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Abstract

Recently, 3D Gaussian Splatting (3DGS) has become one of the mainstream
methodologies for novel view synthesis (NVS) due to its high quality and fast
rendering speed. However, as a point-based scene representation, 3DGS potentially
generates a large number of Gaussians to fit the scene, leading to high memory
usage. Improvements that have been proposed require either an empirical pre-
set pruning ratio or importance score threshold to prune the point cloud. Such
hyperparameters require multiple rounds of training to optimize and achieve the
maximum pruning ratio while maintaining the rendering quality for each scene.
In this work, we propose learning-to-prune 3DGS (LP-3DGS), where a trainable
binary mask is applied to the importance score to automatically find a favorable
pruning ratio. Instead of using the traditional straight-through estimator (STE)
method to approximate the binary mask gradient, we redesign the masking function
to leverage the Gumbel-Sigmoid method, making it differentiable and compatible
with the existing training process of 3DGS. Extensive experiments have shown
that LP-3DGS consistently achieves a good balance between efficiency and high
quality.

1 Introduction

Novel view synthesis (NVS) takes images and their corresponding camera poses as input and seeks to
render new images from different camera poses after 3D scene reconstruction. Neural Radiance Fields
(NeRF) (Mildenhall et al. [2021]) uses multi-layer perceptron (MLP) to implicitly represent the scene,
fetching the transparency and color of a point from the MLPs. NeRF has gained considerable attention
in the NVS community due to its simple implementation and excellent performance. However, in
order to obtain a point in the space, NeRF needs to perform an MLP inference. Each pixel rendered
requires processing a ray and there are many sample points along each ray. Consequently, rendering
an image requires a large amount of MLP inference operations. Thus, rendering speed becomes a
major drawback of the NeRF method.
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Besides NeRF, explicit 3D representations are also widely used. Compared to NeRF, the advantage
of point-based scene representation is that it is well-supported by modern GPU rendering, enabling
fast render speed. 3D Gaussian Splatting (3DGS) (Kerbl et al. [2023]) achieves both good quality
and high rendering speed, making it a hot topic in the community. 3DGS uses 3D Gaussian models
with color parameters to fit the scene and develops a training framework to optimize the model
parameters. However, the number of points required to reconstruct the scene is enormous, usually in
the millions. In practice, each point has dozens of floating-point parameters, which makes 3DGS a
memory-intensive method.

Some recent works have attempted to mitigate this problem by pruning the points, such as Light-
Gaussian (Fan et al. [2023]), RadSplat (Niemeyer et al. [2024]), and Mini-Splatting (Fang and Wang
[2024]). These methods follow a similar pruning approach through defining an importance score for
each Gaussian point and prune the points with such importance score below a preset empirical thresh-
old. However, a major drawback of these methods is that the preset threshold must be manually tuned
through multiple rounds of training process to identify the favorable pruning ratio to minimize the
number of Gaussian points while keeping the rendering quality. To make matters worse, such number
of points may vary depending on different scenes, which requires manual pruning ratio searching for
each scene. For example, the blue and red lines in Figure 1 show the rendering quality of Kitchen and
Room scenes, respectively, in MipNeRF360 scenes (Barron et al. [2022]), with sweeping 12 different
pruning ratios (i.e., 12 rounds of training) following the prior RadSplat (Niemeyer et al. [2024]) and
Mini-Splatting (Fang and Wang [2024]) method. It is clearly seen that a smaller pruning ratio will
not hamper the rendering quality, and the rendering quality will start to decrease with much more
aggressive pruning ratios. Both scenes exhibit an optimal pruning ratio region that could maximize
the pruning ratio and maintain the rendering quality. It could also be seen that the ideal pruning ratio
differs for these two scenes.
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Figure 1: The performance changes with the pruning ratio of RadSplat on the MipNeRF360 dataset
Kitchen and Room scenes are shown in blue and purple lines, respectively. Red triangles and squares
represent the results of LP-3DGS on the importance score of RadSplat. LP-3DGS is able to find the
favorable pruning ratio in one training session instead of requiring dozens of attempts to find
the best hyperparameter.

