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ABSTRACT

Recent vision-language models (VLMs), such as CLIP, have demonstrated re-
markable transferability across a wide range of downstream tasks by effectively
leveraging the joint text–image embedding space, even with only a few data sam-
ples. Despite their impressive performance, these models remain vulnerable to
adversarial attacks, raising significant concerns about their security and reliability
in practical deployments. To address this issue, we propose Adversarial Mask
Tuning (AdvMask), a method that effectively enhances the robustness of VLMs
without directly modifying their pre-trained weights. Instead, our AdvMask learns
a set of binary masks that selectively deactivate model parameters vulnerable to
adversarial perturbations. By identifying robust neural pathways within the vision
encoder, AdvMask facilitates the generation of features and predictions that are
resistant to adversarial attacks. Furthermore, we introduce a Layer-wise Adaptive
Feature Alignment (LAFA) loss, specifically designed to optimize AdvMask in
few-shot scenarios. The LAFA loss adaptively aligns intermediate-layer features
from clean and adversarial samples across each transformer block, enhancing the
representational robustness of the model. Experimental results across multiple
benchmarks confirm that our AdvMask approach substantially outperforms existing
adversarial tuning techniques for VLMs, especially in few-shot settings.

1 INTRODUCTION

Vision-Language Models (VLMs), such as CLIP (Radford et al., 2021), have demonstrated exceptional
zero-shot generalization capabilities and impressive transferability across a wide range of downstream
tasks, gaining significant attention in recent years (Zhang et al., 2024b). By bridging the semantic gap
between visual and textual representations through contrastive learning, they have enabled high-level
understanding and versatile potential across various applications.

Motivation. Despite significant advancements, VLMs remain vulnerable to adversarial attacks,
which restricts their practical deployment in real-world downstream tasks. This inherent weakness
significantly undermines their reliability and trustworthiness, raising concerns in safety-critical and
security-sensitive downstream applications such as autonomous driving (Tuncali et al., 2018; Deng
et al., 2020), medical analysis (Buch et al., 2018; Finlayson et al., 2019), and manufacturing systems
(Picard et al., 2023). Consequently, there is a pressing need to develop algorithms that achieves
robustness against adversarial perturbations during downstream tasks. This problem becomes even
more pronounced in few-shot settings (Dong et al., 2022; Wang et al., 2020), where the number of
training samples available for the downstream task is severely limited (e.g., medical applications).

Challenges. Recently, researchers have explored techniques to strengthen the adversarial robustness
of VLMs (Zhao et al., 2023; Cui et al., 2024). Among these, adversarial tuning of textual or visual
prompts (Zhou et al., 2024; Mao et al., 2023; Zhang et al., 2024a) has widely adopted as a prominent
method, aiming to improve the model’s predictive robustness by carefully modifying the prompts
to resist adversarial perturbations. While these approaches only require updating a small number
of learnable parameters, they overlook the inherent properties in the model’s pre-trained structure
(i.e., neurons), limiting their capability to produce robust representations against adversarial attacks.
Other works attempt to directly fine-tune the model using adversarial training strategies; however,
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these approaches can lead to overfitting in few-shot settings (where only a small number of labeled
samples are available for each downstream task) and may compromise the generalization ability of
the original pre-trained VLM. Furthermore, several methods targeting zero-shot robustness (Yu et al.,
2024; Mao et al., 2023) rely on a held-out dataset for adversarial tuning (i.e., no task-specific samples
are available), but they often fail to achieve satisfactory performance on downstream tasks. The
effectiveness of these approaches largely depends on the quality of the held-out dataset. An extended
discussion of related works is provided in Sec. 4. Motivated by these challenges, in this work, we
aim to answer the following key question:

What is the most effective way to achieve robustness against adversarial attacks on pre-trained VLMs
in few-shot downstream settings?

Key Ideas. Unlike previous methods that predominantly focus on prompt adaptation or direct
parameter updates, we propose an adversarial mask tuning (AdvMask) approach that searches for
robust subnetwork within well-trained VLMs as a promising alternative. Inspired by recent studies
(Zheng et al., 2023; Zhao et al., 2020; Lin et al., 2020) demonstrating the effectiveness of identifying
neural pathways for adapting large-scale pre-trained models, we introduce a novel perspective of a
robust neural pathway, which, to the best of our knowledge, has not been explored in previous works.
Specifically, given a few samples from the downstream task, our goal is to learn a binary mask that
identifies a subnetwork structure within the pre-trained VLM, one that not only facilitates downstream
adaptation but also inherently resists adversarial perturbations. Consequently, by identifying the
robust neural pathway, our approach selectively emphasizes robust features during forward passes,
substantially improving the adversarial robustness. Interestingly, we demonstrate that such a robust
neural pathway indeed exists (further intuitive explanations are provided in Sec. 3.3).

Within our AdvMask training paradigm, we introduce the Layer-wise Adaptive Feature Alignment
(LAFA) loss, which enables enhanced robustness and stability. Previous objective functions for
adversarial tuning (Mao et al., 2023; Zhou et al., 2024) primarily provide supervision at the final
output stage (i.e., the joint text-image embedding space), overlooking the importance of robust
intermediate representations within the vision encoder. In contrast, our LAFA loss explicitly guides
each transformer’s intermediate representations to be robust against adversarial perturbations by
closely aligning features extracted from adversarial samples with their corresponding clean sample
features. Additionally, to effectively handle the limited data in few-shot settings, we adopt an adaptive
weighting mechanism based on predictive reliability. Specifically, within our LAFA loss, features
from samples that the model predicts correctly with high confidence provide more reliable alignment
signals, whereas samples predicted with lower confidence contribute less, preventing unstable or
incorrect optimization. This carefully designed LAFA loss encourages consistent intermediate
feature representations between clean and adversarial inputs, improving adversarial robustness in our
few-shot AdvMask framework.

Summary of Contributions. Overall, we introduce the notion of robust neural pathway and make
the following key contributions:

• We propose a new few-shot Adversarial Mask Tuning (AdvMask) framework that effectively
enhances the adversarial robustness of VLMs by identifying robust sub-network structures using
binary masks, without modifying their pre-trained weights.

• We introduce a Layer-wise Adaptive Feature Alignment (LAFA) loss, specifically designed to
optimize AdvMask training in few-shot scenarios. The LAFA loss adaptively aligns intermediate-
layer features between clean and adversarial samples to find the robust neural pathway.

Experiments across various downstream datasets demonstrate that AdvMask consistently improves
few-shot adversarial robustness over existing baselines. Moreover, since AdvMask learns and stores
only binary masks corresponding to a subset of model parameters, it is highly parameter-efficient,
reducing memory requirements during training and inference (see Appendix Sec. D.7 for details).

2 ADVMASK: FEW-SHOT ADVERSARIAL MASK TUNING FOR VLMS

2.1 PRELIMINARY AND PROBLEM SETUP

CLIP Recap. In this paper, following prior works on adversarial robustness of VLMs (Zhou et al.,
2024; Mao et al., 2023; Yu et al., 2024), we mainly use the CLIP (Radford et al., 2021) as our target
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VLM. We also provide results on other VLM, VisualBERT (Li et al., 2019), in Sec. C.4 of Appendix.
CLIP consists of an image encoder I(·) and a text encoder T (·), which project images and text
into a joint embedding space via contrastive learning on large-scale paired datasets. This enables
strong zero-shot classification performance on diverse image recognition tasks. For a downstream
classification task with images {x1, . . . , xm} and labels y ∈ {1, . . . ,K}, each label yi is embedded
into a textual prompt (e.g., “a photo of a [class]”) to form input ti, yielding a text representation
zT (ti). Similarly, an input image x is encoded by the image encoder, typically implemented as a
vision transformer (ViT) (Dosovitskiy et al., 2020), to produce zI(x). Finally, the probability that
image x belongs to class yi is calculated as:

p(y = i | x) = exp(cos(zT (ti), zI(x))/τ)∑K
j=1 exp(cos(zT (tj), zI(x))/τ)

, (1)

where cos(·, ·) denotes cosine similarity and τ is a learnable temperature parameter.

Few-Shot Adversarial Tuning. Given a pre-trained VLM with strong generalization capabilities,
our goal is to adapt it for adversarial robustness in few-shot scenarios, where only 1–16 samples per
class are available from the downstream dataset. In such settings, learning adversarial robustness
is particularly challenging due to limited supervision. To address this, rather than relying on cost-
intensive methods that fine-tune all parameters of large-scale VLMs, we adopt an efficient mask-tuning
strategy. This approach keeps the pre-trained weights fixed while optimizing only binary masks over
selected parameters, enabling the discovery of robust neural pathways.

2.2 MASK TUNING FOR ADVERSARIAL ROBUSTNESS

In this work, we propose AdvMask, a novel adversarial mask-tuning approach to enhance adversarial
robustness. As illustrated in Fig. 1, AdvMask builds on recent mask-tuning techniques (Zhao et al.,
2020; Zheng et al., 2023), which identify sub-networks within pre-trained models for improved
adaptation. Specifically, by optimizing binary masks on the vision encoder’s pre-trained parameters,
AdvMask deactivates adversarially vulnerable weights and identifies robust neural pathways that
yield stable, resilient visual representations, enabling reliable predictions under attack. To elaborate
on our method, we first detail how the mask parameters can be optimized efficiently, and subsequently
extend this to improve the adversarial robustness.

Mask Tuning. Given the pre-trained weights θ of the image encoder I(·), we first define a real-valued
mask M of the same size. A binary mask Mbin is then obtained by thresholding with α:

Mbin = I[M > α], (2)

where I[·] is an indicator function used for binarization. We compute the masked weights θ′ through
an element-wise product (i.e., Hadamard product, ⊙) as θ′ = θ⊙Mbin, and the encoder produces the
visual representation zI(x; θ

′) for input x. However, direct optimization of the binary mask Mbin is
infeasible due to non-differentiability of binarization function in Eq. 2. To overcome this, following
previous works (Zhao et al., 2020; Lin et al., 2020), we employ the Straight-Through Estimator (STE)
(Bengio et al., 2013), allowing indirect updates to the real-valued mask M as:

M ←M − γ · ∂L

∂Mbin
, (3)

where γ is the learning rate, and L is the objective function for mask tuning.

Adversarial Mask Tuning (AdvMask). Beyond the downstream adaptation, we extend the mask
tuning to adversarial robustness by optimizing binary masks that selectively deactivate parameters
vulnerable to perturbations, enabling stable predictions. Given clean samples x and adversarial
counterparts x̃ with labels y from a few-shot dataset S, our goal is to tune the binary mask Mbin

while keeping the pre-trained weights θ fixed. This adversarial tuning can be formulated as a min-max
optimization problem, where the inner maximization step generates adversarial samples x̃ as:

x̃ = arg max
x̃:|x̃−x|≤ϵ

L (fθ⊙Mbin
(x̃, t), y) , (4)

where δ = x̃− x is the perturbation bounded by ϵ, L is the loss function (e.g., cross-entropy loss) for
generating adversarial perturbations, and fθ⊙Mbin

(·, t) represents the model output given the binary

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 1: Overview of our AdvMask. Given clean and adversarial inputs, AdvMask learns binary masks Mbin

(shown as black-and-white grids) that selectively deactivate parameters vulnerable to adversarial perturbations.
The masks enforce consistency between clean and adversarial intermediate representations (z(l)clean, z(l)adv) via our
layer-wise adaptive feature alignment loss (LLAFA in Sec. 2.3), combined with adversarial cross-entropy loss
(LCE). This identifies robust neural pathways in the vision encoder without modifying pre-trained weights.

mask Mbin and textual prompts t. Subsequently, the outer minimization updates the mask parameters
Mbin to minimize the adversarial loss using the generated adversarial examples as:

min
Mbin

E(x,y)∼S [Lmask (x, x̃, t,Mbin, y)] . (5)

By carefully designing the tuning objective (Lmask) and learning the mask, our AdvMask identifies
robust sub-networks without altering the pre-trained parameters. This enables significant robustness
gains in few-shot scenarios while preserving the generalization capabilities of the fixed pre-trained
model. In Sec. 2.3, we introduce our loss design tailored for challenging few-shot settings.

