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Abstract

Contextual multi-armed bandits are a popular choice to model sequential decision-
making. E.g., in a healthcare application we may perform various tests to asses
a patient condition (exploration) and then decide on the best treatment to give
(exploitation). When humans design strategies, they aim for the exploration to
be fast, since the patient’s health is at stake, and easy to interpret for a physician
overseeing the process. However, common bandit algorithms are nothing like that:
The regret caused by exploration scales with v/H over H rounds and decision
strategies are based on opaque statistical considerations. In this paper, we use an
original classification view to meta learn interpretable and fast exploration plans for
a fixed collection of bandits M. The plan is prescribed by an interpretable decision
tree probing decisions’ payoff to classify the test bandit. The test regret of the plan
in the stochastic and contextual setting scales with O(A=2Cy (M) log*(M H)),
being M the size of M, \ a separation parameter over the bandits, and C (M)
a novel classification-coefficient that fundamentally links meta learning bandits
with classification. Through a nearly matching lower bound, we show that C (M)
inherently captures the complexity of the setting.

1 Introduction

In the Multi-Armed Bandits model [MAB, 36, a
decision-maker, called the agent, faces a collec-
tion of unknown probability distributions over
reals, called arms, representing alternative de-
cisions and their corresponding payoff (a.k.a.
reward), which the agent repeatedly takes, or
pulls, to maximize the mean cumulative reward
collected over time. In some settings, called
contextual MABs [5], the reward of an arm de-
pends also on a context, a vector of features that
the agent observes before deciding which arm
to pull. The main challenge in MABs is how
to pull arms in a way that effectively balances
information gathering (called exploration) and
immediate rewards (called exploitation).

A multitude of decision-making problems, rang-
ing from recommender systems [37] to treat-
ment allocation [9], pricing of goods [45], adver-
tising [47]], can be modelled as MAB problems.

Asthma Diagnosis Flowchart

\ Are the symptoms typical of asthma? \

no

yes
History/examination
support asthma diagnosis?

MAB Exploration Plan

Choose arm 3
for N rounds.
Test average
reward:

I
<03
¥

=03
3

v

no Further
ves history and
test for

Is patient already taking alternative
ICS-containing treatment? diagnosis

Choose arm 1
for N rounds.
Test average
reward:

Choose arm 7
for N rounds.
Test average
reward:

yes
- v
no

Perform spirometry/PEF with
reversibility test. Results support
asthma diagnosis?

: !
Diagnosis steps
for patients

already on ICS-
containing
treatment?

<02 lzn‘z <0,
v

.7l >07
v

Figure 1: Left: An excerpt from a clinical
flowchart for the diagnosis of Asthma [[15]]. Right:
An interpretable exploration plan for a MAB.

However, although the problem structure is fitting, typical MAB algorithms are often very different
from human-designed decision plans. For example, consider the clinical diagnosis plan illustrated in
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Figure[I] (left). In machine learning parlance, this plan takes several exploration actions (diagnosis
tests) to yield a diagnosis, which will later be treated by appropriate medical actions (exploitation). It
is clear that (i) the plan is short — fast diagnosis is imperative; and (ii) the plan is interpretable, and
can be easily communicated both to physicians and patients. Our goal in this work is to develop a
framework for short and interpretable action plans in the setting of MABs.

To this end, we consider the stochastic contextual MAB formulation, a model of non-adversarial
problems whose theoretical barriers are well-understood [33}16]. Even when the context is fixed, the
regret the agent has to pay, defined as the difference between the cumulative reward of their decisions
and those of the optimal strategy, inevitably scales with / K H in the worst case, being H and K the
number of pulls and arms respectively. The latter rate might not be compelling enough in settings
where the regret translates to money losses, such as in pricing or advertising scenarios, or a negative
impact on a patient’s health condition, like in the clinical diagnosis problem mentioned above.

Faster performance is possible when prior knowledge about the class of bandits the agent faces
may be available, such as from historical data or powerful simulators. For example, Thompson
sampling [50]] allows to exploit a prior distribution over the problem parameters through a Bayesian-
inspired approach. In favorable circumstances, the latter yields an average regret rate that is at
most logarithmic in the number of arms K [46]. Another formulation, called latent bandits [40} [19],
assumes that the problem parameters are coming from a finite collection of bandits. The latter allows

to trade a factor of v/K with v/M in the regret, being M the number of bandits in the collection.

Here we consider a meta learning version of latent bandits. We can interact with the collection of
bandits to meta-train an algorithm that is then tested against one bandit in the collection, whose
identity is not revealed to the algorithm. Unfortunately, any prior knowledge we can extract at meta
training cannot improve the /M H rate in the worst case, which holds even for a collection of two
bandits [36]. This changes when we assume that the bandits in the collection are meaningfully
different, i.e., the reward distribution of their arms have some statistical separation [12 41]. The
separation condition is relevant in practice: If two patients do not respond differently to at least
one treatment, there is little point in modeling them with different bandits. Whereas this can help
achieving fast rates, previous work, either with or without separation, do not yield interpretable plans.

To design interpretable exploration plans for bandits, our main technical contribution is connecting
ideas from the classification literature to MAB analysis. In principle, the idea is to take advantage
of separation to explicitly classify the test task from data with high probability, and then exploit
the optimal strategy for the classified task. This classification view allows to break the common
barriers for meta learning bandits, while providing an elegant and original characterization of the
regret dynamics under separation.

2 Problem setting

Let us consider a finite collection of contextual bandit problems M := {v; };c[as], Where [M] =
{1,..., M}. Each bandit instance v;, which we will sometimes call a task, is a linear contextual
bandit [52] that maps an action k¥ € [K] and context z € X C R? into a reward distribution
vi(x, k) = 0 + 7k, Where 0, € R4 is a vector of parameters and 7 is a (subgaussian) random
noise with zero mean and variance Ufk < o2. A special yet important case is when the space of
contexts is a singleton X = {z}, which we call non-contextual bandit, or just bandit for simplicity.

Following a typical stochastic bandit setup [36]], the decision maker, i.e., the agent, interacts with a
bandit v; € M, which identity is not revealed to the agent. The interaction protocol goes as follows:
At each step ¢ > 0, the agent observes a context z; € X drawn from some fixed distribution P, it
selects an arm k; € [K], and it collects a reward r; ~ v; (x4, k¢). The agents decides the arm to pull
according to a policy 7 : X — [K], a mapping between contexts and arms, which the agent updates
given previous observations of contexts and rewards.

The goal of the agent is to maximize the cumulative reward collected over a time horizon H or,
equivalently, to minimize the regret of pulling an arm other than the optimal one. For instance, to
minimize the number of times a treatment different from the optimal one is administered to a patient.
Since the identity of the bandit problem (unobserved characteristic of the patient in the example) is
hidden to the agent, the regret is typically computed over the worst-case task in M. Formally, the
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worst-case regret is given by

Regy (M) := sup E max z, O — T (1
en(M) = o Lg;ﬂkemt Lo

where the contexts x1, ...z y are sampled independently from the fixed distribution P and r; ~
v;(xt, k) being k; ~ m(x;) the arm pulled by the agent.