In this paper, we propose a learning-to-prune 3DGS (LP-3DGS) methodology where a trainable
mask is applied to the importance score. Notably, it is compatible with different types of importance
scores defined in prior works. Instead of a preset threshold to determine the 3DGS model pruning
ratio, as illustrated by the red triangle symbol in Figure 1, our method aims to integrate with existing
3DGS model training process to learn the favorable pruning ratio for minimizing the model size while
maintaining the rendering quality. Since the traditional hard-threshold-based binary masking function
is not differentiable, a recent prior work, Compact3D (Lee et al. [2023]), leverages the popular
straight through estimator (STE) (Bengio et al. [2013]) to bypass the mask gradient for adaption to
the backpropagation process. However, this approach often results in suboptimal pruning ratios. In
contrast, in our work, we propose to redesign the masking function leveraging the Gumbel-Sigmoid
activation function to make the whole masking function differentiable and integrate with the existing
training process of 3DGS. Consequently, LP-3DGS automatically minimizes the number of Gaussian
points for each scene with just a single round of training.

In summary, the technical contributions of our work are:

• To address the effortful tuning of 3DGS pruning ratios, we propose a learning-to-prune
3DGS (LP-3DGS) methodology that leverages the differentiable Gumbel-Sigmoid activation
function to embed a trainable mask with different types of existing importance scores
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designed for pruning redundant Gaussian points. As a result, instead of fixed model size, LP-
3DGS could learn an favorable Gaussian point size for individual scene with only one-time
training.

• We conducted comprehensive experiments on state-of-the-art (SoTA) 3D scene datasets,
including MipNeRF360 (Barron et al. [2022]), NeRF-Synthetic (Mildenhall et al. [2021]),
and Tanks & Temples (Knapitsch et al. [2017]). We compared our method with SoTA
pruning methods such as RadSplat (Niemeyer et al. [2024]), Mini-Splatting (Fang and Wang
[2024]), and Compact3D (Lee et al. [2023]). The experimental results demonstrate that our
method can enable the model to learn the favorable pruning ratio and that our trainable mask
method performs better than the STE mask.

2 Related Work

Neural radiance fields (NeRFs) NeRFs (Mildenhall et al. [2021]) targets to represent the scene in
multilayer perceptrons (MLPs) based on multi-view image inputs, enabling high-quality novel view
synthesis. Due to its advancement, numerous follow-up works improved it in either rendering quality
(Barron et al. [2021, 2022]) or efficiency(Müller et al. [2022], Chen et al. [2022], Fridovich-Keil et al.
[2022]).

Although NeRF models demonstrate impressive rendering capabilities across numerous benchmarks,
and considerable efforts have been made to enhance training and inference efficiency, they typically
still face challenges in achieving fast training and real-time rendering.

Radiance Field Based On Points. In addition to implicit representations, several works have
focused on volumetric point-based methods for 3D presentation (Gross and Pfister [2011]). Inspired
by neural network concepts, (Aliev et al. [2020]) introduced a neural point-based approach to
streamline the construction process. Point-NeRF (Ding et al. [2024]) further applied points for
volumetric representation, enhancing the effectiveness of point-based methods in radiance field
modeling.

Gaussian Splatting 3D Gaussian Splatting (3DGS) (Kerbl et al. [2023]) represents a significant
advancement in novel view synthesis, utilizing 3D Gaussians as primitives to explicitly represent
scenes. This approach achieves state-of-the-art rendering quality and speed while maintaining
relatively short training time. A series of methods have been introduced to improve the rendering
quality through using regularization for better optimization, including depth map (Chung et al. [2023],
Li et al. [2024a]), surface alignment (Guédon and Lepetit [2023], Li et al. [2024b]) and rendered
image frequency (Zhang et al. [2024]). However, the extensive number of Gaussians required for
scene representation often results in a model that is too large for efficient storage. Recent research has
focused on compression methods to enhance the efficiency of this representation. Notably, several
studies (Fan et al. [2023], Fang and Wang [2024], Niemeyer et al. [2024]) have proposed using
predefined scores as pruning criteria to keep Gaussians that significantly contribute to rendering
quality. Compact3D (Lee et al. [2023]) introduces a method that applies a trainable mask on scale and
opacity to each Gaussian and utilizes a straight-through estimator (Bengio et al. [2013]) for gradient
updates. LightGaussian (Fan et al. [2023]) employs knowledge distillation to reduce the dimension
of spherical harmonics. Additionally, (Fan et al. [2023], Lee et al. [2023]) also explored quantization
techniques to further compress model storage. The previously proposed pruning methods primarily
rely on predefined scores to determine the importance of each Gaussian. These approaches present
two main challenges: first, whether the criteria accurately reflect the importance of the Gaussians,
and second, the need for a manually selected pruning threshold to decide the level of pruning. In
this work, we address these issues by introducing a trainable mask activated by a Gumbel-sigmoid
function, applied to the scores derived from prior methods or directly to the scale and opacity of each
Gaussian for more flexibility. Our approach automatically identifies the balance between the pruning
ratio and rendering quality, eliminating the need to test on various pruning ratios.