Key Advantages of our AdvMask. Our proposed AdvMask offers practical advantages for adversar-
ial robustness. First, it adapts only a binary mask without altering pre-trained weights, preserving
generalizable knowledge while regulating information flow to produce stable and robust represen-
tations on both clean and adversarial samples (further insights are provided in Sec. 3.3). Second,
AdvMask effectively leverages limited few-shot data to selectively activate or deactivate crucial
pathways, improving transferability to downstream tasks and significantly enhancing robustness
against adversarial attacks. These advantages make AdvMask a parameter-efficient solution for
strengthening VLM robustness across diverse real-world scenarios.

2.3 LAYER-WISE ADAPTIVE FEATURE ALIGNMENT (LAFA) LOSS

Motivation. Our goal is to tune a binary mask that enhances adversarial robustness in few-shot
settings. Prior objectives for robustness (e.g., TeCoA (Mao et al., 2023)) mainly supervise the final
output space (i.e., the joint text–image embedding space), which limits their ability to enforce robust
intermediate representations and provides insufficient learning signals under scarce data. By contrast,
AdvMask adapts internal parameters of the image encoder, where robust intermediate features are
crucial. To this end, we propose a layer-wise feature alignment loss applied across encoder blocks,
explicitly promoting stable representations and providing stronger guidance for few-shot mask tuning.

Loss Formulation. To explicitly guide robust feature representations, we propose a Layer-wise
Adaptive Feature Alignment (LAFA) loss. This loss aligns adversarial features (from perturbed
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inputs) with clean features at each transformer layer of the image encoder, encouraging stable and
robust intermediate representations. The intuition is that small adversarial perturbations, though
imperceptible at the input, can amplify through deeper layers. By learning binary masks that
deactivate vulnerable parameters at each layer, AdvMask suppresses this propagation and promotes
robustness. Since intermediate layers lack explicit label supervision, we leverage clean features as
targets, aligning adversarial features to them during tuning. Formally, the loss is defined as:

L =
1

|L|·|B|
∑
l∈L

∑
x∈B
∥z(l)clean − z

(l)
adv∥

2
2, (6)

where B is the sample batch, L the set of layers for alignment, and z
(l)
clean and z

(l)
adv the output features at

the l-th transformer layer of our masked image encoder for clean and adversarial samples, respectively.

LAFA Loss. To further elaborate the learning signals and ensure stable optimization in few-shot
scenarios, we propose a Layer-wise Adaptive Feature Alignment (LAFA) loss with an adaptive
weighting scheme based on predictive reliability. The key idea is that if the model fails to correctly
predict a clean sample, its feature may serve as a noisy alignment target, which is especially harmful
under data scarcity as it can mislead mask optimization in unintended or sub-optimal directions. To
mitigate this, we weight each sample by its predictive reliability (i.e., confidence in the ground-truth
class), enabling adversarial features to align more strongly with reliable clean features and less with
unreliable ones. Formally, our LAFA loss is defined as:

LLAFA =
1

|L|·|B|
∑
l∈L

∑
x∈B

p(y|x)
EB[p(y′|x′)] + ϵ

∥z(l)clean − z
(l)
adv∥

2
2, (7)

where p(y|x) is the masked model’s confidence for the ground truth class y given the clean input
x, and the denominator (i.e., Ex′∼B[p(y

′|x′)] + ϵ) normalizes weights, with a small constant ϵ
for numerical stability. As a result, our LAFA loss prioritizes samples with clear and informative
representations during alignment, further improving robustness, particularly under few-shot scenarios.

Final Objective. Our final tuning objective for AdvMask combines the cross-entropy (CE) loss on
adversarial samples x̃ with our proposed LAFA loss, optimizing a set of binary mask parameters
without modifying the pre-trained weights as:

Lmask = LCE(x̃, y) + λ · LLAFA(x, x̃, y), (8)

where λ is a coefficient balancing the two losses. This combination of objectives complements
each other in tuning our adversarially robust mask: while the adversarial CE loss directly enhances
prediction-level robustness, our LAFA loss ensures robust intermediate representations by explicitly
guiding the learned binary mask to generate consistent features for both clean and adversarial samples.
Consequently, our carefully designed loss function significantly improves adversarial robustness,
especially in challenging few-shot adversarial tuning scenarios.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETTINGS

In this section, we conduct extensive experiments to demonstrate the effectiveness of our AdvMask
approach for enhancing adversarial robustness. Basically, we follow the few-shot adversarial tuning
setup from Zhou et al. (2024). Specifically, for adversarial tuning of the CLIP model with each
baseline method, we randomly sample 1, 2, 4, 8, and 16-shot samples per class from the training
set of each downstream dataset. We then evaluate the tuned model on the test dataset by measuring
classification accuracy (%, ↑) on clean samples and their adversarially perturbed samples separately.

Datasets. Following previous studies on adversarial robustness of CLIP models, we evaluate our
AdvMask method across various image classification datasets. Specifically, we consider general
object datasets (ImageNet (Deng et al., 2009), Caltech101 (Fei-Fei et al., 2004)), a texture recognition
dataset (DTD (Cimpoi et al., 2014)), fine-grained object datasets (FGVCAircraft (Maji et al., 2013),
OxfordPets (Parkhi et al., 2012), Flowers102 (Nilsback & Zisserman, 2008), Food101 (Bossard et al.,
2014), and StanfordCars (Krause et al., 2013)), a scene recognition dataset (SUN397 (Xiao et al.,
2010)), an action recognition dataset (UCF101 (Soomro et al., 2012)), and a satellite imagery dataset
(EuroSAT (Helber et al., 2019)).
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Figure 2: Adversarial test accuracy (%, ↑) over 11 datasets in few-shot settings. Results are averaged over 3
random trials (full results with standard deviations are provided in Sec. B.1 of Appendix).

Baselines. To validate the effectiveness of AdvMask in realistic scenarios requiring efficient tuning
for large-scale VLMs, we mainly compare our method with parameter-efficient adversarial prompt-
tuning methods widely used in prior robustness studies (Zhou et al., 2024; Mao et al., 2023; Zhang
et al., 2024a), as well as with TGA-ZSR (Yu et al., 2024), which fully adapts model parameters
in zero-shot robustness experiments. Our adversarial prompt-tuning baselines include adversarial
visual prompt tuning (AdvVP) (Mao et al., 2023) with hand-crafted textual supervision, adversarial
visual-text prompt tuning (AdvVLP) with independently learnable prompts, adversarial multi-modal
prompt learning (AdvMaPLe) (Khattak et al., 2023), and the recent few-shot adversarial prompt
learning (FAP) (Zhou et al., 2024). We also report the compatibility of AdvMask with a learnable
prompt tuning method (CoOp (Zhou et al., 2022)) in Appendix Sec. C.5. Further implementation
details for all baselines are provided in Appendix Sec. A.

Implementation Details. Following prior works on adversarial robustness of VLMs (Zhou et al.,
2024; Mao et al., 2023; Yu et al., 2024), we primarily use CLIP (Radford et al., 2021) with a
ViT-B/32 image encoder (Dosovitskiy et al., 2020), tuning only binary mask parameters while
keeping pre-trained weights frozen. We also report results using different encoder backbones (i.e.,
ViT-B/16, ViT-L/14) in Sec. C.3 and another VLM (i.e., VisualBERT (Li et al., 2019)) in Sec. C.4
of Appendix. Following Zheng et al. (2023), we apply learnable binary masks only to multi-head
self-attention layers, comprising about 20% of vision encoder parameters, with other mask-tuning
settings consistent with them. Our LAFA loss is applied across all transformer layers with coefficient
λ = 50.0. Dataset-specific prompt templates (e.g., “a photo of a CLASS”) are provided in Appendix
(Sec. A). All results are averaged over three random seeds. For adversarial training, we use PGD
(Madry et al., 2017) under the l∞ norm. During tuning, adversarial perturbations are generated
with 2-step PGD (ϵ = α = 1/255); at test time, robustness is evaluated with 100-step PGD. Here,
adversarial perturbations are computed by backpropagating through the masked model fθ⊙Mbin

,
ensuring a fully adaptive and fair evaluation setting. All baselines are implemented following their
original settings. Additional hyperparameters and implementation details are given in Sec. A.

3.2 EXPERIMENTAL RESULTS

Few-shot Adversarial Robustness. In Fig. 2, we compare the adversarial robustness of our AdvMask
method and baselines across 11 downstream datasets under the few-shot setting. As anticipated, the
zero-shot CLIP model exhibits significant vulnerability to adversarial perturbations (average clean
accuracy of approximately 61.9%, but adversarial accuracy drops drastically to about 2.5%). In
contrast, our AdvMask consistently achieves substantially higher adversarial robustness than prompt-
based and adapter-based baseline methods across most datasets, highlighting the effectiveness of our
binary mask tuning strategy in selectively deactivating parameters vulnerable to adversarial attacks.

6
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Figure 3: Clean test accuracy (%, ↑) over 11 datasets in few-shot settings. Results are averaged over 3 random
trials (full results with standard deviations are provided in Sec. B.1 of Appendix).

Furthermore, AdvMask demonstrates robust performance across most few-shot settings, effectively
enhancing adversarial robustness even with limited downstream data. This advantage stems from the
fact that mask tuning efficiently explores task-specific pathways using few examples, while freezing
pretrained weights preserves the strong generalizable representations of the base VLM. Additionally,
our LAFA loss provides stable feature-level learning signals and mitigates noisy overfitting, making
AdvMask particularly suitable for scarce-data scenarios. Consequently, our method is practical not
only from the perspective of computational efficiency but also data efficiency, as it reliably tunes
robust binary masks using only a small number of samples.

Trade-off between Robustness and Transferability. Another important requirement for adversarial
tuning is maintaining the original clean accuracy on downstream tasks, as shown in Fig. 3. With
extremely limited samples (e.g., 1, 2, or 4-shots), we observe an inevitable drop in clean accuracy,
similar to other baseline methods, due to overfitting to the limited adversarial examples. However, as
the number of tuning samples increases, clean accuracy gradually recovers, and surprisingly, even
exceeds the original CLIP performance in certain cases (e.g., 8, 16-shots in Caltech101), despite
the absence of explicit supervised loss on clean samples during mask tuning. We hypothesize that,
given a moderate number of tuning samples (e.g., 16-shots), our method learns a generalizable binary
mask that provides a regularizing effect, facilitating effective adaptation to downstream task without
overfitting. Furthermore, AdvMask generally achieves higher clean accuracy than baseline methods,
effectively balancing the trade-off between adversarial robustness and transferability. Therefore, our
AdvMask offers practical benefits for reliable deployment of VLMs in real-world few-shot scenarios.