In this paper, we consider a meta learning variation (e.g., [[10, 26]) of the common bandit setup
described above. The learning setting is composed of two separate and consecutive stages, which we
call meta training and test, respectively.

Meta training. In the first stage, the agent can interact offline with the set of bandits M. Differently
from a pure exploration setup [3]], here we interact with a set of bandits instead of a single one. We are
not just interested in discovering an optimal policy for each bandit, but also to devise an exploration
plan, which we denote as Plan(M), that we can transfer to the test phase to minimize the regret.
Since the meta training itself happens entirely offline, no regret is incurred at this stage. In practice,
this is reasonable when working with a simulator or previously collected data, such as an historical
record of treatments administered to patients. However, we may operate under resource constraints,
so that it is important to investigate the sample and computational complexity of meta training.

Test. In the second stage, the agent faces a single and unknown bandit task v; € M, which we call
the zest task, with the goal of minimizing the regret (I). This matches the stochastic bandit setting
exactly, except that the learning algorithm takes decisions according to the exploration plan devised
during meta training, i.e., k; ~ Plan(M). Whereas the plan is fixed a priori, it is still adaptive, as it
conditions the decisions with the history of interactions in the test task. For instance, the plan can be
a strategy to administer treatments to a patient informed by historical data.

What are the theoretical barriers for the described problem of meta learning bandits? A natural
question is whether the meta training can benefit the test regret in a substantial way. Perhaps
unsurprisingly,without any assumption on how the collection of bandits M is constructed, the meta
learning problem is not easier than the classical stochastic bandit.

Theorem 2.1 ([33]]). Let M such that M| > 2 and let X = {x}. Then Regy; (M) = Q(vVMH).

The latter can be proved through a hard instance in which the two bandits are identical expect for
a pair of arms whose mean reward differ for a small quantity depending on H. In many scenarios,
those instances have limited interest, as we may model the pair of bandits with a single task, at the
cost of a (bounded) sub-optimality. Similarly to previous meta learning settings [12} 41]], we consider
a separation assumption built on this premise.

Assumption 1. For all i # j € [M] and a policy class 11, there exists at least one policy w € 11, s.t.
Dy(PT, ]P’;) > A\, where Dy is the Hellinger distance and PT ]P’;-’ are the joint context-arm-reward
distributions induced by 7 in v;, v;.

The separation guarantees that the bandits in the collection are meaningfully different, such as
assuming that different patient groups respond differently to at least one treatment.

Notation. We will consider a fixed context distribution P for both meta training and test stages.
For a random variable A and event £, we use Ep[A], Pp[€] as shortcuts for [, P(z) E[A|z]dx
and [ _, P(x)P(E|r)dx respectively. For any finite set S, we denote 2° the powerset of
S. For any two probability distributions p, ¢ over some measurable space X, let Dy(p,q) :=

2
Joex (\ /p(x) — \/q(:v)) dz be the Hellinger distance between them. For every v; € M, we de-

note s = Ep[z ' 0;1] the mean of r ~ v;(z, k) for x ~ P. We further assume z ' 0, € [0, 1]
and both ||z||1, ||f:k||1 to be bounded. We denote as II the space of policies and the optimal
policy 7} (z) := argmax, ¢y &' 0ir(s), playing the arm k} € arg Max,e k] x " 0;;, with the op-
timal mean reward for any x € X'. For a bandit v; € M and policy 7 € II, we denote P} the
joint distribution of context-arm-rewards. The action gap of bandit v; and context x is denoted
Ai(.ﬁ, ]f) = xTGik* — l‘Ttgik and we define A := minie[]\/[]’xe;(’ke[[(] Al(x, k‘)ﬂ

"Note that, whenever the context vector is the zero vector, the gap A; collapses to zero for every 7. We
assume that the space of contexts X’ is designed properly, so that it does note include such dummy context
vectors.



137

138
139
140
141
142
143

144
145
146

147

148

149
150

151
152
153
154
155

156

157

158
159
160
161
162

163

164
165

3 Meta learning bandits with classification

In this section, we present a framework to study meta learning bandits under separation through the
lenses of multi-class classification. First, we analyze the regret of a strategy, i.e., an exploration plan
Plan(M), based on classifying the test task to then exploit the optimal policy of the classified task.
Then, we show that classifying the test is necessary for regret minimization under separation. As we
shall see, the two results are brought together by a novel measure of complexity, which we call the
classification-coefficient.

For the ease of presentation, we assume to know the true distributions of all bandits v; € M, and we
leave the study of misspecifications to later sections. We consider classification algorithms in the
following interaction protocol:

1. Start with ¢ = 0 and an initial hypothesis class Sy = {1,2,..., M }.

2. Terminate if |S¢| = 1. Otherwise, decide on a classification test 7; € Il¢ (either deterministically
or randomly) from the set of tests I, and draw N3 = O(/\—z) samples with 7.

3. Update the hypothesis class St with the generated samples. ¢ <— ¢ + 1 and go to Step 2.

The complexity of classification depends on how many hypotheses we can rule out from a test 7, from

the remaining hypotheses each round. As we are allowed to use O~()F2) samples, we can at least rule

out \-separated hypotheses from the underlying instance. Specifically, given the remaining hypothesis

class S; € 2(™) and the underlying instance i, we can remove ST, (i) := {m € S;|Du(PT,PT,) > A}

through hypothesis testing (e.g., using likelihood ratio test).

To formalize the concept, we define the deterministic classification-coefficient:

5]

Ch(Ilg) == max max — , 2
AIle) Se2lMl [§|>1 melle €S |ST(i)] @
and the randomized classification-coefficient:
2 — : 5]
Cr(Ilg) :=  max min max 3)

se20M)[8|>1peA(Tle) i€S Erop[|ST ()]

In essence, these coefficients measure the classification complexity of a class of bandits through the
pessimistic rounds of classification, where S is the worst-case remaining hypotheses when the test
task is ¢, and 7, p are the optimal deterministic and randomized greedy strategies, respectively. The
latter take the test (resp. distribution over tests) inducing the most even split (resp. expected split) of
the remaining hypotheses S. Interestingly, we can derive an upper bound on the size of the split when

St] <1- %CA(HC)_l. Clearly, the smaller

the classification-coefficients, the more hypothesis we can rule out in a single round, the easier it is to
classify the test task. Now, we formally link the complexity of classification with the regret.

employing the deterministic greedy strategy £ [%

Algorithm 1 Explicit Classify then Exploit

. input set of tasks M, N¢is

: Initialize So = [M],t =0

: while |S¢| > 1 do ~

¢ = MaXyerne Milies, |ST A (7)]

D; < Ngjs i.i.d. samples drawn with 7,

Get S¢41 with Algorithm[2]

t<—t+1

: end while

: Extract the classified task m* € Sy and execute 7" (z) = arg max, oy Vm= (2, k) for the remaining steps

R

Algorithm 2 Update Remaining Hypotheses

1: input set of tasks St, test 7, samples Dy

2: Letli =3, ,yep, 10g(P7* (z, 7)) forall i € S
3: Let m = arg maxies, ¢;

4: return Si1 <+ {i € Se|l; > £ — 3log(M/6)}
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To this end, we consider a simple algorithm, called Explicit Classify then Exploit (ECE, Algorithm E]),
which is based on the classification protocol described above to classify the test task (lines 2-8), then
deploying the optimal policy for the classified task (line 9). We can prove the following.