3 Methodology

The conventional pruning methods leveraging predefined importance score require pruning ratio as a
manually tuned parameter to reduce the size of Gaussian points in 3DGS. To seek for a favorable
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pruning ratio, these methods may need to perform multiple rounds of training for each individual
scene, which is inefficient. Motivated by this, we propose a learning-to-prune 3DGS (LP-3DGS)
algorithm which learns a binary mask to determine the favorable pruning ratio for each scene
automatically. Importantly, the proposed LP-3DGS is compatible with various types of pruning
importance scores. In this section, we will: 1) introduce the preliminary of the original 3DGS and
recap different importance metrics for pruning that are proposed by prior works, and 2) present the
proposed learning-to-prune 3DGS algorithm.

3.1 3DGS Background

3DGS Parameters 3DGS is an explicit point-based 3D representation that uses Gaussian points to
model the scene. Each point has the following attributes: position p ∈ R3, opacity σ ∈ [0, 1], scale
in 3D s ∈ R3, rotation represented by 4D quaternions q ∈ R4 and fourth-degree spherical harmonics
(SH) coefficients k ∈ R48. In summary, one gaussian point has 59 parameters. The center point X
of a Gaussian model is represented by p and covariance matrix Σ is denoted by s and q. The SH
coefficients model the color as viewed from different directions. The parameters of the Gaussians are
optimized through gradient backpropagation of the loss between the rendered images and the ground
truth.

Rendering on 3DGS In order to render an image, the first step is projecting the Gaussians to 2D
camera plane by world to camera transform matrix W and Jacobian J of affine approximation of the
projective transform. The covariance matrix of projected 2D Gaussian is

Σ
′
= JWΣWTJT (1)

The projected Gaussians would be rendered as splat (Botsch et al. [2005]), the color of one pixel
could be rendered as

ci =

N∑
j=1

·cj · αj ·Tj ·G2D
j (2)

Where i is the pixel index, j is the Gaussian index and N is the number of the Gaussians in the ray.
cj is the color of the Gaussian calculated by SH coefficients, αj = (1− exp−σjδj ), σj is the opacity
of the point and δj is the interval between points. Tj =

∏j−1
k=1(1− αk) is the transmittance from the

start of rendering to this point. G2D
j is the 2D Gaussian distribution.

Adaptive Density Control of 3DGS At the start of training, the Gaussians are initialized using
Structure-from-Motion (SfM) sparse points. To make the Gaussians fit the scene better, 3DGS applies
an adaptive density control strategy to adjust the number of Gaussians. Periodically, 3DGS will grow
Gaussians in areas that are not well reconstructed, a process called "densification." Simultaneously,
Gaussians with low opacity will be pruned.

3.2 Importance Metrics for Pruning

A straightforward way to prune the Gaussians is by sorting them based on a defined importance score
and then removing the less important ones. Consequently, one of the main objective of prior 3DGS
pruning works is to define an effective importance metric.

RadSplat (Niemeyer et al. [2024]) defines the importance score as the maximum contribution along
all rays of the training images, written as

Si = max
If∈If ,r∈If

αr
i ·Tr

i (3)

Where αr
i ·T r

i is the contribution of Gaussian Gi along ray r. RadSplat performs pruning by applying
a binary mask according to the importance score, where the mask value for Gaussian Gi is

mi = m(Si) = 1(Si < tprune) (4)

Where tprune ∈ [0, 1] is the threshold of score magnitude for pruning, 1[·] is the indicator function.
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Figure 2: Overall learning process of the proposed LP-3DGS.

Another recent work, Mini-Splatting (Fang and Wang [2024]), uses the cumulative weight of the
Gaussian as the importance score, which can be formulated as:

Si =

K∑
j=1

ωij (5)

Where K is the total number of rays intersected with Gaussian Gi, ωij is the color weight of Gaussian
Gi on the j-th ray.

