A Classification View on Meta Learning Bandits

Anonymous Author(s)

Affiliation Address email

Abstract

Contextual multi-armed bandits are a popular choice to model sequential decisionmaking. E.g., in a healthcare application we may perform various tests to asses a patient condition (exploration) and then decide on the best treatment to give (exploitation). When humans design strategies, they aim for the exploration to be fast, since the patient's health is at stake, and easy to interpret for a physician overseeing the process. However, common bandit algorithms are nothing like that: The regret caused by exploration scales with \sqrt{H} over H rounds and decision strategies are based on opaque statistical considerations. In this paper, we use an original classification view to meta learn interpretable and fast exploration plans for a fixed collection of bandits M. The plan is prescribed by an interpretable decision tree probing decisions' payoff to classify the test bandit. The test regret of the plan in the *stochastic* and *contextual* setting scales with $\mathcal{O}(\lambda^{-2}C_{\lambda}(\mathbb{M})\log^2(MH))$, being M the size of M, λ a separation parameter over the bandits, and $C_{\lambda}(M)$ a novel classification-coefficient that fundamentally links meta learning bandits with classification. Through a nearly matching lower bound, we show that $C_{\lambda}(\mathbb{M})$ inherently captures the complexity of the setting.

1 Introduction

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

26

27

28

29

30

31

32

In the *Multi-Armed Bandits* model [MAB, 36], a decision-maker, called the *agent*, faces a collection of unknown probability distributions over reals, called *arms*, representing alternative decisions and their corresponding payoff (a.k.a. *reward*), which the agent repeatedly takes, or *pulls*, to maximize the mean cumulative reward collected over time. In some settings, called *contextual* MABs [5], the reward of an arm depends also on a *context*, a vector of features that the agent observes before deciding which arm to pull. The main challenge in MABs is how to pull arms in a way that effectively balances information gathering (called *exploration*) and immediate rewards (called *exploitation*).

A multitude of decision-making problems, ranging from recommender systems [37] to treatment allocation [9], pricing of goods [45], advertising [47], can be modelled as MAB problems.

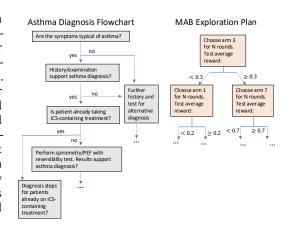


Figure 1: Left: An excerpt from a clinical flowchart for the diagnosis of Asthma [15]. Right: An interpretable exploration plan for a MAB.

However, although the problem structure is fitting, typical MAB algorithms are often very different from human-designed decision plans. For example, consider the clinical diagnosis plan illustrated in

Figure 1 (left). In machine learning parlance, this plan takes several exploration actions (diagnosis tests) to yield a diagnosis, which will later be treated by appropriate medical actions (exploitation). It is clear that (i) the plan is *short* – fast diagnosis is imperative; and (ii) the plan is *interpretable*, and can be easily communicated both to physicians and patients. Our goal in this work is to develop a framework for short and interpretable action plans in the setting of MABs.

To this end, we consider the *stochastic* contextual MAB formulation, a model of non-adversarial problems whose theoretical barriers are well-understood [33, 6]. Even when the context is fixed, the *regret* the agent has to pay, defined as the difference between the cumulative reward of their decisions and those of the optimal strategy, inevitably scales with \sqrt{KH} in the worst case, being H and K the number of pulls and arms respectively. The latter rate might not be compelling enough in settings where the regret translates to money losses, such as in pricing or advertising scenarios, or a negative impact on a patient's health condition, like in the clinical diagnosis problem mentioned above.

Faster performance is possible when prior knowledge about the *class* of bandits the agent faces may be available, such as from historical data or powerful simulators. For example, Thompson sampling [50] allows to exploit a prior distribution over the problem parameters through a Bayesian-inspired approach. In favorable circumstances, the latter yields an *average* regret rate that is at most logarithmic in the number of arms K [46]. Another formulation, called *latent bandits* [40, 19], assumes that the problem parameters are coming from a finite collection of bandits. The latter allows to trade a factor of \sqrt{K} with \sqrt{M} in the regret, being M the number of bandits in the collection.

Here we consider a meta learning version of latent bandits. We can interact with the collection of 58 bandits to meta-train an algorithm that is then tested against one bandit in the collection, whose 59 identity is not revealed to the algorithm. Unfortunately, any prior knowledge we can extract at meta 60 training cannot improve the \sqrt{MH} rate in the worst case, which holds even for a collection of two 61 bandits [36]. This changes when we assume that the bandits in the collection are meaningfully 62 different, i.e., the reward distribution of their arms have some statistical separation [12, 41]. The 63 separation condition is relevant in practice: If two patients do not respond differently to at least 64 one treatment, there is little point in modeling them with different bandits. Whereas this can help 65 achieving fast rates, previous work, either with or without separation, do not yield interpretable plans. 66

To design interpretable exploration plans for bandits, our main technical contribution is connecting ideas from the classification literature to MAB analysis. In principle, the idea is to take advantage of separation to explicitly *classify* the test task from data with high probability, and then exploit the optimal strategy for the classified task. This *classification view* allows to break the common barriers for meta learning bandits, while providing an elegant and original characterization of the regret dynamics under separation.

2 Problem setting

Let us consider a finite collection of contextual bandit problems $\mathbb{M} := \{\nu_i\}_{i \in [M]}$, where [M] =74 $\{1,\ldots,M\}$. Each bandit instance ν_i , which we will sometimes call a *task*, is a *linear contextual* bandit [52] that maps an action $k \in [K]$ and context $x \in \mathcal{X} \subseteq \mathbb{R}^d$ into a reward distribution $\nu_i(x,k) = x^{\top}\theta_{ik} + \eta_{ik}$, where $\theta_{ik} \in \mathbb{R}^d$ is a vector of parameters and η_{ik} is a (subgaussian) random noise with zero mean and variance $\sigma_{ik}^2 \leq \sigma^2$. A special yet important case is when the space of 77 78 contexts is a singleton $\mathcal{X} = \{x\}$, which we call *non-contextual* bandit, or just bandit for simplicity. 79 Following a typical stochastic bandit setup [36], the decision maker, i.e., the agent, interacts with a 80 bandit $\nu_i \in \mathbb{M}$, which identity is not revealed to the agent. The interaction protocol goes as follows: 81 At each step t > 0, the agent observes a context $x_t \in \mathcal{X}$ drawn from some fixed distribution \mathcal{P} , it 82 selects an arm $k_t \in [K]$, and it collects a reward $r_t \sim \nu_i(x_t, k_t)$. The agents decides the arm to pull 83 according to a policy $\pi: \mathcal{X} \to [K]$, a mapping between contexts and arms, which the agent updates 84 given previous observations of contexts and rewards.

The goal of the agent is to maximize the cumulative reward collected over a time horizon H or, equivalently, to minimize the *regret* of pulling an arm other than the optimal one. For instance, to minimize the number of times a treatment different from the optimal one is administered to a patient. Since the identity of the bandit problem (unobserved characteristic of the patient in the example) is hidden to the agent, the regret is typically computed over the worst-case task in M. Formally, the

91 worst-case regret is given by

105

106

107

108

109

110

$$\operatorname{Reg}_{H}(\mathbb{M}) := \sup_{\nu_{i} \in \mathbb{M}} \mathbb{E}\left[\sum_{t \in [H]} \max_{k \in [K]} x_{t}^{\top} \theta_{ik} - r_{t}\right]$$
(1)

where the contexts $x_1, \dots x_H$ are sampled independently from the fixed distribution $\mathcal P$ and $r_t \sim \nu_i(x_t,k_t)$ being $k_t \sim \pi(x_t)$ the arm pulled by the agent.

In this paper, we consider a *meta learning* variation (*e.g.*, [10, 26]) of the common bandit setup described above. The learning setting is composed of two separate and consecutive stages, which we call *meta training* and *test*, respectively.

Meta training. In the first stage, the agent can interact *offline* with the set of bandits \mathbb{M} . Differently 97 from a pure exploration setup [5], here we interact with a set of bandits instead of a single one. We are 98 not just interested in discovering an optimal policy for each bandit, but also to devise an exploration 99 *plan*, which we denote as Plan(M), that we can transfer to the test phase to minimize the regret. 100 Since the meta training itself happens entirely offline, no regret is incurred at this stage. In practice, 101 this is reasonable when working with a simulator or previously collected data, such as an historical 102 record of treatments administered to patients. However, we may operate under resource constraints, 103 so that it is important to investigate the sample and computational complexity of meta training. 104

Test. In the second stage, the agent faces a single and unknown bandit task $\nu_i \in \mathbb{M}$, which we call the *test* task, with the goal of minimizing the regret (1). This matches the *stochastic* bandit setting exactly, except that the learning algorithm takes decisions according to the exploration plan devised during meta training, *i.e.*, $k_t \sim \text{Plan}(\mathbb{M})$. Whereas the plan is fixed *a priori*, it is still *adaptive*, as it conditions the decisions with the history of interactions in the test task. For instance, the plan can be a strategy to administer treatments to a patient informed by historical data.

What are the theoretical barriers for the described problem of meta learning bandits? A natural question is whether the meta training can benefit the test regret in a substantial way. Perhaps unsurprisingly, without any assumption on how the collection of bandits M is constructed, the meta learning problem is not easier than the classical stochastic bandit.

Theorem 2.1 ([33]). Let \mathbb{M} such that $|\mathbb{M}| \geq 2$ and let $\mathcal{X} = \{x\}$. Then $\operatorname{Reg}_H(\mathbb{M}) = \Omega(\sqrt{MH})$.

The latter can be proved through a hard instance in which the two bandits are identical expect for a pair of arms whose mean reward differ for a small quantity depending on H. In many scenarios, those instances have limited interest, as we may model the pair of bandits with a single task, at the cost of a (bounded) sub-optimality. Similarly to previous meta learning settings [12, 41], we consider a *separation* assumption built on this premise.

Assumption 1. For all $i \neq j \in [M]$ and a policy class Π , there exists at least one policy $\pi \in \Pi$, s.t. $D_H(\mathbb{P}_i^{\pi}, \mathbb{P}_j^{\pi}) \geq \lambda$, where D_H is the Hellinger distance and $\mathbb{P}_i^{\pi}, \mathbb{P}_j^{\pi}$ are the joint context-arm-reward distributions induced by π in ν_i, ν_j .

The separation guarantees that the bandits in the collection are meaningfully different, such as assuming that different patient groups respond differently to at least one treatment.

Notation. We will consider a fixed context distribution \mathcal{P} for both meta training and test stages. For a random variable A and event \mathcal{E} , we use $\mathbb{E}_{\mathcal{P}}[A]$, $\mathbb{P}_{\mathcal{P}}[\mathcal{E}]$ as shortcuts for $\int_{x\in\mathcal{X}}\mathcal{P}(x)\,\mathbb{E}[A|x]dx$ and $\int_{x\in\mathcal{X}}\mathcal{P}(x)\mathbb{P}(\mathcal{E}|x)dx$ respectively. For any finite set S, we denote 2^S the powerset of S. For any two probability distributions p,q over some measurable space \mathcal{X} , let $D_{\mathbf{H}}(p,q):=\int_{x\in\mathcal{X}}\left(\sqrt{p(x)}-\sqrt{q(x)}\right)^2dx$ be the Hellinger distance between them. For every $\nu_i\in\mathbb{M}$, we denote $\mu_{ik}=\mathbb{E}_{\mathcal{P}}[x^\top\theta_{ik}]$ the mean of $r\sim\nu_i(x,k)$ for $x\sim\mathcal{P}$. We further assume $x^\top\theta_{ik}\in[0,1]$ and both $\|x\|_1,\|\theta_{ik}\|_1$ to be bounded. We denote as Π the space of policies and the optimal policy $\pi_i^*(x):=\arg\max_{\pi\in\Pi}x^\top\theta_{i\pi(x)}$, playing the arm $k_i^*\in\arg\max_{k\in[K]}x^\top\theta_{ik}$ with the optimal mean reward for any $x\in\mathcal{X}$. For a bandit $\nu_i\in\mathbb{M}$ and policy $\pi\in\Pi$, we denote \mathbb{P}_i^π the joint distribution of context-arm-rewards. The action gap of bandit ν_i and context x is denoted $\Delta_i(x,k):=x^\top\theta_{ik^*}-x^\top\theta_{ik}$ and we define $\Delta:=\min_{i\in[M],x\in\mathcal{X},k\in[K]}\Delta_i(x,k)$.