Base Class New Class

Method Clean Adv. Clean Adv. H

CLIP 66.9 3.4 71.5 3.8 6.9
AdvVP 31.7 14.4 30.4 13.4 19.2

AdvVLP 59.0 32.4 46.9 21.6 34.6
AdvMaPLe 60.4 30.7 46.2 20.3 33.3

FAP 70.5 38.0 49.6 21.9 37.6

AdvMask 69.5 43.6 50.2 26.1 41.9

Table 1: Results on adversarial base-to-new generalization
settings. For both class groups (base, new), we report the
average clean and adversarial accuracy across 11 datasets,
and the harmonic mean (H) of these four accuracy scores.
(Detailed results are provided in Sec. B.2 of Appendix.)

Base-to-New Generalization Setting. In Ta-
ble 1, we present results under the base-to-
new generalization setting, where classes are
split into disjoint “base” (training) and “new”
(testing) groups in each dataset. In the experi-
ments, models are adversarially tuned with 16-
shot samples from base classes and then eval-
uated on both groups. Even in this challeng-
ing scenario, AdvMask consistently achieves
superior adversarial robustness while main-
taining competitive clean accuracy. On base
classes, it significantly improves adversarial
accuracy over FAP with comparable clean per-
formance. On unseen new classes, AdvMask
outperforms all baselines in adversarial robust-
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ness and achieves the highest clean accuracy (except zero-shot CLIP). These results confirm that
AdvMask effectively identifies robust neural pathways by capturing inherent task-specific features
from limited tuning samples, producing a robust and generalizable mask suitable for diverse test
scenarios.

Generalization Capability of AdvMask. While our primary goal is to enhance robustness in few-
shot adaptation scenarios, we emphasize that the learned mask also generalizes well to unseen datasets.
To evaluate this, we follow the setup of TGA-ZSR (Yu et al., 2024), a recently proposed zero-shot
robustness method. Specifically, we train AdvMask on a held-out source dataset (i.e., TinyImageNet)

Method Dataset Clean Acc. (%) Adv. Acc. (%)

CLIP – 61.9 (±0.0) 2.7 (±0.0)
TGA-ZSR Entire (100%) 38.6 (±1.0) 22.9 (±0.5)

FAP 16-shot (3.2%) 36.0 (±0.9) 16.8 (±0.7)
TGA-ZSR 16-shot (3.2%) 41.3 (±1.0) 13.0 (±0.3)
AdvMask 16-shot (3.2%) 42.0 (±0.3) 19.4 (±0.2)

Table 2: Results on zero-shot robustness. Following Yu et al.
(2024), models are adapted using TinyImageNet (entire training
set for TGA-ZSR, 16-shots for others) and evaluated on unseen
downstream datasets. Results are averaged over 3 trials.

and directly testing on unseen target
datasets without further tuning (Table 2).
The results show that, in the 16-shot set-
ting, AdvMask achieves superior clean
and adversarial accuracy compared to
baselines, demonstrating strong general-
ization capability in few-shot scenarios.
Furthermore, despite using only 3.2%
of the source data (i.e., 16 shots), Ad-
vMask approaches the performance of
TGA-ZSR, even though TGA-ZSR re-
quires full access to the entire source
dataset. These results suggest that Adv-
Mask selectively deactivates parameters
that are globally vulnerable to adversarial perturbations, rather than overfitting to dataset-specific
patterns. In other words, certain parameters consistently amplify adversarial noise across tasks, and
suppressing them yields more stable intermediate representations. This intuition is further supported
by results from the base-to-new generalization setting with disjoint class groups. Consequently,
AdvMask not only improves robustness on the tuned dataset but also produces transferable masks
effective for unseen domains, making it well-suited for robust and reliable deployment in real-world
applications.

3.3 FURTHER STUDIES ON ADVMASK

In this section, we provide ablation studies and additional analyses of AdvMask. We report 16-
shot results averaged over 3 random trials on 5 datasets (i.e., Caltech101, DTD, FGVCAircraft,
Flowers102, UCF101) from diverse categories. Due to page limits, extended results are provided
in the Appendix (Sec. C & Sec. D), including ablations on key design choices (e.g., LAFA loss
coefficient, layer positions, adaptive weighting scheme, mask threshold α), robustness under different
perturbation bounds and attack type, evaluations on alternative architectures and VLMs, as well as
complementary analyses on compatibility with learnable prompt tuning and computational efficiency.

Module Clean Acc. (%) Adv. Acc. (%)

MLP only 65.73 ± 0.45 45.95 ± 0.07
MHSA only 67.34 ± 0.19 47.13 ± 0.25
MHSA + MLP 66.01 ± 0.28 47.20 ± 0.25

Table 3: Ablation on adversarial masking layers.

Which Layers are Effective for Adversarial Mask-
ing? Since tuning masks for all parameters within CLIP
incurs substantial computational costs, we specifically
focus on optimizing masks for the multi-head atten-
tion (MHSA) layers within the transformer blocks of
the image encoder, following prior work (Zheng et al.,
2023). Our choice is motivated by the well-established
observation that these self-attention layers generate context-aware representations by capturing long-
range dependencies across input tokens (i.e., image patches), making them particularly vulnerable to
adversarial perturbations in the input space. Therefore, selectively masking noise-sensitive param-
eters within these self-attention layers proves highly effective as shown in Table 3. Also, as these
layers comprise only about 20% of the total parameters (significantly fewer than the MLP layers),
our approach significantly reduces computational costs, including memory usage and training time.
Consequently, our AdvMask offers a practical and effective strategy for parameter-efficient tuning of
large-scale VLMs, making it highly suitable for diverse real-world applications.

Loss Ablation Study. In Table 4, we present ablations on the loss functions. Our design com-
bines adversarial cross-entropy (LCE-adv) with the LAFA loss to enforce feature-level consistency
between clean and adversarial samples. To validate this choice, we compare LAFA with several
alternative auxiliary losses (e.g., Jensen-Shannon divergence, KL divergence). The results show
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that LLAFA consistently outperforms these alternatives in both clean accuracy and adversarial robust-
ness, with the performance gap becoming more pronounced in low-shot settings (e.g., 1-shot and
4-shot). This is attributed to the fact that LAFA’s feature-alignment objective provides a stronger
and more stable learning signal than distributional divergence terms defined in the output space,
allowing the model to maintain coherent and robust representations even when data is scarce.

Loss Function 1-shot 4-shot 16-shot
Clean Adv Clean Adv Clean Adv

CLIP 56.6 4.8 56.6 4.8 56.6 4.8

LCE-adv 40.3 15.6 55.2 30.6 65.8 46.4
+ LJS 42.9 17.3 54.7 30.8 65.9 46.5
+ LKL 31.8 13.8 46.2 27.9 60.7 43.6

+ L†
LAFA

44.5
(±1.51)

17.8
(±0.97)

56.6
(±0.68)

32.1
(±0.64)

66.9
(±0.44)

46.8
(±0.41)

+ LLAFA 46.6
(±1.11)

18.4
(±0.45)

57.2
(±0.34)

32.2
(±0.28)

67.3
(±0.19)

47.1
(±0.25)

Table 4: Loss ablation with alternative auxiliary losses. L†
LAFA

represents LAFA loss without adaptive weighting scheme.

Moreover, the adaptive weighting scheme
(Sec. 2.3) further improves performance
while reducing variance by emphasizing
reliable samples during training. This
mechanism mitigates overfitting to noisy
or misclassified examples, and its bene-
fits are particularly apparent in low-shot
scenarios (see Appendix Sec. D.2 for de-
tails). Overall, these findings confirm that
our loss formulation enhances representa-
tional robustness and enables AdvMask to
reliably identify robust neural pathways,
even under challenging few-shot condi-
tions.

(a) Pre-trained CLIP (b) CLIP + AdvMask

Figure 4: Layer-wise CKA similarity between clean and
adversarial features on DTD dataset, propagated from
L1 to L12 (i.e., top-left to bottom-right).

Further Insight into Robust Neural Pathway.
A neural pathway refers to a propagation path
within a pre-trained network that forms new
functional conjunctions between neurons (or
learned knowledge) (Zheng et al., 2023). Un-
der the lottery ticket hypothesis, Malach et al.
(2020) showed that mask optimization within
overparameterized networks can achieve perfor-
mance comparable to full weight optimization.
Motivated by these works, we explore whether
mask-based optimization can uncover pathways
that remain robust under adversarial attack. In-
tuitively, small adversarial perturbations, though
imperceptible in the input space, can amplify
through deeper layers of an encoder, leading to
incorrect predictions. Our binary masks mitigate this by deactivating vulnerable weights, suppressing
noise propagation and preserving stable intermediate representations. To support this, we analyze
layer-wise representations using CKA similarity (Fig. 4), a well-known metric for representation
consistency (Kornblith et al., 2019). We measure how similar clean and adversarial features (CLS
tokens) remain across layers, with and without AdvMask. It shows that pre-trained CLIP shows
high similarity in early layers (L1-L4) but declines in deeper ones as adversarial noise amplifies. In
contrast, AdvMask preserves consistently higher similarity across all layers, effectively suppressing
noise amplification and stabilizing representations. This provides strong evidence that AdvMask
identifies robust neural pathways that enhance adversarial resilience.

4 RELATED WORKS

Parameter-Efficient Adaptation Methods for VLMs. Vision-language models (VLMs) such as
CLIP (Radford et al., 2021) show strong transferability across diverse tasks (Zhang et al., 2024b),
but their scale makes full fine-tuning impractical. This has motivated parameter-efficient approaches,
including text, visual, and joint prompt tuning (Zhou et al., 2022; Bahng et al., 2022; Khattak et al.,
2023), as well as adapter methods (Zhang et al., 2022b; Gao et al., 2024). Recently, mask tuning
(Zheng et al., 2023) has been proposed to identify task-specific subnetworks within pre-trained VLMs.
However, they mainly target downstream accuracy, leaving adversarial robustness unexplored. In
contrast, we develop mask tuning explicitly for robustness by uncovering robust neural pathways.

Adversarial Robustness for VLMs. Despite their generalization, VLMs are highly vulnerable to
adversarial attacks (Cui et al., 2024; Budathoki & Dhakal, 2025), limiting real-world deployment.
Prior efforts include adversarial prompt tuning (Zhou et al., 2024; Mao et al., 2023), which improves
robustness but ignores the encoder’s intrinsic structure. Fully fine-tuning with adversarial training
(Bai et al., 2021) is effective but costly and prone to overfitting in few-shot settings. Zero-shot
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robustness methods (Yu et al., 2024) rely on held-out datasets but often fail under distribution shifts.
We instead focus on parameter-efficient adversarial tuning in few-shot scenarios, achieving robustness
gains with minimal data while preserving pre-trained weights.