3.3 Learning-to-Prune 3DGS

The overall LP-3DGS learning process is shown in the Figure 2. In general, it mainly can generally be
divided into two stages:1) densification stage, and 2) learning-to-prune stage. Following the original
3DGS, densification stage applies an adaptive density control strategy to gradually increase the
number of Gaussians. As revealed by prior pruning works (Lee et al. [2023], Niemeyer et al. [2024]),
3DGS contains a significant number of redundant Gaussians. Subsequently, in the learning-to-prune
stage, the proposed LP-3DGS learns a trainable mask upon a previously defined importance metric
to compress the number of Gaussians with an favorable pruning ratio automatically. Specifically,
to learn a binary mask, we first initialize a real-value mask mi for each point i, and then adopt the
Gumbel-sigmoid technique to binarize the mask value differentially.

Gumbel-Sigmoid based Trainable Mask The binarization operation for real-value mask in pruning
typically involves a hard threshold function, determining the binary mask should be 0 or 1. However,
such hard threshold function is not differentiable during backpropagation. To address this issue,
popular straight through estimator (STE) method (Bengio et al. [2013]) is widely used, as it skips
the gradient of the threshold function during backpropagation. Such process may create to a gap
between trainable real-value mask and binary mask. As shown in Figure 3(a), the trainable mask
values exhibit certain ratios across the entire range from 0 to 1 after Sigmoid function, which can be
inaccurate when further converting to binary mask via a hard threshold function. To better optimize
the trainable mask towards binary values, we propose to apply Gumbel-Sigmoid function to learn the
binary mask.

The Gumbel distribution is used to model the extreme value distribution and generate samples from
the categorical distribution (Gumbel [1954]). This property is then utilized to create the Gumbel-
Softmax (Jang et al. [2016]), a differentiable categorical distribution sampling function. The sample
of one category is given by:
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yi =
exp((log(πi) + gi)/τ)∑k

j=1 exp((log(πj) + gj)/τ)
(6)

Where τ is the input adjustment parameter, gi is sample from Gumbel distribution. Inspired by the
Gumbel-Softmax, we treat learning the binary mask of each point as a two-class category problem.
Thus, we replace the Softmax function to Sigmoid function, referring to Gumbel-Sigmoid:

gs(m) =
exp((log(m) + g0)/τ)

exp((log(m) + g0)/T ) + exp(g1/τ)
=

1

1 + exp(−(log(m) + g0 − g1)/τ)
(7)

(a) Mask values after Sigmoid activation (b) Mask values after Gumbel-Sigmoid activation

Figure 3: Comparison between Sigmoid and Gumbel-Sigmoid. The Gumbel-Sigmoid function pushes
the values closer to 0 or 1 and is a good approximation of a binarized mask.

By using such Gumbel-Sigmoid function, the output value is either close to 0 or 1, as shown in Figure
3, allowing it to be integrated as an approximation of a binary masking function. More importantly,
this function remains differentiable, thus can be integrated during backpropagation.

Moreover, to prune the selected Guassians practically according to the learned binary mask, we
further apply the mask value on opacity, which can be mathematically formulated as

oim = oi ∗ gs(mi ∗ Si) (8)

where Si is the defined importance score of each Gaussian point. The closer the mask value is to
0, the less corresponding Gaussian point contributes to the rendering. In practice, after learning the
trainable mask, a one-time pruning is applied to the corresponding Gaussian points with mask value
of 0.

Sparsity regularization In order to compress the model as much as possible, we apply a L1
regularization term (Lee et al. [2023]) to encourage the trainable mask to be sparse, which can be
formulated as:

Rmask =
1

N

N∑
i=1

|mi| (9)

Upon that, the final loss function is defined as:

L = (1− λssim) ∗ LL1 + λssim ∗ Lssim + λm ∗Rmask (10)

LL1 is the L1 loss between rendered image and ground truth. Lssim is the ssim loss. λssim and λm

are two coefficients.