¹Note that, whenever the context vector is the zero vector, the gap Δ_i collapses to zero for every i. We assume that the space of contexts \mathcal{X} is designed properly, so that it does note include such dummy context vectors.

7 3 Meta learning bandits with classification

In this section, we present a framework to study meta learning bandits under separation through the lenses of multi-class classification. First, we analyze the regret of a strategy, *i.e.*, an exploration plan Plan(\mathbb{M}), based on classifying the test task to then exploit the optimal policy of the classified task. Then, we show that classifying the test is necessary for regret minimization under separation. As we shall see, the two results are brought together by a novel measure of complexity, which we call the *classification-coefficient*.

For the ease of presentation, we assume to know the true distributions of all bandits $\nu_i \in \mathbb{M}$, and we leave the study of misspecifications to later sections. We consider classification algorithms in the following interaction protocol:

- 147 1. Start with t = 0 and an initial hypothesis class $S_0 = \{1, 2, ..., M\}$.
- 148 2. Terminate if $|S_t|=1$. Otherwise, decide on a classification test $\pi_t\in\Pi_{\mathcal{C}}$ (either deterministically or randomly) from the set of tests $\Pi_{\mathcal{C}}$, and draw $N_{\mathrm{cls}}=\tilde{O}(\lambda^{-2})$ samples with π_t .
- 150 3. Update the hypothesis class S_{t+1} with the generated samples. $t \leftarrow t+1$ and go to Step 2.

The complexity of classification depends on how many hypotheses we can rule out from a test π_t from the remaining hypotheses each round. As we are allowed to use $\tilde{O}(\lambda^{-2})$ samples, we can at least rule out λ -separated hypotheses from the underlying instance. Specifically, given the remaining hypothesis class $S_t \in 2^{[M]}$ and the underlying instance i, we can remove $\bar{S}_{t,\lambda}^{\pi}(i) := \{m \in S_t | D_{\mathbb{H}}(\mathbb{P}_i^{\pi}, \mathbb{P}_m^{\pi}) \geq \lambda\}$ through hypothesis testing (e.g., using likelihood ratio test).

To formalize the concept, we define the deterministic *classification-coefficient*:

$$C_{\lambda}(\Pi_{\mathcal{C}}) := \max_{S \in 2^{[M]}, |S| > 1} \min_{\pi \in \Pi_{\mathcal{C}}} \max_{i \in S} \frac{|S|}{|\bar{S}_{\lambda}^{\pi}(i)|}, \tag{2}$$

and the randomized *classification-coefficient*:

158

159

160

161

162

163

164

$$\widetilde{C}_{\lambda}(\Pi_{\mathcal{C}}) := \max_{S \in 2^{[M]}, |S| > 1} \min_{p \in \Delta(\Pi_{\mathcal{C}})} \max_{i \in S} \frac{|S|}{\mathbb{E}_{\pi \sim p}[|\bar{S}_{\lambda}^{\pi}(i)|]}, \tag{3}$$

In essence, these coefficients measure the classification complexity of a class of bandits through the pessimistic rounds of classification, where S is the worst-case remaining hypotheses when the test task is i, and π , p are the optimal deterministic and randomized greedy strategies, respectively. The latter take the test (resp. distribution over tests) inducing the most even split (resp. expected split) of the remaining hypotheses S. Interestingly, we can derive an upper bound on the size of the split when employing the deterministic greedy strategy $\mathbb{E}\left[\frac{|S_{t+1}|}{|S_t|}\Big|S_t\right] \leq 1 - \frac{1}{2}C_{\lambda}(\Pi_{\mathcal{C}})^{-1}$. Clearly, the smaller the classification-coefficients, the more hypothesis we can rule out in a single round, the easier it is to classify the test task. Now, we formally link the complexity of classification with the regret.

Algorithm 1 Explicit Classify then Exploit

```
1: input set of tasks \mathbb{M}, N_{\mathrm{cls}}

2: Initialize S_0 = [M], t = 0

3: while |S_t| > 1 do

4: \pi_t = \max_{\pi \in \Pi_C} \min_{i \in S_t} |\bar{S}_{t,\lambda}^{\pi}(i)|

5: \mathcal{D}_t \leftarrow N_{\mathrm{cls}} i.i.d. samples drawn with \pi_t

6: Get S_{t+1} with Algorithm 2

7: t \leftarrow t+1
```

8: end while

9: Extract the classified task $m^* \in S_t$ and execute $\pi^*(x) = \arg \max_{\pi \in \Pi} \nu_{m^*}(x, k)$ for the remaining steps

Algorithm 2 Update Remaining Hypotheses

```
1: input set of tasks S_t, test \pi_t, samples \mathcal{D}_t

2: Let \ell_i = \sum_{(x,r) \in \mathcal{D}_t} \log(\mathbb{P}_i^{\pi_t}(x,r)) for all i \in S_t

3: Let \hat{m} = \arg\max_{i \in S_t} \ell_i

4: return S_{t+1} \leftarrow \{i \in S_t | \ell_i \ge \ell_{\hat{m}} - 3\log(M/\delta)\}
```

To this end, we consider a simple algorithm, called *Explicit Classify then Exploit* (ECE, Algorithm 1), which is based on the classification protocol described above to classify the test task (lines 2-8), then deploying the optimal policy for the classified task (line 9). We can prove the following.

Theorem 3.1. Suppose Assumption 1 holds with a test class $\Pi_{\mathcal{C}}$ and a family of M bandit instances

M. Then with probability at least $1-\delta$, the while-loop in Algorithm 1 ends after T rounds with N_{cls} samples per round where

$$T = \mathcal{O}\left(C_{\lambda}(\Pi_{\mathcal{C}})\log(M/\delta)\right), \qquad N_{\text{cls}} = \mathcal{O}\left(\log(M/\delta)/\lambda^{2}\right). \tag{4}$$

72 Consequently, the expected test regret of Algorithm 1 for H steps is

$$\operatorname{Reg}_H(\mathbb{M}) \leq \mathcal{O}\left(\frac{C_{\lambda}(\Pi_{\mathcal{C}})\log^2(M/\delta)}{\lambda^2}\right) + \delta H.$$

The theorem states that we can identify the test task w.h.p. taking $N_{\rm cls}T=O(\lambda^{-2}\cdot C_\lambda(\Pi_{\mathcal{C}})\log^2(M/\delta))$ samples. We can translate the latter into a regret rate by bounding the regret caused by classification failure with δH . We can set $\delta=o(1/H)$ to make the classification failure negligible, settling the regret $O(\lambda^{-2}C_\lambda(\Pi_{\mathcal{C}})\log^2(MH))$. Next, we show that the latter rate is nearly optimal by developing a lower bound to the regret for bandits under separation.

178 3.1 Necessity of classification with separation

187

While the ECE approach may not always be the best algorithm to minimize regret, it is a near-optimal solution whenever the optimal actions and the separating actions do not overlap. To see this, suppose a family of M multi-armed bandit instances $\mathbb M$ with arbitrarily many K arms. Each i^{th} instance has its unique optimal arm k_i^* , but only with margin $O(\epsilon)$, *i.e.*, instances are not well-separated with respect to optimal arms. In such scenarios, it is always better to first identify the task with λ -separating arms.

To formalize the fundamental link between regret and classification, for the remainder of the section we are going to consider a class of worst-case multi-armed bandit instances M, which we refer as hard, defined as follows:

1. For each bandit instance $i \in [M]$, there is a unique optimal arm $k_i^* \in [K]$ such that

$$\mu_i(k_i^*) = \frac{3}{4} + 10\epsilon, \ \mu_j(k_i^*) = \frac{3}{4}, \ \forall j \neq i.$$

2. All other arms $k \in [K]/\{k_i^*\}_{i \in [M]}$ are information-revealing, *i.e.*, either one of the following holds:

$$\mu_i(k) = \frac{1+\lambda}{2} \text{ or } \mu_i(k) = \frac{1-\lambda}{2}, \ \forall i \in [M],$$

where ϵ, λ satisfy $1 > \lambda^2 > c_{\lambda} \epsilon \cdot \widetilde{C}(\mathbb{M})$ for some sufficiently large absolute constant $c_{\lambda} > 0$ and the randomized classification-coefficient $\widetilde{C}(\mathbb{M})$ (defined below).

Classification complexity. Let $C^*(\mathbb{M})$ be the *optimal* depth of a deterministic decision tree for the 192 hard instance, constructed by probing the true means of separating arms $\mathcal{A}_{\lambda} := [K]/\{k_i^*\}_{i \in [M]}$. Let 193 $\widetilde{C}^*(\mathbb{M})$ be the optimal average depth of randomized decision trees. The classification-coefficient in 194 (2) can be defined as $C(\mathbb{M}) := C_{\lambda}(\mathcal{A}_{\lambda})$, and similarly for the *randomized* classification-coefficient 195 $\widetilde{C}(\mathbb{M}) := \widetilde{C}_{\lambda}(\mathcal{A}_{\lambda})$. Note that the *classification-coefficients* defined previously are concerned with 196 the (worst-case) most even split on the hypotheses S_t , thus they can be interpreted as measures for 197 greedy classification strategies. The following is a well-known relationship between these greedy 198 measures and the optimal depth of (deterministic) decision trees [4] 199

$$\widetilde{C}(\mathbb{M}) \le C(\mathbb{M}) \le C^*(\mathbb{M}) \le C(\mathbb{M}) \log(M).$$
 (5)

We note that these classification complexities can be as large as M in the worst case, while in practical scenarios we can often design effective information-revealing actions to ensure $C^*(\mathbb{M}) = O(\log M)$.

²For randomized classification, we can change Algorithm 1 to perform a randomized test, and the same conclusion holds with replacing C_{λ} by \widetilde{C}_{λ} .

Statistical barriers of separated bandits. What is the lower bound to the test regret for M? To quantify this, we recall a PAC-variant of DEC from [11]. Given some $\gamma > 0$, we define

$$\operatorname{dec}_{\gamma}(\mathbb{M}) := \max_{\omega \in \Delta([M])} \min_{\pi \in \Delta([K])} \max_{i \in [M]} \mathbb{E}_{k \sim \pi}[\Delta_i(k)] - \gamma \mathbb{E}_{k \sim \pi, m \sim \omega}[D^2_{\mathtt{H}}(\nu_i(k), \nu_m(k))], \quad (6)$$

- where $\Delta_i(k) := \mu_i(k_i^*) \mu_i(k)$. We can verify the following relation between γ and dec_{γ} :
- Lemma 3.2. There exists a constant $c_{\gamma} > 0$ such that $\operatorname{dec}_{\gamma}(\mathbb{M}) > 3\epsilon$ for all $\gamma \leq c_{\gamma}\lambda^{-2}\widetilde{C}(\mathbb{M})$.
- As a corollary of [11, Theorem 10], this implies the lower bound on the high probability regret:
- Theorem 3.3. There exists an absolute constant c > 0, such that if $1/H < c\epsilon$, then any algorithm must suffer regret $\Omega(\min(\epsilon H, c_{\gamma}\lambda^{-2}\widetilde{C}(\mathbb{M})))$ with probability at least 1/H.
- Thus, any algorithm guarantees with probability at least 1 1/H must suffer at least $\Omega(\widetilde{C}(\mathbb{M})\lambda^{-2})$
- test regret, capturing the fundamental limits of separated bandits. The lower bound depends on the
- randomized classification-coefficient, though deterministic strategies can still be preferred in practice.

4 A more practical ECE algorithm

- 213 We analyzed the ECE algorithm in an ideal setting in which the reward distributions of all the bandits
- in \mathbb{M} and the context distribution \mathcal{P} are fully known. Here, we present a more practical variation of
- 215 the algorithm, *Decision Tree ECE* (DT-ECE), which (i) is robust to misspecifications of M caused by
- estimation errors at meta training, (ii) only accesses samples coming from the context distribution \mathcal{P} ,
- 217 (iii) lays down a fully interpretable exploration plan through a decision tree classifier.
- In this section, we work under a special case of the separation condition (Ass. 1) which assumes
- separation on the mean of the rewards instead of their distribution.
- Assumption 2. For $\lambda > 0$ and every $\nu_i, \nu_j \in \mathbb{M}$, $\exists k \in [K]$ such that $|\mathbb{E}_{x \sim \mathcal{P}}[x^\top (\theta_{ik} \theta_{jk})]| > \lambda$.
- First, we describe the meta training stage with the corresponding guarantees (Section 4.1). Then, we
- present the DT-ECE test algorithm and we analyze its regret (Section 4.2).