Neural Pathways Searching. Deep networks distribute knowledge across neurons, dynamically
forming task-specific pathways (Liu et al., 2018; Zhao et al., 2020). Building on this perspective,
binary mask tuning has been explored as a means to isolate subnetworks for task adaptation (Wortsman
et al., 2020; Csordás et al., 2020) or for addressing OOD generalization (Zhang et al., 2021). Recent
work (Zheng et al., 2023) further demonstrated that mask tuning can reveal latent knowledge within
pretrained VLMs, though robustness under adversarial perturbations remains unaddressed. Our work
extends this line of research by introducing adversarial mask tuning to deactivate noise-sensitive
parameters, thereby constructing robust neural pathways and substantially improving VLM robustness.
Related efforts in adversarial learning have explored robustness-sensitive structures from different
angles. Adversarial pruning (AP) methods (Piras et al., 2025; Sehwag et al., 2020; Chen et al., 2022)
aim to obtain sparse yet robust models by pruning and retraining weights, which contrasts with
our goal of robust few-shot adaptation of pretrained VLMs without modifying any weights. Also,
Zhu et al. (2023) similarly analyzes robustness-critical components but focuses on improving the
generalization of adversarially trained models through fine-tuning, whereas AdvMask learns binary
masks on pretrained VLMs (without adversarial pretraining or weight updates) to achieve robust
adaptation in few-shot scenarios.

5 CONCLUSION

In this paper, we introduced AdvMask, a framework that uncovers robust neural pathways in VLMs
for few-shot adaptation. By introducing the LAFA loss to adaptively align clean and adversarial
features, AdvMask selectively emphasizes robust representations through binary masks, enabling
efficient and reliable adaptation without altering pre-trained weights. Extensive experiments confirm
AdvMask’s effectiveness over prior adversarial tuning methods, offering a new perspective that
robust subnetworks inherently exist within large VLMs. These findings highlight a path toward more
resilient and parameter-efficient deployment of robust models in real-world applications.

REPRODUCIBILITY

To ensure reproducibility, we provide our implementation code in the supplementary materials. Fur-
ther experimental settings and detailed configurations, including computing resources, are described
in Sec. 3.1 of the main paper and Sec. A.3 of Appendix.
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APPENDIX

A EXPERIMENTAL DETAILS

A.1 DATASETS

Our few-shot experiments are conducted on 11 public datasets for image classification tasks, fol-
lowing Zhou et al. (2022; 2024). For experiments on zero-shot adversarial robustness, we adopt
TinyImageNet (Le & Yang, 2015) as the source dataset for tuning and subsequently evaluate the
tuned model on the other downstream datasets, following Yu et al. (2024). To facilitate understand-
ing, in Table 5, we summarize the statistics of datasets used in our experiments. Additionally, for
baselines requiring static textual prompts (e.g., ”a photo of a {CLASS}”) for adversarial tuning such
as zero-shot CLIP, AdvVP, and our AdvMask, we specify hand-crafted text prompt templates for
each dataset in Table 6. We note that these templates are also used as initial prompts in learnable text
prompt tuning methods, including AdvVLP, AdvMaPLe, and FAP.

Dataset #Classes Train Size Test Size Task

ImageNet 1,000 1.28M 50,000 Object recognition
TinyImageNet 200 0.1M 10,000 Object recognition
Caltech101 100 4,128 2,465 Object recognition
DTD 47 2,820 1,692 Texture recognition
EuroSAT 10 13,500 8,100 Satellite image recognition
FGVCAircraft 100 3,334 3,333 Fine-grained aircraft recognition
Flowers102 102 4,093 2,463 Fine-grained flowers recognition
Food101 101 50,500 30,300 Fine-grained food recognition
OxfordPets 37 2,944 3,669 Fine-grained pets recognition
StanfordCars 196 6,509 8,041 Fine-grained car recognition
SUN397 397 15,880 19,850 Scene recognition
UCF101 101 7,639 3,783 Action recognition

Table 5: Summary of datasets, including number of classes, training/testing sizes, and task types.

Dataset Text Template

ImageNet "a photo of a {CLASS}."
TinyImageNet "a photo of a {CLASS}."
Caltech101 "a photo of a {CLASS}."
DTD "{CLASS} texture."
EuroSAT "a centered satellite photo of {CLASS}."
OxfordPets "a photo of a {CLASS}, a type of pet."
FGVCAircraft "a photo of a {CLASS}, a type of aircraft."
Food101 "a photo of a {CLASS}, a type of food."
Flowers102 "a photo of a {CLASS}, a type of flower."
StanfordCars "a photo of a {CLASS}."
SUN397 "a photo of a {CLASS}."
UCF101 "a photo of a person doing {CLASS}."

Table 6: Hand-crafted text templates across different datasets.

A.2 IMPLEMENTATION DETAILS FOR BASELINE METHODS

Adversarial Prompt Tuning. Similar to (Zhou et al., 2024), we implement adversarial prompt-based
baselines, strictly following the original architectural and parameter settings for fair comparison.
Specifically, adversarial visual prompts (AdvVP) adopt a token-level prompt of size 5 and a 30-pixel
padding around the image, optimized for 10 epochs using SGD with a cosine learning rate scheduler
(initial learning rate: 40), following the setup of (Mao et al., 2023). Adversarial multi-modal prompts
(AdvMaPLe) employ token-level prompts of size 2 in both text and visual branches for the first 9
transformer layers, coupled with text-to-image projections. Adversarial vision-language prompts
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(AdvVLP) use an identical structure but adapt vision and language prompts independently. Both
AdvMaPLe and AdvVLP are trained for 10 epochs with SGD and a cosine scheduler (initial learning
rate: 0.0035). For consistency, we replace the original baseline loss functions with the adversarial
TeCoA (Mao et al., 2023) loss during training and evaluation for AdvVP, AdvMaPLe, and AdvVLP.
For the state-of-the-art method of few-shot adversarial prompt tuning (FAP) (Zhou et al., 2024), we
train the model for 10 epochs by using SGD with a momentum of 0.9 and a cosine scheduler (initial
learning rate: 0.0035) with a warm-up strategy during the first epoch. Also, we use token prompts of
size 2 in both branches for the first 9 layers, following the configurations in original paper.

A.3 ADDITIONAL IMPLEMENTATION DETAILS

For our AdvMask, all elements of mask parameters are initialized with 10−2 and the threshold α (in
Eqn. (2)) is set to 5× 10−3, following Zheng et al. (2023). Regarding the optimization setup, we
train the (binary) mask parameters using a SGD optimizer with a momentum of 0.9 and a cosine
scheduler with a warm-up strategy during the first epoch, following the setup of (Zhou et al., 2024).
For most of the datasets, models are trained for 10 epochs with the initial learning rate of 0.01. For
ImageNet, Food101, and SUN397 datasets, considering large number of classes and data volumes,
we use the learning rate of 0.0035 and maximum epochs of 10, except for ImageNet with 5 epochs. In
the experiments on zero-shot adversarial robustness, all models are trained for 5 epochs with the same
configurations with a few-shot settings. We conduct all experiments in an environment with PyTorch
1.12.1 and CUDA 11.3 on Python 3.8 under a single NVIDIA RTX 3090 GPU (24GB) device.

B COMPREHENSIVE RESULTS

B.1 RESULTS UNDER FEW-SHOT SETTINGS

Shots ImageNet Caltech DTD EuroSAT FGVC Food101 Flowers Pets Cars SUN397 UCF101 Avg.

1 51.53
(±0.46)

86.97
(±0.54)

33.17
(±0.74)

25.07
(±4.03)

11.33
(±2.35)

54.30
(±1.13)

53.37
(±3.15)

73.97
(±0.95)

38.57
(±0.82)

52.63
(±0.61)

48.40
(±2.24)

48.12
(±0.86)

2 51.70
(±0.70)

87.77
(±0.97)

38.70
(±1.36)

28.17
(±0.71)

14.53
(±0.24)

58.83
(±1.27)

60.57
(±0.90)

78.23
(±0.84)

40.23
(±0.85)

54.30
(±0.79)

53.30
(±0.67)

51.48
(±0.24)

4 52.20
(±0.43)

90.10
(±0.16)

45.10
(±1.24)

31.07
(±2.21)

17.53
(±0.26)

61.90
(±0.80)

73.87
(±0.59)

80.40
(±1.40)

44.23
(±1.73)

55.63
(±0.74)

59.50
(±0.43)

55.59
(±0.42)

8 53.03
(±0.61)

91.93
(±0.34)

49.83
(±0.09)

37.27
(±2.09)

21.23
(±0.59)

62.73
(±0.33)

82.60
(±1.31)

81.83
(±0.73)

49.33
(±1.51)

58.37
(±0.05)

65.33
(±0.12)

59.41
(±0.17)

16 52.13
(±0.65)

92.87
(±0.05)

58.43
(±0.17)

47.53
(±2.22)

26.80
(±1.50)

64.27
(±0.46)

88.03
(±0.61)

82.63
(±0.21)

57.40
(±0.42)

59.93
(±0.29)

70.57
(±0.86)

63.69
(±0.23)

Table 7: Clean test accuracy (%, ↑) of our AdvMask over 11 datasets in few-shot settings. Results are averaged
over 3 random trials.

In Table 7 and Table 8, we present the complete few-shot results of our AdvMask on clean and
adversarial samples across 11 datasets, respectively. These results align with the main findings in Fig.
2 and Fig. 3 of our main paper, demonstrating that AdvMask achieves superior adversarial robustness
compared to baseline methods while effectively balancing the trade-off between robustness and
transferability. Additionally, our method exhibits low standard deviations (on average lower than
1.0%) across datasets, highlighting the stability and effectiveness of AdvMask in identifying robust
neural pathways, even under challenging few-shot scenarios.

B.2 RESULTS UNDER BASE-TO-NEW GENERALIZATION SETTINGS

In Table 9, we provide the complete results of our AdvMask method in base-to-new generalization
settings across 11 datasets, consistent with Table 1 in the main paper. Even in this challenging
scenario, where the generalization capability of the adapted model is important, our AdvMask
still achieves competitive performance by effectively capturing inherent task-specific features from
limited samples. This demonstrates our AdvMask’s strong generalization capability for large-scale
test datasets.
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Shots ImageNet Caltech DTD EuroSAT FGVC Food101 Flowers Pets Cars SUN397 UCF101 Avg.

1 14.27
(±0.33)

47.60
(±0.86)

9.93
(±0.50)

5.57
(±4.76)

1.93
(±0.78)

7.03
(±0.74)

20.87
(±0.25)

9.40
(±0.85)

6.40
(±0.16)

15.80
(±0.24)

11.53
(±2.45)

13.67
(±0.51)

2 16.95
(±0.25)

56.93
(±1.72)

15.93
(±1.08)

12.90
(±2.18)

3.53
(±0.29)

12.90
(±0.29)

27.17
(±0.62)

18.43
(±1.23)

8.70
(±0.16)

19.80
(±0.24)

19.50
(±1.36)

19.34
(±0.25)

4 19.30
(±0.24)

65.30
(±0.70)

21.63
(±1.11)

20.50
(±1.84)

5.57
(±0.34)

17.50
(±0.22)

41.43
(±0.69)

28.37
(±0.74)

12.23
(±0.31)

23.80
(±0.36)

27.03
(±0.34)

25.70
(±0.31)

8 20.90
(±0.50)

71.13
(±0.73)

27.70
(±0.57)

27.90
(±0.54)

7.47
(±0.12)

23.40
(±0.14)

57.37
(±0.26)

38.23
(±0.26)

18.23
(±0.82)

28.23
(±0.25)

34.13
(±0.53)

32.24
(±0.14)

16 23.77
(±0.56)

75.83
(±0.21)

35.47
(±1.23)

32.73
(±0.74)

12.03
(±0.49)

28.00
(±0.62)

69.90
(±0.29)

44.73
(±0.21)

27.37
(±0.12)

31.00
(±0.14)

42.43
(±0.29)

38.48
(±0.22)

Table 8: Adversarial test accuracy (%, ↑) of our AdvMask over 11 datasets in few-shot settings. Results are
averaged over 3 random trials.