Moreover, we find that the trainable mask can be effectively learned in just a few hundred iterations,
compared to the thousands required for the overall training process. In practice, the mask learning
function is activated for only 500 iterations. Once the mask values are learned, we follow the 3DGS
training setup to further fine-tune the pruned model while maintaining the same total number of
training iterations. The detailed hyper parameters are described in the later experiment section.
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4 Experiments

4.1 Experimental Settings

Dataset and Baseline We test our method on two of the most popular real-world datasets: Mip-
NeRF360 dataset (Barron et al. [2022]), which contains 9 scenes, and the Train and Truck scenes
from the Tanks & Temples dataset (Knapitsch et al. [2017]). We also evaluate our method on the
NeRF-Synthetic dataset (Mildenhall et al. [2021]), which includes 8 synthetic scenes. In this section,
we only present the results on MipNeRF360 dataset, rest of them are listed in appendix A. In this
paper, we use the SoTA RadSplat (Niemeyer et al. [2024]) and Mini-Splatting (Fang and Wang
[2024]) as the baselines, both of which propose different pruning importance scores. First, we
evaluate the performance of these two methods under various pruning ratios. Since neither method is
open-sourced at the time of writing, we reproduced them based on the provided equations. For each
pruning ratio, we calculate the corresponding threshold based on the magnitude of the importance
scores and prune the Gaussians with scores below this threshold. Note that each pruning ratio requires
one round of training. We use peak signal-to-noise ratio (PSNR), structural similarity index measure
(SSIM), and Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al. [2018]) as rendering
evaluation metrics.

Implement Details The machine running the experiments is equipped with an AMD 5955WX
processor and two Nvidia A6000 GPUs. It should be noted that our method does not support multi-
GPU training. We ran different experiments simultaneously on two GPUs. We train each scene under
every setting for 30,000 iterations and with the mask training occurring from iteration 19,500 to
20,000, updating the importance score every 20 iterations. The value of τ in Equation 7 is 0.5 and the
coefficient λm of mask loss is 5e-4.

4.2 Experimental Results

Quantitative Results The blue lines in Figure 4 show the results of sweeping pruning ratios using
RadSplat and Mini-Splatting for the Kitchen and Room scenes. Results for other scenes in the
MipNeRF 360 dataset are presented in Appendix A. The result of the learned LP-3DGS model size
and rendering quality is indicated by red triangles.

The quantitative results fluctuate at lower pruning ratios but generally stabilize around a certain value.
After surpassing that point, the rendering quality decreases significantly. It’s worth noting that this
critical point varies for different scenes. Rather than manually searching for the favorable pruning
ratio, it clearly shows our LP-3DGS method could learn the favorable model size in conjunction with
the scene learning process, with only one-time training. The Table 1 lists the quantitative results of all
scenes in MipNeRF360 dataset. It clearly shows that each scene converge into different model size
leveraging our LP-3DGS method while maintaining almost the same rendering quality. The pruning
ratio varies based on what importance score is used, but LP-3DGS effectively identifies the ideal
pruning ratio for the corresponding score.

Scene Bicycle Bonsai Counter Kitchen Room Stump Garden Flowers Treehill AVG

Baseline PSNR ↑ 25.087 32.262 29.079 31.581 31.500 26.655 27.254 21.348 22.561 27.48
LP-3DGS (RadSplat Score) 25.099 32.094 28.936 31.515 31.490 26.687 27.290 21.383 22.706 27.47

LP-3DGS (Mini-Splatting Score) 24.906 31.370 28.4098 30.785 31.132 26.679 27.095 21.150 22.522 27.12
Baseline SSIM ↑ 0.7464 0.9460 0.9138 0.9320 0.9249 0.7700 0.8557 0.5876 0.6358 0.8125

LP-3DGS (RadSplat Score) 0.7458 0.9441 0.9120 0.9311 0.9243 0.7714 0.8548 0.5865 0.6381 0.8120
LP-3DGS (Mini-Splatting Score) 0.7373 0.9358 0.9017 0.9249 0.9167 0.7677 0.8493 0.5756 0.6336 0.8047

Baseline LPIPS ↓ 0.2441 0.1799 0.1839 0.1164 0.1978 0.2423 0.1224 0.3601 0.3469 0.2215
LP-3DGS (RadSplat Score) 0.2516 0.1865 0.1896 0.1194 0.2032 0.2466 0.1270 0.3656 0.3527 0.2269