4.1 Meta training

212

223

234

- In this section, we describe a provably efficient algorithm to meta train an exploration plan $Plan(\mathbb{M})$
- by only accessing offline simulators of the tasks in $\mathbb M$ and samples from $\mathcal P$.
- The meta training algorithm, whose pseudocode is in Algorithm 3, has two main procedures. First,
- it estimates the parameters of each task ν_i by doing regression on the class of linear functions of
- the context (lines 2-11). Second, it takes the (possibly misspecified) resulting class M to build
- a deterministic decision tree classification model over the tasks (line 12). The following lemma
- provides an estimation guarantee over $\tilde{\mathbb{M}}$ from the analysis of *random design* linear regression [22].
- Lemma 4.1. Let \mathbb{M} be a set of M linear contextual bandits and let $\hat{\mathbb{M}}$ their estimation obtained by Algorithm 3 with

$$N_{\rm est} = \frac{160\sigma^2 d \log(4HMK)}{\min(\Delta^2, \lambda^2)}.$$

233 For every bandit $i \in [M]$ and arm $k \in [K]$, it holds

$$\mathbb{P}\left(\mathbb{E}_{\mathcal{P}}\left[|x^{\top}\hat{\theta}_{ik} - x^{\top}\theta_{ik}|\right] > \min\left(\frac{\Delta}{2}, \frac{\lambda}{4}\right)\right) \leq \frac{1}{2HMK}.$$

The latter guarantees that the identity of the optimal arm and the separation condition is preserved

- 236 w.h.p. by the estimation process. As we shall see, these properties will prove useful at test stage.
- Before going to that, it is worth detailing how the decision tree classifier is built (Algorithm 4).

³An analogous algorithm accessing pre-logged historical data can be developed. The reported guarantees shall transfer verbatim under natural conditions on the size and quality of the dataset.

We consider a set of tests $\Pi_{\mathcal{C}}$ equal to the set of arms [K], for which we are going to test the mean reward $\hat{\mu}_k$ against a threshold $b \in [0,1]$. Since computing the optimal test is NP-hard in general [23], we turn to a greedy approximation which gives the test with the most even split [4, 42]. Algorithm 5 in Apx. C.2 gives a tractable procedure with which the greedy test can be computed. In order to make the tests along the tree statistically robust when computed with samples from the test task, we consider *soft splits* [43]: We let the test $\hat{\mu}_k \leq b$ be simultaneously true and false inside a λ -band around b (see Figure 3).

The meta training algorithm that we just described is *fully tractable*, both in terms of computational resources and sample complexity, as proved by the result below.

Theorem 4.2. Algorithm 3 runs in time $\mathcal{O}(d^3M^3K/\lambda^4)$ and collects a total number of samples

$$\frac{160\sigma^2 MKd\log(4TMK)}{\min(\Delta^2,\lambda^2)}.$$

Finally, we can provide a guarantee on the cost of the greedy approximation with respect to the depth of the optimal deterministic decision tree on $\hat{\mathbb{M}}$, *i.e.*, $C_{\lambda}^{*}(\hat{\mathbb{M}})$.

Lemma 4.3. Algorithm 4 builds a decision tree with depth $D = \mathcal{O}(\log M + 1)C_{\lambda}^*(\hat{\mathbb{M}})$.

250 4.2 Test

Here we analyze the test algorithm implementing the exploration plan $Plan(\hat{\mathbb{M}})$ prescribed by the decision tree classifier $tree(\hat{\mathbb{M}})$, which we call DT-ECE. As said above, this test algorithm is a slight variation of ECE (Algorithm 1) and mostly follow similar steps. Here we comment on the differences and we leave a complete pseudocode to Apx. C.3.

Without turning to the appendix, we can look at the pseudocode in Algorithm 1 and picture that, at line 4, DT-ECE would extract a test $\mu_k \leq b$ from $\mathtt{tree}(S_t)$ on the current hypotheses S_t , collecting data like in line 5 with the policy $\pi_t = k$ prescribed by the test. Then, instead of updating the remaining hypotheses S_{t+1} with log likelihood tests (line 6), it takes S_{t+1} by following the left or right split in the tree according to whether the test resulted true or false, respectively. Those changes lead to the following regret.

Theorem 4.4. Suppose Assumption 2 holds on a set of tasks \mathbb{M} and let $tree(\hat{\mathbb{M}})$ be obtained from Algorithm 3. The expected test regret of DT-ECE (Algorithm 6) for H steps is

$$\operatorname{Reg}_{H}(\mathbb{M}) = \mathcal{O}\left(\frac{C_{\lambda}^{*}(\mathbb{M})\log^{2}(C_{\lambda}^{*}(\mathbb{M})MH)}{\lambda^{2}}\right)$$

The result above shows that DT-ECE matches the regret of ECE with a factor $C_{\lambda}^{*}(\mathbb{M})$ in place of the classification-coefficient $C_{\lambda}(\mathbb{M})$. This implies an additional $\log(M)$ factor at most (see 5). This means the estimation error does not significantly affect the regret, thanks to the guarantee in Lemma 4.1. Finally, the regret holds in a contextual bandit setting, but does not depend on the size of the context d, which only impacts the meta training complexity.

5 Experiments

268

In this section, we provide a brief numerical validation to illustrate how the above theoretical analysis on the classification view of meta learning bandits translates to compelling empirical results, which we compare with previous methods in the literature of latent bandits [19].

To the purpose of the experiments, we consider a non-contextual stochastic MAB setting in which the collection of bandits is fully known, without covering class misspecifications. We design two family of collections, one inspired by the hard instance presented in Section 3.1, which we henceforth call hard, and one randomly generated collection, which we call rand. For the former, we consider two instances with size M=5 and arms K=10, with varying values of the separation parameters λ (0.4 and 0.04 respectively). For the latter, we consider a small instance M=10, K=20 and a large instance M=40, K=40. We use rejection sampling to control λ (set to 0.4) in the randomly generated collection. In all the considered instances, the reward distributions are Bernoulli.

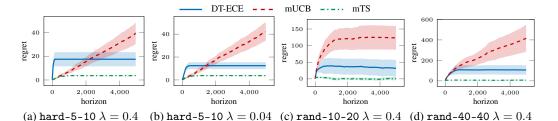


Figure 2: Regret of DT-ECE (ours), mUCB [7], mTS [19]. Captions report envname-M-K, denoting the name of the collection of bandits, the size of the collection, and the number of arms, respectively, together with the value of λ . The curves average 20 runs, shaded regions are 95% c.i.

We compare the regret suffered by our decision tree implementation of the Explicit Classify then Exploit routine (DT-ECE, described in Section 4 and Algorithm 6 of Apx. C.3) with traditional bandit approaches, i.e., mUCB [7] and mTS [19]. The latter algorithms adapt UCB and Thompson sampling to the meta/latent bandits setting. While they are not designed to take advantage of separation specifically, they exploit knowledge of the collection of bandits and they constitute relatively strong baselines. Before going ahead with the experimental results, it is worth spending a few words on how the *spirit* of our algorithm differs to theirs. DT-ECE is designed to produce easy-to-interpret exploration plans, which can be entirely pre-computed offline. Instead, the exploration prescribed by mUCB and mTS is hardly interpretable nor predictable, making them and DT-ECE orthogonal solutions for different applications rather than direct challengers. It is satisfying, however, to see that DT-ECE performance is on par with such renowned algorithms.

In Figure 2 (a, b) we see that DT-ECE achieves a small regret by classifying the test task in a handful of interactions (coarsely, the classification occurs at the elbow of the curves) both when separation is large (a) or small (b). DT-ECE is able to commit to the optimal strategy even before mTS, whose posterior takes slightly longer to converge around the test task, although DT-ECE suffers larger regret due to pure exploration. The most important trait of the hard instance is that optimal actions and informative actions do not overlap, so that optimistic strategy like mUCB are bound to fail. By mostly pulling nearly optimal yet non-informative actions, mUCB cannot identify the test task efficiently, and the regret grows steady. Optimism works considerably better in the rand family (Figure 2 c, d), although mUCB does not match the efficiency of DT-ECE and mTS in those experiments either. It is remarkable that DT-ECE can classify the test task into a set of 40, with 40 arms each, by taking less than 1000 samples on average (d).

Finally, DT-ECE comes with sharp theoretical guarantees and it is designed for the worst case, which 302 can limit the performance of the algorithm in more forgiving instances (such as the rand family). 303 However, the design of a fully practical version of the ECE ideas is beyond the scope of this paper 304 and constitute interesting matter for future studies. 305

Related work

280 281

282

283

284

285

286

287

288

289

290

291

292

293

294 295

296

297

298

299

300

301

306

309

311

312

313

314

315

316

317

318

To the best of our knowledge, our classification view of meta learning bandits under separation is 307 original. There are anyway several connections with the literature, which we revise below. 308

Contextual bandits. Our setting relates to *contextual* bandits [52, 37, 1, 17] and, indeed, our results hold for the contextual setting. The contextual nature of individual tasks is an orthogonal dimension 310 w.r.t. a second, unobserved context typical of meta learning settings: The task description itself.

Latent bandits. The setting that most closely relates to ours is *latent bandits* [7, 40, 54, 19, 20, 44]. Actually, our setting can be seen as a particular instance of latent bandits under separation and a meta learning protocol. [7, 40] also consider bandit tasks coming from a finite and known set, with or without misspecification. They do not consider separation, which allows to specialize the regret from $\mathcal{O}(\sqrt{H})$ to $\mathcal{O}(\log H)$. Similarly to ours, the setting in [54] includes a phase in which the models are learned from data and then exploited on future tasks. In their formulation, however, the tasks are coming into a sequence online, so that the meta learning itself adds to the regret instead of being carried out offline. An offline learning phase is considered by [19] in a problem formulation

that almost perfectly matches ours, yet leads to mostly orthogonal results: They do not consider separation; Their analysis is not instance-dependent and does not tie the regret to the classification complexity of the instance; They consider traditional UCB/TS-style algorithms in place of our ECE;
They do not detail the meta training algorithm. Most importantly, our classification view is original in the latent bandits literature and constitutes the main novelty of our work.

Low-rank bandits. Low-rank bandits [27, 34, 39] essentially generalize the latent bandits formulation (and ours) by assuming the existence of a low-rank latent representation conditioning the arms payoffs. Just like in latent bandits, previous works do not touch on the connection between classification and regret, which may be generalized to low-rank bandits.

Structured bandits. In *structured bandits* [35, 13, 51] the rewards of the arms are correlated according to a known structure *class* with hidden parameters. These parameters have some similarity of the hidden task context of our setting (and latent bandits). Our results connecting classification and regret may be generalized to structured bandits.

Thompson sampling. Extensive work has been done over exploiting prior knowledge in bandits through Bayesian approaches. The most notable is Thompson sampling [50, 24, 3, 46], in which knowledge over the test task is incorporated into a prior. The set of tasks of our setting can be seen as a prior, although our results are in a frequentist setting. As such, they are independent from the prior distribution and robust to misspecifications, differently from Thompson sampling [48].

Meta learning bandits. Meta learning bandits has been considered in [25, 21, 18] where tasks are assumed to come from an unknown prior. The agent aims to infer the prior from interaction, assuming it is itself coming from a known hyper-prior. This can be seen as a Bayesian version of our setting, where the hyper-prior stands for the set of tasks, and the priors play the role of the tasks. Other works [10, 8] have considered meta learning a prior over tasks for regret minimization.

7 Conclusion

In this paper, we took an original *classification view* on the problem of meta learning bandits under separation. Thanks to this novel approach, our work delivers on its promise of providing principled algorithms for learning *interpretable* and *efficient* exploration plans from offline data, just like they were designed by humans. As a by product to this effort, we contribute an elegant *framework* to study the regret of learning algorithms through the complexity of classifying the task *online* within a set of previously seen tasks.

We believe the significance of our findings are hardly limited to the considered contextual multi-armed bandits, and that they may inspire future works targeting yet more general problem settings (and corresponding applications) by following our blueprint for meta learning with classification.