Theorem 3.1. Suppose Assumption[I| holds with a test class Il¢ and a family of M bandit instances
M. Then with probability at least 1 — 6, the while-loop in Algorithm[l|ends after T rounds with N
samples per round where

Consequently, the expected test regret of Algorithm|[I|for H steps is

CA(HC)IOgQ(M/(S)) + 6.

Regy (M) <O ( 2

The theorem states that we can identify the test task w.h.p. taking Ng,T = O(\A "2 -
C\(I¢) log?(M/6)) samples. We can translate the latter into a regret rate by bounding the re-
gret caused by classification failure with 6 H. We can set § = o(1/H) to make the classification
failure negligible, settling the regret O(A~2C\\ (Tl¢) log® (M H )) Next, we show that the latter rate
is nearly optimal by developing a lower bound to the regret for bandits under separation.

3.1 Necessity of classification with separation

While the ECE approach may not always be the best algorithm to minimize regret, it is a near-optimal
solution whenever the optimal actions and the separating actions do not overlap. To see this, suppose a
family of A/ multi-armed bandit instances M with arbitrarily many K arms. Each i*" instance has its
unique optimal arm &7, but only with margin O(e), i.e., instances are not well-separated with respect
to optimal arms. In such scenarios, it is always better to first identify the task with A-separating arms.

To formalize the fundamental link between regret and classification, for the remainder of the section
we are going to consider a class of worst-case multi-armed bandit instances M, which we refer as
hard, defined as follows:

1. For each bandit instance i € [M], there is a unique optimal arm &} € [K] such that

3 3 ..
wi(k) = 1 + 10e, p;(k;) = T Vi # i.

2. All other arms k € [K]/{kj };c|a are information-revealing, i.e., either one of the following
holds:
14+ A 1-X .
wi(k) = 5 or u;(k) = —5 Vi € [M],

where €, A satisfy 1 > A2 > cye - C (M) for some sufficiently large absolute constant ¢ > 0 and
the randomized classification-coefficient C'(M) (defined below).

Classification complexity. Let C* (M) be the optimal depth of a deterministic decision tree for the
hard instance, constructed by probing the true means of separating arms Ay := [K]/{k;] }ic[as]- Let

c* (M) be the optimal average depth of randomized decision trees. The classification-coefficient in
() can be defined as C(M) := C (A ), and similarly for the randomized classification-coefficient

C(M) := Cx(Ax). Note that the classification-coefficients defined previously are concerned with
the (worst-case) most even split on the hypotheses S, thus they can be interpreted as measures for
greedy classification strategies. The following is a well-known relationship between these greedy
measures and the optimal depth of (deterministic) decision trees [4]

C(M) < C(M) < C*(M) < C(M) log(M). 5)

We note that these classification complexities can be as large as M in the worst case, while in practical
scenarios we can often design effective information-revealing actions to ensure C* (M) = O(log M).

2For randomized classification, we can change Algorithm E]to perform a randomized test, and the same
conclusion holds with replacing C by C.
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Statistical barriers of separated bandits. What is the lower bound to the test regret for M? To
quantify this, we recall a PAC-variant of DEC from [11]. Given some y > 0, we define

._ : . _ 20,
dec, (M) := werg?[%Werghr;q)irg[%hw[&(k)] YEk o mmw [Py (Vi (k) vin (K))],  (6)

where A; (k) := p;(k}) — pi (k). We can verify the following relation between -y and dec:

Lemma 3.2. There exists a constant c, > 0 such that dec.,(M) > 3e for all v < cfy/\’25'(M).

As a corollary of [11, Theorem 10], this implies the lower bound on the high probability regret:
Theorem 3.3. There exists an absolbge constant ¢ > 0, such that if 1/ H < ce, then any algorithm
must suffer regret Q(min(eH, c,A=2C(M))) with probability at least 1/ H.

Thus, any algorithm guarantees with probability at least 1 — 1/H must suffer at least Q(C(M)A~2)
test regret, capturing the fundamental limits of separated bandits. The lower bound depends on the
randomized classification-coefficient, though deterministic strategies can still be preferred in practice.

4 A more practical ECE algorithm

We analyzed the ECE algorithm in an ideal setting in which the reward distributions of all the bandits
in M and the context distribution P are fully known. Here, we present a more practical variation of
the algorithm, Decision Tree ECE (DT-ECE), which (i) is robust to misspecifications of M caused by
estimation errors at meta training, (ii) only accesses samples coming from the context distribution P,
(iii) lays down a fully interpretable exploration plan through a decision tree classifier.

In this section, we work under a special case of the separation condition (Ass. [T)) which assumes
separation on the mean of the rewards instead of their distribution.

Assumption 2. For A > 0 and every v;,v; € M, 3k € [K] such that |Epp[z " (0ix — 01)]| > \.

First, we describe the meta training stage with the corresponding guarantees (Section4.1)). Then, we
present the DT-ECE test algorithm and we analyze its regret (Section 4.2).

4.1 Meta training

In this section, we describe a provably efficient algorithm to meta train an exploration plan P1an(M)
by only accessing offline simulators of the tasks in M and samples from P

The meta training algorithm, whose pseudocode is in Algorithm[3] has two main procedures. First,
it estimates the parameters of each task v; by doing regression on the class of linear functions of

the context (lines 2-11). Second, it takes the (possibly misspecified) resulting class M to build
a deterministic decision tree classification model over the tasks (line 12). The following lemma

provides an estimation guarantee over M from the analysis of random design linear regression [22]].
Lemma 4.1. Let M be a set of M linear contextual bandits and let M their estimation obtained by
Algorithm 5| with
16002dlog(4HMK)

min(A2, \?)
For every bandit i € [M] and arm k € [K], it holds

Nest =

) A A 1
T0,. —x' 0, n(=.2)) < ——.
]P(]Ep {|z — alk@ >m1n(2,4>> < g

The latter guarantees that the identity of the optimal arm and the separation condition is preserved
w.h.p. by the estimation process. As we shall see, these properties will prove useful at test stage.
Before going to that, it is worth detailing how the decision tree classifier is built (Algorithm F).

