
Kratos: Context-Aware Cell Type Classification and Interpretation
Using Joint Dimensionality Reduction and Clustering

Zihan Zhou∗
zhou1248@purdue.edu
Purdue University

West Lafayette, Indiana, USA

Zijia Du∗
shduzijia@sjtu.edu.cn

Shanghai Jiao Tong University
Shanghai, CHN

Somali Chaterji
schaterji@purdue.edu
Purdue University

West Lafayette, Indiana, USA

Abstract
A common workflow for single-cell RNA-sequencing (sc-RNA-seq)
data analysis is to orchestrate a three-step pipeline. First, conduct a
dimension reduction of the input cell profile matrix; second, cluster
the cells in the latent space; and third, extract the “gene panels” that
distinguish a certain cluster from others. This workflow has the
primary drawback that the three steps are performed independently,
neglecting the dependencies among the steps and among themarker
genes or gene panels. In our system, Kratos, we alter the three-
step workflow to a two-step one, where we jointly optimize the
first two steps and add the third (interpretability) step to form an
integrated sc-RNA-seq analysis pipeline. We show that the more
compact workflow of Kratos extracts marker genes that can better
discriminate the target cluster, distilling underlying mechanisms
guiding cluster membership. In doing so, Kratos is significantly
better than the two SOTA baselines we compare against, specifically
5.62% superior to Global Counterfactual Explanation (GCE) [ICML-
20], and 3.31% better than Adversarial Clustering Explanation (ACE)
[ICML-21], measured by the AUROC of a kernel-SVM classifier. We
opensource our code and datasets here: https://github.com/icanfor
ce/single-cell-genomics-kratos.

CCS Concepts
• Computing methodologies; • Applied computing; • Infor-
mation systems→ Information retrieval;

Keywords
Single-cell RNA analysis, DNN, machine learning explanation, clas-
sification, perturbation methods, clustering.

ACM Reference Format:
Zihan Zhou, Zijia Du, and Somali Chaterji. 2022. Kratos: Context-Aware
Cell Type Classification and Interpretation Using Joint Dimensionality Re-
duction and Clustering. In Proceedings of the 28th ACM SIGKDD Confer-
ence on Knowledge Discovery and Data Mining (KDD ’22), August 14–18,
2022, Washington, DC, USA. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3534678.3539455

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
KDD ’22, August 14–18, 2022, Washington, DC, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9385-0/22/08.
https://doi.org/10.1145/3534678.3539455

1 Introduction
Single-cell RNA-sequencing (sc-RNA-seq) technology has en-

abled the high-throughput interrogation of many aspects of genome
biology, including gene expression, DNAmethylation, histone mod-
ification, chromatin accessibility, and genome 3D architecture re-
sulting in high-dimensional single-cell omics datasets [37]. All
these analyses enable the transcriptome-wide measurement of
gene expression in individual cells, essential for identifying cell-
type-specific clusters, characterizing cell heterogeneity in temporal
stages of disease and development, and highlighting semantic clonal
structures. These outputs can be arranged into high-dimensional,
albeit sparse, matrices whose rows are different cells, and columns
are the cell’s feature attributes, e.g., gene expression. Converting
these high-dimensional matrices to a low-dimensional latent space
with semantic architecture will enable more accurate cell clustering,
as observed in our motivating Figure 1, with more interpretable

Figure 1: Visualization of the embedding layer in Kratos and ACE using
UMAP on the human PBMC dataset. Here default parameter settings are used
for UMAP. (a) and (b) are latent space embeddings using Kratos and ACE,

respectively. We find that Kratos performs better on cell clustering, with cells
of the same type clustered more tightly.

downstream analyses [41]. Identifying gene panels that are impor-
tant to certain cell types highlight the key differences among cell
types in the latent space. In this work, Kratos, we focus on the
analysis of sc-RNA-seq datasets. We aim to answer the following
overarching question:

Given a sc-RNA-seq dataset and corresponding cell
types, how can we find the gene panels (marker genes)
that define the different cell clusters?

A useful methodology in such analysis is instantiating a pipeline
starting with dimensionality reduction that learns a latent represen-
tation for the input dataset, then clustering the latent embeddings
into groups, and finally, post-hoc explanations of the cell types
constituting the clusters using ML interpretability techniques. The
primary caveat of the traditional three-step workflow is that the
steps are performed independently [3, 20, 26]. Optimizing each step

https://orcid.org/0000-0002-6823-7931
https://orcid.org/0000-0001-5737-161X
https://orcid.org/0000-0002-3651-6362
https://github.com/icanforce/single-cell-genomics-kratos
https://github.com/icanforce/single-cell-genomics-kratos
https://doi.org/10.1145/3534678.3539455
https://doi.org/10.1145/3534678.3539455
https://doi.org/10.1145/3534678.3539455


KDD ’22, August 14–18, 2022, Washington, DC, USA Zihan and Zijia, et al.

separately cannot guarantee optimal clustering of genes and bio-
logically meaningful cluster membership patterns. For example, for
the human peripheral blood mononuclear cell (PBMC) dataset [44],
orchestrating the dimensionality reduction and clustering steps
separately result in Adjusted Mutual Information (AMI) of 0.6989,
while a direct classification step introduced in our system Kratos
resulted in a value of 0.8547. Here, AMI is a clustering metric used
for clustering performance evaluation, where a higher AMI indi-
cates that the clustering result is closer to the ground truth. Some
works aimed at solving this problem through a combination of the
three steps in a more integrated pipeline. For example, Adversarial
Clustering Explanation (ACE) [19] bundles all three steps into one
integrated neural network-based framework, where the last two
steps are conducted separately, in the latent space generated in
the first step. Nevertheless, the three parts of the network still
have their own objective functions and are optimized sequentially,
which means that ACE is still solving a separate optimization func-
tion for each step. This is akin to solving an optimization problem
using greedy steps, which does not guarantee a global optimum.
Consequently, we transferred this three-step workflow into a two-
step one, in which we fuse the first two steps into a joint single
step using a combined optimization function. This optimization
function creates the latent embeddings and then clusters in that
latent space with higher performance. In the first step, we combine
the dimensionality reduction and clustering by solving a single
optimization problem. The rationale for doing this is that we are
using the datasets with labeled cell types. We assume that, with
the labels, the neural network (NN) will find the patterns specific
to each cell type, and thus, the clusters can be placed farther from
one another in the latent (embedding) space. Besides, in some other
works like ACE, the cell type labels are also implicitly used in their
clustering step. Furthermore, in the dimensionality reduction of
common three-step workflows, the cells with similar gene expres-
sions are assumed to be of the same type. However, this may not
be true as the relation between gene expression and cell type is not
necessarily continuous. Thus, instead of counting on local similarity
between gene expression levels, we directly learn the embedding
from the cell type. For the second part of Kratos, we demonstrate
the extensibility of Kratos to the third part of the pipeline to be
able to act in a plug-and-play mode. We accomplish this by using
different interpretability techniques — perturbation methods [19]
and gradient-based methods [36, 37] — to explain the classification
result (imagine clustering to be a multi-class classification step).
Here we use an explanation algorithm inspired by the adversarial
machine learning technique [42], first leveraged by ACE. Specifi-
cally, we induce small perturbations into the input data, and see
how the perturbations influence the cluster assignment given by
the Kratos’s NN-based classifier. These “adversarial perturbations”
enable the NN to find a gene set signature for each class, when
contrasted against all the other classes (one-versus-others). We de-
fine our explanation as finding out the rank of genes for each class
according to the value of the induced perturbation that changes the
classification layer’s logit. In summary, in contrast with the SOTA
sc-RNA-seq analysis integrated pipeline, ACE [19], our system
Kratos is novel in the following aspects. First, we jointly optimized
the dimensionality reduction and clustering step into one classifi-
cation step with a single objective function, making better use of

the labeled sc-RNA-seq dataset through optimizing over a single
categorical objective function. This allows the model to directly
search for the global optimum. Second, our NN-based classifier
is straightforward compared to other complex models, reducing
the number of hyperparameters that need to be tuned (6 for SOTA
versus 2 for Kratos) and decreasing the training time by 90% (from
161 seconds to 17 seconds). As for the explanation, most of existing
works treat genes independently when analyzing their impact on
a cell type [17, 18, 30]. These works tend to neglect the fact that
many genes have dependencies in the sense that they may be a
part of the same gene regulatory network. In Kratos, we extract
a panel of (important) genes rather than individual marker genes
to distinguish the cell types, enabling a more holistic approach to
classification and downstream analyses.