353 A natural next step is to introduce dynamics over contexts to extend the framework to full-fledged Markov Decision Processes (MDPs) and reinforcement learning, where we would consider a test MDP 354 coming from a collection of MDPs, known a priori or accessed offline. A framework of similar kind 355 has been introduced under the name of contextual MDPs [16] and latent MDPs [29, 28, 31, 30, 32]. 356 Previous works have also studied meta learning policies for efficient exploration in MDPs and their 357 regret [12, 53, 41]. None of the above has considered our classification view of the problem to get 358 efficient and interpretable exploration plans. In the MDP setting, our decision tree classifier resembles 359 a hierarchical strategy deploying policies, or options [49], to probe information-revealing states of the environment. Can these policies be learned with a tractable offline algorithm? Would the exploration 361 plan enjoy similar regret guarantees beyond the contextual MAB setting? This is an exciting direction 362 with the potential to open the door to countless applications, such as autonomous driving, robotics, 363 and many others. 364

References

365

366

367

368

369

370

- [1] Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic bandits. In *Advances in Neural Information Processing Systems*, 2011.
- [2] Alekh Agarwal, Sham Kakade, Akshay Krishnamurthy, and Wen Sun. FLAMBE: Structural complexity and representation learning of low rank MDPs. In *Advances in Neural Information Processing Systems*, 2020.

- [3] Shipra Agrawal and Navin Goyal. Analysis of Thompson sampling for the multi-armed bandit problem. In *Conference on Learning Theory*, 2012.
- Esther M Arkin, Henk Meijer, Joseph SB Mitchell, David Rappaport, and Steven S Skiena.
 Decision trees for geometric models. In *Annual Symposium on Computational Geometry*, 1993.
- [5] Jean-Yves Audibert and Sébastien Bubeck. Best arm identification in multi-armed bandits. In
 Conference on Learning Theory, 2010.
- [6] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit problem. *Machine Learning*, 47:235–256, 2002.
- [7] Mohammad Gheshlaghi Azar, Alessandro Lazaric, and Emma Brunskill. Sequential transfer in multi-armed bandit with finite set of models. In *Advances in Neural Information Processing Systems*, 2013.
- [8] Soumya Basu, Branislav Kveton, Manzil Zaheer, and Csaba Szepesvári. No regrets for learning
 the prior in bandits. In *Advances in Neural Information Processing Systems*, 2021.
- [9] Donald A Berry. Modified two-armed bandit strategies for certain clinical trials. *Journal of the American Statistical Association*, 73(362):339–345, 1978.
- [10] Leonardo Cella, Alessandro Lazaric, and Massimiliano Pontil. Meta-learning with stochastic
 linear bandits. In *International Conference on Machine Learning*, 2020.
- Fan Chen, Song Mei, and Yu Bai. Unified algorithms for rl with decision-estimation coefficients:
 No-regret, pac, and reward-free learning. *arXiv preprint arXiv:2209.11745*, 2022.
- [12] Xiaoyu Chen, Jiachen Hu, Chi Jin, Lihong Li, and Liwei Wang. Understanding domain
 randomization for sim-to-real transfer. In *International Conference on Learning Representations*,
 2022.
- 393 [13] Richard Combes, Stefan Magureanu, and Alexandre Proutiere. Minimal exploration in structured stochastic bandits. In *Advances in Neural Information Processing Systems*, 2017.
- 14] Dylan J Foster, Sham M Kakade, Jian Qian, and Alexander Rakhlin. The statistical complexity of interactive decision making. arXiv preprint arXiv:2112.13487, 2021.
- [15] Asthma GIf. Global strategy for asthma management and prevention. Global Initiative for
 Asthma, 2023.
- 399 [16] Assaf Hallak, Dotan Di Castro, and Shie Mannor. Contextual markov decision processes. *arXiv* preprint arXiv:1502.02259, 2015.
- [17] Botao Hao, Tor Lattimore, and Csaba Szepesvari. Adaptive exploration in linear contextual bandit. In *International Conference on Artificial Intelligence and Statistics*, 2020.
- ⁴⁰³ [18] Joey Hong, Branislav Kveton, Sumeet Katariya, Manzil Zaheer, and Mohammad Ghavamzadeh. Deep hierarchy in bandits. In *International Conference on Machine Learning*, 2022.
- [19] Joey Hong, Branislav Kveton, Manzil Zaheer, Yinlam Chow, Amr Ahmed, and Craig Boutilier.
 Latent bandits revisited. In Advances in Neural Information Processing Systems, 2020.
- 407 [20] Joey Hong, Branislav Kveton, Manzil Zaheer, Yinlam Chow, Amr Ahmed, Moham408 mad Ghavamzadeh, and Craig Boutilier. Non-stationary latent bandits. *arXiv preprint*409 *arXiv:2012.00386*, 2020.
- 410 [21] Joey Hong, Branislav Kveton, Manzil Zaheer, and Mohammad Ghavamzadeh. Hierarchical bayesian bandits. In *International Conference on Artificial Intelligence and Statistics*, 2022.
- 412 [22] Daniel Hsu, Sham M Kakade, and Tong Zhang. An analysis of random design linear regression.
 413 *arXiv preprint arXiv:1106.2363*, 2011.
- Laurent Hyafil and Ronald L Rivest. Constructing optimal binary decision trees is np-complete.
 Information Processing Letters, 5(1):15–17, 1976.

- [24] Emilie Kaufmann, Nathaniel Korda, and Rémi Munos. Thompson sampling: An asymptotically
 optimal finite-time analysis. In *Algorithmic Learning Theory*, 2012.
- Hata [25] Branislav Kveton, Mikhail Konobeev, Manzil Zaheer, Chih-wei Hsu, Martin Mladenov, Craig Boutilier, and Csaba Szepesvari. Meta-thompson sampling. In *International Conference on Machine Learning*, 2021.
- [26] Branislav Kveton, Martin Mladenov, Chih-Wei Hsu, Manzil Zaheer, Csaba Szepesvari, and Craig
 Boutilier. Meta-learning bandit policies by gradient ascent. arXiv preprint arXiv:2006.05094,
 2020.
- 424 [27] Branislav Kveton, Csaba Szepesvári, Anup Rao, Zheng Wen, Yasin Abbasi-Yadkori, and S Muthukrishnan. Stochastic low-rank bandits. *arXiv preprint arXiv:1712.04644*, 2017.
- [28] Jeongyeol Kwon, Yonathan Efroni, Constantine Caramanis, and Shie Mannor. Reinforcement
 learning in reward-mixing mdps. In Advances in Neural Information Processing Systems, 2021.
- 428 [29] Jeongyeol Kwon, Yonathan Efroni, Constantine Caramanis, and Shie Mannor. Rl for latent 429 mdps: Regret guarantees and a lower bound. In *Advances in Neural Information Processing* 430 *Systems*, 2021.
- [30] Jeongyeol Kwon, Yonathan Efroni, Constantine Caramanis, and Shie Mannor. Reward-mixing
 mdps with few latent contexts are learnable. In *International Conference on Machine Learning*,
 2023.
- 434 [31] Jeongyeol Kwon, Yonathan Efroni, Shie Mannor, and Constantine Caramanis. Prospective side information for latent mdps. *arXiv* preprint arXiv:2310.07596, 2023.
- [32] Jeongyeol Kwon, Shie Mannor, Constantine Caramanis, and Yonathan Efroni. Rl in latent mdps
 is tractable: Online guarantees via off-policy evaluation. arXiv preprint arXiv:2406.01389,
 2024.
- 439 [33] Tze Leung Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules. *Ad-*440 *vances in Applied Mathematics*, 6(1):4–22, 1985.
- 441 [34] Sahin Lale, Kamyar Azizzadenesheli, Anima Anandkumar, and Babak Hassibi. Stochastic linear bandits with hidden low rank structure. *arXiv preprint arXiv:1901.09490*, 2019.
- [35] Tor Lattimore and Rémi Munos. Bounded regret for finite-armed structured bandits. In *Advances in Neural Information Processing Systems*, 2014.
- 445 [36] Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.
- Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit approach to
 personalized news article recommendation. In *International Conference on World Wide Web*,
 2010.
- [38] Qinghua Liu, Alan Chung, Csaba Szepesvári, and Chi Jin. When is partially observable
 reinforcement learning not scary? In *Conference on Learning Theory*, pages 5175–5220.
 PMLR, 2022.
- 452 [39] Yangyi Lu, Amirhossein Meisami, and Ambuj Tewari. Low-rank generalized linear bandit problems. In *International Conference on Artificial Intelligence and Statistics*, 2021.
- [40] Odalric-Ambrym Maillard and Shie Mannor. Latent bandits. In *International Conference on Machine Learning*, 2014.
- [41] Mirco Mutti and Aviv Tamar. Test-time regret minimization in meta reinforcement learning. In
 International Conference on Machine Learning, 2024.
- [42] Robert D Nowak. The geometry of generalized binary search. *IEEE Transactions on Information Theory*, 57(12):7893–7906, 2011.
- [43] Cristina Olaru and Louis Wehenkel. A complete fuzzy decision tree technique. Fuzzy Sets and
 Systems, 138(2):221–254, 2003.

- [44] Soumyabrata Pal, Arun Sai Suggala, Karthikeyan Shanmugam, and Prateek Jain. Optimal
 algorithms for latent bandits with cluster structure. In *International Conference on Artificial Intelligence and Statistics*, 2023.
- [45] Michael Rothschild. A two-armed bandit theory of market pricing. *Journal of Economic Theory*,
 9(2):185–202, 1974.
- [46] Daniel Russo and Benjamin Van Roy. An information-theoretic analysis of thompson sampling.
 Journal of Machine Learning Research, 17(68):1–30, 2016.
- 469 [47] Eric M Schwartz, Eric T Bradlow, and Peter S Fader. Customer acquisition via display advertising using multi-armed bandit experiments. *Marketing Science*, 36(4):500–522, 2017.
- 471 [48] Max Simchowitz, Christopher Tosh, Akshay Krishnamurthy, Daniel J Hsu, Thodoris Lykouris,
 472 Miro Dudik, and Robert E Schapire. Bayesian decision-making under misspecified priors with
 473 applications to meta-learning. In *Advances in Neural Information Processing Systems*, 2021.
- 474 [49] Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework for temporal abstraction in reinforcement learning. *Artificial Intelligence*, 112(1-2):181–211, 1999.
- 477 [50] William R. Thompson. On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. *Biometrika*, 1933.
- 479 [51] Andrea Tirinzoni, Alessandro Lazaric, and Marcello Restelli. A novel confidence-based 480 algorithm for structured bandits. In *International Conference on Artificial Intelligence and* 481 *Statistics*, 2020.
- 482 [52] Chih-Chun Wang, Sanjeev R Kulkarni, and H Vincent Poor. Bandit problems with side observations. *IEEE Transactions on Automatic Control*, 50(3):338–355, 2005.
- [53] Haotian Ye, Xiaoyu Chen, Liwei Wang, and Simon Shaolei Du. On the power of pre-training for
 generalization in RL: Provable benefits and hardness. In *International Conference on Machine Learning*, 2023.
- Li Zhou and Emma Brunskill. Latent contextual bandits and their application to personalized
 recommendations for new users. In *International Joint Conference on Artificial Intelligence*,
 2016.