3 An analogous algorithm accessing pre-logged historical data can be developed. The reported guarantees
shall transfer verbatim under natural conditions on the size and quality of the dataset.
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We consider a set of tests IT¢ equal to the set of arms [K], for which we are going to test the mean
reward [ij, against a threshold b € [0, 1]. Since computing the optimal test is NP-hard in general [23]],
we turn to a greedy approximation which gives the test with the most even split [4, 42]. Algorithm [5]
in Apx.[C.2] gives a tractable procedure with which the greedy test can be computed. In order to
make the tests along the tree statistically robust when computed with samples from the test task, we
consider soft splits [43]: We let the test [i, < b be simultaneously true and false inside a A\-band
around b (see Figure [3)).

The meta training algorithm that we just described is fully tractable, both in terms of computational
resources and sample complexity, as proved by the result below.

Theorem 4.2. Algorithm runs in time O(d> M? K /\*) and collects a total number of samples

16002 M K dlog (AT M K)
min(A2; \2) ’

Finally, we can provide a guarantee on the cost of the greedy approximation with respect to the depth
of the optimal deterministic decision tree on M, i.e., C5(M).

Lemma 4.3. Algorithmbuilds a decision tree with depth D = O(log M + 1)C (M).

4.2 Test

Here we analyze the test algorithm implementing the exploration plan Plan(M) prescribed by the

decision tree classifier tree(M), which we call DT-ECE. As said above, this test algorithm is a slight
variation of ECE (Algorithm [I)) and mostly follow similar steps. Here we comment on the differences
and we leave a complete pseudocode to Apx.[C.3]

Without turning to the appendix, we can look at the pseudocode in Algorithm [I]and picture that, at
line 4, DT-ECE would extract a test 1, < b from tree(S;) on the current hypotheses S, collecting
data like in line 5 with the policy m; = k prescribed by the test. Then, instead of updating the
remaining hypotheses S;;1 with log likelihood tests (line 6), it takes S;1 by following the left or
right split in the tree according to whether the test resulted true or false, respectively. Those changes
lead to the following regret.

Theorem 4.4. Suppose Assumptionholds on a set of tasks M and let tree(M) be obtained from
Algorithm[3] The expected test regret of DT-ECE (Algorithm|6)) for H steps is

Cx(M) logz(Ci(M)MH)>
A2

Rog (1) = O

The result above shows that DT-ECE matches the regret of ECE with a factor C5(M) in place
of the classification-coefficient Cx(M). This implies an additional log(}M) factor at most (see [3).
This means the estimation error does not significantly affect the regret, thanks to the guarantee in
Lemmad.1] Finally, the regret holds in a contextual bandit setting, but does not depend on the size of
the context d, which only impacts the meta training complexity.

5 Experiments

In this section, we provide a brief numerical validation to illustrate how the above theoretical analysis
on the classification view of meta learning bandits translates to compelling empirical results, which
we compare with previous methods in the literature of latent bandits [19]].

To the purpose of the experiments, we consider a non-contextual stochastic MAB setting in which
the collection of bandits is fully known, without covering class misspecifications. We design two
family of collections, one inspired by the hard instance presented in Section[3.1} which we henceforth
call hard, and one randomly generated collection, which we call rand. For the former, we consider
two instances with size M = 5 and arms K = 10, with varying values of the separation parameters
A (0.4 and 0.04 respectively). For the latter, we consider a small instance M = 10, K = 20 and a
large instance M = 40, K = 40. We use rejection sampling to control A (set to 0.4) in the randomly
generated collection. In all the considered instances, the reward distributions are Bernoulli.
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Figure 2: Regret of DT-ECE (ours), mUCB [7]], mTS [19]]. Captions report envname-M-K, denoting
the name of the collection of bandits, the size of the collection, and the number of arms, respectively,
together with the value of \. The curves average 20 runs, shaded regions are 95% c.i.

We compare the regret suffered by our decision tree implementation of the Explicit Classify then
Exploit routine (DT-ECE, described in Section[dand Algorithm[6]of Apx. with traditional bandit
approaches, i.e., mUCB [7] and mTS [[19]. The latter algorithms adapt UCB and Thompson sampling
to the meta/latent bandits setting. While they are not designed to take advantage of separation
specifically, they exploit knowledge of the collection of bandits and they constitute relatively strong
baselines. Before going ahead with the experimental results, it is worth spending a few words on
how the spirit of our algorithm differs to theirs. DT-ECE is designed to produce easy-to-interpret
exploration plans, which can be entirely pre-computed offline. Instead, the exploration prescribed
by mUCB and mTS is hardly interpretable nor predictable, making them and DT-ECE orthogonal
solutions for different applications rather than direct challengers. It is satisfying, however, to see that
DT-ECE performance is on par with such renowned algorithms.

In Figure 2] (a, b) we see that DT-ECE achieves a small regret by classifying the test task in a handful
of interactions (coarsely, the classification occurs at the elbow of the curves) both when separation is
large (a) or small (b). DT-ECE is able to commit to the optimal strategy even before mTS, whose
posterior takes slightly longer to converge around the test task, although DT-ECE suffers larger regret
due to pure exploration. The most important trait of the hard instance is that optimal actions and
informative actions do not overlap, so that optimistic strategy like mUCB are bound to fail. By mostly
pulling nearly optimal yet non-informative actions, mUCB cannot identify the test task efficiently,
and the regret grows steady. Optimism works considerably better in the rand family (Figure[2]c, d),
although mUCB does not match the efficiency of DT-ECE and mTS in those experiments either. It is
remarkable that DT-ECE can classify the test task into a set of 40, with 40 arms each, by taking less
than 1000 samples on average (d).

Finally, DT-ECE comes with sharp theoretical guarantees and it is designed for the worst case, which
can limit the performance of the algorithm in more forgiving instances (such as the rand family).
However, the design of a fully practical version of the ECE ideas is beyond the scope of this paper
and constitute interesting matter for future studies.

6 Related work

To the best of our knowledge, our classification view of meta learning bandits under separation is
original. There are anyway several connections with the literature, which we revise below.

Contextual bandits. Our setting relates to contextual bandits 52137, 1} [17]] and, indeed, our results
hold for the contextual setting. The contextual nature of individual tasks is an orthogonal dimension
w.r.t. a second, unobserved context typical of meta learning settings: The task description itself.

Latent bandits. The setting that most closely relates to ours is latent bandits [7} 140,154,119, 20, |44]].
Actually, our setting can be seen as a particular instance of latent bandits under separation and a
meta learning protocol. [7, 140]] also consider bandit tasks coming from a finite and known set, with
or without misspecification. They do not consider separation, which allows to specialize the regret
from O(vVH) to O(log H). Similarly to ours, the setting in [54] includes a phase in which the
models are learned from data and then exploited on future tasks. In their formulation, however, the
tasks are coming into a sequence online, so that the meta learning itself adds to the regret instead of
being carried out offline. An offline learning phase is considered by [19]] in a problem formulation
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that almost perfectly matches ours, yet leads to mostly orthogonal results: They do not consider
separation; Their analysis is not instance-dependent and does not tie the regret to the classification
complexity of the instance; They consider traditional UCB/TS-style algorithms in place of our ECE;
They do not detail the meta training algorithm. Most importantly, our classification view is original
in the latent bandits literature and constitutes the main novelty of our work.