Class Type ImageNet Caltech DTD EuroSAT FGVC Food101 Flowers Pets Cars SUN397 UCF101 Avg.

Base

Clean 56.53
(±0.37)

95.73
(±0.50)

70.07
(±1.33)

66.63
(±2.34)

25.23
(±0.87)

69.97
(±0.21)

91.10
(±0.37)

87.27
(±0.39)

57.77
(±0.42)

68.43
(±0.45)

75.47
(±1.45)

69.47
(±0.79)

Adv. 26.70
(±0.57)

81.07
(±0.47)

41.40
(±1.59)

55.40
(±2.34)

11.07
(±0.52)

30.60
(±0.22)

75.33
(±0.46)

49.53
(±0.84)

25.43
(±0.53)

36.80
(±0.29)

46.27
(±0.29)

43.60
(±0.74)

New

Clean 47.80
(±0.80)

84.47
(±1.07)

45.27
(±0.09)

31.17
(±3.27)

13.20
(±0.08)

63.10
(±2.20)

41.53
(±1.07)

84.03
(±0.87)

34.70
(±0.08)

59.20
(±0.78)

47.23
(±0.68)

50.15
(±1.00)

Adv. 21.50
(±0.08)

61.33
(±0.45)

22.73
(±1.37)

22.60
(±2.27)

4.27
(±0.48)

25.53
(±0.73)

19.47
(±0.83)

47.90
(±1.70)

11.33
(±0.34)

29.57
(±0.66)

20.93
(±0.62)

26.11
(±0.87)

Table 9: Results on adversarial base-to-new generalization settings. For both class groups (base, new), we report
the clean and adversarial accuracy (mean ± standard deviation) across 11 datasets. Models are tuned using
16-shot samples from the base class group.

B.3 RESULTS UNDER ZERO-SHOT ROBUSTNESS SETTINGS

In Table 10 and Table 11, we provide zero-shot results on clean and adversarial samples across
downstream datasets. As described in Table 2 of our main paper, we first adversarially tune the
model using TinyImageNet as the source dataset and subsequently evaluate the tuned model on
10 downstream datasets. For TGA-ZSR (Yu et al., 2024), a state-of-the-art zero-shot adversarial
robustness method, we use the entire source training set (100%), while other methods utilize only
16-shot samples (3.2%) for tuning. Notably, even with significantly fewer samples, our AdvMask
achieves competitive zero-shot performance on both clean and adversarial samples. Specifically,
for the source dataset (i.e., TinyImageNet), our accuracy scores are inevitably lower than TGA-
ZSR due to fewer training samples. However, on downstream datasets, our AdvMask attains
better clean accuracy and only slightly lower adversarial accuracy (approximately 2.9% lower on
average) compared to TGA-ZSR, despite using only 3.2% of the source data. Furthermore, AdvMask
significantly outperforms FAP (Zhou et al., 2024) in downstream tasks, highlighting its superior
zero-shot generalization from limited tuning samples. Additionally, unlike TGA-ZSR’s resource-
intensive full-parameter adaptation, AdvMask optimizes only binary masks, considerably enhancing
efficiency in terms of memory usage and training latency. Therefore, our method is practical and
effective for both few-shot and zero-shot scenarios, enabling robust and reliable deployment of VLMs
in real-world applications.

C ADDITIONAL RESULTS

C.1 ROBUSTNESS UNDER DIFFERENT PERTURBATION BOUNDS

For comprehensive evaluation, in Fig. 5, we provide additional results under varying perturbation
bounds (i.e., ϵ in Eqn. (5) of the main paper). We compare AdvMask with other promising
methods (i.e., zero-shot CLIP, FAP) in the few-shot scenario using 16-shot samples. From the
results, we observe that even as stronger adversarial attacks occur with increased perturbation bounds,
our AdvMask consistently achieves competitive adversarial robustness. Although FAP achieves
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Source Downstream Datasets

Method Dataset T-ImgNet Caltech101 DTD EuroSAT FGVC Food101 Flowers Pets Cars SUN397 UCF101 Avg.

CLIP – 61.20 91.20 43.60 45.20 19.10 80.50 67.00 87.50 60.40 62.00 62.00 61.85

TGA-ZSR Entire (100%) 79.83
(±0.74)

85.60
(±0.93)

23.87
(±1.64)

17.23
(±1.25)

6.27
(±0.42)

40.07
(±0.78)

33.03
(±0.61)

61.63
(±1.92)

26.30
(±1.71)

44.20
(±1.67)

48.13
(±1.16)

38.63
(±1.00)

FAP 16-shot (3.2%) 53.37
(±0.29)

81.60
(±0.78)

19.63
(±2.50)

18.63
(±1.22)

5.63
(±0.59)

34.70
(±1.34)

33.37
(±1.92)

66.90
(±1.71)

22.30
(±3.48)

37.90
(±2.12)

39.23
(±1.84)

35.99
(±0.89)

TGA-ZSR 16-shot (3.2%) 67.03
(±0.41)

81.53
(±1.85)

24.23
(±1.92)

21.03
(±0.87)

8.23
(±0.48)

50.37
(±1.37)

32.90
(±1.85)

60.20
(±2.49)

34.70
(±1.40)

47.10
(±0.99)

52.50
(±0.50)

41.28
(±1.04)

AdvMask 16-shot (3.2%) 59.07
(±0.37)

84.47
(±0.21)

28.27
(±0.78)

21.90
(±2.41)

9.13
(±0.25)

41.33
(±1.43)

40.47
(±0.33)

69.80
(±1.15)

33.53
(±1.03)

45.03
(±0.31)

45.97
(±0.45)

41.99
(±0.34)

Table 10: Results on zero-shot clean accuracy. All models are tuned using TinyImageNet as the source dataset
(TGA-ZSR (Yu et al., 2024) uses the full training set, whereas other methods use 16-shot samples (3.2%) from
the source dataset, not from downstream datasets). After tuning, models are evaluated zero-shot on 10 unseen
downstream datasets. The average accuracy in the last column is computed over the 10 datasets across 3 trials.

Source Downstream Datasets

Method Dataset T-ImgNet Caltech101 DTD EuroSAT FGVC Food101 Flowers Pets Cars SUN397 UCF101 Avg.

CLIP – 0.20 16.63 4.93 0.03 0.00 0.50 1.43 0.97 0.10 1.00 1.00 2.66

TGA-ZSR Entire (100%) 52.87
(±0.58)

67.73
(±0.76)

15.70
(±1.31)

11.33
(±0.12)

3.10
(±0.45)

17.03
(±0.54)

18.43
(±0.78)

36.00
(±0.37)

12.23
(±0.65)

20.77
(±0.53)

26.63
(±0.66)

22.90
(±0.51)

FAP 16-shot (3.2%) 18.63
(±0.69)

55.77
(±1.18)

11.53
(±1.56)

10.30
(±1.02)

1.70
(±0.36)

9.80
(±0.16)

15.27
(±1.97)

30.50
(±1.56)

5.77
(±0.60)

12.20
(±0.91)

15.10
(±0.71)

16.79
(±0.67)

TGA-ZSR 16-shot (3.2%) 15.90
(±0.43)

47.87
(±0.98)

9.07
(±0.46)

7.73
(±0.97)

1.83
(±0.39)

7.83
(±0.05)

11.13
(±1.01)

17.37
(±1.16)

5.10
(±0.22)

8.77
(±0.12)

13.10
(±0.43)

12.98
(±0.33)

AdvMask 16-shot (3.2%) 26.23
(±0.29)

61.27
(±0.53)

16.10
(±0.57)

5.70
(±2.60)

1.87
(±0.17)

12.93
(±0.93)

19.43
(±0.45)

32.37
(±0.66)

8.17
(±0.12)

16.40
(±0.28)

19.33
(±0.87)

19.36
(±0.25)

Table 11: Results on zero-shot adversarial accuracy. All models are tuned using TinyImageNet as the source
dataset (TGA-ZSR (Yu et al., 2024) uses the full training set, whereas other methods use 16-shot samples (3.2%)
from the source dataset, not from downstream datasets). After tuning, models are evaluated zero-shot on 10
unseen downstream datasets. The average accuracy in the last column is computed over the 10 datasets across 3
trials.

the highest clean accuracy due to their explicit supervision on clean samples during training, its
adversarial robustness notably deteriorates under larger perturbations, whereas AdvMask remains
robust against stronger attacks. These results confirm that AdvMask’s robustness gains persist
even under stronger attacks (e.g., ϵ = 4/255), indicating that the binary mask and straight-through
estimator do not obscure gradients. Therefore, our approach represents an effective and practical
solution for deployment in reliable systems where resistance to dynamic adversarial attacks is crucial.

Figure 5: Results under varying perturbation bounds (i.e., ϵ) in the few-shot scenario using 16-shot samples. We
report the average clean and adversarial accuracy across 10 datasets over 3 trials.
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C.2 ROBUSTNESS UNDER DIFFERENT ATTACK TYPE

In Fig. 6, we conduct additional experiments to evaluate the adversarial robustness of our AdvMask
under different attack type. Specifically, we apply AutoAttack (Croce & Hein, 2020), a stronger
and user-independent attack strategy designed to overcome limitations (e.g., sub-optimal step sizes)
of previous PGD-based attacks. Following Zhou et al. (2024), we consider two variants of APGD
(i.e., APGD-CE and APGD-DLR) and compare our AdvMask with FAP, since other methods exhibit
near-zero accuracy due to the stronger attack. Experiments are performed in a 16-shot scenario with a
perturbation bound of ϵ = 1/255 across 5 datasets. The results demonstrate that while FAP improves
adversarial robustness over the zero-shot CLIP model, our AdvMask consistently outperforms this
baseline, confirming the effectiveness of our robust mask-tuning approach under stronger attacks.

Additionally, we evaluate robustness against text-level and joint image–text-level adversarial attacks
in Table 12. Specifically, by using the masks trained with 16-shot downstream samples, we assess
whether the learned masks (although trained only with image-level adversarial supervision) can still
provide robustness when different modalities are attacked. We consider two additional evaluation
settings beyond standard image-level PGD attacks: (1) Independent multimodal attacks, where PGD
is applied to the image while BERT-Attack Li et al. (2020) perturbs the text prompts; (2) Joint
multimodal attacks, following CoAttack Zhang et al. (2022a), where image and text embeddings
are perturbed in a coordinated manner within the shared multimodal space. As shown in Table 12,
performance decreases under stronger multimodal attack scenarios, but our AdvMask still maintains
robustness even though it was never trained with text or joint-level perturbations. These results suggest
that our mask-based robustness transfer generalizes beyond image-level perturbations. Consequently,
we conclude that AdvMask reliably identifies inherently robust neural pathways within VLMs,
ensuring resilience against diverse adversarial attack types.

Figure 6: Adversarial robustness under AutoAttack. We conduct experiments in the 16-shot scenario with a
perturbation bound of ϵ = 1/255. We report the adversarial accuracy across 5 datasets, averaged over 3 trials.