490 A Auxiliary Lemmas

- The following lemma is the famous Ville's inequality for super-martingales:
- Lemma A.1 (Ville's Inequality). Let $\{W_t\}_{t\geq 0}$ be a non-negative super-martingale sequence, such that

$$\mathbb{E}[W_{t+1}|W_t] \le W_t,$$

494 for any $\delta > 0$, the following holds:

$$\mathbb{P}\left(\forall t, W_t \leq W_0/\delta\right) \geq 1 - \delta.$$

- The following lemmas are the standard concentration of log-likelihood values of the models within the
- confidence set. The proofs are standard in model-based RL and can also be found in (e.g., [38, 2]). We
- let $\mathcal D$ be the observational data o=(x,k,r) collected by running π on some underlying distribution
- 498 $\nu^* \in \mathbb{M}$. We denote $\beta := \log(M/\delta)$. Then, the following holds:
- Lemma A.2 (Uniform Bound on the Likelihood Ratios). With probability 1δ for any $\delta > 0$, for any $\nu \in \mathbb{M}$,

$$\sum_{o \in \mathcal{D}} \log(\mathbb{P}_{\nu}^{\pi}(o)) - \beta \le \sum_{o \in \mathcal{D}} \log(\mathbb{P}_{\nu^*}^{\pi}(o)). \tag{7}$$

Lemma A.3 (Concentration of Maximum Likelihood Estimators). With probability $1 - \delta$, for all $\nu \in \mathbb{M}$, we have

$$D_{\mathrm{H}}^2\left(\mathbb{P}_{\nu}^{\pi}, \mathbb{P}_{\nu^*}^{\pi}\right) \leq \frac{1}{2|\mathcal{D}|} \left(\sum_{o \in \mathcal{D}} \log \left(\frac{\mathbb{P}_{\nu^*}^{\pi}(o)}{\mathbb{P}_{\nu}^{\pi}(o)} \right) + 3\beta \right).$$

503 B Proofs

504 B.1 Proofs of Section 3

505 B.1.1 Proof of Theorem 3.1

We first analyze whether the true model m^* remains in the hypothesis class for all T rounds. To see this, by Lemma A.2, for all $i \in S_t$ and $t \in [T]$, we have

$$\sum_{o \in \mathcal{D}_i} \log(\mathbb{P}_i^{\pi}(o)) - \beta \le \sum_{o \in \mathcal{D}_i} \log(\mathbb{P}_{m^*}^{\pi}(o)),$$

- where $\beta = \log(MT/\delta)$. Hence, due to our construction of the next hypothesis set in Algorithm 2,
- with probability $1 \delta/T$, $m^* \in S_{t+1}$. As the worst-case classification round does not exceed M
- with Assumption 1, without loss of generality, we assume that T = O(M).
- Next, for every t^{th} round, we prove that $S_{t+1} \subseteq S_t/\bar{S}_t^{\pi_t}(m^*)$ where

$$\bar{S}_{t,\lambda}^{\pi}(m^*) = \{i \in S_t | D_{\mathtt{H}}(\mathbb{P}_i^{\pi_t}, \mathbb{P}_{m^*}^{\pi_t}) \ge \lambda\}.$$

Note that with probability $1 - \delta/T$,

$$0 \geq \sum_{o \in \mathcal{D}_t} \log(\mathbb{P}^\pi_{m^*}(o)) - \sum_{o \in \mathcal{D}_t} \log(\mathbb{P}^\pi_{\hat{m}_t}(o)) \geq -\beta,$$

for all $i \in S_t$. From Lemma A.3, for all $i \in S_{t+1}$, by taking union bound, it must satisfy that

$$\beta \geq \sum_{o \in \mathcal{D}} \, \log \left(\frac{\mathbb{P}^{\pi}_{m^*}(o)}{\mathbb{P}^{\pi}_{i}(o)} \right) \geq 2 N_{\mathrm{cls}} \cdot D^2_{\mathtt{H}}(\mathbb{P}^{\pi_t}_i, \mathbb{P}^{\pi_t}_{m^*}) - 3 \beta,$$

where the first inequality holds due to our construction of S_{t+1} . Thus, for all $i \in S_{t+1}$, we must have

$$D^2_{\mathtt{H}}(\mathbb{P}_i^{\pi_t}, \mathbb{P}_{m^*}^{\pi_t}) \le \frac{2\beta}{N_{\mathrm{cls}}}, \quad \forall i \in S_{t+1}.$$

- This means with $N_{\mathrm{cls}} > 2 \frac{\log(M/\delta)}{\lambda^2}$ test samples per round, $S_{t+1} \subseteq S_t/\bar{S}_{t,\lambda}^{\pi_t}(m^*)$.
- Finally, with our design of π_t , we always choose π_t such that

$$|\bar{S}_{t,\lambda}^{\pi_t}(m^*)| \ge C_{\lambda}(\Pi_{\mathcal{C}})^{-1} \cdot |S_t|.$$

This implies with probability at least $1 - \delta/T$, we always have 517

$$\frac{|S_{t+1}|}{|S_t|} \le 1 - C_{\lambda}(\Pi_{\mathcal{C}})^{-1},$$

which translates to

$$\mathbb{E}\left[\frac{|S_{t+1}|}{|S_t|}|S_t\right] \le 1 - \frac{1}{2}C_{\lambda}(\Pi_{\mathcal{C}})^{-1}.$$

- Note that in the worst case, the ratio remains 1 with probability less than δ/T . Let $W_t :=$ 519
- $(1+\frac{1}{2}C_{\lambda}(\Pi_{\mathcal{C}})^{-1})^t |S_t|$. Then $\{W_t\}_{t\geq 0}$ is a super-martingale, and thus, by Lemma A.1, we have

$$\left(1 + \frac{1}{2}C_{\lambda}(\Pi_{\mathcal{C}})^{-1}\right)^{T} |S_{T}| \le \frac{1}{\delta}|S_{0}|,$$

- with probability at least 1δ . Under this success event, as soon as $T > 2C_{\lambda}(\Pi_{\mathcal{C}}) \cdot \log(M/\delta)$, we 521
- must have $|S_T| = 1$. 522
- 523
- To summarize, if we use $N_{\rm cls}=O(\lambda^{-2}\cdot\log(M/\delta))$ samples per classification round for $T=O(C_\lambda(\Pi_{\mathcal C})\cdot\log(M/\delta))$ rounds, the algorithm terminates with the correct task identifier m^* with
- probability at least 1δ , concluding the proof. 525

B.1.2 Proof of Lemma 3.2 526

Following the definition of DEC in (6), we have that 527

dec
$$_{\gamma}(\mathbb{M}) \geq \max_{S \in 2^{[M]}} \min_{\pi \sim \Delta([K])} \max_{i \in S} \mathbb{E}_{k \sim \pi}[\Delta_i(k)] - \gamma \mathbb{E}_{k \sim \pi, m \sim \mathcal{U}(S)}[D^2_{\mathtt{H}}(\nu_i(k), \nu_m(k))].$$

Recall that the randomized coefficient in (3) can be rewritten as the following: 528

$$\widetilde{C}(\mathbb{M}) = \left(\min_{S \in 2^{[M]}, |S| > 1} \max_{\pi \sim \Delta(\mathcal{A}_{\lambda})} \min_{i \in S} \mathbb{E}_{m \sim \mathcal{U}(S)} [\mathbb{E}_{k \sim \pi} \left[\mathbf{1} \{ \mu_i(k) \neq \mu_m(k) \} \right] \right)^{-1},$$

- and let S_{adv} be the outer solution of the above min-max-min optimization. Now for any $\pi \in \Delta([K])$, 529
- let $i^*(\pi)$ be the one that achieves 530

$$i^*(\pi) := \arg\min_{i \in S_{adv}} \mathbb{E}_{m \sim \mathcal{U}(S)} [\mathbb{E}_{k \sim \pi} \left[\mathbf{1} \{ \mu_i(k) \neq \mu_m(k) \} \right]]. \tag{8}$$

We claim that there must exist $\bar{i}(\pi) \in S_{adv}/\{i^*(\pi)\}$ such that the following holds: 531

$$\mathbb{E}_{m \sim \mathcal{U}(S)}[\mathbb{E}_{k \sim \pi} \left[\mathbf{1} \{ \mu_{\bar{i}}(k) \neq \mu_m(k) \} \right] \right] \leq 4 \mathbb{E}_{m \sim \mathcal{U}(S)} \left[\mathbb{E}_{k \sim \pi} \left[\mathbf{1} \{ \mu_{i^*(\pi)}(k) \neq \mu_m(k) \} \right] \right]. \tag{9}$$

To see this, note that 532

$$\mathbf{1}\{\mu_{\bar{i}}(k) \neq \mu_m(k)\} \leq \mathbf{1}\{\mu_{\bar{i}}(k) \neq \mu_{i^*(\pi)}(k)\} + \mathbf{1}\{\mu_{i^*(\pi)}(k) \neq \mu_m(k)\},$$

and then, by taking $\bar{i}(\pi) := \arg\min_{i \in S_{adv}/\{i^*(\pi)\}} \mathbb{E}_{k \sim \pi}[\mathbf{1}\{\mu_{i^*(\pi)}(k) \neq \mu_{\bar{i}}(k)\}]$, we can verify that 533

$$\mathbb{E}_{k \sim \pi} [\mathbf{1} \{ \mu_{i^*(\pi)}(k) \neq \mu_{\bar{i}}(k) \}] \leq 2 \mathbb{E}_{m \sim \mathcal{U}(S_{adv})} \left[\mathbb{E}_{k \sim \pi} [\mathbf{1} \{ \mu_{i^*(\pi)}(k) \neq \mu_m(k) \}] \right],$$

- since $|S_{adv}| > 1$ and the indicator function is nonnegative. Note that for all $\pi \in \Delta(\mathcal{A}_{\lambda})$, by 534
- construction, $\mathbb{E}_{m \sim \mathcal{U}(S)} \left[\mathbb{E}_{a \sim \pi} [\mathbf{1} \{ \mu_{i^*(\pi)}(a) \neq \mu_m(a) \}] \right] \leq \widetilde{C}(\mathbb{M})^{-1}$.
- Now going back to the DEC lower-bound, we have

$$\mathtt{dec}_{\gamma}(\mathbb{M}) \geq \min_{\pi \in \Delta([K])} \max_{i \in S_{adv}} \mathbb{E}_{k \sim \pi}[\Delta_i(k)] - \gamma \mathbb{E}_{k \sim \pi}[\mathbb{E}_{m \sim \mathcal{U}(S_{adv})}[D^2_{\mathtt{H}}(\nu_i(k), \nu_m(k))]]$$

$$\geq \min_{\pi \in \Delta([K])} \max_{i \in S_{adv}} \underbrace{\sum_{k \in \{k_m^*\}_m} \Delta_i(k) \cdot \pi(k) + \frac{1}{8} \pi(k \in \mathcal{A}_{\lambda})}_{I} \tag{10}$$

$$-\gamma \left(\underbrace{200\epsilon^{2} \cdot \pi(k \notin \mathcal{A}_{\lambda}) + \mathbb{E}_{m \sim \mathcal{U}(S_{adv})} \left[\mathbb{E}_{k \sim \pi_{\lambda}} [D_{\mathbb{H}}^{2}(\nu_{i}(k), \nu_{m}(k))]\right] \cdot \pi(k \in \mathcal{A}_{\lambda})}_{II}\right),$$
(11)

where we define $\pi_{\lambda} = \pi(\cdot | k \in \mathcal{A}_{\lambda})$. Now for every π and the corresponding π_{λ} , let $i^*(\pi_{\lambda})$ as defined

in (8) and $\bar{i}(\pi_{\lambda}) = S_{adv}/\{i^*(\pi_{\lambda})\}$. Now we either choose $i = i^*(\pi_{\lambda})$ if

$$\pi(k_{i^*(\pi_\lambda)}^*) < \pi(k_{\bar{i}(\pi_\lambda)}^*),$$

and $\bar{i}(\pi_{\lambda})$ in the other case. We divide into two cases.