Low-rank bandits. Low-rank bandits (27, 34} 39] essentially generalize the latent bandits for-
mulation (and ours) by assuming the existence of a low-rank latent representation conditioning the
arms payoffs. Just like in latent bandits, previous works do not touch on the connection between
classification and regret, which may be generalized to low-rank bandits.

Structured bandits. In structured bandits |35, [13, 151]] the rewards of the arms are correlated
according to a known structure class with hidden parameters. These parameters have some similarity
of the hidden task context of our setting (and latent bandits). Our results connecting classification
and regret may be generalized to structured bandits.

Thompson sampling. Extensive work has been done over exploiting prior knowledge in bandits
through Bayesian approaches. The most notable is Thompson sampling [50, 24 3, 46], in which
knowledge over the test task is incorporated into a prior. The set of tasks of our setting can be seen as
a prior, although our results are in a frequentist setting. As such, they are independent from the prior
distribution and robust to misspecifications, differently from Thompson sampling [48]].

Meta learning bandits. Meta learning bandits has been considered in [25, 21} [18] where tasks
are assumed to come from an unknown prior. The agent aims to infer the prior from interaction,
assuming it is itself coming from a known hyper-prior. This can be seen as a Bayesian version of
our setting, where the hyper-prior stands for the set of tasks, and the priors play the role of the tasks.
Other works [[10, 8] have considered meta learning a prior over tasks for regret minimization.

7 Conclusion

In this paper, we took an original classification view on the problem of meta learning bandits under
separation. Thanks to this novel approach, our work delivers on its promise of providing principled
algorithms for learning interpretable and efficient exploration plans from offline data, just like they
were designed by humans. As a by product to this effort, we contribute an elegant framework to study
the regret of learning algorithms through the complexity of classifying the task online within a set of
previously seen tasks.

We believe the significance of our findings are hardly limited to the considered contextual multi-armed
bandits, and that they may inspire future works targeting yet more general problem settings (and
corresponding applications) by following our blueprint for meta learning with classification.

A natural next step is to introduce dynamics over contexts to extend the framework to full-fledged
Markov Decision Processes (MDPs) and reinforcement learning, where we would consider a test MDP
coming from a collection of MDPs, known a priori or accessed offline. A framework of similar kind
has been introduced under the name of contextual MDPs [[16] and latent MDPs [29, 28! 31,130, [32].
Previous works have also studied meta learning policies for efficient exploration in MDPs and their
regret [[12] 53 /41]. None of the above has considered our classification view of the problem to get
efficient and interpretable exploration plans. In the MDP setting, our decision tree classifier resembles
a hierarchical strategy deploying policies, or options [49], to probe information-revealing states of the
environment. Can these policies be learned with a tractable offline algorithm? Would the exploration
plan enjoy similar regret guarantees beyond the contextual MAB setting? This is an exciting direction
with the potential to open the door to countless applications, such as autonomous driving, robotics,
and many others.
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A Auxiliary Lemmas

The following lemma is the famous Ville’s inequality for super-martingales:

Lemma A.1 (Ville’s Inequality). Let {W,;}:>o be a non-negative super-martingale sequence, such
that

E[W;1[Wi] < W4,
for any 6 > 0, the following holds:
P(Vt, W, < Wy/8) >1-4.
The following lemmas are the standard concentration of log-likelihood values of the models within the
confidence set. The proofs are standard in model-based RL and can also be found in (e.g., [38}12]). We

let D be the observational data o = (z, k, ) collected by running 7 on some underlying distribution
v* € M. We denote 5 := log(M/J). Then, the following holds:

Lemma A.2 (Uniform Bound on the Likelihood Ratios). With probability 1 — § for any § > 0, for

any v € M,
S log(Pr(0) — < 3 log (P (o). )

o€D oeD

Lemma A.3 (Concentration of Maximum Likelihood Estimators). With probability 1 — 6, for all

v € M, we have
D2 (PT,PT.) D(Zl (”ﬂ ))+35>

0€D ”

B Proofs

B.1 Proofs of Section[3
B.1.1 Proof of Theorem 3.1]

We first analyze whether the true model m™ remains in the hypothesis class for all 7" rounds. To see
this, by Lemma[A.2] for all i € S; and ¢ € [T, we have

> log(B(0)) = B< Y log(PF,-(0))
o€Dy 0€Dy

where 8 = log(MT/¢). Hence, due to our construction of the next hypothesis set in Algorithm
with probability 1 — §/T, m* € Siy1. As the worst-case classification round does not exceed M
with Assumption without loss of generality, we assume that 7' = O(M).

Next, for every ' round, we prove that Sy 1 C S; / S’; ¢ (m*) where
StA(m”) = {i € S| Du(P]*, P71.) > A}
Note that with probability 1 — /7,
0> ) log(P}.(0) — > log(PF, (0)) > —B,
o€D; o€Dy
for all i € S;. From Lemmal[A.3] for all i € S, by taking union bound, it must satisfy that

B> Zlo (

o€Dy

) > 2Ny - DE(PT, PI) — 33,

where the first inequality holds due to our construction of Sy 1. Thus, for all ¢ € Sy, we must have

2
Dﬁ(Pff,IPf;*)gNﬁ, Vi € Spy1.

cls
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log(]VI/S)

This means with N > 2 test samples per round, Sy4+1 C St/gfg\(m*).

Finally, with our design of 7, we always choose 7; such that
|57 (m*)] = Ca(Te) ™" - |Si].
This implies with probability at least 1 — § /7", we always have

|St41]

<1—Cy(Tle)" Y,
A NG

which translates to

S|
Note that in the worst case, the ratio remains 1 with probability less than 6/7. Let W; :=
(1+ %CA(HC)’l)t |S¢|. Then {W; },> is a super-martingale, and thus, by Lemma we have

E [|5t+1| |St:| <1- %CA(HC)_l

1 T 1
(14565 1511 < 3150l

with probability at least 1 — d. Under this success event, as soon as T' > 2C (Il¢) - log(M/d), we
must have |St| = 1.

To summarize, if we use Ngs = O(A~2 - log(M/3) samples per classification round for T =
O(Cx\(Il¢) - log(M/4§)) rounds, the algorithm terminates with the correct task identifier m* with
probability at least 1 — ¢, concluding the proof.