Attack Type Accuracy (%)

CLIP (zero-shot baseline) 7.30
PGD + BERT-Attack (independent) 29.20
PGD + BERT-Attack (CoAttack-style joint attack) 28.50

Table 12: Robustness of AdvMask under multimodal adversarial attacks. By using the masks trained with
16-shot downstream samples, we assess whether the learned masks can still provide robustness when different
modalities are attacked. We report average adversarial accuracy (%, ↑) over 5 datasets across three different runs.

C.3 ROBUSTNESS UNDER DIFFERENT BACKBONE ARCHITECTURES

In Table 13 and Table 14, we provide results using larger CLIP image encoders (e.g., ViT-B/16, ViT-
L/14). Our AdvMask still yields significant gains in adversarial robustness over the most competitive
baseline (i.e., FAP), demonstrating strong generalizability. We also note that unlike many prompt-
based methods that rely on architecture-specific components (e.g., context tokens), our AdvMask
is applicable to any vision encoder as long as intermediate features can be extracted for LAFA loss.
This makes it broadly applicable for diverse downstream tasks and real-world scenarios.
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Table 13: Results on CLIP ViT-B/16 encoder. Using ViT-B/16 as CLIP image encoder, we report 16-shot test
accuracy (%, ↑) averaged over 5 datasets with 3 random trials.

Clean Accuracy (%) Adversarial Accuracy (%)

Method Caltech. DTD FGVC. Flowers UCF. Avg. Caltech. DTD FGVC. Flowers UCF. Avg.
CLIP (ViT-B/16) 92.9 44.4 24.8 71.4 66.7 60.0 5.8 1.6 0.0 0.1 0.1 1.5
FAP 92.3 60.6 26.6 84.7 69.9 66.8 61.0 26.8 6.1 49.4 26.3 33.9
AdvMask (ours) 90.7 63.3 31.4 90.2 68.8 68.9 77.2 37.3 14.4 76.5 45.9 50.3

Table 14: Results on CLIP ViT-L/14 encoder. Using ViT-L/14 as CLIP image encoder, we report 16-shot test
accuracy (%, ↑) averaged over 5 datasets with 3 random trials.

Clean Accuracy (%) Adversarial Accuracy (%)

Method Caltech. DTD FGVC. Flowers UCF. Avg. Caltech. DTD FGVC. Flowers UCF. Avg.
CLIP (ViT-L/14) 95.2 53.0 32.5 79.2 75.0 67.0 13.7 3.0 0.0 0.7 1.3 3.7
FAP 96.2 72.0 38.8 94.6 82.0 76.7 66.6 22.3 8.6 46.2 33.1 35.4
AdvMask (ours) 96.8 73.7 49.6 97.2 84.7 80.4 87.5 52.0 27.7 86.3 63.7 63.4

C.4 ROBUSTNESS UNDER DIFFERENT VISION-LANGUAGE MODEL

In our experiments, we mainly use CLIP ViT as the image encoder, following previous works on VLM
robustness (Zhou et al., 2024; Mao et al., 2023; Yu et al., 2024). However, since our AdvMask can
apply binary masks to any modular components (e.g., self-attention, linear layers), it is architecture-
agnostic and can generalize beyond CLIP-based models. To validate this, we conduct experiments
on VisualBERT (Li et al., 2019), which processes image and text jointly through a BERT-style
transformer. Specifically, we adopt AdvMask to VisualBERT on two multi-modal classification
datasets (CrisisMMD2INF and CrisisMMD2HUM (Alam et al., 2018)). As shown in Table 15, the
naive VisualBERT exhibits a substantial performance drop under adversarial attack, whereas our
AdvMask significantly improves robustness without compromising clean performance. These results
confirm that AdvMask generalizes beyond the CLIP ViT family and enhances practicality for broader
VLM architectures.

Dataset Model Clean Adv.

Acc. F1-score Acc. F1-score

CrisisMMD2INF VisualBERT 0.85 0.82 0.40 0.38
VisualBERT + AdvMask 0.85 0.83 0.77 0.74

CrisisMMD2HUM VisualBERT 0.78 0.68 0.12 0.07
VisualBERT + AdvMask 0.77 0.65 0.59 0.48

Table 15: Results on VisualBERT architecture. We evaluate our AdvMask on VisualBERT by applying mask
parameters to the self-attention layers of the last two encoder blocks of the model. For both naive and AdvMask-
applied models, we perform 16-shot tuning on each of two different multi-modal classification datasets (i.e.,
CrisisMMD2INF and CrisisMMD2HUM datasets (Alam et al., 2018)). Adversarial training is conducted using
PGD-2 (ϵ=8/255, α=1/255), and PGD-100 is used for evaluation.

C.5 COMPATIBILIY WITH LEARNABLE PROMPT METHODS

Since AdvMask modifies only part of the visual encoder in VLMs, our method is orthogonal and
complementary to prompt tuning techniques and can be flexibly integrated with them depending
on task objectives. To demonstrate this, in Table 16, we present experiments combining AdvMask
with CoOp (Zhou et al., 2022), a well-established learnable prompt tuning method. Specifically, we
consider two cases: (1) combining independently trained CoOp prompts for the text encoder with
AdvMask for the image encoder, and (2) further training learnable text prompts on top of the robust
visual representations produced by AdvMask, allowing the prompts to adapt to robust features.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

The results show that in case (1), simply combining our robust vision encoder with a learnable prompt
yields significantly improved adversarial robustness compared to the original CLIP. This suggests
that AdvMask strengthens the visual encoder’s ability to generate robust representations, which can
be effectively leveraged by any textual prompt. In case (2), adaptive prompt tuning further improves
performance, as the contextual prompts are learned to align with the robust features extracted by the
masked vision encoder. These findings indicate that AdvMask is not limited to fixed prompts and can
be broadly applied alongside various prompt tuning strategies to enhance VLM robustness.

Method Clean Acc. Adv. Acc.

CLIP 56.6 4.8
CLIP + CoOP 71.1 15.8
AdvMask + CoOP (case 1) 58.5 37.7
AdvMask + CoOP (case 2) 66.3 44.7

Table 16: Integration of AdvMask with learnable prompt tuning method (i.e., CoOp). We report average clean
and adversarial accuracy (%, ↑) on five downstream datasets in 16-shot setting. Two cases are compared: (1)
combining independently trained CoOp prompts for the text encoder with AdvMask for the image encoder, and
(2) further training learnable text prompts on top of the robust visual representations produced by AdvMask,
allowing the prompts to adapt to robust features. Results averaged over 3 random trials.

C.6 COMPARISON WITH FULLY FINE-TUNED BASELINE

In our main experiments, we focused on parameter-efficient adversarial tuning methods, as fully fine-
tuning a large VLM is both computationally expensive and prone to overfitting in limited-data settings.
Nevertheless, we agree that including a full fine-tuning baseline strengthens our claims. Following
the reviewer’s suggestion, we conducted full-parameter fine-tuning under the 16-shot setting, and the
results are provided in Table 17. We find that while full fine-tuning achieves reasonable performance
when enough samples are available (e.g., 16-shot), it performs poorly in low-data regimes (1-shot
and 4-shot), exhibiting clear signs of overfitting. We also observed that full fine-tuning is highly
sensitive to hyperparameters such as the learning rate, making it less stable under few-shot conditions.
Importantly, the computational costs of the two approaches differ substantially: as shown in the table,
full fine-tuning updates all parameters of the vision encoder, resulting in significantly higher training
time and memory usage. In contrast, AdvMask learns only lightweight binary masks applied to a
small subset of modules (i.e., MHSA layers), providing far greater efficiency while simultaneously
achieving stronger adversarial robustness.

1-shot 4-shots 16-shots Comp. Cost (train)

Method Clean Adv. Clean Adv. Clean Adv. Time (s) Mem (MB)

CLIP 56.6 4.8 56.6 4.8 56.6 4.8 – –
FAP 28.6 9.3 54.0 26.0 64.3 40.2 0.73 2863
Full FT 31.0 10.4 43.5 21.7 67.7 43.9 0.85 7724
AdvMask 46.6 18.4 57.2 32.2 67.3 47.1 0.27 1581

Table 17: Comparison with fully fine-tuned baseline. We evaluate few-shot performance (1/4/16 shots) and
training cost (time/memory per batch). Full fine-tuning (Full FT) updates all model parameters using adversarial
training.

C.7 APPLICABILITY BEYOND CLASSIFICATION

Since our method is designed to be readily applicable to a wide range of vision encoders, it is
naturally extensible to a variety of visual-language tasks beyond classification. To support this, we
test AdvMask on an image captioning task using LLaVA (Liu et al., 2023), a recent multimodal
LLM that integrates a CLIP ViT-L/14 encoder with a large language model. Due to computational
constraints, we kept LLaVA’s projection layer (which maps visual tokens to the LLM input space)
frozen, and replaced only the vision encoder with our AdvMask-tuned version (trained on ImageNet
under the 16-shot setting). As shown in Table 18, although a drop in clean caption quality is observed,
likely due to a distributional mismatch between AdvMask-tuned visual embeddings and the frozen
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Figure 7: Visualization of LLaVA image captioning results on clean (left) and adversarial (right) examples.

projection layer, AdvMask still yields clear improvements in adversarial robustness even without
any adaptation of the projection layer or the LLM. This demonstrates that AdvMask effectively
suppresses perturbation-sensitive parameters at the vision-encoder level and can serve as a plug-and-
play robustness module for downstream multimodal tasks. We believe these initial results support the
promise of AdvMask as a task-agnostic robustness enhancer for VLMs.

Table 18: Robustness evaluation of AdvMask on LLaVA for image captioning task. We evaluate our AdvMask
on the multimodal model (i.e., LLaVA), which integrates a CLIP ViT-L/14 image encoder and a Vicuna-7B
language model. The task is image captioning on the Flickr30K dataset (500 samples). We report CIDEr scores
(0-150, ↑) under clean and adversarial settings. Regarding attack settings, we use (i) a single-step APGD attack
and (ii) a much stronger APGD-ensemble attack (i.e., multiple APGD variants at different precision levels)
following Schlarmann et al. (2024a). AdvMask is tuned on ImageNet using a 16-shot setting, and applied
without additional tuning to LLaVA’s image encoder.

Model Clean Adv. (APGD) Adv. (Ensemble)

LLaVA (CLIP ViT-L/14) 85.18 22.13 3.26
LLaVA (CLIP ViT-L/14 + AdvMask) 69.22 28.87 10.34

D ADDITIONAL ANALYSIS

D.1 ABLATION STUDY ON THE COEFFICIENT OF LLAFA

In Fig. 8, we present an ablation study on the coefficient λ of the loss term LLAFA in our objective
function. This loss aims to align intermediate-layer features between clean and adversarial samples
during tuning, enhancing representational robustness against adversarial attacks. The results show that
our AdvMask consistently outperforms the competitive baseline (FAP), regardless of the coefficient
setting. In our main experiments, we set λ to 50.0, as excessively large coefficients (e.g., λ = 100.0)
can slightly degrade clean accuracy due to overly constraining the feature space, particularly in the
16-shot scenario. Nevertheless, our AdvMask achieves competitive performance in both clean and
adversarial accuracy through the proposed layer-wise adaptive feature alignment objective.