540 **1.** $\pi(k_{i^*(\pi_{\lambda})}^*) < \pi(k_{\bar{i}(\pi_{\lambda})}^*)$: In the former case, note that for all $m \neq i^*(\pi_{\lambda})$,

$$\Delta_{i^*(\pi_\lambda)}(k_m^*) \ge 10\epsilon$$
,

and therefore,

$$\sum_{a \in \{k_m^*\}_m} \Delta_{i^*(\pi_\lambda)}(k) \pi(k) \ge 5\epsilon \pi(k \notin \mathcal{A}_\lambda).$$

- Therefore, we have $I \geq 5\epsilon \pi (k \notin \mathcal{A}_{\lambda}) + \frac{1}{8}\pi (k \in \mathcal{A}_{\lambda})$ in (11).
- For the second term, note that

$$\mathbb{E}_{m \sim \mathcal{U}(S_{adv})} \left[\mathbb{E}_{k \sim \pi_{\lambda}} \left[D_{\mathbb{H}}^{2}(\nu_{i^{*}(\pi_{\lambda})}(k), \nu_{m}(k)) \right] \right] \leq \lambda^{2} \mathbb{E}_{m \sim \mathcal{U}(S_{adv})} \left[\mathbb{E}_{k \sim \pi_{\lambda}} \left[\mathbf{1} \{ \nu_{i^{*}(\pi_{\lambda})}(k), \nu_{m}(k)) \} \right] \right] \leq \lambda^{2} \widetilde{C}(\mathbb{M})^{-1}.$$

- Therefore, the second term becomes $II \leq 200\epsilon^2\pi(k \notin \mathcal{A}_{\lambda}) + \lambda^2\widetilde{C}(\mathbb{M})^{-1}\pi(k \in \mathcal{A}_{\lambda}).$
- 545 **2.** $\pi(k_{i^*(\pi_{\lambda})}^*) > \pi(k_{\bar{i}(\pi_{\lambda})}^*)$: In the latter case, repeat the same process except that now we take the
- worst-case inner-instance $i = \bar{i}(\pi_{\lambda})$, we get the same inequalities.
- 547 Combining all results, we can conclude that

$$I - \gamma II \ge (5\epsilon - 200\epsilon^2 \gamma)\pi(k \notin \mathcal{A}_{\lambda}) + \left(\frac{1}{8} - \gamma \lambda^2 \tilde{C}(\mathbb{M})^{-1}\right)\pi(k \in \mathcal{A}_{\lambda}) > 3\epsilon,$$

- for any $\pi \in \Delta([K])$ with $\gamma \leq c_{\gamma} \min\left(\epsilon^{-1}, \lambda^{-2}\widetilde{C}(\mathbb{M})\right)$ for some sufficiently small $c_{\gamma} > 0$.
- 549 Therefore,

$$\operatorname{dec}_{\gamma}(\mathbb{M}) > 3\epsilon$$
,

550 concluding the proof.

551 B.1.3 Proof of Theorem 3.3

- To identify the optimal arm (so that we can play it for the majority of rounds), it must hold
- dec $_{\gamma}(\mathcal{M}) < \epsilon$. On the other hand, we have the following lower bound, which is a reminiscent
- of lower bound results in [11] and [14]:
- **Theorem B.1.** For any $\delta \in (0,1)$ and a regret minimization algorithms for H rounds,

$$\operatorname{Reg}_{H}(\mathbb{M}) \geq C_{2} \cdot \max_{\gamma > C_{1} \cdot \sqrt{H}} \min\left(\left(\operatorname{\textit{dec}}_{\gamma}(\mathbb{M}) - \delta\right) \cdot H, \gamma\right),$$

- with probability at least δ for some absolute constant $C_1, C_2 > 0$.
- Thus, we must have $\gamma = \tilde{\Omega}(\lambda^{-2}\tilde{C}(\mathbb{M}))$ so that we can have $\operatorname{dec}_{\gamma}(\mathbb{M}) < 3\epsilon$ for all γ greater than this
- threshold. Otherwise, any algorithm must suffer from at least $\tilde{\Omega}(\min(\epsilon H, \lambda^{-2}\tilde{C}(\mathbb{M})))$ regret with
- probability at least $\delta = 1/H \ll \epsilon$. Furthermore, since $\operatorname{Reg}_H \ge \operatorname{Reg}_{H_0}$ for any $H \ge H_0$, it holds
- that for all $H \geq H_0 = \lambda^{-4} \tilde{C}(\mathbb{M})^2$, we must suffer $\operatorname{Reg}_H = \tilde{\Omega}(\lambda^{-2} \tilde{C}(\mathbb{M}))$.

B.1.4 Proof of Theorem B.1

The proof follows Section C.1 in [14] with minor modification. Let us define a regret for individual

563 instance:

$$\operatorname{Reg}_{H}^{m} := \sum_{t=1}^{H} \mu_{m}(k_{m}^{*}) - \mu_{m}(k_{t}).$$

- Let \mathcal{E}_m an event such that $\{\operatorname{Reg}_H^m \leq c_1 \gamma\}$ with some sufficiently small constant c_1 . For any algorithm, 564
- $\gamma>0$ and $\delta=1/H$ we consider, we assume that for all $m\in[M], \mathbb{P}_m(\mathcal{E}_m)\geq 1-\delta$ since otherwise 565
- the algorithm suffers from at least γ regret with probability at least δ . 566
- Let us fix an algorithm A such that at t^{th} round with previous observations $\mathcal{H}^{t-1} = (o_1, ..., o_{t-1})$ 567
- where $o_t = (x_t, a_t, r_t)$, and the policy at each round is decided by an algorithm $\pi_t = \mathcal{A}(\cdot|x_t, \mathcal{H}^{(t-1)})$. Let \mathbb{P}_m^H be the distribution of sequential observations $(o_1, ..., o_H)$ for H rounds with bandit ν_m . 568
- 569
- Following Lemmas are adapted from [14]: 570
- **Lemma B.2** (Lemma A.11 in [14]). For any two distributions μ, ν on a measurable space \mathcal{X} , and 571
- any bounded real-valued function $h: \mathcal{X} \to \mathbb{R}$ with $0 \le h(X) \le B$, we have 572

$$|\mathbb{E}_{\mu}[h(X)] - \mathbb{E}_{\nu}[h(X)]| \leq \sqrt{2B(\mathbb{E}_{\mu}[h(X)] + \mathbb{E}_{\nu}[h(X)]) \cdot D_{\mathbb{H}}^{2}(\mu,\nu)}.$$

In particular,

$$|\mathbb{E}_{\mu}[h(X)] - \mathbb{E}_{\nu}[h(X)]| \le 3\mathbb{E}_{\nu}[h(X)] + 4BD_{\mathbb{H}}^{2}(\mu, \nu).$$

Lemma B.3 (Lemma A.13 in [14]). For any two bandit instances $\nu_i, \nu_j \in \mathbb{M}$,

$$\textstyle D_{\mathrm{H}}^2(\mathbb{P}_i^H,\mathbb{P}_j^H) \leq C_H \sum_{t=1}^H \mathbb{E}_i[\mathbb{E}_{k \sim \pi_t}[D_{\mathrm{H}}^2(\nu_i(k),\nu_j(k))]]$$

- where $C_H > 0$ is a sufficiently large absolute constant.
- Given the lemmas, for any $\omega \in \Delta([M])$ and for any algorithm that generates an adaptive policy π_t ,
- let $\hat{\pi} := \frac{1}{H} \sum_{t=1}^{H} \pi(\cdot | \mathcal{H}^{(t-1)})$ (note that this is a random variable), and let $\bar{\pi} := \mathbb{E}_{m \sim \omega}[\hat{\pi}]$.
- **Lemma B.4** (Minor Edit of Lemma C.1 in [14]). For any two bandit instances $\nu_i, \nu_i \in \mathbb{M}$,

$$\frac{1}{H}\mathbb{E}_{j}[\operatorname{Reg}_{H}^{i} \cdot \mathbf{1}\{\mathcal{E}_{i}^{c}\}] \lesssim \frac{c_{1}\gamma}{H} \cdot D_{H}^{2}(\mathbb{P}_{i}^{H}, \mathbb{P}_{j}^{H}) + \sqrt{D_{H}^{2}(\mathbb{P}_{i}^{H}, \mathbb{P}_{j}^{H})} \mathbb{E}_{i}[\mathbb{E}_{k \sim \hat{\pi}}[D_{H}^{2}(\nu_{i}(k), \nu_{j}(k))]] + \delta.$$

We start with the following inequality for a prior ω such that:

$$\sup_{m \in [M]} \mathbb{E}_{a \sim \bar{\pi}} [\nu_m(a_m^*) - \nu_m(a)] - \gamma \cdot \mathbb{E}_{\bar{m} \sim \omega} [\mathbb{E}_{a \sim \bar{\pi}} [D_H^2(\nu_{\bar{m}}(a), \nu_m(a))]] \ge \operatorname{dec}_{\gamma}(\mathbb{M}).$$

Such a prior $\omega \in \Delta([M])$ must exist due to the definition of dec_{γ} . Note that

$$H \cdot \mathbb{E}_{a \sim \bar{\pi}} [\nu_m(a_m^*) - \nu_m(a)] = \mathbb{E}_{\bar{m} \sim \omega} \mathbb{E}_{a \sim \hat{\pi}} [\nu_m(a_m^*) - \nu_m(a)] = H \cdot \mathbb{E}_{\bar{m} \sim \omega} [\operatorname{Reg}_H^m]$$

$$= \sum_{\bar{m}} \omega_{\bar{m}} \mathbb{E}_{\bar{m}} [\operatorname{Reg}_H^m] = \sum_{\bar{m}} \omega_{\bar{m}} \left(\underbrace{\mathbb{E}_{\bar{m}} [\operatorname{Reg}_H^m \cdot \mathbf{1} \{\mathcal{E}_m\}]}_{\mathbb{E}_{\bar{m}}} + \underbrace{\mathbb{E}_{\bar{m}} [\operatorname{Reg}_H^m \cdot \mathbf{1} \{\mathcal{E}_m^c\}]}_{\mathbb{E}_{\bar{m}}} \right).$$

For I, we apply Lemma B.2 to get

$$I \leq 3\mathbb{E}_m[\operatorname{Reg}_H^m \cdot \mathbf{1}\{\mathcal{E}_m\}] + 4\gamma D_{\mathtt{H}}^2(\mathbb{P}_{\bar{m}}^H, \mathbb{P}_m^H) \leq 3\mathbb{E}_m[\operatorname{Reg}_H^m] + 4\gamma D_{\mathtt{H}}^2(\mathbb{P}_{\bar{m}}^H, \mathbb{P}_m^H).$$

For II, we apply Lemma B.4 to get

$$II \lesssim (H\epsilon + c_1\gamma)D_{\mathtt{H}}^2(\mathbb{P}_{\bar{m}}^H, \mathbb{P}_m^H) + H\sqrt{D_{\mathtt{H}}^2(\mathbb{P}_{\bar{m}}^H, \mathbb{P}_m^H) \cdot \mathbb{E}_{\bar{m}}[\mathbb{E}_{k \sim \hat{\pi}}[D_{\mathtt{H}}^2(\nu_{\bar{m}}(k), \nu_m(k))]]} + H\delta.$$

Combining these inequalities, we have

$$\begin{split} \mathbb{E}_{m}[\mathrm{Reg}_{H}^{m}] \gtrsim H \cdot \mathrm{dec}_{\gamma}(\mathbb{M}) - \sum_{\bar{m}} \omega_{\bar{m}} \cdot \left(c_{1} \gamma D_{\mathtt{H}}^{2}(\mathbb{P}_{\bar{m}}^{H}, \mathbb{P}_{m}^{H}) + H \sqrt{D_{\mathtt{H}}^{2}(\mathbb{P}_{\bar{m}}^{H}, \mathbb{P}_{m}^{H}) \cdot \mathbb{E}_{\bar{m}}[\mathbb{E}_{a \sim \hat{\pi}}[D_{\mathtt{H}}^{2}(\nu_{\bar{m}}(a), \nu_{m}(a))]]} \right) \\ + \gamma H \cdot \mathbb{E}_{\bar{m} \sim \omega}[\mathbb{E}_{a \sim \bar{\pi}}[D_{\mathtt{H}}^{2}(\nu_{\bar{m}}(a), \nu_{m}(a))]] - H \delta. \end{split}$$

On the other hand, we can apply Lemma B.3 to bound that

$$\begin{split} D_{\mathtt{H}}^{2}(\mathbb{P}_{\bar{m}}^{H}, \mathbb{P}_{m}^{H}) &\leq C_{H} \sum_{t=1}^{H} \mathbb{E}_{\bar{m}}[\mathbb{E}_{k \sim \pi_{t}}[D_{\mathtt{H}}^{2}(\nu_{\bar{m}}(k), \nu_{m}(k))]] \\ &= C_{H}H \cdot \mathbb{E}_{\bar{m}}[\mathbb{E}_{a \sim \hat{\pi}}[D_{\mathtt{H}}^{2}(\nu_{\bar{m}}(a), \nu_{m}(a))]] = C_{H}H \cdot \mathbb{E}_{a \sim \bar{\pi}}[D_{\mathtt{H}}^{2}(\nu_{\bar{m}}(a), \nu_{m}(a))]. \end{split}$$