To demonstrate the advantages of Kratos, we conduct experi-
ments on real sc-RNA-seq datasets (e.g., the human PBMC dataset
and the bigger human pancreas dataset (Baron), with higher class
imbalance [6]), and compare our clustering and interpretability
results with SOTA. We use the area under the receiver operating
characteristic curve (AUROC) of the support vector machine (SVM)
classifier and Pearson Correlation Coefficient (PCC) among the top
marker genes to demonstrate the discriminative power and redun-
dancy, respectively. We also use clustering metrics (Silhouette Score,
AMI, and Adjusted Rand Index (ARI)), and visualization methods
(t-Distributed Stochastic Neighbor embedding (t-SNE)) [39] and the
newer method, Uniform Manifold Approximation and Projection
(UMAP) [25], given their stochasticity and dependence on the ini-
tialization and hyperparameters) to evaluate Kratos against SOTA.
Contributions. We summarize Kratos’s contributions as follows.

(1) Based on the current SOTA sc-RNA-seq explanation workflows,
our system combines the first two steps, and reaches a superior
performance, which is 5.62% superior to Global Counterfactual
Explanation (GCE) [27] and 3.31% superior to ACE [19], measured
by the AUROC of the SVM classifier used to compare the target
cluster with the rest of the clusters. The intuition is that we
leverage a joint optimization and transform the dimensionality
reduction and clustering problems into a classification problem.

(2) For evaluation of integrated dimensionality reduction and clus-
tering, we use the extracted top-𝑘 genes to train a radial basis
function (RBF) kernel SVM-based binary classifier that identi-
fies the target class against others. Additionally, we included
additional validation metrics, such as clustering metrics and visu-
alizations, to demonstrate the performance of Kratos’s learned
model and the significance of the interpretability of the gene
panels that constitute the different clusters.

(3) We evaluate Kratos on one simulated dataset, two real sc-RNA-
seq datasets , and compare against other baselines. Our system
outperforms in terms of its discriminative power of identify-
ing key genes on the PBMC dataset (around 3% using all the
intepretability methods), convergence time of training Kratos’s
classification layer (∼ 90% lower), and lower number of hyperpa-
rameters that require tuning (from 6 for ACE [19] to 2 forKratos).
We also extend our system to a non-genomics dataset, specifically
the MNIST dataset of handwritten digits [16], to show Kratos’s
generalization power. In particular, for the MNIST dataset, we



Kratos: Context-Aware Cell Type Classification and Interpretation Using Joint Dimensionality Reduction and Clustering KDD ’22, August 14–18, 2022, Washington, DC, USA

had to tune the iterations, a gradient-related coefficient, and the
margin to produce meaningful perturbations.
The rest of the paper is organized as follows. We provide perti-

nent preliminaries in Sec 2, related works in Sec 3, Kratos’s design
in Sec 4, the SOTA, baselines, and datasets in Sec 5, and end-to-end
evaluation of Kratos in Sec 6. Finally, we conclude and discuss
future directions in Sec 7.

2 Background
2.1 Single-cell RNA datasets

Single-cell RNA datasets often use samples that span locations,
physiological profiles, multiple laboratories, and a plethora of differ-
ent sc-RNA-seq protocols, resulting in high cell-to-cell heterogene-
ity. sc-RNA-seq counts the gene expression levels (or other feature
attributes) in different cells, at an unprecedented single-cell granu-
larity, and records them into cell profile matrices. Thesematrices are
typically used to reveal the relation between single-cell RNA expres-
sion levels and the corresponding cell types. However, the analysis
of the cell profile matrix requires reliable data integration, which
is challenging due to the noise from the heterogeneity in clonal
cell populations. This heterogeneity could stem from nested batch
effects — systematic noise that is due to the noise generated from
every batch of cells extracted. Usually, from an organism, single-cell
RNA matrices contain thousands of cells and tens of thousands of
genes, while the actual functioning genes that differentiate the cell
types are far lower, making the matrices sparse.
2.2 Analysis pipeline

To handle these difficulties, a common three-step workflow has
been used in the domain, the most recent examples being [3, 20, 26].
First, a dimensionality reduction algorithm constructs the latent
space, projecting the features into a compact latent space where it is
easier to cluster the data, while also denoising it. Autoencoders [2],
Multidimensional scaling (MDS) [32], Principal Component Analy-
sis (PCA) [28], and Factor Analysis (FA) [4] have been used in this
step. Then, clustering algorithms like 𝑘-means [22], Hierarchical
clustering [40], or Louvain clustering [13], are used to group the
cells that are similar to each other in this lower-dimensional mani-
fold. Finally, the differences between groups are traced that contain
the information of the underlying cell mechanisms.
2.3 Clustering Metrics

To evaluate Kratos, we have used the following clustering met-
rics: Silhouette score, AMI, and ARI, described next.
2.3.1 Adjusted Rand Index:Rand index (RI) is a similarity measure
between two clusterings, and is defined as the ratio of the num-
ber of agreements, assigned to the same or different labels by two
clusterings, between two clusters to the total number of pairs of
data points, C(n, 2). Rand index ranges between 0 and 1, where a
higher score indicate a higher similarity between the two data clus-
terings. However, the expected value of Rand index for two random
partitions is not constant. The ARI is the correctness-for-chance
version of the Rand index. ARI generally ranges between 0 and 1
with 𝐸 [𝐴𝑅𝐼 ] = 0 for two random clusterings and 1 for two identical
clusterings. The larger range and fixed baseline increases the sensi-
tivity of the index. No assumption is made on the structure of the
dataset and hence ARI can be used to compare clusterings obtained
using two entirely different clustering algorithms. However, ARI

may produce poor results in the case of high class imbalance [31].
The expression for ARI is:

RI − 𝐸 [RI]
max(RI) − 𝐸 [RI] (1)

which can be expressed as:

𝐴𝑅𝐼 =

∑
𝑖 𝑗

(𝑛𝑖 𝑗
2
)
−

∑
𝑖 (𝑎𝑖2 )

∑
𝑗 (𝑏𝑗2 )

(𝑛2)

1
2
[ ∑

𝑖

(𝑎𝑖
2
)
+∑

𝑗

(𝑏 𝑗
2
) ]

−
∑
𝑖 (𝑎𝑖2 )

∑
𝑗 (𝑏𝑗2 )

(𝑛2)

(2)

Where 𝑋 and 𝑌 are two clusterings, 𝑎𝑖 is the size of cluster 𝑋𝑖 ,
𝑏 𝑗 is the size of cluster 𝑌𝑗 , 𝑛𝑖 𝑗 is the number of data points com-
mon to clusters 𝑋𝑖 and 𝑌𝑗 . Despite this drawback, ARI is a popular
clustering metric, usually combined with other metrics like AMI.
2.3.2 Adjusted Mutual Information:AMI computes the similarity
between two clusterings by measuring the agreements between two
assignments ignoring permutations. It is also adjusted for chance
so that two random clusterings (predicted and actual) produce a
score of zero. AMI is bounded between -1 and 1, where a score of 1
means perfect matching between the clusterings (with or without
permutation). AMI between the assignments𝑈 and 𝑉 is defined as:

MI(𝑈 ,𝑉 ) =
|𝑈 |∑︁
𝑖=1

|𝑉 |∑︁
𝑗=1

|𝑈𝑖 ∩𝑉𝑗 |
𝑁

log
(
𝑁 |𝑈𝑖 ∩𝑉𝑗 |
|𝑈𝑖 | |𝑉𝑗 |

)
(3)

AMI =
MI − 𝐸 [MI]

mean(𝐻 (𝑈 ), 𝐻 (𝑉 )) − 𝐸 [MI] (4)

Where H denotes entropy. AMI has no preference on data structure;
thus, the similarity stems from the statistics of two clusters.
2.3.3 Silhouette Score:Silhouette Score quantifies how close a data
point is to the assigned cluster compared to other clusters, and
well-separated clusters are rewarded by a high Silhouette Score.
To calculate the Silhouette Score, the Silhouette Coefficient has
to be computed for each data point in the dataset. The Silhouette
Coefficient is mathematically defined as:

𝑠 =
𝑏 − 𝑎

𝑚𝑎𝑥 (𝑎, 𝑏) (5)

Where 𝑎 is the mean distance between a sample and all other points
in the same class. 𝑏 is the mean distance between a sample and
all other points in the next nearest cluster. The average Silhouette
Coefficient of all the samples is defined as the Silhouette score
of the entire clustering. The value of Silhouette score is bounded
between -1 and 1, where a high value indicates that the data point
is well matched to its own cluster and poorly matched to the other
clusters (which is ideal). A value close to zero is indicative of the
presence of overlapping clusters. A negative value might mean that
the clustering has either too many or too few clusters or that the
clustering is incorrect. In this way, Silhouette index can be used as
a consensus index to compute the optimal number of clusters in
a dataset. Silhouette index does not favor a very large number of
clusters. Thus, trivial clustering in which every data sample is an
individual cluster does not produce a perfect score of 1.
2.4 Interpretability methods

We evaluate two kinds of ML interpretability methods for the
explanation step, which is Kratos’s last step — Carlini-Wagner
(CW) attack-based methods and Gradient-based methods.
2.4.1 Carlini-Wagner (CW) attack based-Method:This has its roots
in the adversarial ML literature [9, 42], where models are exploited



KDD ’22, August 14–18, 2022, Washington, DC, USA Zihan and Zijia, et al.

to generate attacks to trigger malfunction in the target model.
Specifically, in [9], the authors added a perturbation to the given
image to alter the class assignment. CW’s objective function is:

min ∥𝑥 − 𝑥
′
∥𝑝

s.t. 𝐶 (𝑥
′
) = 𝑡

𝑥
′
∈ [0, 1]𝑛

(6)

Where 𝑥 and 𝑥
′
are the original object from class 𝑠 and the perturbed

object. 𝐶 (𝑥) is the classification function. 𝑡 is a class label other
than 𝑠 . This problem’s solution can be approximated as:

𝑥
′
= 𝑥 − 𝜖𝑠𝑖𝑔𝑛(∇𝑙𝑜𝑠𝑠𝐹,𝑡 (𝑥)) (7)

Where 𝐹 is the categorical activation (usually 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 ), 𝑙𝑜𝑠𝑠 is the
categorical loss function (cross entropy), and 𝜖 is a small coefficient
like learning rate. In ACE [19], CW-like perturbations are used for
the explanation part in they can identify the genes that are more
related to the cell type.
2.4.2 Gradient-based Methods:We also equip Kratos with two
gradient-based methods — Integrated Gradient [37] and Smooth-
Grad [36]. Both methods consider the gradient of the objective
function relative to the input feature as a measure of the feature’s
contribution. In SmoothGrad, random noise is added to the input
to average out the gradients to make the feature score more robust.
The methods are defined as:

𝑆𝑚𝑜𝑜𝑡ℎ𝐺𝑟𝑎𝑑𝑐 (𝑥) =
1
𝑛

𝑛∑︁
1

𝜕𝑆𝑐 (𝑥 + 𝑁 (0, 𝜎2))
𝜕𝑥

(8)

Where 𝑆𝑐 (𝑥) is the activation of the input 𝑥 of the 𝑐 − 𝑡ℎ class.
𝑛 is the number of random noises sampled from the distribution
𝑁 (0, 𝜎2).
In Integrated Gradient, the gradients along the path from a baseline
(usually 0’s) to an input are computed and summed up as each
feature’s score. The Integrated Gradient for feature 𝑖 of input 𝑥 is
defined as:

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑𝐺𝑟𝑎𝑑𝑠𝑖 = (𝑥𝑖−𝑥
′
𝑖 )×

𝑚∑︁
𝑘=1

𝜕𝐹 (𝑥 ′ + 𝑘
𝑚 × (𝑥 − 𝑥 ′))
𝜕𝑥𝑖

× 1
𝑚

(9)

Here𝑚 is the number of steps along the path to approximate an in-
tegral. Integrated Gradients uses the Aumann-Shapley method [5]
from cooperative game theory, aimed at allocating credit in a co-
operative game, when an ML model is imagined to be a game [12].
The Aumann-Shapley value is applicable to infinitesimal games
(games with a continuum of moves, each of which in their own
right have an infinitesimal contribution on the game’s outcome, yet,
collectively, they make a more noticeable difference), as opposed to
atomic games, in which there are discrete moves in the game.

3 Related work
Workflow for sc-RNA-seq data anlysis: Our work aims

at finding out the marker genes for each cell type using a
NN-based workflow. The common workflow for scRNA-seq data
analysis [26] is to: #1) project the cell-gene expression data into a
lower-dimensional space; #2) identify the groups of cells that are
similar to each other in the lower-dimensional space and clustering
them; #3) adding explanations to these cell clusters. To improve
the integration between the three steps, ACE [19] “neuralizes” the
clustering step and concatenates it with a deep autoencoder, on
one side (step #1), and with adversarial perturbations, on the other

end (step #3), to test the robustness of the clustering step. For the
first step — dimensionality reduction — ACE uses the autoencoder
architecture from SAUCIE [2], which encodes features as it
combines denoising, clustering, batch correction, and visualization.
Specifically, ACE and GCE [27], another related work that focuses
on the model explanation step, both use the latent space embedding
to reduce dimensions. Further, in ACE, a concrete autoencoder [1]
is added before SAUCIE to select input features, which improves
its performance. For the second step — clustering — ACE uses a
neuralized 𝑘-means algorithm [14] that is connected to the latent
embedding layer of SAUCIE. This part of the network takes in
the latent embeddings, and learns the positions of the centroids
of the data points in the latent space. As for the explanation part,
ACE uses a perturbation technique, which draws inspiration from
adversarial ML literature [9, 42]. Perturbations are indicative of
malicious attacks on learned ML models with the objective to alter
the model outcomes. Here, in ACE, the perturbations are used
to construct the marker genes, more aptly referred to as gene
panels to capture the dependencies between marker genes in the
form of a panel of genes with potential dependencies. Although
ACE’s workflow is more compact and improved the performance,
in terms of the AUROC of the SVM classifier, of selected markers
genes by ∼ 2.8% over its baseline, GCE, the problem of independent
optimization (which would be served well by a single optimization
function) is not fully realized. This is what motivates us to design
Kratos’s joint optimization function for the first two steps of these
scRNA-seq integrated analysis pipelines.