D.2 ABLATION STUDY ON THE ADAPTIVE WEIGHTING SCHEME

One of the key contributions of our loss design is the adaptive weighting scheme in the LAFA
loss (Sec. 2.3), which is particularly crucial for stabilizing mask tuning in few-shot scenarios. To
validate its effectiveness, we provide an ablation study in Table 19, comparing performance with
and without the adaptive weighting mechanism across different λ values (i.e., the coefficient of the
LAFA loss). The results show that incorporating adaptive weighting consistently outperforms the
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Figure 8: Ablation study on the coefficient λ of LLAFA in our loss function. We compare our method with FAP
in the 1, 4, 16-shot setting with the same configurations in the main results.

unweighted counterpart, with the most significant gains observed in extremely low-shot settings (e.g.,
1-shot). This is because the adaptive scheme emphasizes learning signals from more reliable samples,
thereby reducing the risk of overfitting to noisy or misclassified examples, which is an especially
important property under few-shot conditions. Regarding our adaptive weighting scheme in the early
stage of tuning, although the model’s initial confidence may not be perfectly reliable, the weight
affects only the relative emphasis of each sample rather than removing its learning signal. Together
with the warm-up strategy applied during the first epoch, this prevents early confidence errors from
destabilizing optimization and enables LAFA to provide consistent gains across all shot settings.

1-shot 4-shots 16-shots
λ weighting Clean Adv. Clean Adv. Clean Adv.

10.0
False 42.0 16.4 56.1 30.7 66.5 46.3
True 44.7 17.4 56.7 31.5 66.7 46.6

20.0
False 43.5 17.2 56.3 31.0 66.6 46.2
True 46.2 17.8 56.8 31.5 67.0 46.8

50.0
False 44.5 17.8 56.6 32.1 66.9 46.8
True 46.6 18.4 57.2 32.2 67.3 47.1

Table 19: Ablation study on the adaptive weighting scheme. We compare performance with and without adaptive
weighting across different λ values. We report clean and adversarial test accuracy (%, ↑) over 5 datasets in
few-shot settings and results are averaged over 3 random trials.

D.3 ABLATION STUDY ON MASK THRESHOLD (α)

In our method, the mask threshold α controls the sparsity of the learned subnetwork by determining
how aggressively real-valued masks are binarized. As shown in Table 20, increasing α (e.g., from
0.001 to 0.005) leads to higher sparsity and generally improves both clean and adversarial accuracy,
since the learned mask better captures task-relevant and robust pathways while suppressing noise-
vulnerable parameters. However, an excessively large α (e.g., 0.007) can slightly degrade performance
due to over-pruning, which reduces the expressive power of the pre-trained network. Importantly,
our AdvMask consistently outperforms the baseline in adversarial robustness across all α values,
demonstrating its stability and effectiveness in balancing robustness and transferability.
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Method 1-shot 4-shots 16-shots

Clean Adv. Sparsity Clean Adv. Sparsity Clean Adv. Sparsity

FAP 28.6 9.3 – 54.0 26.0 – 64.3 40.2 –
AdvMask (a=0.001) 44.8 15.3 0.01 53.8 29.1 0.03 65.5 44.0 0.12
AdvMask (a=0.003) 46.1 17.1 0.01 55.6 30.3 0.04 66.6 45.5 0.17
AdvMask (a=0.005) 46.6 18.4 0.02 57.2 32.2 0.06 67.3 47.1 0.27
AdvMask (a=0.007) 43.5 19.1 0.04 57.2 34.1 0.13 65.8 47.0 0.70

Table 20: Ablation study on the mask threshold α. We report clean and adversarial test accuracy averaged over 5
datasets using 3 random trials under 1-shot, 4-shots, and 16-shots settings.

D.4 ABLATION STUDY ON MASK INITIALIZATION

In all experiments, we initialize mask parameters with a constant value of 0.01 and use a binarization
threshold α = 0.005, following Zheng et al. (2023). With this setup, all parameters start in the “on”
state (i.e., identical to the original model), and during tuning, perturbation-vulnerable parameters are
gradually pushed below the threshold and eventually deactivated through binarization. Due to this
mechanism, the initialization value and the threshold (α) are tightly coupled and jointly determine the
sparsity of the learned mask (i.e., the proportion of deactivated parameters). An ablation study on the
threshold is provided in Appendix Sec. D.3. In Fig. 21, we further provide an ablation study on the
mask initialization value while fixing the threshold at α = 0.005. Across all shot settings, we observe
a clear pattern: larger initialization values (e.g., 0.02-0.05) lead to lower sparsity, since the mask
values rarely fall below the threshold. However, excessively large initialization values often cause
unstable tuning dynamics and degrade performance. Conversely, when the initialization value is
small (e.g., 0.007), a larger number of informative parameters are inadvertently deactivated, resulting
in a slight drop in clean accuracy. Despite these outcomes, initialization values around 0.01 (the
setting used in our main experiments) consistently achieve strong clean and adversarial performance,
demonstrating stable behavior. Notably, these observations are consistent with the trends reported in
Appendix Sec. D.3 regarding the effect of threshold α.

1-shot 4-shots 16-shots

Method Clean Adv. Sparsity Clean Adv. Sparsity Clean Adv. Sparsity

FAP 28.6 9.3 – 54.0 26.0 – 64.3 40.2 –
AdvMask (init=0.007) 35.2 17.2 0.069 55.5 33.8 0.223 64.7 46.3 1.188
AdvMask (init=0.01) 46.6 18.4 0.017 57.2 32.2 0.062 67.3 47.1 0.273
AdvMask (init=0.02) 45.3 12.2 0.004 51.2 25.6 0.016 62.1 40.4 0.069
AdvMask (init=0.05) 45.9 5.0 0.001 47.2 15.8 0.005 53.1 29.4 0.019
,

Table 21: Ablation study on the mask initialization value (with α = 0.005). We report clean and adversarial test
accuracy averaged over 5 datasets using 3 random trials under the 1-shot, 4-shots, and 16-shots settings.

D.5 ABLATION STUDY ON LAYER POSITIONS OF LAFA LOSS

In Table 22, we provide an ablation study on the layer positions where our LAFA loss is applied.
Specifically, we divide the 12-layer encoder into four groups and compare performance when applying
LAFA loss to each group (as well as to all groups). The results show that our AdvMask outperforms
the competitive baseline (i.e., FAP) across all configurations, with stronger performance when
applied to deeper or all layers. We believe this is because deactivating vulnerable parameters in later
layers, which are closer to the model’s final output, is more effective for improving robustness and
adaptability. These results demonstrate that our approach is robust to hyperparameter choices and
highlight the effectiveness of deactivating noise-sensitive parameters through layer-wise alignment.
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Method 1-shot 4-shots 16-shots

Clean Adv. Clean Adv. Clean Adv.

FAP 28.6 9.3 54.0 26.0 64.3 40.2
AdvMask (l = {0, 1, 2}) 45.3 17.5 56.4 31.4 66.6 46.4
AdvMask (l = {3, 4, 5}) 45.9 17.6 56.2 31.2 66.6 46.5
AdvMask (l = {6, 7, 8}) 46.1 18.0 56.9 31.7 67.0 46.7
AdvMask (l = {9, 10, 11}) 44.8 19.2 57.7 32.8 66.8 47.3
AdvMask (l = all) 46.6 18.4 57.2 32.2 67.3 47.1

Table 22: Ablation study on the layer positions where LAFA loss is applied. We report average test accuracy
over 5 datasets in 1-shot, 4-shots, and 16-shots settings with 3 random trials.

D.6 IN-DEPTH INTERPRETATION AND VISUALIZATION OF LEARNED MASK

Mask Similarity Between Different Datasets. To better understand how dataset characteristics
influence the learned adversarial masks, we measure the similarity of masking patterns across dataset
pairs. Specifically, we compute the overlap (IoU) over the deactivated parameters (i.e., positions
where the mask value is 0), since these represent parameters identified as vulnerable to adversarial
perturbations. As shown in Fig. 9, the mean IoU over the entire layers is relatively low, ranging
from 0.075 to 0.124 (7.5%-12.4%) depending on the dataset pairs. This indicates that, globally,
each dataset tends to highlight somewhat different parameter subsets as vulnerable. However, a
layer-wise analysis reveals an interesting results. We observe that early layers consistently exhibit
higher IoU than later layers, meaning that the overlap in masked positions is relatively larger near
the input stage. This suggests that parameters in low-level feature extractors (i.e., closer to the input
space) tend to be commonly vulnerable across datasets, leading AdvMask to deactivate a similar set
of weights regardless of the dataset. In contrast, later layers show relatively lower IoU, indicating
higher variability in which parameters are masked. These layers are more tightly coupled with
downstream prediction behavior, and thus the masked parameters tend to reflect a combination of (1)
perturbation-vulnerable weights and (2) dataset-specific parameters involved in task-level adaptation.
As a result, the masking patterns diverge more noticeably across datasets in deeper layers. Overall,
these findings highlight that our AdvMask captures both universal and dataset-dependent vulnerability
structures within the model: early layers encode generalizable weak points shared across downstream
datasets, while later layers reveal how vulnerability interacts with dataset-specific semantic alignment
and adaptation.

Mask Similarity Between Different Runs (i.e., Seeds). We evaluate the similarity of the learned
masks across different random seeds in Table 23. For each of the five datasets in the 16-shot setting,
we train AdvMask using three independent runs with different seeds and quantify their similarity
by measuring the IoU over deactivated parameters (i.e., positions where the mask equals 0). We
focus on masked positions since the overall sparsity of the learned masks is extremely low (≈0.27%),
making IoU over activated parameters less informative (as most entries are equal to 1). For each
dataset, we compute pairwise IoU across all seed pairs and report the averaged value as Mean
IoU over Masking Positions. As shown in Table 23, despite differences in tuning samples and
optimization trajectories, the learned masks exhibit a moderate level of overlap, with mean IoU
values ranging from 0.20 to 0.31 (i.e., 20-31%). Importantly, both clean accuracy and adversarial
robustness show only minor variance across seeds, indicating that the functional behavior of the
model remains stable even when the exact masking locations differ. This is expected as the vast
majority of parameters remain activated, resulting in highly similar feature extraction pathways,
while the commonly deactivated parameters contribute to consistently improved robustness. Overall,
these results suggest that AdvMask consistently identifies functionally similar sets of adversarially
vulnerable parameters across different seeds. Although the precise masked parameters may vary due
to the non-convex and combinatorial nature of mask optimization, the model reliably converges to
masks that suppress semantically equivalent vulnerability patterns, leading to stable performance and
robust behavior that is effectively independent of the random seed.

Which Layers or Attention Heads Are Primarily Masked? In Fig. 10, we present an analysis of
which layers and attention heads are predominantly masked by AdvMask. Using the masks learned in
the 16-shot setting for five different datasets, we compute sparsity (i.e., the percentage of deactivated
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Figure 9: Layer-wise mask IoU across different dataset pairs in the 16-shot setting. Each subfigure shows the
layer-wise similarity of masking positions between a pair of datasets, computed over the deactivated (masked)
parameters. We use five datasets in total and report all pairwise combinations. The overall experimental setup
and hyperparameters follow the main paper.

parameters) to quantify how aggressively each component is masked. To first examine which layers
are more likely to be masked, Fig. 10a reports the layer-wise sparsity of the learned binary masks,
averaged over the five datasets. We observe that sparsity consistently increases toward deeper layers,
indicating that later layers (where representational shifts introduced by adversarial perturbations
become more pronounced) play a more critical role in mask tuning. These layers require more
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Dataset Mean IoU (%) Clean Acc. Adv. Acc.