Plugging these results, we have

$$\mathbb{E}_{m}[\operatorname{Reg}_{H}^{m}] \gtrsim H \cdot \operatorname{dec}_{\gamma}(\mathbb{M}) - H(c_{1}\gamma + \sqrt{H}) \cdot \sum_{\bar{m}} \omega_{\bar{m}} \mathbb{E}_{\bar{\pi}}[D_{\mathbb{H}}^{2}(\nu_{\bar{m}}(k), \nu_{m}(k))] + \gamma H \cdot \mathbb{E}_{\bar{m} \sim \omega}[\mathbb{E}_{k \sim \bar{\pi}}[D_{\mathbb{H}}^{2}(\nu_{\bar{m}}(k), \nu_{m}(k))]] - H\delta.$$

Note that 586

$$\mathbb{E}_{\bar{m}\sim\omega}[\mathbb{E}_{a\sim\bar{\pi}}[D^2_{\mathtt{H}}(\nu_{\bar{m}}(k),\nu_m(k))]] = \sum_{\bar{m}}\omega_{\bar{m}}\mathbb{E}_{\bar{\pi}}[D^2_{\mathtt{H}}(\nu_{\bar{m}}(k),\nu_m(k))].$$

This implies that as long as c_1 is a sufficiently small constant and $\gamma \gtrsim \sqrt{H}$, the expected lower bound 587 is given by 588

$$\mathbb{E}_m[\operatorname{Reg}_H^m] \gtrsim H\left(\operatorname{dec}_{\gamma}(\mathbb{M}) - \delta\right).$$

- Proof of Lemma B.3. The general version of subadditivity lemma in [14] is stated as the following:
- **Lemma B.5.** Let $(\mathcal{X}_1, \mathcal{F}_1), ..., (\mathcal{X}_n, \mathcal{F}_n)$ be a sequence of measurable spaces, and let $\mathcal{X}^{(i)} = \prod_{t=1}^{i} \mathcal{X}_t$ and $\mathcal{F}^{(i)} = \bigotimes_{t=1}^{i} \mathcal{F}_t$. For each i, let $\mu^{(i)}, \nu^{(i)}$ be probability kernels from $(\mathcal{X}^{(i-1)}, \mathcal{F}^{(i-1)})$ to $(\mathcal{X}^{(i)}, \mathcal{F}^{(i)})$. Let μ, ν be the laws of sequence $X_1, ..., X_n$ following the sequence of $(\mu^{(1)}, ..., \mu^{(n)})$, 590
- 591
- $(\nu^{(1)},...,\nu^{(n)})$ respectively. Then it holds that

$$D_{\mathbf{H}}(\mu, \nu) \leq 10^2 \log(n) \cdot \mathbb{E}_{\mu}[\sum_{i=1}^n D_{\mathbf{H}}^2(\mu^{(i)}(\cdot|X_1, ..., X_{i-1}), \nu^{(i)}(\cdot|X_1, ..., X_{i-1}))].$$

Furthermore, if there exists a constant V such that $\sup_{(x_1,\dots,x_{i-1})\in\mathcal{X}^{(i-1)}}\sup_{o_i\in\mathcal{F}_i}\frac{\mu^{(i)}(o_i|x_1,\dots,x_{i-1})}{\nu^{(i)}(o_i|x_1,\dots,x_{i-1})}$ for all i, then 595

$$D_{\mathcal{H}}(\mu,\nu) \leq 3\log(V) \cdot \mathbb{E}_{\mu}[\sum_{i=1}^{n} D_{\mathcal{H}}^{2}(\mu^{(i)}(\cdot|X_{1},...,X_{i-1}),\nu^{(i)}(\cdot|X_{1},...,X_{i-1}))].$$

- Our construction belongs to the latter case, since the probability of observing $r_t = 1$ or $r_t = 0$ is 596 larger than $\frac{1-\lambda}{2} \geq 1/4$ for any $\lambda \leq 1/2$. 597
- *Proof of Lemma B.4.* In our construction, for all pair of bandit instances $\mu, \nu \in \mathbb{M}$, the optimal 598 values are the same, that is, 599

$$\mu(k_{\mu}^*) - \nu(k_{\nu}^*) = 0,$$

- where k_{μ}^*, k_{ν}^* are the optimal actions for μ, ν respectively. The remaining steps are identical to the 600 proof in [14] (see their Section C.1.2), and we omit them here. 601
- **B.2** Proofs of Section 4 602

Proof of Lemma 4.1 603

Proof. We can rework the result [22, Theorem 1], originally designed for the excess quadratic loss, 604 to write 605

$$\mathbb{P}\left(\mathbb{E}_{\mathcal{P}}\left[|x^{\top}\hat{\theta}_{ik} - x^{\top}\theta_{ik}|\right] > \sqrt{\frac{5\sigma^{2}(d + 2\sqrt{d\log(2/\delta)} + 2\log(2/\delta))}{N}}\right) \leq \delta$$

where $\hat{\theta}$ is the ordinary least squares with N samples. Then, we just plug $\delta = \frac{1}{2HMK}$ in the 606 expression to obtain the guarantee with a few algebraic manipulations. 607

B.2.2 Proof of Theorem 4.2

608

- Let us start looking at the sample complexity. Since the Algorithm 3 takes $N_{\rm est}$ samples for every 609 arm $k \in [K]$ and simulator $\nu_i \in M$, we can conclude that the statistical complexity of meta training 610 is $\frac{4MK \log(4HMK)}{\min(\Delta_{\min}^2, \lambda^2)}$. 611
- Assuming access to parallel simulators, the computational cost of meta training depends on the cost of executing line 12 in Algorithm 3, which is calling Algorithm 4. The latter requires executing |S|

evaluations at lines 5, 6, where $|S| \leq M$, and to compute the greedy step (line 3), a cost that is paid for every call to the recursive procedure (line 8). Computing the greedy step through Algorithm 5 is done in $4K/\lambda^4$ steps. Finally, we can bound the number of calls to the recursive procedure with the total number of nodes in the tree, which is $\mathcal{O}(M^2)$. Putting all together we get a complexity of order $\mathcal{O}(M^3K/\lambda^4)$.

B.2.3 Proof of Lemma 4.3

619

627

Proof. The result follows directly from the approximation guarantee of the greedy algorithm to build the decision tree [4], which guarantees $d = \mathcal{O}(\log M + 1)C_{\lambda}^*(\mathbb{M})$. Especially, we have to prove that the previous guarantee does not degrade with our implementation, which include a $\lambda/4$ -discretization of the space of tests (see Algorithm 5, line 4). Thanks to the separation condition (Assumption 2), we can prove that every test $\hat{\mu}(k) \leq b$ with $b \in [0,1]$ can be replicated with at most two tests defined on the discretized space, i.e., $\hat{\mu}(k) \leq b$ with $b \in [0,1]_{\lambda/4}$. Since the approximation degrades of a constant factor only, the result $D = \mathcal{O}(\log M + 1)C_{\lambda}^*(\mathbb{M})$ holds.

B.2.4 Proof of Theorem 4.4

Proof. To derive the upper bound on the regret, we aim to prove that the remaining task $\hat{\nu}_{m^*}$ at the end of the Explicit Classify phase corresponds, up to a small estimation error, to the true test task ν^* with high probability, and that the policy π^* played from there on in the Exploit phase corresponds to the optimal policy for the test task ν^* with high probability (despite the mentioned estimation error).

If we let $\pi^*(x) = \arg\max_{\pi \in \Pi} x^\top \theta_{\pi(x)}^*$ the optimal policy of the (true) test task, we aim to prove

$$\mathbb{P}_{\mathcal{P}}(\hat{\pi}^*(x) \neq \pi^*(x)) = \mathbb{P}(\text{``Explicit Classify fails''} \lor \text{``Exploit fails''}) \leq 1/H$$

which we can guarantee by showing that the *Explicit Classify* and *Exploit* phases fail with probability less than 1/2H and then applying a union bound.

Let us first take the good event for the *Explicit Classify* phase, which means the remaining $\hat{\nu}_{m^*}$ is a "good" estimate of the test task ν^* . We have that

$$\mathbb{P}(\text{``Exploit fails''}) = \mathbb{P}_{\mathcal{P}}\left(\hat{\pi}^*(x) \neq \pi^*(x)\right)$$
 (12)

$$\leq \mathbb{P}_{\mathcal{P}} \left(\bigcup_{i \in [M]} \bigcup_{k \in [K]} x^{\top} \hat{\theta}_{i\pi^*(x)} \leq x^{\top} \hat{\theta}_{ik} \right)$$
 (13)

$$\leq \sum_{i \in [M]} \sum_{k \in [K]} \mathbb{P}_{\mathcal{P}} \left(x^{\top} \hat{\theta}_{i\pi^*(x)} \leq x^{\top} \hat{\theta}_{ik} \right) \leq \sum_{i \in [M]} \sum_{k \in [K]} \frac{1}{2HMK} \leq \frac{1}{2H} \quad (14)$$

where we consider any possible choice of the remaining task $\hat{\nu}_{m^*}$ and the test task ν^* to write (13) from (12), we apply a union bound and the estimation guarantee of Algorithm 3 (see Lemma 4.1) to write (14).

Conversely, under the good event for the *Exploit* phase we aim to prove that the *Explicit Classify* phase fails with probability less than 1/2H. Since the *Explicit Classify* phase is actually a sequence of tests, we need to bound the probability that each test fails. Formally, let J denote the number of iterations of the loop between lines 3-11 (Algorithm 6), through a union bound we have

$$\mathbb{P}(\text{``Explicit Classify fails''}) = \mathbb{P}\bigg(\bigcup_{j \in [J]} \text{``test at iteration j fails''}\bigg) \leq \sum_{j \in [J]} \mathbb{P}(\text{``test at iteration j fails''})$$

Now, we need to design $N_{\rm cls}$ such that the test at each iteration fails with probability less than $\frac{1}{2HJ} \geq \frac{1}{2HD}$ where D is the depth of ${\tt tree}(\hat{\mathbb{M}})$. For each iteration j, take the test $\mu_k \leq b$ and let $\overline{\mu} = \frac{1}{N_{\rm cls}} \sum_{n \in [N_{\rm cls}]} r_n$ the empirical mean of the samples $r_n \sim \nu^*(x_n,k)$ collected from the test task at line 5 (Algorithm 6). We need to assure that the event of $\overline{\mu}$ falling on one side of the test while the "right" $\tilde{\mu}_k$ is on the other side (see lines 6-11 of Algorithm 6) happens with small enough probability. Formally,

$$\begin{split} \mathbb{P}(\text{``test at iteration } j \text{ fails''}) &= \mathbb{P}(\{\overline{\mu} \leq b \wedge \widetilde{\mu}_k > b + \lambda\} \cup \{\overline{\mu} > b \wedge \widetilde{\mu}_k \leq b - \lambda\}) \\ &\leq \mathbb{P}(|\overline{\mu} - \widetilde{\mu}_k| > \lambda) \\ &\leq \mathbb{P}(|\overline{\mu} - \mu_k| > \lambda/2) + \mathbb{P}(|\widetilde{\mu}_k - \mu_k| > \lambda/2) \end{split}$$

For the second event, we invoke the estimation guarantee of Algorithm 3 (see Lemma 4.1) to write

 $\mathbb{P}(|\tilde{\mu}_k - \mu_k| > \lambda/2) \leq \frac{1}{2HMK} \leq \frac{1}{4HD}$. For the first event, we need to assure that $\mathbb{P}(|\overline{\mu} - \mu_k| > \lambda/2) \leq \frac{1}{4HD}$. Since $\overline{\mu}$ is the empirical mean of μ_k , by applying the Hoeffding's inequality, we have that $N_{\rm cls} \geq \frac{2\log(8HD)}{\lambda^2}$ gives the desired guarantee.