Explanation of classification problems: Our work is also
related to the explanations of classification problems. Many meth-
ods have been proposed to solve this problem. These methods
can be roughly categorized into three types: feature attribution
methods, counterfactual-based methods, and model-agnostic ap-
proximation methods. Feature attribution methods calculate a sig-
nificance score for each input feature such that a higher score
indicates that the prediction is more sensitive to the correspond-
ing feature [21, 34, 35]. SHAPLEY value is a canonical example
of this category [33]. Counterfactual-based methods learn an
important subregion within the input sample space by inducing
alterations in the input samples, such as perturbation, blurring,
or inpainting, and then, analyzing the resultant changes in the
predictions [10, 11, 38]. Model-agnostic approximation methods ap-
proximate the model being explained by using a simpler, surrogate
function, affording qualitative mapping between the input and the
results of the model [29].

4 Design
4.1 Problem Setup

Assume the input dataset can be expressed as 𝑋 =

{𝑥1, 𝑥2, ..., 𝑥𝑛}𝑇 ∈ 𝐼𝑅𝑛×𝑝 meaning that it contains𝑛 cells and 𝑝 genes
as features, with labels 𝑦1, 𝑦2, ..., 𝑦𝑛 , where 𝑦𝑖 ∈ 𝐶 = {𝑐1, 𝑐2, ..., 𝑐𝐾 }
as 𝐾 classes. Our approach orchestrated by Kratos, can be framed
as a workflow of three steps, with the first two steps merged
into one. First, we build a NN to classify the given single-cell
RNA matrix. For each input sample 𝑥𝑖 , the network will return 𝐾
activations 𝑎1, ..., 𝑎𝐾 , showing the probability that the input cell
belongs to a certain class at the (final) classification layer. Then,



Kratos: Context-Aware Cell Type Classification and Interpretation Using Joint Dimensionality Reduction and Clustering KDD ’22, August 14–18, 2022, Washington, DC, USA

we apply an adversarial perturbation to the input samples and
see the change of output, say activations, to learn the significance
score for each gene as the explanation component of Kratos. The
whole workflow is expressed in the Figure 2, and the pseudocode is
presented in Algorithm 1.

Figure 2: The architecture of Kratos’s pipeline. The single-cell profile
matrix is the input to our NN and the probabilities that a cell belongs to any

class will be learned. The NN combines the dimension reduction and
clustering steps to optimize them together. With the NN trained,

perturbations will be added to the input dataset and sent to the model again to
get the updated probability assignment. Then, for each class of cells, we try to
find the minimal perturbation, which could lead the NN classifier to output a
result, different from the original prediction, and we bound the perturbation
within the reasonable range in that useless genes (say “noise” genes) may

need infinite perturbation. Finally, the genes will be ranked according to the
learned absolute value of perturbation, which translates to the importance
score for each gene. Both the neural network and the explanation part can be

replaced by other off-the-shelf methods to further refine the pipeline.

4.2 Classification
As mentioned before, in common sc-RNA-seq analysis work-

flows, dimension reduction and clustering are conducted separately.
The main drawback is that the optimization objectives are not the
same and thus the output explanations may not reach their best
performance. Our pipeline’s final goal is to extract functionally
meaningful clusters of cell populations. Further, in many of
the other explanation works, the ground truth cell type label is
used implicitly to learn the explanations, which means that their
workflow is not completely unsupervised. As an improvement, to
combine the dimension reduction step and clustering step and
make full use of the dataset (with their ground-truth labels), we
replace the first two steps with a single, integrated classification
neural network. The learning rate is set to 0.001 and the optimizer
is Adam [15]. The NN we use for classification is a simple 3-layer
fully connected neural network, with two hidden layers and one
output layer. The two hidden layers contain 256 and 64 units,
respectively, and the output layer contains 𝐾 units. The activation
for each layer is 𝑅𝑒𝐿𝑈 for first two layers, and 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 , for the
last layer. According to the definition of softmax, the last layer’s
output can also be viewed as probabilities that the cell belongs to
any type:

𝑎𝑖 =
𝑒𝑧𝑖∑𝑘
𝑗=1 𝑒

𝑧
𝑗

(10)

Here 𝑧𝑖 denotes the unit value before the activation. The loss func-
tion we are using is binary classification cross entropy:

𝐿 = − 1
𝑛

𝑛∑︁
𝑖=1

𝑦𝑖 ∗ 𝑙𝑜𝑔(𝑎𝑖 ) + (1 − 𝑦𝑖 ) ∗ 𝑙𝑜𝑔(1 − 𝑎𝑖 ) (11)

Here 𝑦𝑖 = 1 if 𝑥𝑖 belongs to type 𝑖 , else 𝑦𝑖 = 0. In fact, the second
layer can be viewed as the low-dimension embedding layer of the
three-step workflow, while the third layer is the clustering step.
4.3 Explaining the groups

The second part of the workflow is to learn a significance score
for each gene in each cell type. The genes can then be ranked
according to the assigned score to show their importance in a certain
cell type. Our method is similar to the one in [14]. We calculate
the explanations in a one-versus-rest setting, which means that we
will compare the probability that a cell type being identified by the
NN as class 𝑖 to the probability that it is identified as any other cell
type. We consider this problem as finding a perturbation added to
the input cell and lead the classifier to assign a different cell type to
the input cell. We denote the induced perturbation as 𝛿 ∈ 𝐼𝑅𝑝 . The
objective function of one-vs-rest setting is:

min
𝛿

∥𝛿 ∥1 + 𝜆max(0, 𝛼 + 𝑎𝑖 (𝑥 + 𝛿) −max
𝑗≠𝑖

𝑎 𝑗 (𝑥 + 𝛿)) (12)

Here we assume 𝑥 belongs to class 𝑖 according to the classifier,
𝜆 is a trade-off coefficient. A smaller 𝜆 would decrease the
impact of perturbation to the class assignment, while a larger
one would encourage the perturbation to a different class. 𝛼 is a
margin coefficient that controls the second term. The second term
penalizes the situation that the classifier still assigns 𝑥 to class 𝑖 ,
given the perturbation, up to the margin 𝛼 . The L1-norm of the
perturbation is added to improve the sparsity of the perturbation,
since we hope that only top-effective genes are extracted. We
can also do a one-vs-one setting. In this case, assume we perturb
samples from 𝑐𝑖 to 𝑐 𝑗 . The objective function can be expressed as:

min
𝛿

∥𝛿 ∥1 + 𝜆max(0, 𝛼 + 𝑎𝑖 (𝑥 + 𝛿) − 𝑎 𝑗 (𝑥 + 𝛿)) (13)

Here the second term penalizes the situation that the classifier
assigns a large score to 𝑐𝑖 instead of 𝑐 𝑗 . In other words, it is encour-
aging the perturbation to alter the input from 𝑐𝑖 to 𝑐𝑘 .
Finally, the perturbation will be calculated through the optimization
over Equation 12 & 13. We quantify the explanation of the 𝑖-th
gene in a class as the absolute value of 𝑖-th term of the perturbation
in that class. The larger the score is, the more importance the gene
has in that class. Accordingly, the genes will be ranked based on
their explanation values.
4.4 Evaluation Strategy

We evaluate Kratos against 3 baselines on 4 datasets: a simu-
lated dataset, human PBMC dataset [44] and Baron dataset [6], as
two real sc-RNA-seq datasets, and the MNIST dataset.
A simulated dataset was generated with known relations among the
genes. We then compare the top-ranked genes selected by different
explanation pipelines. Good explanations should extract a majority
of causal or dependent genes, while less of the “noise” genes.
On the sc-RNA-seq dataset, each algorithm outputs a significance
score for each gene in each cell type as explanations. The genes
are then ranked by their scores. For each cluster, we use a subset
that contains only the top-ranked genes (from top 1% to 100%) to



KDD ’22, August 14–18, 2022, Washington, DC, USA Zihan and Zijia, et al.