Caltech101 0.25 92.9 (±0.05) 75.8 (±0.21)
DTD 0.20 58.4 (±0.17) 35.5 (±1.23)
FGVCAircraft 0.31 26.8 (±1.50) 12.0 (±0.49)
OxfordFlowers 0.31 88.0 (±0.61) 69.9 (±0.29)
UCF101 0.22 70.6 (±0.86) 42.4 (±0.29)

Table 23: Mask similarity and performance stability across three independent runs (different seeds) in the
16-shot setting. We report the average IoU over deactivated parameters (masking positions), along with clean
and adversarial accuracies (mean ± standard deviation).

(a) Layer-wise sparsity (b) Head-wise sparsity

Figure 10: Analysis of which components are predominantly masked by AdvMask: (a) layer-wise sparsity and
(b) head-wise sparsity. Both results are computed in the 16-shot setting and averaged over five datasets.

extensive deactivation of vulnerable parameters to stabilize high-level features and maintain robust
predictions for the downstream task. Another important observation is that the deeper layers, which
are more closely tied to task-specific adaptation, exhibit higher variance across datasets since the
degree and pattern of masking required for effective adaptation differs depending on the dataset.
To further understand the masking behavior within the multi-head self-attention mechanism, Fig.
10b presents head-wise sparsity for each layer, averaged over the five datasets. Interestingly, certain
heads exhibit consistently high sparsity across datasets; for example, the 6th and 8th heads in the
final (12th) layer show particularly strong masking. This suggests that specific attention heads are
universally prone to adversarial vulnerability, and suppressing them contributes disproportionately to
the model’s robustness. In other words, AdvMask systematically identifies and deactivates a small
subset of structurally fragile heads that act as common failure points across datasets.

Which Module Types Are Primarily Masked? In Fig. 11, we present an analysis of which module
types within the multi-head self-attention (MHSA) block are predominantly masked by AdvMask.
Since our mask tuning is applied only to the MHSA components of each transformer block for both
effectiveness and efficiency, we compare the sparsity of (1) the projection matrices responsible for
generating Q, K, and V (denoted as attn), and (2) the output projection matrix (attn.out proj),
which maps the concatenated head outputs back to the model dimension. (See Sec. 3.3 for ablations
demonstrating why MHSA layers are the most effective target for mask tuning.) As shown in Fig. 11a,
both module types exhibit increasing sparsity toward deeper layers, reinforcing the observation that
later transformer layers play a more influential role in robustness. The attn.out proj module
shows a notably sharper increase, suggesting that the integration stage of multi-head attention is
particularly sensitive to adversarial vulnerabilities and thus requires stronger masking to stabilize
high-level representations. Furthermore, Fig. 11b shows that attn.out proj exhibits more than
three times higher sparsity on average than attn. This may be attributed to its role in aggregating
information from all attention heads (making it more susceptible to perturbed signals) as well as
its tight connection to downstream task-specific adaptation. Consequently, suppressing vulnerable
weights in this module helps prevent distorted signals from being propagated, improving both
adversarial robustness and downstream adaptability.
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(a) Module-type sparsity per layer (b) Mean module-type sparsity

Figure 11: Analysis of which module types within the multi-head self-attention block are predominantly masked
by AdvMask. (a) Layer-wise sparsity for the attn and attn.out proj modules. (b) Mean sparsity across
layers, averaged over five datasets in the 16-shot setting.

D.7 COMPUTATIONAL COST

Our method, AdvMask, is designed to be parameter-efficient by optimizing only a small set of binary
mask parameters over a subset of the model (i.e., the self-attention layers, which account for 20% of
the model), while keeping the rest of the pre-trained model frozen. To evaluate efficiency, we report
quantitative comparisons of training and inference costs (latency and GPU memory usage per batch)
in Table 24. The results show that (1) during training, AdvMask is more memory- and time-efficient
than most baselines due to its lightweight mask tuning approach, and (2) during inference, although
memory usage increases slightly from additional mask parameters, latency remains lower than or
comparable to baselines, demonstrating practicality for deployment. Moreover, AdvMask is effective
even in challenging few-shot settings, requiring only a small number of downstream samples, making
it well-suited for resource-constrained scenarios. Overall, these results highlight that AdvMask offers
practical advantages in both cost and data efficiency, particularly in few-shot scenarios.

Method Training Inference

Time (s) Memory (MB) Time (s) Memory (MB)

CLIP – – 0.05 1268
AdvVP 0.29 937 0.17 1561
AdvVLP 0.49 2789 0.15 1783
AdvMaPLe 0.40 1726 0.16 1809
FAP 0.73 2863 0.16 1809
AdvMask (ours) 0.27 1581 0.13 1946

Table 24: Computational cost for training and inference. We report detailed training and inference costs (i.e.,
time and memory usage per batch). All baselines use the same batch sizes (train: 4, test: 200), with adversarial
sample generation cost included during training.

D.8 EXTENSION OF ADVMASK BEYOND BINARY MASK

While our framework adopts binary masks to explicitly form selective neural pathways, the method
can naturally be extended to soft-mask variants. To explore this direction, we implement a ternary
version of AdvMask in which each mask element can take one of three values {0, 0.5, 1}. This
is achieved by introducing two thresholds (α1 = 0.005, α2 = 0.008) while keeping all other
configurations identical to the binary-mask setting. As shown in Table 25, the ternary mask achieves
performance comparable to the binary version and, in certain cases (e.g., 4-shot adversarial accuracy),
even slightly outperforms it due to its larger representational flexibility. Importantly, both binary and
ternary variants consistently surpass baseline methods across different shot settings. These findings
suggest that AdvMask can be readily extended to soft-mask formulations. However, binary masks
offer significant practical advantages in terms of parameter compactness and deployability, as they
require only a single bit per weight and are therefore highly efficient to store, transmit, and reuse. In
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contrast, soft masks require higher-precision numerical values, increasing storage and deployment
overhead. Empirically, we find that binary masking is sufficient to capture robust subnetworks while
keeping computational cost efficient.

1-shot 4-shots 16-shots

Method Clean Adv. Clean Adv. Clean Adv.

CLIP 56.6 4.8 56.6 4.8 56.6 4.8
FAP 28.6 9.3 54.0 26.0 64.3 40.2

AdvMask (binary) 46.6 18.4 57.2 32.2 67.3 47.1
AdvMask (ternary) 44.8 18.8 58.9 35.3 66.4 46.9

Table 25: Comparison between binary and ternary masks. Clean and adversarial test accuracy averaged over 5
datasets using 3 random trials under the 1-shot, 4-shots, and 16-shots settings.

D.9 PER-CLASS PERFORMANCE ANALYSIS

In this section, we perform a comprehensive per-class performance analysis to identify which
categories benefit the most from AdvMask. We compute class-wise adversarial accuracies for both
CLIP and AdvMask across all 101 categories on Caltech101 dataset. Out findings show that AdvMask
significantly improves robustness across the majority of categories, with the largest gains appearing
in categories that are highly brittle under adversarial perturbations. Over 40 categories where CLIP
completely fails (0% accuracy), AdvMask substantially recovers performance, often reaching 40-80%
accuracy. To clearly highlight which categories benefit the most, we include a summary in Table 26,
showing the Top-10 and Bottom-10 classes by adversarial accuracy improvement. This table directly
illustrates that AdvMask yields the largest benefits for the most adversarially fragile categories. For
examples, several categories exhibit extreme improvements, such as ”car side”, ”cellphone”, ”okapi”,
”face”, ”ferry”, ”dalmatian”, ”tick”, ”grand piano”, and ”barrel”, where accuracy improves by +0.7 to
+1.0 absolute points (i.e., 70-80%). These classes typically rely on high-frequency or texture-sensitive
cues, which are severely corrupted by adversarial perturbations. AdvMask effectively suppresses
unstable activations, allowing the model to retain semantically meaningful features. This per-class
analysis supports our main claim: AdvMask selectively strengthens robustness for categories most
vulnerable to adversarial noise, while maintaining strong performance on clean samples.

E DISCUSSIONS

E.1 CONCEPTUAL DISTINCTION BETWEEN ADVERSARIAL FINE-TUNING AND ADVMASK

Adversarial fine-tuning and our proposed AdvMask share the high-level goal of improving robustness,
but they operate through fundamentally different mechanisms. Standard adversarial fine-tuning
directly updates the pretrained weights, altering the internal representations of the model to fit the
downstream task. Such weight modifications often overwrite or distort the pretrained feature space, a
phenomenon described in prior work (Schlarmann et al., 2024b), and may degrade generalization
on unseen tasks. In contrast, AdvMask preserves all pretrained parameters and instead learns binary
on/off gating that selectively suppresses perturbation-sensitive units. This design identifies a robust
subnetwork embedded within the original VLM while maintaining its generalizable pretraining
knowledge. Unlike weight fine-tuning, AdvMask does not modify or overwrite representations; it
merely routes computation through more robust pathways. AdvMask is also computationally more
efficient. The method updates only lightweight binary masks applied to a subset of modules (primarily
MHSA layers, roughly 20% of VLM parameters) rather than optimizing the full set of model weights.
Empirically, we find that this targeted gating is sufficient to form robust neural pathways that improve
adversarial robustness while retaining the strong zero-shot and few-shot generalization ability of the
underlying model.
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Table 26: Per-class adversarial accuracy improvements (0.0∼1.0) of AdvMask over CLIP. Top-10 classes show
the largest positive improvements, while Bottom-10 show the smallest improvements. ∆ = AccAdvMask−AccCLIP.

Class CLIP AdvMask ∆

Top-10 Improved Classes

car side 0.000 1.000 +1.000
face 0.015 0.954 +0.939
cellphone 0.118 1.000 +0.882
okapi 0.091 1.000 +0.909
ferry 0.050 0.950 +0.900
accordion 0.125 1.000 +0.875
barrel 0.071 1.000 +0.929
dalmatian 0.250 0.950 +0.700
grand piano 0.276 0.966 +0.690
tick 0.333 1.000 +0.667

Bottom-10 Improved Classes

crocodile head 0.000 0.067 +0.067
platypus 0.000 0.100 +0.100
crayfish 0.000 0.143 +0.143
crab 0.000 0.227 +0.227
scorpion 0.000 0.240 +0.240
mayfly 0.000 0.250 +0.250
crocodile 0.000 0.267 +0.267
bass 0.062 0.375 +0.313
lotus 0.000 0.350 +0.350
rhino 0.000 0.353 +0.353

F LIMITATIONS

In our implementation, to achieve computational efficiency during adversarial mask tuning, AdvMask
selectively optimizes mask parameters in multi-head self-attention (MHSA) layers. However, this
approach may leave other layers potentially vulnerable to adversarial attacks. Although we demon-
strate in Sec. 3.3 that masking MHSA layers is indeed more effective for adversarial robustness
compared to masking MLP layers (in terms of both efficiency and performance), it remains possible
that even more selective or adaptive masking strategies could further enhance robustness. Therefore,
identifying additional or alternative layers and adaptively tuning masks (while maintaining efficiency)
could be an important direction for future research.
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