Having demonstrated that $\mathbb{P}_{\mathcal{P}}(\hat{\pi}^*(x) \neq \pi^*(x))$ holds with probability less than 1/H, we can finally 654

655

$$\operatorname{Reg}_{H}(\mathbb{M}) = \mathbb{E}_{\mathcal{P}} \left[\sum_{t=1}^{JN_{\operatorname{cls}}} \max_{k \in [K]} x_{t}^{\top} \theta_{k}^{*} - r_{t} \right] + \mathbb{E}_{\mathcal{P}} \left[\sum_{t=JN_{\operatorname{cls}}+1}^{H} \max_{k \in [K]} x_{t}^{\top} \theta_{k}^{*} - x_{t}^{\top} \theta_{\hat{\pi}^{*}(x_{t})}^{*} \right] \leq \frac{2D \log(8HD)}{\lambda^{2}}$$

by taking $x_t^{\top} \theta_k^* - x_t^{\top} \theta_{\hat{\pi}^*(x_t)}^* = 0$ in the good event, upper bounding $\max_{k \in [K]} x_t^{\top} \theta_k^* - r_t \leq 1$

and $JN \leq DN_{\text{cls}}$, and then apply the approximation guarantee $D = \mathcal{O}((\log M + 1)C_{\lambda}^*(\mathbb{M}))$ from 657

Lemma 4.3 to get the result. 658

B.3 Proof of Auxiliary Lemmas 659

B.3.1 Proof of Lemma A.2 660

- The proof of MLE-based confidence set construction is by now standard and can be found in several 661
- prior works (e.g., [38]). We adapt the proofs from [32] for completeness. 662
- *Proof.* The proof follows a Chernoff bound type of technique: 663

$$\mathbb{P}_{\nu^*} \left(\sum_{o \in \mathcal{D}} \log \left(\frac{\mathbb{P}_{\nu}^{\pi}(o)}{\mathbb{P}_{\nu^*}^{\pi}(o)} \right) \ge \mathbb{E}_{\nu^*} \left[\sum_{o \in \mathcal{D}} \log \left(\frac{\mathbb{P}_{\nu}^{\pi}(o)}{\mathbb{P}_{\nu^*}^{\pi}(o)} \right) \right] + \beta \right) \\
\le \mathbb{P}_{\nu^*} \left(\exp \left(\sum_{o \in \mathcal{D}} \log \left(\frac{\mathbb{P}_{\nu}^{\pi}(o)}{\mathbb{P}_{\nu^*}^{\pi}(o)} \right) \right) \ge \exp(\beta) \right) \\
\le \mathbb{E}_{\nu^*} \left[\exp \left(\sum_{o \in \mathcal{D}} \log \left(\frac{\mathbb{P}_{\nu}^{\pi}(o)}{\mathbb{P}_{\nu^*}^{\pi}(o)} \right) \right) \right] \exp(-\beta).$$

The last inequality is by the Markov's inequality. Note that random variables are o in the trajectory dataset \mathcal{D} , and

$$\mathbb{E}_{\nu^*} \left[\sum_{o \in \mathcal{D}} \log \left(\frac{\mathbb{P}_{\nu}^{\pi}(o)}{\mathbb{P}_{\nu^*}^{\pi}(o)} \right) \right] = - \operatorname{KL}(\mathbb{P}_{\nu^*}(\mathcal{D}) || \mathbb{P}_{\nu}(\mathcal{D})) \le 0.$$

Furthermore,

$$\mathbb{E}_{\nu^*} \left[\exp \left(\sum_{o \in \mathcal{D}} \log \left(\frac{\mathbb{P}_{\nu}^{\pi}(o)}{\mathbb{P}_{\nu^*}^{\pi}(o)} \right) \right) \right] = \mathbb{E}_{\nu^*} \left[\Pi_{o \in \mathcal{D}} \frac{\mathbb{P}_{\nu}^{\pi}(o)}{\mathbb{P}_{\nu^*}^{\pi}(o)} \right] = 1.$$

Combining the above, taking a union bound over $\nu \in \mathbb{M}$, letting $\beta = \log(M/\delta)$, with probability

 $-\delta$, the inequality in Lemma A.2 holds.

B.3.2 Proof of Lemma A.3 667

Proof. By the TV-distance and Hellinger distance relation, for any ι, τ, π and $t \in [H]$,

$$D_{\mathtt{H}}^{2}\left(\mathbb{P}_{\nu}^{\pi}, \mathbb{P}_{\nu^{*}}^{\pi}\right) = 1 - \mathbb{E}_{o \sim \mathbb{P}_{\nu^{*}}^{\pi}}\left[\sqrt{\frac{\mathbb{P}_{\theta}^{\pi}(o)}{\mathbb{P}_{\theta^{*}}^{\pi}(o)}}\right] \leq -\log\left(\mathbb{E}_{o \sim \mathbb{P}_{\nu^{*}}^{\pi}}\left[\sqrt{\frac{\mathbb{P}_{\nu}^{\pi}(o)}{\mathbb{P}_{\nu^{*}}^{\pi}(o)}}\right]\right).$$

By the Chernoff bound,

$$\mathbb{P}_{\nu^*} \left(\sum_{o \in \mathcal{D}} \log \left(\sqrt{\frac{\mathbb{P}_{\nu}^{\pi}(o)}{\mathbb{P}_{\nu^*}^{\pi}(o)}} \right) \ge |\mathcal{D}| \cdot \log \mathbb{E}_{o \sim \mathbb{P}_{\nu^*}^{\pi}} \left[\sqrt{\frac{\mathbb{P}_{\nu}^{\pi}(o)}{\mathbb{P}_{\nu^*}^{\pi}(o)}} \right] + \beta \right) \\
\le \mathbb{E}_{\nu^*} \left[\frac{\exp \left(\sum_{o \in \mathcal{D}} \log \left(\sqrt{\frac{\mathbb{P}_{\nu}^{\pi}(o)}{\mathbb{P}_{\nu^*}^{\pi}(o)}} \right) \right)}{\exp \left(|\mathcal{D}| \cdot \log \mathbb{E}_{o \sim \mathbb{P}_{\nu^*}^{\pi}} \left[\sqrt{\frac{\mathbb{P}_{\nu}^{\pi}(o)}{\mathbb{P}_{\nu^*}^{\pi}(o)}} \right] \right)} \right] \exp(-\beta) \\
= \mathbb{E}_{\nu^*} \left[\frac{\prod_{o \in \mathcal{D}} \sqrt{\frac{\mathbb{P}_{\nu}^{\pi}(o)}{\mathbb{P}_{\nu^*}^{\pi}(o)}}}{\mathbb{E}_{\tau \sim \mathbb{P}_{\theta^*}^{\pi}} \left[\sqrt{\frac{\mathbb{P}_{\sigma}^{\pi}(\tau)}{\mathbb{P}_{\sigma^*}^{\pi}(\tau)}} \right]^{|\mathcal{D}|}} \right] \exp(-\beta) = \exp(-\beta),$$

where in the last line, we used the independent property of samples. Thus, again by setting $\beta = \log(M/\delta)$, with probability at least $1-\eta$, we have

$$\begin{split} |\mathcal{D}| \cdot D_{\mathtt{H}}^{2}(\mathbb{P}_{\nu}^{\pi}, \mathbb{P}_{\nu^{*}}^{\pi}) &\leq -\frac{1}{2} \sum_{o \in \mathcal{D}} \log \left(\frac{\mathbb{P}_{\nu}^{\pi}(o)}{\mathbb{P}_{\nu^{*}}^{\pi}(o)} \right) + \beta \\ &= -\frac{1}{2} \sum_{o \in \mathcal{D}} \log \left(\frac{\mathbb{P}_{\nu}^{\pi}(o)}{\mathbb{P}_{\nu^{*}}^{\pi}(o)} \right) + \frac{1}{2} \sum_{o \in \mathcal{D}} \log \left(\frac{\mathbb{P}_{\nu}^{\pi}(o)}{\mathbb{P}_{\nu^{*}}^{\pi}(o)} \right) + \beta, \end{split}$$

for all $k \in [K]$ and $\nu \in M$. Now we can apply Lemma A.2, and finally have

$$D^2_{\mathtt{H}}(\mathbb{P}^\pi_\nu, \mathbb{P}^\pi_{\nu^*}) \leq \frac{1}{2|\mathcal{D}|} \left(-\sum_{o \in \mathcal{D}} \log \left(\frac{\mathbb{P}^\pi_\nu(o)}{\mathbb{P}^\pi_{\nu^*}(o)} \right) + 3\beta \right).$$

673

74 C Additional material

675 C.1 Meta training algorithm

Algorithm 3 provides the meta training procedure described in Section 4.1.

Algorithm 3 Meta Training

```
1: input simulators \mathbb{M}, N_{\text{est}}
 2: Initialize \hat{\mathbb{M}} = \emptyset
 3: for i \in [M] do
          for k \in [K] do
 5:
                Sample N_{\text{est}} contexts X = (x_n \sim \mathcal{P})
                Sample N_{\rm est} rewards \boldsymbol{r} = (r_n \sim \nu_i(x_n, k))
 6:
               Compute \hat{\theta}_{ik} = (XX^{\top})^{-1}X\mathbf{r}
Compute \hat{\mu}_{ik} = \frac{1}{N_{\text{est}}}\sum_{n}r_{n}
 7:
 8:
 9:
           end for
           \hat{\mathbb{M}}.\mathtt{append}(\hat{\nu}_i = ([\hat{\theta}_{i1}, \hat{\mu}_{i1}], \dots [\hat{\theta}_{iK}, \hat{\mu}_{iK}]))
10:
11: end for
12: Build a decision tree classifier tree(M) with Algorithm 4
13: output exploration plan Plan(\hat{\mathbb{M}}) prescribed by tree(\hat{\mathbb{M}})
```

Algorithm 4 Decision Tree

```
1: input set of tasks S
2: if |S| > 1 then
3: Compute (\mu_k \le b) \leftarrow \operatorname{greedy}(S) with Algorithm 5
4: Define \operatorname{tree}(S) := (\mu_k \le b)
5: Compute S^+ = \{\nu_i \in S \mid \mu_{ik} \le b + \lambda/2\}
6: Compute S^- = \{\nu_i \in S \mid \mu_{ik} > b - \lambda/2\}
7: Define \operatorname{tree}(S, \operatorname{true}) := S^+ and \operatorname{tree}(S, \operatorname{false}) := S^-
8: Call Algorithm 4 on S^+ and S^- recursively
9: end if
```

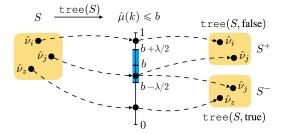


Figure 3: Visualization of a generic split of tree(M).

7 C.2 Greedy algorithm

Algorithm 5 provides the pseudocode of a tractable procedure to compute the greedy test for Algorithm 4 through a $\lambda/4$ -discretization of the space of thresholds b.

Algorithm 5 Greedy Test

```
1: input set of tasks S
2: for k \in [K] do
3: Define S^+(b) := \{ \nu \in S \mid \hat{\mu}(k) \leq b - \lambda/2 \}
4: Define S^-(b) := \{ \hat{\nu} \in S \mid \hat{\mu}(k) > b + \lambda/2 \}
5: Compute M_k(b) = \max_{b \in [0,1]_{\lambda/4}} \min(|S^+(b)|, |S^-(b)|)
6: end for
7: Extract (k,b) = \arg\max_{k \in [K]} M_k(b)
8: output greedy test (\mu(k) \leq b)
```

680 C.3 DT-ECE

- Algorithm 6 provides the pseudocode of the DT-ECE algorithm, which implements ECE (Algorithm 1)
- for a misspecified set of tasks $\hat{\mathbb{M}}$ with a decision tree classifier.

Algorithm 6 Decision Tree – Explicit Classify then Exploit

```
1: input set of tasks \hat{\mathbb{M}}, decision tree tree(\hat{\mathbb{M}}), N_{\text{cls}} = \frac{2 \log(2HD)}{\lambda^2}
 2: Initialize S_0 = \hat{\mathbb{M}}, t = 0
                                                                                                                                                                  Explicit Classify
 3: while |S_t| > 1 do
            Extract test (\mu_k \leq b) = \mathsf{tree}(S_t)
 4:
            \begin{array}{l} \mathcal{D}_t \leftarrow N_{\mathrm{cls}} \text{ i.i.d. samples drawn with } \pi_t = k \\ \text{if } \frac{1}{N_{\mathrm{cls}}} \sum_{r \in \mathcal{D}_t} r \leq b \text{ then} \\ \text{Get } S_{t+1} \leftarrow \text{tree}(S_t, \text{true}) \end{array}
 5:
 6:
 7:
 8:
            else
 9:
                  \text{Get } S_{t+1} \leftarrow \mathtt{tree}(S_t, \text{false})
10:
             end if
11: end while
12: Extract the classified task m^* \in S_t and execute \hat{\pi}^*(x) = \arg \max_{\pi \in \Pi} \hat{\nu}_{m^*}(x, k) for the remaining steps
       Exploit
```