Algorithm 1 The description of our system Kratos’s workflow.
Output: For each class 𝑐𝑘 , a significance score to each gene,
𝑠1, 𝑠2, ..., 𝑠𝑝
Input: Single-cell RNA profile matrix, 𝑋 = {𝑥1, 𝑥2, ..., 𝑥𝑛}𝑇
Parameters: 𝑒𝑝𝑜𝑐ℎ𝑠 , 𝜆,𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 , 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 ,𝑚𝑎𝑟𝑔𝑖𝑛
0 : Preprocessing: Normalize the dataset. Split the dataset into
train set and test set with a ratio of 0.7 : 0.3
1 : Train the classifier NN with 𝑒𝑝𝑜𝑐ℎ𝑠 = 100, 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒 = 0.001,
0.1 of the dataset set will be used as Validation set
2 : For class 𝑘 , input the 𝑋 to the trained network, and record the
subset for which the classifier makes the correct prediction as
𝑆𝑒𝑡1, ..., 𝑆𝑒𝑡𝐾
3 : For each 𝑆𝑒𝑡𝑘 , induce a small perturbation 𝛿 = 0.001 to each
gene and input the perturbed 𝑆𝑒𝑡𝑘 to the classifier network
4 : Calculate the objective function from Equation 3 and its
gradient 𝑔 w.r.t. each gene
6 : Update the perturbation 𝛿 according to
𝛿 = 𝛿 − 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 ∗ (𝑠𝑖𝑔𝑛𝑠 + 𝜆 ∗ 𝑔), where 𝑠𝑖𝑔𝑛𝑠 = 𝑠𝑔𝑛𝛿
7 : Repeat Step 3 to Step 6 for𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 times to get the 𝛿 for 𝑐𝑘 as
Class 𝑘’s explanation
8 : Repeat Step 2 to Step 7 to get explanations for each class

train a SVM classifier with a RBF kernel that separates that cluster
from the others. The AUROC of the SVM was calculated and used
to demonstrate the discriminative power of the selected genes. A
higher AUROC means that the subset of top genes are more repre-
sentative of the cell type under consideration. We calculated the
PCC of the top genes in each class to assess the redundancy, as
an auxiliary measure to AUROC. A lower PCC relates to lower
redundancy among the genes in the top-ranked genes. Besides, we
computed the Silhouette Score, AMI, and ARI as clustering metrics
and plot the visualizations of original dataset and latent embeddings
output by each algorithm using UMAP and t-SNE, again as two
auxiliary measures to visualize the clusterings, especially because
these techniques tend to be sensitive to initialization conditions.
On the MNIST dataset, we use a one-vs-one setting. For each num-
ber, we calculate its discriminatory features relative to other num-
bers. We plot the values of explanation to show how Kratos ex-
tracts the key differences between different numbers.
4.5 Further design considerations

The classifier in Kratos is currently a simple neural network.
We can replace it with more specialized network architectures,
guided by the task or domain. For the explanation part, apart from
the adversarial techniques we use, we can also incorporate other
off-the-shelf classification explanation algorithms like Smoothgrad,
Integrated Gradients, and so on, as we have done in our assessment
to compare the two kinds of explanation techniques in the context
of our target tasks.

5 Implementation
5.1 Datasets: Real and Simulated

We first use SymSim [43] to generate a simulated sc-RNA-seq
dataset, which contains 500 cells and 140 genes, with 5 cell types,
and check how many of the marker genes identified by Kratos
are real causal genes. After that, we applied our method to the

PBMC dataset [44], which contains 2,638 cells and 1,838 genes, and
represented this input as a cell-by-gene log-normalized expression
matrix. The cells in the dataset are annotated in eight cell types
based on differentially expressed marker genes. Then, we use the
Baron dataset [6], another sc-RNA-seq dataset, with 1,886 cells
and 14,878 genes, and 13 cell types. The Baron dataset is more
challenging to interpret than the PBMC dataset due to the following
reasons: 1) It contains far more genes (14,878 genes), ∼ 8 times the
number of genes than in the PBMC dataset; 2) It is more unbalanced,
where 5 out of 13 cell types contain less than 15 samples (less than
0.1% of all genes), while PBMC only has 2 out of 8 unbalanced
cell types. Finally, to test the generalization of our results across
domains, we evaluated Kratos using the MNIST database [16],
where handwritten digits have been size-normalized and centered
in a fixed-size image.
5.2 Baseline methods

To compare Kratos with the ACE pipeline for evaluating the
clustering step. Then, we select three methodologically different
explanation methods, which can generate the ranking of genes as
pertains to their discriminative power in distinguishing each cell
type. First, we adapt the explanation part of the ACE pipeline, which
is based on the CW attack-based method [9, 42]. This technique
finds the minimal perturbation to alter the group assignment. This
variant of the pipeline with the CW attack-method as the explana-
tory step serves as the main variant of our Kratos, which we call
Kratos _cw to distinguish from the other variant, as in Figure 5a.
Then, we use Kratos’s two other variants — Kratos _sg, with
SmoothGrad [36]; and Kratos _ig, with Integrated Gradient [37] —
as representative feature attributionmethods, to compute the impor-
tance score for each gene’s contribution to the classification result.
SmoothGrad differs from Integrated Gradients in that SmoothGrad
directly takes gradients as contributions while Integrated Gradients
is an extension of SHAPLEY value method in deep learning.

6 Evaluation
6.1 Simulated dataset

To evaluate the performance of Kratos, we used the simulated
sc-RNA-seq dataset, which enables us to specify the causal genes
with ground truth, and check how many marker genes identified by
Kratos are real causal genes. To generate the simulated sc-RNA-seq
dataset, we use the SymSim (Synthetic model of multiple variability
factors for Simulation) simulator that explicitly models the data
generating processes observed in sc-RNA-seq experiments [43],
also used by [19, 27] for their evaluation. The SymSim pipeline
explicitly captures three main sources of variation that regulate
single cell expression patterns: noise intrinsic to the process of
transcription, extrinsic variation, and technical variation due to
low sensitivity and measurement noise or bias, further providing
control knobs to vary these types of parameters. This simulation
tool generates the basic cell-gene data matrix with 500 cells, 2000
genes, and 5 cell types.We then filter out the causal genes, following
SymSim’s criteria (𝑛𝐷𝑖 𝑓 𝑓 −𝐸𝑉 𝐹𝑔𝑒𝑛𝑒 > 0𝑎𝑛𝑑 |𝑙𝑜𝑔2𝑓 𝑜𝑙𝑑 −𝑐ℎ𝑎𝑛𝑔𝑒 | >
0) between at least one pair of cell types, and select 20 causal genes
with highest fold-change among all pairs of cell types. We next
simulated 20 dependent genes as the linear summation of 1-10
random causal genes selected in the previous steps, with added



Kratos: Context-Aware Cell Type Classification and Interpretation Using Joint Dimensionality Reduction and Clustering KDD ’22, August 14–18, 2022, Washington, DC, USA

Gaussian noise from 𝑁 (0, 1), and weights of summation follows
the uniform distribution of 𝑈 (0.01, 0.8). Finally, the remaining 100
noise genes are randomly selected. Thus, our simulated dataset
consists of 140 genes in total. We then applied Kratos and ACE to
this simulated dataset, and compared the identified marker genes
with causal genes for each cell type. We expect that the marker
genes, with the highest importance score, of all cell types should be
completely overlapped with the causal genes. Thus, we check the
top-20 marker genes for each cell type, and count how many causal
genes are identified as the marker genes. As the Table 1 describes,
Kratos performs well on the simulated dataset, where almost half
of the marker genes identified by Kratos are causal genes and the
others are dependent genes, while only one noise gene is identified
as the marker gene. However, Table 1 also shows that while half of
the marker genes identified by ACE are real causal genes, almost
quarter of the marker genes (5 in average) are noise genes. Both
Kratos and ACE could successfully identify almost half of causal
genes within top-20 marker genes. However, ACE identifies much
higher number of noise genes, which is more deleterious than the
higher number of dependent genes identified by Kratos. Note, also,
that the higher number of dependent genes in Kratos is at par
with the higher redundancy observed in Kratos relative to ACE, as
shown in the Figure 4. Table 1 suggests that Kratos outperforms
ACE in identifying the relevant genes, validated by ground truth.

