation
WinoGrande Apache 2.0 Model Evaluation

WMT 14 No License Model Evaluation
WMT 16 No License Model Evaluation

Table 5: Licenses for resources used in this research.
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