B.1.2 Proof of Lemma[3.2]

Following the definition of DEC in (6), we have that
. 2
decy(M) > max — min  maxByr[Ai(k)] = VErmmati(s) D (vi(k), vim (k)]

Recall that the randomized coefficient in (3)) can be rewritten as the following:

—1
CM) = (sezrﬁflﬁsmﬂﬁ?i)%%ﬁmu(s) [Exnr [1{pi(k) # um(k‘)}]]> ,

and let S, 4, be the outer solution of the above min-max-min optimization. Now for any 7 € A([K]),
let i*(7) be the one that achieves

7’*(71—) ‘= arg Hé,lariu EmNZ/{(S) []E]CNTK‘ [1{Nz(k) # Mm(k)}]] 8)

ic
We claim that there must exist i(7) € Sqay/{i*(7)} such that the following holds:

E’ITLNU(S) [Ek’Vﬂ' [l{l’l’;(k) 7é ,um(k')}“ < 4EnL~U(S) [Ek'\‘ﬂ[l{p’z*(ﬂ') (k) % Mm(k)}]] . )
To see this, note that

i (k) # pm ()} < H{pz(k) # pis ooy (R)} 4 i () (k) # pm (K)
and then, by taking i(7) := argmin;eg, ,, /{i* (r)} Brrn [1{ti () (k) # pi(k)}], we can verify that
Epmor [L{ptin () (k) 7 15 (F)}) < 2Ernnitt(S0a) (B [L{ttin () (K) 7 pim (R)}]]

since |Sqdy| > 1 and the indicator function is nonnegative. Note that for all 7 € A(A)), by
construction, E,,,z4(s) [Eanr [1{i*(x) (@) # pm(a)}]] < C(M)!
Now going back to the DEC lower-bound, we have
dec,(M) = it mx BieerlAs(1)] = 1Bk Eoneit(s,a DR 05(1), v ()]

> min max Ay + ﬂ'k‘EA 10
T€A([K]) i€Sadv ke{%;} ) ( A) ( )

I

— 7| 200€® - 7(k ¢ Ax) + Emnta(S,a,) By [Di (vi(k), v (K))]] - 7(k € Ax) |

11

Y
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537 where we define m = 7(-|k € Ay). Now for every 7 and the corresponding 7y, let i* () as defined
sse  in () and i(my) = Saav/{i*(7a)}. Now we either choose i = i*(my) if

Tk () < TRy )

539  and i(y) in the other case. We divide into two cases.

sa0 1. m(k?

Fe(myy) < T(K(,)):  Inthe former case, note that for all m # i*(mx),

i(mx)
Az*(w,\)(kj:n) > 106,
541 and therefore,
Z Aje () (k)7 (k) > Bem(k & Ay).
ac{k}, tm

sz Therefore, we have I > Ser(k ¢ Ay) + 3m(k € Ay) in (TI).

543 For the second term, note that
Emnitd (Suan) (B [DR (Vi () (B)s vin ()] < N Enntd(San) (B [H{Vie (3 (k) v (k) }]] < NC(M)
s4s  Therefore, the second term becomes 11 < 2002w (k ¢ Ay) + A2C(M) 1x(k € Ay).

sa5 2. m(kl, ) > w(k: In the latter case, repeat the same process except that now we take the
i*(mx)

i(m A)). -
546 worst-case inner-instance ¢ = () ), we get the same inequalities.

547 Combining all results, we can conclude that

I —~IT > (5¢ — 200e%y)m(k ¢ Ay) + (; - 7>\26~’(M)_1> (k€ A)) > 3e,

se for any m € A([K]) with v < ¢, min (e’l,)\”é(M)) for some sufficiently small ¢, > 0.
549 Therefore,
dec, (M) > 3e,

s50 concluding the proof.

551 B.1.3 Proof of Theorem 3.3

s52  To identify the optimal arm (so that we can play it for the majority of rounds), it must hold
553 decv(/\/l) < €. On the other hand, we have the following lower bound, which is a reminiscent
s54  of lower bound results in [11]] and [14]:

ss5 Theorem B.1. Forany 0 € (0,1) and a regret minimization algorithms for H rounds,

Regy (M) > Cy - max  min ((decy (M) —6) - H,7),
vH

v7=>Cq-

ss6  with probability at least § for some absolute constant C,Co > 0.

ss7 Thus, we must have y = Q(A~2C/(M)) so that we can have dec., (M) < 3¢ for all  greater than this

ss8  threshold. Otherwise, any algorithm must suffer from at least Q(min(eH, A=2C/(M))) regret with
s59 probability at least 6 = 1/H < e. Furthermore, since Regy; > Regy, for any H > Hy, it holds

seo that for all H > Hy = A~*C/(M)?, we must suffer Regy; = Q(A~2C(M)).

561 B.1.4 Proof of Theorem B.1]

s62 The proof follows Section C.1 in [14] with minor modification. Let us define a regret for individual
563 instance:

H
Reg == > fim (k) — ().
t=1
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Let &, an event such that {Reg; < ¢y} with some sufficiently small constant ¢;. For any algorithm,

~v > 0and 0 = 1/H we consider, we assume that for all m € [M], P,,,(,,) > 1 — ¢ since otherwise

the algorithm suffers from at least ~y regret with probability at

Let us fix an algorithm A such that at ¢

where o, = (x¢, at,7¢), and the policy at each round is decided

Let P2 be the distribution of sequential observations (o1, ...

Following Lemmas are adapted from [[14]]:

Lemma B.2 (Lemma A.11 in [14]). For any two distributions i, v on a measurable space X, and

any bounded real-valued function h : X — R with 0 < h(X)

least 0.

round with previous observations H!~! = (01, ...,04_1)

by an algorithm 7, = A(:|z,, HE—1).

< B, we have

Eu[(X)] — Ey[h(X)]| < \/2B(E[A(X)] +

In particular,

[EL[h(X)] = E,[R(X)]] < 3E, [R(X)]

E, [M(X)]) - Di(p, v).

+4BD3(u,v).

Lemma B.3 (Lemma A.13 in [14]]). For any two bandit instances v;,v; € M,

D3PI Py < O o1 Bi[Epor, [D3 (v (K), v (K))]],

1 J

where C'gr > 0 is a sufficiently large absolute constant.

Given the lemmas, for any w € A([M]) and for any algorithm that generates an adaptive policy 7,

let & := % Zil 7(-|H*~1) (note that this is a random variable), and let 7 := K, [7].

Lemma B.4 (Minor Edit of Lemma C.1 in [14]]). For any two bandit instances v;,v; € M,

7 0 J

1
H

We start with the following inequality for a prior w such that:

sup Eqoz[Vm(ay,) — vm(a)] — - Eﬁww[EaNﬁ[D}%I

me[M]

E;[Regly 1{€7)] S ST - D3PH ) + |/ D3 (PH  PIE:Epns [DF(ws(k), v3 ()] + 9.

(|

(vm(a),vm(a))]] = decy (M).