Table 1: The distribution of marker genes using Kratos and ACE. Here “C”,
“D”, and “N” stand for the number of causal genes, dependent genes, and noise
genes, respectively, among the top-20 identified marker genes. We see that
Kratos can extract comparable causal genes as ACE, but the noise genes

chosen by Kratos is far lower than ACE (for the most part, 0, vs ∼ 5 for SOTA).

Clust ID 𝐶𝐾𝑟𝑎𝑡𝑜𝑠 𝐷𝐾𝑟𝑎𝑡𝑜𝑠 𝑁𝐾𝑟𝑎𝑡𝑜𝑠 𝐶𝐴𝐶𝐸 𝐷𝐴𝐶𝐸 𝑁𝐴𝐶𝐸

1 8 12 0 9 7 4
2 8 11 1 8 6 6
3 10 10 0 10 5 5
4 10 10 0 8 7 5
5 9 11 0 9 5 6

6.2 Performance on the human PBMC dataset
Evaluation of Kratos on the PBMC dataset includes: visualiza-

tion of the embedding and importance scores for marker genes.
First, we focus on the visualization of the embedding generated

by Kratos and the ACE pipeline using the PBMC dataset. In Fig-
ure 3a, 3b & 3c, we show the UMAP [7, 25] for the original cell-gene
dataset, and the embedding layer, in Kratos and ACE, respectively.
We observe that the cells of the same type tend to cluster more
tightly in the embedding layer of Kratos, superior relative to the
clustering in ACE. Also, the t-SNE [39] in Figure 3d, 3e & 3f shows
a similar pattern of clustering as visualized using UMAP, with
Kratos outperforming ACE. Moreover, we calculate the Silhouette
Coefficients, ARI, and AMI, to measure the goodness-of-clustering.
In Table 2, the ARI & AMI of Kratos can be observed to be larger
than those of ACE & GCE, indicating that clusters are best sepa-
rated in Kratos’s embedding. Further, the Silhouette Coefficient
of Kratos is larger than ACE, which is 0.37 and 0.07 for Kratos
and ACE, respectively, meaning 53% superior for Kratos. Notice
that GCE has the highest Silhouette Score meaning that it has the
best structures for clusters. Nevertheless, we consider AMI sa the
first priority here as it is comparing to the ground truth labels and
is less affected by the imbalance of the clusters. To wrap up, these

(a) (b) (c)

(d) (e) (f)

Figure 3: Visualization of the embedding layer in Kratos & ACE using
UMAP and t-SNE for the human PBMC dataset. (a), (b), and (c) are the UMAP
embeddings, using default parameter settings. (d), (e), and (f) are the t-SNE
embeddings using default settings, except 𝑝𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = 30. (a) and (d) are

embeddings of the original input dataset, others are for latent space
embeddings. We see that the different classes are more separated from each
other with the low-dimension representation. Kratos outperforms on the cell
clustering performance, where cells of the same type tend to cluster more
tightly. UMAP outperforms t-SNE with more compact clusters for different

classes, possibly reflecting a more accurate global structure.
Table 2: Silhouette coefficients, ARI, and AMI for different clustering

methods. Note that the ARI & AMI of Kratos are much larger than those of
ACE & GCE, also, the Silhouette Coefficients of Kratos are larger than ACE.

The result indicates that Kratos shines in its clustering performance.

Clustering Methods Silhouette ARI AMI
Kratos 0.3745 0.8495 0.8547
ACE 0.0762 0.5215 0.6219
GCE 0.5083 0.7619 0.6989

results indicate that Kratos outshines ACE and GCE in creating a
good low-dimension embedding and best cluster assignment.

We next applied the differentiation analysis part in ACE toward
identifying top-ranked genes for different cell types based on the
results of Kratos and of the ACE and GCE pipeline. We also replace
the explanation part with the two gradient-based methods. For each
cell type, the panels of top-𝑘 genes with the highest significance
scores are identified by the explanation methods, where 𝑘 ranges
from 1% to 100%.

It is desirable that the top-𝑘 genes show minimum redundancy,
which is captured using the PCC between all gene pairs among top-
𝑘 genes. We calculate the PCC within each cell type, then compute
the group-averaged PCC for each 𝑘 . Figure 4a, 4b , & 4c plots the
PCC among top-𝑘 genes generated by Kratos and ACE, where 𝑘
ranges from 1% to 40%, computed using the Carlini Wagner (cw)
algorithm, Integrated Gradients (ig), or Smooth Grad (sg) as the
explanation part respectively. Figure 4d shows that GCE has higher
redundancy among the top-𝑘 genes than Kratos. As discussed
earlier in the simulation part of the evaluation, the higher redun-
dancy is at par with the higher number of dependent genes seen in
Kratos relative to ACE. Thus, this property is less harmful to the
clustering objective than the AUROC metric, as seen in Figure 5, in
all its comparisons with ACE.

We then trained an SVM, within each given cell type and top-𝑘
genes, to evaluate the discriminative power of top-𝑘 genes for dis-
tinguishing from the remaining groups. Our SVM classifier uses
the radial bias function (RBF) kernel, with two hyperparameters



KDD ’22, August 14–18, 2022, Washington, DC, USA Zihan and Zijia, et al.

(a) (b)

(c) (d)

Figure 4: Redundancy plot. Redundancy among the top 𝑘 genes in each
group, as measured by PCC, as a function of 𝑘 . Error bars correspond to the

standard deviation from the mean, calculated from the group-specific
correlations. A lower PCC implies lower redundancy among the top genes,
extracted by the explanations. We see that when the selected number of genes
is small, ACE has a lower redundancy than our work, while GCE has a higher
redundancy. However, according to the results from the simulated dataset,
the low correlation of ACE might be because it is selecting noise genes as
opposed to marker genes, while Kratos is selecting a greater number of
dependent genes, indicating a more balanced performance of Kratos.

— the regularization coefficient 𝐶 and the bandwidth parameter 𝜎 .
We implement the 3-fold stratified cross-validation to evaluate the
performance, in terms of AUROC, of SVM classifier, and random
search [8] with 3-fold cross-validation to optimize two hyperpa-
rameters within each training set, where the𝐶 and 𝜎 were assumed
to be exponentially distributed, respectively, with scaling factors of
100 and 0.1. We reported the average performance, in terms of area
under the receiver operating characteristic curve (AUROC), among
different target cell types. Specifically, we excluded two cell types,
megakaryocytes and dendritic cells, from our SVM evaluation part
due to their relatively small sample size (17 and 36 correspondingly),
while we still include them in trainingKratos. In Figure 5a, 5b, & 5c,
we plot the classification performance based on Kratos and the
ACE pipeline, and we found that Kratos outperforms the ACE
pipeline for all three variants using the three explanation methods,
on average, 3.31% superior to the accuracy of ACE, and ranging
from 2.91% (for CW attack-based methods) to 3.64% (for the Inte-
grated Gradients variant), within top-1% marker genes. Also, we
compare GCE to Kratos, combined with the different explanation
methods, and the Figure 5d indicates that Kratos outperforms,
5.62% on average, relative to GCE within top-1% marker genes.
6.3 Performance on the human pancreas dataset

To further evaluate the performance of Kratos, we applied
Kratos to the Baron [6], a more complex cell-gene dataset with a
higher number of genes. We replicate the method for the identifica-
tion for marker genes as in the previous part, evaluating Kratos
combined with different explanation methods. As the Figure 6a
shows, even with much higher dimensionality, Kratos can still

(a) (b)

(c) (d)