LP-3DGS (Mini-Splatting Score) 0.2642 0.2036 0.2068 0.1292 0.2208 0.2553 0.1353 0.3753 0.3618 0.2391
RadSplat Score pruning ratio 0.64 0.65 0.66 0.58 0.74 0.65 0.59 0.59 0.59 0.63

Mini-Splatting Score pruning ratio 0.57 0.67 0.64 0.56 0.71 0.61 0.60 0.54 0.54 0.60

Table 1: The results comparison on the MipNeRF360 dataset shows that LP-3DGS has similar
performance after pruning and achieves different pruning ratios for different scenes. This demonstrates
LP-3DGS’s ability to adaptively find the favorable pruning ratio, maintaining performance while
effectively compressing the model.
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Figure 4: The performance changes with the pruning ratio in different scenes

Training Cost Table 2 shows the training cost of LP-3DGS on MipNeRF360 dataset. In our setup,
after 20000th iteration, the model is pruned based on the learned mask values. The number of
Gaussian points will be significantly reduced, resulting in the later stages of training taking much
less time than in the non-pruned version. Even with the embedding of the mask learning function,
the overall training cost is comparable to that of the vanilla 3DGS. In most cases, the peak training
memory usage is slightly higher because training the mask requires more GPU memory. However,
after pruning, the 3DGS model size becomes much smaller, leading to a significant improvement in
rendering speed, measured in terms of FPS.

Scene Bicycle Bonsai Counter Kitchen Room Stump Garden Flowers Treehill

3DGS Training time (Minute) 49 34 26 33 27 37 47 33 32
LP-3DGS (RadSplat Score) 43 27 28 34 30 35 46 34 33

LP-3DGS (Mini-Splatting Score) 44 27 28 35 29 34 46 34 33
3DGS Peak Memory (GB) 14.7 8.6 9.4 9.3 10.6 12.2 15.7 10.3 9.4
LP-3DGS (RadSplat Score) 16.1 8.5 11.3 12.3 11.8 12.1 15.8 10.1 10.3

LP-3DGS (Mini-Splatting Score) 15.5 8.4 12.7 13.0 13.0 12.1 15.2 9.7 9.7
3DGS FPS 132 417 421 315 380 164 129 200 205

LP-3DGS (RadSplat Score) 324 662 670 542 692 371 296 412 411
LP-3DGS (Mini-Splatting Score) 290 634 650 507 662 341 252 368 384

Table 2: Training cost and on MipNeRF360 Dataset. Training time of LP-3DGS is similar with
baseline but since the model is compressed, the FPS is larger.

4.3 Ablation Study

A recent prior work, Compact3D (Lee et al. [2023]) proposes to leveraging the straight-through
estimator (STE) to train a binary mask based on the opacity and scale of Gaussian parameters. To
conduct a fair comparison between STE based mask and our LP-3DGS, we perform two ablation
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studies, one involves replacing the STE mask in Compact3D with our method, and the other applies
the STE mask to the importance score of RadSplat. The formula of STE mask is

M(m) = ∇/ (1[f(m) > ϵ]− f(m)) + f(m) (11)

∇/ means stop gradients, 1[·] is the indicator function and f(·) is sigmoid function, ϵ is masking
threshold.

Comparison with Compact3D We first apply the Gumbel-sidmoid activated mask, instead of STE
mask, on the opacity and scale of gaussians in the same manner as proposed in Compact3D. The
threshold ϵ in Equation 11 and mask loss coefficient follows the default settings in Compact3D. Table
3 shows the comparison between two methods.

Scene Bicycle Bonsai Counter Kitchen Room Stump Garden Flowers Treehill AVG

PSNR Compact3D 24.846 32.19 29.066 30.867 31.489 26.408 27.026 21.187 22.479 27.284
LP-3DGS 25.087 32.2 29.033 31.213 31.678 26.658 27.223 21.32 22.569 27.442

SSIM Compact3D 0.7292 0.9462 0.9137 0.925 0.9251 0.7563 0.8446 0.5773 0.6305 0.8053
LP-3DGS 0.7438 0.9461 0.9141 0.9305 0.9263 0.7687 0.8547 0.5843 0.6358 0.8116

LPIPS Compact3D 0.266 0.1815 0.1866 0.124 0.2012 0.2615 0.1401 0.3722 0.3555 0.2320
LP-3DGS 0.2526 0.1833 0.1867 0.1201 0.2013 0.2472 0.1275 0.3668 0.3513 0.2263

#Gaussians Compact3D 2620663 666558 570126 1050079 566332 1902711 2412796 1685224 2089515 1507109
LP-3DGS 2510992 542235 506391 887161 479681 2014270 2836989 1747766 1804155 1481071

Table 3: Results with/without trainable mask on Gaussian opacity and scale

In most cases, our LP-3DGS learns a higher pruning ratio, except for Stump, Garden and Flowers
scene. In terms of rendering quality, our LP-3DGS outperforms Compact3D using the STE based
mask achieving even smaller model sizes in most scenes.