Such a prior w € A([M]) must exist due to the definition of dec.,. Note that

H : ECLNﬁ'[V’H'L (a::n) - Vm(a)] - ET?LNUJEaNﬁ' [Vm(ajn) — VUm (CL

= Zwm [Reg] = Zwm

For I, we apply Lemma [B.2]to get
I < 3E,,[Reghy -1{E,,}] + 4yDi(PE PH) < 3E,,

mo m

For I1, we apply Lemma|[B.4]to get

)} =H- Eﬁww[RegE]

,op ) for H rounds with bandit v,,.

m|Regl - 1H{Em}] + Em[Regh -1{E5

I 11

[Reg};] + 4yDj (PH, PH).

11 S (He+ c17) DE (P, ) +H\/D§(1P’§,Pﬁ) B [Bin [DE (Vi (K), vm (K))]] + HO.

m? m

Combining these inequalities, we have

m? ’ITL

E,[Reg}] = H - dec, (M Zwm- <017D2 P2 P +H\/D§(Pg,19>g) B [Bams [D2 (v

+7H - Epnc [an (D (v (a), vin(a))]] — H.

On the other hand, we can apply Lemma [B.3|to bound that
H
Di(PR.PR) < O Y En[Brm, [Df (v (k) vin (k)]

= CHI—;- Es [EQNT}[DS(VWL<@)7 Vm(a))ﬂ
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Plugging these results, we have

E,[Reg] = H - dec, (M) — H(cyy + VH) - Zmeﬁ [D2 (v (), v (k)]

+ ’yH cEmew I:]:Ek,\,ﬁ— [Dﬁ (l/m(k)a Vm(k))]] — Ho.
Note that
E'anw [Ear\aﬁ' [Dg(l/m(k)v Vm(k))]] = Z wﬁLEﬁ' [Dg (Vm(k)v Vm<k))]

This implies that as long as ¢, is a sufficiently small constant and > +/H, the expected lower bound
is given by

E..[Regy| 2 H (decy (M) —6).

Proof of Lemma[B.3] The general version of subadditivity lemma in [14] is stated as the following:
Lemma B.5. Let (X1, 1), ..., (X, Fn) be a sequence of measurable spaces, and let X0 =1_ X,
and FO) = Q) Fi. For each i, let w9 be probability kernels from (X1, Fi=1) 1o
(X(i), .F(i)). Let 1, v be the laws of sequence X1, ..., X,, following the sequence of (u", ..., u(")),
(v, ..., v™) respectively. Then it holds that

DH(N? V) < 102 IOg(n) : EM[Z?:l D}QI(M(i)('|X1a ) Xifl)ﬂ l/(i)('|X11 ) Xifl))]'

) O |T1,y...,T5—
Furthermore, if there exists a constant V' such that sup .. yex-1 SUD, e F, W
for all i, then
Dy(p,v) < 3log(V) - E, [0, D2(puD (| X1y ey Xim1), VD (| X1, oy Xim1)]-
Our construction belongs to the latter case, since the probability of observing v, = 1 or r, = 0 is
larger than 152 > 1/4 forany A < 1/2. O

Proof of Lemma[B.4} In our construction, for all pair of bandit instances p, v € M, the optimal
values are the same, that is,

(k) — (k) =0,

where k7, k; are the optimal actions for y, v respectively. The remaining steps are identical to the
proof in [14] (see their Section C.1.2), and we omit them here. O]

B.2 Proofs of Section[d]
B.2.1 Proof of Lemma 4.1

Proof. We can rework the result [22, Theorem 1], originally designed for the excess quadratic loss,
to write

. 2
P(Ep [|xT9ik - xTeik|] - \/50 (d+2 dlogﬁ/@ +2108(2/9)) | _

where 0 is the ordinary least squares with N samples. Then, we just plug § = in the

expression to obtain the guarantee with a few algebraic manipulations.

1
2HMK

B.2.2 Proof of Theorem

Let us start looking at the sample complexity. Since the Algorithm [3|takes Ny samples for every

arm k € [K] and simulator v; € M, we can conclude that the statistical complexity of meta training
4MK log(4AHMK)
min(AZ. A\2)

min’

is

Assuming access to parallel simulators, the computational cost of meta training depends on the cost
of executing line 12 in Algorithm which is calling Algorithm The latter requires executing | S|

17
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evaluations at lines 5, 6, where |S| < M, and to compute the greedy step (line 3), a cost that is paid
for every call to the recursive procedure (line 8). Computing the greedy step through Algorithm [5is
done in 4K /\* steps. Finally, we can bound the number of calls to the recursive procedure with the
total number of nodes in the tree, which is O(M?). Putting all together we get a complexity of order
O(M3K/\Y).

B.2.3 Proof of Lemma 4.3

Proof. The result follows directly from the approximation guarantee of the greedy algorithm to build
the decision tree [4]], which guarantees d = O(log M + 1)C5(M). Especially, we have to prove that
the previous guarantee does not degrade with our implementation, which include a \/4-discretization
of the space of tests (see Algorithm[5] line 4). Thanks to the separation condition (Assumption [2), we
can prove that every test i(k) < b with b € [0, 1] can be replicated with ar most two tests defined
on the discretized space, i.e., fi(k) < b with b € [0,1], /4. Since the approximation degrades of a
constant factor only, the result D = O(log M + 1)C5(M) holds. O

B.2.4 Proof of Theorem 4.4l

Proof. To derive the upper bound on the regret, we aim to prove that the remaining task ,,,~ at the
end of the Explicit Classify phase corresponds, up to a small estimation error, to the true test task v*
with high probability, and that the policy 7* played from there on in the Exploit phase corresponds to
the optimal policy for the test task * with high probability (despite the mentioned estimation error).

If we let 7" (2) = arg max, g @ 6 the optimal policy of the (true) test task, we aim to prove

Pp(7*(x) # 7" (x)) = lP’(“Explzczt Classify fails” v “Exploit fails”) < 1/H

which we can guarantee by showing that the Explicit Classify and Exploit phases fail with probability
less than 1/2H and then applying a union bound.