Figure 5: Discriminative power plot. The plot compares the classification
performance using different methods. We calculated the AUROC of a binary
SVM classifier using only the top genes as features, across each cell type. A
higher AUROC corresponds to a better discriminative power of the selected
marker genes. From this plot, we see that Kratos surpasses other baselines
especially when the number of included genes is small. Specifically, the

accuracy of Kratos, on average, is 3.31% superior to ACE, and 5.62% superior
to GCE within the top-1% marker genes.

achieve quite good performance with any explanation method
(higher than 95% accuracy for the top 1% genes). Moreover, Kratos
achieves decent performance (from 86% to 98%) with even top-
1‰marker genes, around 13 genes, in Baron dataset. Also, the
superior performance of Kratos combined with Integrated Gradi-
ents (98% accuracy with only 1‰genes) suggests that the Integrated
Gradients variant of Kratos may be the most suitable variant for
this dataset, a testimony to Kratos’s ability to be used as a plug-
and-play integrated scRNA-seq analysis framework, based on the
domain-specific nuances. It is noticeable that CW does not perform
as well here. This may be due to the imbalance in the dataset that
leads to a biased model or the lack of tuning on the CW hyperpa-
rameters, as the tradeoff coefficient 𝜆 and margin 𝛼 can significantly
affect the results. In addition, we plot the PCC among the iden-
tified marker genes in Figure 6b, where Kratos combined with
SmoothGrad generates the minimum correlation among identified
marker genes within any quantile of genes.
6.4 MNIST dataset

We tested the potential of Kratos to be applied to other domains
to evaluate its generalization using the MNIST dataset [16], where
handwritten digits have already been size-normalized in [0, 1].
Similar to the identification of marker genes in the sc-RNA-seq data
analysis task, our task was to find out the key pixels that could
explain the correct classification of handwritten digits. However,
the key pixels could be different for the same digit, based on the
different handwriting styles, while the marker genes are applicable
for all cells in the dataset. We reshape the MNIST data from the
matrix 28 ∗ 28 into the array 784 ∗ 1 to make the input of the same
form as in sc-RNA-seq data, though some of the information may
have been lost during the transformation. We use the same NN



Kratos: Context-Aware Cell Type Classification and Interpretation Using Joint Dimensionality Reduction and Clustering KDD ’22, August 14–18, 2022, Washington, DC, USA

(a) (b)

Figure 6: Discriminative power and redundancy plot. The classification
performance and redundancy of Kratos with different explanation methods.
We find that Kratos performs well (from 95% to 99% accuracy) on the Baron
dataset within 1‰of genes, while the redundancy is similar to the one in the
PBMC dataset (all range from 10% to 15%). Moreover, Kratos achieves decent

performance (from 86% to 98%) even within 1‰of genes.

architecture and perturbation analysis. Only, the one-versus-rest
loss function in perturbation analysis is replaced with the one-
versus-one loss function so that we can measure the importance
of each pixel and identify the key pixels during the transformation
from a certain digit to another digit. To plot the results more clearly,
we only plot the pixels with top-25 & bottom-25 importance scores,
while other pixels’ importance scores are replaced as 0. Further, the
importance scores are normalized within each image. The Figure 7
shows the key pixels for 12 pairs of digit transformations, and we
find that most of the identified pixels are reasonable. For example,
when we transform “3” to “8”, the digit has to add pixels to the
left side of “3”, while removing pixels to the left side of “8” when
transforming “8” to “3”. Also, the key pixels for the transformation
between “0” and “8” are the center pixels of “8”.

Figure 7: The key pixels for the digits’ transformations. We show the key
pixels for 12 pairs of digits transformations, where the backgrounds in grey
indicate the original digits. The pixels in blue (red) indicate that these pixels
should be removed (added) to convert to the target digit. Most of the pixels in

blue and red are consistent with our expectation.

7 Discussion
In this paper, we proposed a single-cell RNA analysis pipeline,

Kratos, which is based on neural network and ML interpretability.
The most elegant part of Kratos is the combination of the first
two steps — dimensionality reduction and clustering — within one
neural network classifier instead of conducting each step separately.
This joint optimization of the two steps significantly improves the
performance of the ML explanation part. Our experiments on real
and simulated single-cell RNA datasets demonstrate that Kratos’s
selected top genes have the best discriminative power for clustering
cell types. Beyond genomics, we also demonstrated that Kratos
can be used in computer vision tasks such as image recognition
using the MNIST dataset. Our approach here of using modular

pipelines (of three blocks here) derives inspiration from our prior
work in building and using reusable blocks or “kernels” of code
in our Domain Specific Language (DSL) Sarvavid [24], specifically
designed for computational genomics. Sarvavid allows users to
naturally express their genomics application using the DSL kernels.
Sarvavid expedites development of new computational genomics
tools, such as in ScalaDBG, to swiftly assemble high-quality complex
genomes [23]. Similarly, here our hope is that Kratos will enable
modular developments improving the accuracy and scalability of
single-cell genome annotation algorithms.

There are several ways to extend this work. First, Kratos’s first
two parts can be replaced by other specialized neural network clas-
sifiers. Modified CWoptimization in the perturbation step canmake
it less sensitive to cluster imbalance. In addition, better modeling
of sc-RNA-seq data to perform improved batch correction will also
benefit Kratos. Finally, merging the explanation step to the neural
network architecture representing the merged first two steps would
create an integrated trinity of steps for sc-RNA-seq data analyses.
AcknowledgmentsThis material is based in part upon work sup-
ported by the National Science Foundation (NSF) under Grant Num-
ber CNS-2146449 (NSF CAREER award) and by the National Insti-
tutes of Health (NIH) Grant R01AI123037. Any opinions, findings,
and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the
sponsors.

References
[1] Abubakar Abid, Muhammad Fatih Balin, and James Zou. 2019. Concrete au-

toencoders for differentiable feature selection and reconstruction. arXiv preprint
arXiv:1901.09346 (2019).

[2] Matthew Amodio, David Van Dijk, Krishnan Srinivasan, William S Chen, Hus-
sein Mohsen, Kevin R Moon, Allison Campbell, Yujiao Zhao, Xiaomei Wang,
Manjunatha Venkataswamy, et al. 2019. Exploring single-cell data with deep
multitasking neural networks. Nature methods 16, 11 (2019), 1139–1145.

[3] Tallulah S Andrews, Vladimir Yu Kiselev, Davis McCarthy, and Martin Hemberg.
2021. Tutorial: guidelines for the computational analysis of single-cell RNA
sequencing data. Nature protocols 16, 1 (2021), 1–9.

[4] Ricard Argelaguet, Britta Velten, Damien Arnol, Sascha Dietrich, Thorsten Zenz,
John CMarioni, Florian Buettner, Wolfgang Huber, and Oliver Stegle. 2018. Multi-
Omics Factor Analysis—a framework for unsupervised integration of multi-omics
data sets. Molecular systems biology 14, 6 (2018), e8124.

[5] Robert J Aumann and Lloyd S Shapley. 1974. Values of non-atomic games. Prince-
ton University Press.

[6] Maayan Baron, Adrian Veres, Samuel LWolock, Aubrey L Faust, Renaud Gaujoux,
Amedeo Vetere, Jennifer Hyoje Ryu, Bridget K Wagner, Shai S Shen-Orr, Allon M
Klein, et al. 2016. A single-cell transcriptomic map of the human and mouse
pancreas reveals inter-and intra-cell population structure. Cell systems 3, 4 (2016),
346–360.

[7] Etienne Becht, Leland McInnes, John Healy, Charles-Antoine Dutertre, Im-
manuel WH Kwok, Lai Guan Ng, Florent Ginhoux, and Evan W Newell. 2019.
Dimensionality reduction for visualizing single-cell data using UMAP. Nature
biotechnology 37, 1 (2019), 38–44.