STE Mask on Importance Score We also apply STE mask on the pruning importance score to
compare with our method. The Equation 8 would be rewriten as

oim = oi ∗M(mi ∗ is) (12)

where M is shown in Equation 11. The same as mentioned before, the parameters for STE mask are
default values in Compact3D.

Scene Bicycle Bonsai Counter Kitchen Room Stump Garden Flowers Treehill AVG

PSNR LP-3DGS 25.099 32.094 28.936 31.515 31.490 26.687 27.290 21.383 22.706 27.470
STE mask 24.833 30.947 28.371 30.705 30.950 26.396 26.793 21.056 22.552 26.955

SSIM LP-3DGS 0.7458 0.9441 0.9120 0.9311 0.9243 0.7714 0.8548 0.5865 0.6381 0.8120
STE mask 0.7231 0.9268 0.8925 0.9162 0.9120 0.7514 0.8289 0.5624 0.6196 0.7922

LPIPS LP-3DGS 0.2441 0.1799 0.1839 0.1164 0.1978 0.2423 0.1224 0.3601 0.3469 0.2215
STE mask 0.2937 0.2194 0.2274 0.1480 0.2334 0.2899 0.1771 0.3988 0.3983 0.2651

Pruning Ratio LP-3DGS 0.64 0.65 0.66 0.58 0.74 0.65 0.59 0.59 0.59 0.63
STE mask 0.84 0.88 0.88 0.87 0.89 0.86 0.85 0.83 0.83 0.86

Table 4: Results using LP-3DGS and STE mask on importance score of RadSplat

Table 4 shows that under the same settings, after applying the mask to the importance score, the STE
mask compresses the mode too much and the performance drops a lot. Trainable mask keeps the
gradient of the mask and the comressed model has a more reasonable size.

Scene Bicycle Bonsai Counter Kitchen Room Stump Garden Flowers Treehill AVG

PSNR LP-3DGS 24.906 31.370 28.4098 30.785 31.132 26.679 27.095 21.150 22.522 27.12
STE mask 24.894 30.925 28.334 30.731 31.032 26.470 26.863 20.997 22.559 26.98

SSIM LP-3DGS 0.7373 0.9358 0.9017 0.9249 0.9167 0.7677 0.8493 0.5756 0.6336 0.8047
STE mask 0.7287 0.9292 0.8978 0.9232 0.9152 0.7562 0.8381 0.5629 0.6247 0.7973

LPIPS LP-3DGS 0.2642 0.2036 0.2068 0.1292 0.2208 0.2553 0.1353 0.3753 0.3618 0.2391
STE mask 0.2821 0.2154 0.2145 0.1330 0.2241 0.2797 0.1564 0.3939 0.3852 0.2538

Pruning Ratio LP-3DGS 0.57 0.67 0.64 0.56 0.71 0.61 0.60 0.54 0.54 0.60
STE mask 0.75 0.77 0.75 0.66 0.79 0.80 0.75 0.75 0.75 0.75

Table 5: Results using LP-3DGS and STE mask on importance score of Mini-Splatting
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5 Discussion and Conclusion

Broader Impact and Limitation LP-3DGS compresses the 3DGS model to an ideal size in a single
run, saving storage and computational resources by eliminating the need for parameter sweeping to
find the favorable pruning ratio. However, the limitation of this work is that the rendering quality
after pruning varies depending on the the definition of importance scores.