Let us first take the good event for the Explicit Classify phase, which means the remaining ,,,~ is a

“good” estimate of the test task »*. We have that

P(“Exploit fails”) = Pp (fr*(x) # 7" (:E)) (12)
( U U x olﬂ*(a:) <z 02k> (13)
ic[M] ke[K]
1
< Z > Pp(:c i () < azk) >3 MK_E (14)
M] ke[K] ie[M] ke K]

where we consider any pos51ble choice of the remaining task 2,,~ and the test task v* to write (I3)
from (12), we apply a union bound and the estimation guarantee of Algorithm 3] (see Lemma.T)) to
write

Conversely, under the good event for the Exploit phase we aim to prove that the Explicit Classify
phase fails with probability less than 1/2H. Since the Explicit Classify phase is actually a sequence
of tests, we need to bound the probability that each test fails. Formally, let J denote the number of
iterations of the loop between lines 3-11 (Algorithm [f)), through a union bound we have

P(“Explicit Classify fails”) = IP( U “test at iteration j fails”) < Z P(“test at iteration j fails™)
JELJ] Jel]

Now, we need to design N5 such that the test at each iteration fails with probability less than
ﬁ > ﬁ where D is the depth of tree(M). For each iteration j, take the test p;, < b and let
B = §.- 2ne[N.. 'n the empirical mean of the samples 7, ~ v*(zy, k) collected from the test
task at line 5 (Algorithm [). We need to assure that the event of 7z falling on one side of the test
while the “right” fi, is on the other side (see lines 6-11 of Algorithm[6)) happens with small enough
probability. Formally,

P(“test at iteration j fails”) = P({ < bAfix > b+ AP U{m >bA i, <b—A})
Pz — fi| > A)
P([7 = pel > A/2) + P(| i — pe] > A/2)

VANRVAY
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eso  For the second event, we invoke the estlmatlon guarantee of Algorithm 3](see Lemma[.T) to write

o5t P(|fue — pu| > A/2) < 50 < 75 For the first event, we need to assure that P([ — ju,| >

g2 A/2) < ﬁ. Since 1z is the empirical mean of uy, by applying the Hoeffding’s inequality, we have

653 that N > % gives the desired guarantee.

e+ Having demonstrated that Pp (7* () # 7*(2)) holds with probability less than 1/H, we can finally
655 Write

J N1 H
- 2D log(8HD)
Re =E maxx Tor —r | +E max z, 05 — z] 0%, <= =7
gH P Z t Yk t P t:JNZCLS+1 ke[K] t Yk t Var(xy) | = A2

ess by taking z, 0 — xj&;fr*(xt) = 0 in the good event, upper bounding maxjc|x; ) 0F —r <1
657 and JN < DN, and then apply the approximation guarantee D = O((log M + 1)C5(M)) from
ess  Lemmafd.3]to get the result. O

659 B.3 Proof of Auxiliary Lemmas

660 B.3.1 Proof of LemmalA.2]

661 The proof of MLE-based confidence set construction is by now standard and can be found in several
662 prior works (e.g., [38]]). We adapt the proofs from [32] for completeness.

663 Proof. The proof follows a Chernoff bound type of technique:
o (S (2
o€D
P7 (o)
<P, (exp <OEZD log (P;}(O))) > exp (6))

<E,- lexp ((;Dlog <§§((OO)))>] exp(—f).

The last inequality is by the Markov’s inequality. Note that random variables are o in the trajectory
dataset D, and

E,. lzl (5 ))] ~ KL(B,- (D)[P,(D)) < 0.

o€D

o (2;71 (7, >)>

e5 Combining the above, taking a union bound over v € M, letting 5 = log(M /), with probability
66 1 — 0, the inequality in Lemma[A.2]holds. O

664 Furthermore,

1/*

=E,- {Hoepm} —1.

667 B.3.2 Proof of LemmalA.J|

e6s Proof. By the TV-distance and Hellinger distance relation, for any ¢, 7, 7 and ¢t € [H],

T I P7 (o ]pl‘;/r 0
Dy (B, PJ.) = 1 = Eovry, l IP’:Z ((0>)] < ~log (EONP’J* [ P ((O))D '
0* T

19




es9 By the Chernoff bound,

P7 (o) P7 (o)
P, Zlog( v ) > |D| - log Eppr, [ .
<06D 7. (o) P7. (o)
r P7 (o
exp (Loenlog (/525 ))

< Eu* - P7 (o) exp(fﬂ)
exp (‘D| -log EONIP”;* |: ]Pf* (0)})

)

= El/* = D] exp(_/B) = eXp(_/B)a
E - |: P”(T)
LT~ P (1)

670 where in the last line, we used the independent property of samples. Thus, again by setting 8 =
671 log(M/0), with probability at least 1 — 7, we have

|- DB, P <—f21 ( ))w

() g () oo

o€D oeD

672 forall k € [K] and v € M. Now we can apply Lemma and finally have

DZ(PT PT.) < Zl < )+35>

20



674

675

C

Cl1

Additional material

Meta training algorithm

676  Algorithm 3] provides the meta training procedure described in Section 4.1}

677

678

Algorithm 3 Meta Training

ek
N = O 0

—_
[9%]

A A R ol

: input simulators M, Nest
: Initialize M = )
: fori € [M]do
for k € [K] do
Sample Nes; contexts X = (x, ~ P)
Sample Negt rewards » = (1, ~ vi(xn, k))
Compute O, = (XXT)ler
Compute ji;; = ﬁ >onTn
end for o R
M.append(#; = ([0i1, ftar], - - - [Oixc, flixc]))
: end for )
: Build a decision tree classifier tree(M) with Algorithm

- output exploration plan P1an(M) prescribed by tree (M)

Algorithm 4 Decision Tree

1:

input set of tasks .S

2: if |S] > 1 then

3
4
5:
6:
7.
8
9

Compute (p < b) < greedy(S) with Algorithm [3]
Define tree(S) := (ur < b)
Compute ST = {v; € S| par < b+ A/2}
Compute S~ = {v; € S| pix > b— A\/2}
Define tree(S, true) := S and tree(S, false) := S~
;. Call Algorlthmlon ST and S recursively
: end if
tree(S) N
5 M(k)f b tree(S, false)
- - i VR L
vies - el
V2 & Th-o L b:’.:i
NN b-N2 T T el oo
RS B
0‘ T tree(S, true)

Figure 3: Visualization of a generic split of tree(M).

C.2  Greedy algorithm

Algorithm [5] provides the pseudocode of a tractable procedure to compute the greedy test for Algo-
r1thmE]thr0ugh a A/4-discretization of the space of thresholds b.

Algorithm 5 Greedy Test

: input set of tasks S
: for k € [K] do

Define ST (b) :
Define S~ (b) :

= {v eS|k <b-/2)
Compute My (b )_

{v
{ S| (k) >b+A/2}
= aXbeOl])\/4 min(|S+(b)|,\S_(b)|)

: end for
: Extract (k, b) = arg max¢ () Mk (D)
. output greedy test (u(k) < b)

21
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C.3 DT-ECE

Algorithm[f]provides the pseudocode of the DT-ECE algorithm, which implements ECE (Algorithm|T))
for a misspecified set of tasks M with a decision tree classifier.

Algorithm 6 Decision Tree — Explicit Classify then Exploit

: input set of tasks M, decision tree tree(M), Nais =
- Initialize So = M, ¢ = 0 Explicit Classify
: while |S¢| > 1 do
Extract test (ur < b) = tree(S:)
D; < Ngjs i.i.d. samples drawn with 7 = k
if -2, cp, 7 < bthen
Get Si+1 « tree(Sy,true)
else
Get S¢+1 < tree(Sy, false)
end if
: end while
: Extract the classified task m* € S and execute 7*(x) = argmax_ ¢y Um~ (x, k) for the remaining steps
Exploit

2log(2HD)
22
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