[8] James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter
optimization. Journal of machine learning research 13, 2 (2012).

[9] Nicholas Carlini and David Wagner. 2017. Towards evaluating the robustness
of neural networks. In 2017 ieee symposium on security and privacy (sp). IEEE,
39–57.

[10] Chun-Hao Chang, Elliot Creager, Anna Goldenberg, and David Duvenaud.
2018. Explaining image classifiers by counterfactual generation. arXiv preprint
arXiv:1807.08024 (2018).

[11] Ruth C Fong and Andrea Vedaldi. 2017. Interpretable explanations of black boxes
by meaningful perturbation. In Proceedings of the IEEE international conference
on computer vision. 3429–3437.

[12] Eric J Friedman. 2004. Paths and consistency in additive cost sharing. International
Journal of Game Theory 32, 4 (2004), 501–518.

[13] L GUILLAUME. 2008. Fast unfolding of communities in large networks. Journal
Statistical Mechanics: Theory and Experiment 10 (2008), P1008.



KDD ’22, August 14–18, 2022, Washington, DC, USA Zihan and Zijia, et al.

[14] Jacob Kauffmann, Malte Esders, Grégoire Montavon, Wojciech Samek, and Klaus-
Robert Müller. 2019. From clustering to cluster explanations via neural networks.
arXiv preprint arXiv:1906.07633 (2019).

[15] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[16] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–
2324.

[17] Jun Li and Robert Tibshirani. 2013. Finding consistent patterns: a nonparametric
approach for identifying differential expression in RNA-Seq data. Statistical
methods in medical research 22, 5 (2013), 519–536.

[18] Michael I Love, Wolfgang Huber, and Simon Anders. 2014. Moderated estimation
of fold change and dispersion for RNA-seq data with DESeq2. Genome biology
15, 12 (2014), 1–21.

[19] Yang Young Lu, C Yu Timothy, Giancarlo Bonora, and William Stafford Noble.
2021. ACE: Explaining cluster from an adversarial perspective. In International
Conference on Machine Learning. PMLR, 7156–7167.

[20] Malte D Luecken and Fabian J Theis. 2019. Current best practices in single-cell
RNA-seq analysis: a tutorial. Molecular systems biology 15, 6 (2019), e8746.

[21] Scott M Lundberg and Su-In Lee. 2017. A unified approach to interpreting
model predictions. In Proceedings of the 31st international conference on neural
information processing systems. 4768–4777.

[22] James MacQueen et al. 1967. Some methods for classification and analysis of
multivariate observations. In Proceedings of the fifth Berkeley symposium on
mathematical statistics and probability, Vol. 1. Oakland, CA, USA, 281–297.

[23] Kanak Mahadik, Christopher Wright, Milind Kulkarni, Saurabh Bagchi, and
Somali Chaterji. 2019. Scalable genome assembly through parallel de Bruijn
graph construction for multiple k-mers. Scientific reports 9, 1 (2019), 1–15.

[24] Kanak Mahadik, Christopher Wright, Jinyi Zhang, Milind Kulkarni, Saurabh
Bagchi, and Somali Chaterji. 2016. Sarvavid: a domain specific language for
developing scalable computational genomics applications. In Proceedings of the
2016 international conference on supercomputing. 1–12.

[25] Leland McInnes, John Healy, and James Melville. 2018. Umap: Uniform man-
ifold approximation and projection for dimension reduction. arXiv preprint
arXiv:1802.03426 (2018).

[26] Hannah A Pliner, Jay Shendure, and Cole Trapnell. 2019. Supervised classification
enables rapid annotation of cell atlases. Nature methods 16, 10 (2019), 983–986.

[27] Gregory Plumb, Jonathan Terhorst, Sriram Sankararaman, and Ameet Talwalkar.
2020. Explaining groups of points in low-dimensional representations. In Inter-
national Conference on Machine Learning. PMLR, 7762–7771.

[28] David Reich, Alkes L Price, and Nick Patterson. 2008. Principal component
analysis of genetic data. Nature genetics 40, 5 (2008), 491–492.

[29] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. " Why should i
trust you?" Explaining the predictions of any classifier. In Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and data mining.
1135–1144.

[30] Mark D Robinson, Davis J McCarthy, and Gordon K Smyth. 2010. edgeR: a Bio-
conductor package for differential expression analysis of digital gene expression
data. Bioinformatics 26, 1 (2010), 139–140.

[31] Simone Romano, Nguyen Xuan Vinh, James Bailey, and Karin Verspoor. 2016.
Adjusting for chance clustering comparison measures. The Journal of Machine
Learning Research 17, 1 (2016), 4635–4666.

[32] Anne Senabouth, Samuel W Lukowski, Jose Alquicira Hernandez, Stacey B An-
dersen, Xin Mei, Quan H Nguyen, and Joseph E Powell. 2019. ascend: R package
for analysis of single-cell RNA-seq data. GigaScience 8, 8 (2019), giz087.

[33] LS Shapley. 1953. Quota Solutions of n-Person Games. Edited by Emil Artin and
Marston Morse (1953), 343.

[34] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. 2017. Learning im-
portant features through propagating activation differences. In International
Conference on Machine Learning. PMLR, 3145–3153.

[35] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. 2013. Deep inside
convolutional networks: Visualising image classification models and saliency
maps. arXiv preprint arXiv:1312.6034 (2013).

[36] Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin Watten-
berg. 2017. SmoothGrad: removing noise by adding noise. In Proceedings of the
ICML Workshop on Visualization for Deep Learning. 1700–1706.

[37] Tim Stuart and Rahul Satija. 2019. Integrative single-cell analysis. Nature Reviews
Genetics 20, 5 (2019), 257–272.

[38] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017. Axiomatic attribution
for deep networks. In International Conference on Machine Learning. PMLR, 3319–
3328.

[39] Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
Journal of machine learning research 9, 11 (2008).

[40] Joe H Ward Jr. 1963. Hierarchical grouping to optimize an objective function.
Journal of the American statistical association 58, 301 (1963), 236–244.

[41] Joshua D Welch, Alexander J Hartemink, and Jan F Prins. 2017. MATCHER:
manifold alignment reveals correspondence between single cell transcriptome
and epigenome dynamics. Genome biology 18, 1 (2017), 1–19.

[42] Han Xu, Yao Ma, Hao-Chen Liu, Debayan Deb, Hui Liu, Ji-Liang Tang, and Anil K
Jain. 2020. Adversarial attacks and defenses in images, graphs and text: A review.
International Journal of Automation and Computing 17, 2 (2020), 151–178.

[43] Xiuwei Zhang, Chenling Xu, and Nir Yosef. 2019. Simulating multiple faceted
variability in single cell RNA sequencing. Nature communications 10, 1 (2019),
1–16.

[44] Grace XY Zheng, Jessica M Terry, Phillip Belgrader, Paul Ryvkin, Zachary W
Bent, Ryan Wilson, Solongo B Ziraldo, Tobias D Wheeler, Geoff P McDermott,
Junjie Zhu, et al. 2017. Massively parallel digital transcriptional profiling of single
cells. Nature communications 8, 1 (2017), 1–12.


	Abstract
	1 Introduction
	2 Background
	2.1 Single-cell RNA datasets
	2.2 Analysis pipeline
	2.3 Clustering Metrics
	2.4 Interpretability methods

	3 Related work
	4 Design
	4.1 Problem Setup
	4.2 Classification
	4.3 Explaining the groups
	4.4 Evaluation Strategy
	4.5 Further design considerations

	5 Implementation
	5.1 Datasets: Real and Simulated
	5.2 Baseline methods

	6 Evaluation
	6.1 Simulated dataset
	6.2 Performance on the human PBMC dataset
	6.3 Performance on the human pancreas dataset
	6.4 MNIST dataset

	7 Discussion
	References