Conclusion In this paper, we present a novel framework, LP-3DGS, which guides the 3DGS model
learn the best model size. The framework applies a trainable mask on the importance score of the
gaussian points. The mask is trained for a specific period and used to prune the model once. Our
method compressed the model as much as possible without significantly sacrificing performance and
is capable to achieve the favorable compression rate for different test scenes. Compared with the STE
mask method, ours achieves better performance.
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A Appendix / supplemental material

Code: https://github.com/dexgfsdfdsg/LP-3DGS.git

A.1 Experiment Results on MipNeRF360 Dataset

Ground Truth 3DGS RadSplat Mini-Splatting
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Figure 5: Rendered images on MipNeRF360 Dataset

PSNR ↑ SSIM ↑ LPIPS ↓
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Figure 6: The performance changes with the pruning ratio in different scenes
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A.2 Experiment Results on NeRF Synthetic Dataset

Scene Chair Drums Ficus Hotdog Lego Materials Mic Ship AVG

Baseline PSNR ↑ 35.546 26.276 35.480 38.081 36.012 30.502 36.795 31.688 33.798
LP-3DGS (RadSplat Score) 35.496 26.221 35.442 37.976 35.990 30.374 36.589 31.584 33.709

LP-3DGS (Mini-Splatting Score) 35.419 26.102 35.354 37.728 35.769 29.883 36.337 31.375 33.496
Baseline SSIM ↑ 0.9877 0.9548 0.9870 0.9854 0.9825 0.9604 0.9926 0.9062 0.9696

LP-3DGS (RadSplat Score) 0.9878 0.9547 0.9867 0.9854 0.9825 0.9598 0.9924 0.9061 0.9694
LP-3DGS (Mini-Splatting Score) 0.9874 0.9358 0.9867 0.9846 0.9817 0.9566 0.9919 0.9034 0.966

Baseline LPIPS ↓ 0.01046 0.03657 0.01775 0.01977 0.0161 0.03671 0.00635 0.1058 0.03119
LP-3DGS (RadSplat Score) 0.01091 0.03723 0.01213 0.02079 0.01675 0.03817 0.00680 0.1083 0.03139

LP-3DGS (Mini-Splatting Score) 0.0111 0.03876 0.01217 0.02211 0.018 0.04323 0.00749 0.1151 0.0335
RadSplat Score pruning ratio 0.77 0.76 0.84 0.68 0.65 0.61 0.78 0.60 0.71

Mini-Splatting Score pruning ratio 0.63 0.65 0.65 0.58 0.58 0.80 0.60 0.50 0.62

Table 6: The quantitative results on NeRF Synthetic Dataset

A.3 Experiment Results on Truck & Train Scenes

Scene Truck Train AVG

Baseline PSNR ↑ 25.263 22.025 23.644
LP-3DGS (RadSplat Score) 25.376 21.822 23.599

LP-3DGS (Mini-Splatting Score) 25.152 21.675 23.414
Baseline SSIM ↑ 0.8778 0.8118 0.8448

LP-3DGS (RadSplat Score) 0.8768 0.8072 0.8420
LP-3DGS (Mini-Splatting Score) 0.8724 0.7963 0.8344

Baseline LPIPS ↓ 0.1482 0.2083 0.1783
LP-3DGS (RadSplat Score) 0.1541 0.2217 0.1879

LP-3DGS (Mini-Splatting Score) 0.162 0.2343 0.1982
RadSplat Score pruning ratio 0.72 0.63 0.68

Mini-Splatting Score pruning ratio 0.65 0.57 0.61

Table 7: The quantitative results on Tanks & Temples Dataset
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: LP-3DGS is able to enable the model to learn the favorable size, achieving
a good balance between efficiency and quality, as demonstrated in Figure 1, Figure 4 and
Figure 6.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: This paper does not involve theoretical result.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper shows the results needed and ablation study in Section 4. More
results are listed in Appendix A. All of the results are reproducible.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code is listed in https://github.com/dexgfsdfdsg/LP-3DGS.git
and the data used are all open benchmarks. A readme file is in the code for instructions.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The detailed experiment settings are listed in Section 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: This paper follows the existing work about 3DGS and lists the essential detailed
quantitative results in Section 4.2, Section 4.3 and Appendix A. But it does not list error
bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: This paper lists the hardware used in Section 4.1 and shows the graphic
memory required in Section 4.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in this paper conform the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This paper discusses the potential societal impacts in Section 5.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not pose such risk.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: This paper follows the applicable licenses and terms of usage.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Yes, the codes introduced in the paper are well-documented and detailed
instructions are provided in https://github.com/dexgfsdfdsg/LP-3DGS.git.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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