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Abstract

Multi-Agent Reinforcement Learning (MARL) algorithms face the challenge of efficient
exploration due to the exponential increase in the size of the joint state-action space.
While demonstration-guided learning has proven beneficial in single-agent settings, its direct
applicability to MARL is hindered by the practical difficulty of obtaining joint expert demon-
strations. In this work, we introduce a novel concept of personalized expert demonstrations,
tailored for each individual agent or, more broadly, each individual type of agent within
a heterogeneous team. These demonstrations solely pertain to single-agent behaviors and
how each agent can achieve personal goals without encompassing any cooperative elements,
thus naively imitating them will not achieve cooperation due to potential conflicts. To this
end, we propose an approach that selectively utilizes personalized expert demonstrations
as guidance and allows agents to learn to cooperate, namely personalized expert-guided
MARL (PegMARL). This algorithm utilizes two discriminators: the first provides incentives
based on the alignment of individual agent behavior with demonstrations, and the second
regulates incentives based on whether the behaviors lead to the desired outcome. We evaluate
PegMARL using personalized demonstrations in both discrete and continuous environments.
The experimental results demonstrate that PegMARL outperforms state-of-the-art MARL
algorithms in solving coordinated tasks, achieving strong performance even when provided
with suboptimal personalized demonstrations. We also showcase PegMARL’s capability of
leveraging joint demonstrations in the StarCraft scenario and converging effectively even
with demonstrations from non-co-trained policies.

1 Introduction

The use of expert demonstrations1 has been proven effective in accelerating learning in single-agent reinforce-
ment learning, as evidenced by studies such as Kang et al. (2018); Chen & Xu (2022); Rengarajan et al. (2022).
This approach has since been extended to Multi-Agent Reinforcement Learning (MARL) (Lee & Lee, 2019;
Qiu et al., 2022), which typically assumes the availability of high-quality collaborative joint demonstrations.
However, from a practical standpoint, collecting joint demonstrations can be labor-intensive, demanding one
user per agent in cooperative scenarios. Furthermore, these demonstrations are not scalable. If we change the
number of agents or introduce new types of agents, we will need to gather a new set of demonstrations to
learn from.

In contrast, it is much easier to obtain demonstrations for individual agents, or even better, for each type of
agents in a heterogeneous setting. We thus ask the following research question: could we leverage individual-
wise task demonstrations instead? In this work, we refer to such expert demonstrations that address
single-agent behaviors for personal objectives as personalized demonstrations (see Figure 1). Since the
personalized demonstrations will not necessarily reflect how the agents can collaborate and may even conflict
with each other in the joint setting, naively mimicking the demonstrations will not achieve cooperation.
Therefore, purely imitation learning-based approaches would not be effective. We need an approach that

1In our context, the term “expert guidance” refers to demonstrations that provide meaningful, above-random performance in
complex environments, even if the demonstrations are not necessarily optimal.
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selectively utilizes suitable personalized expert demonstrations as guidance and allows agents to learn to
cooperate via collecting reward signals from the environments.

Ours utilizes Personalized Single‐Agent 
Demonstrations for Joint‐Policy Learning

Existing Methods utilize Joint 
Demonstrations for Joint‐Policy Learning
 Demonstrations need to be recollected if 

the agent configurations changes
 Agents of the same type can utilize the 

same set of demonstrations 

Top row: demonstrations; Bottom row: learning tasks Agents of different types Goals

Figure 1: Joint demonstrations are costly to collect but offer rich
information on collaborative behaviors. Personalized demonstrations
are easier to collect, but solely focus on individual agent goals, so they
lack cooperative elements.

To this end, we present our algo-
rithm, Personalized Expert-Guided
MARL (PegMARL), which carries
out personalized occupancy matching
as a form of guidance through reward-
shaping. We implement this via two
discriminators. The first, a personal-
ized behavior discriminator, evaluates
local state-action pairs, providing pos-
itive incentives for actions that align
with the demonstration and negative
incentives for divergent ones. The
second, a personalized transition dis-
criminator, assesses whether a local
state-action pair induces a desired
change in dynamics similar to that
observed in the demonstration, ad-
justing the incentive weight accord-
ingly. We demonstrate the effective-
ness of PegMARL on both discrete
gridworld and continuous multi-agent particle environments (Lowe et al., 2017; Mordatch & Abbeel, 2017).
The main contributions of this paper are summarized as follows:

(1) We propose PegMARL, the first approach that enables utilizing personalized demonstrations for
policy learning in heterogeneous MARL environments, which (i) avoids demonstration recollection regardless
of the number and type of agents involved, and (ii) is compatible with most MARL policy gradient methods.

(2) We demonstrate PegMARL’s effectiveness with personalized demonstrations in both discrete and
continuous environments. Our algorithm outperforms state-of-the-art decentralized MARL algorithms, pure
multi-agent imitation learning, and reward-shaping techniques in terms of scalability and convergence speed,
and achieves robust performance even when provided with suboptimal demonstrations.

(3) We showcase PegMARL’s capability to also leverage joint demonstrations, regardless of whether they
are sampled from co-trained or non-co-trained policies2. Experimental results on the StarCraft environment
(Samvelyan et al., 2019) demonstrate that PegMARL converges effectively even with demonstrations from
non-co-trained policies, which include potentially conflicting behaviors.

2 Related Works

Imitation Learning (IL). IL methods seek to replicate an expert policy from demonstration data generated
by that policy. Behavior Cloning (BC) is a commonly employed IL technique (Pomerleau, 1991; Bojarski et al.,
2016), where the expert policy is estimated through supervised learning on demonstration data. However, BC
is susceptible to compounding errors resulting from distribution shifts (Ross et al., 2011). Another thread
of IL research is Inverse Reinforcement Learning (IRL) (Ng et al., 2000; Ziebart et al., 2008), in which the
underlying reward function is estimated from the demonstration data and then used for policy learning.
To alleviate the computational overhead of IRL, Generative Adversarial Imitation Learning (GAIL) (Ho &
Ermon, 2016) was introduced, allowing direct policy learning from observed data without intermediate IRL
steps. Song et al. (2018) extended this approach to introduce Multi-Agent GAIL (MAGAIL), which adapts
GAIL to high-dimensional environments featuring multiple cooperative or competing agents. In general,
IL approaches can rarely perform better than demonstrations. Therefore, they are not directly suitable for

2“Co-trained policies” refers to policies that have been trained together in the same environment with shared experiences. We
refer the readers to Figure 3 for an illustration and Section 6.2 of Wang et al. (2023) for more information.
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No cooperating behaviors are demonstrated

3

Our algorithm learns cooperative policies 
guided by personalized demonstrations

Personalized Demonstrations

1
Green agent moves on to the 
green square to open and hold 
the door

Green agent 
steps away 
from the green 
square for the 
red agent to
pass

Red agent enters the middle 
room once the door is open

Red agent navigates to the 
goal after the green agent 
steps aside

for the red agent:
Navigating to the key location 

(the door is open)

for the green agent:
Navigating to the green square 

to open the door 
(note the door shuts if the green 

agent moves away)

2

4

MAPPO failed to learn 
meaningful policies

Objective: The green agent 
opens the door, allowing the red 

agent to retrieve the key.

due to the sparseness of the 
environmental reward signals

Figure 2: An example of utilizing personalized demonstrations to learn cooperative multi-agent policies.
To learn successful cooperation, the agents are required not only to imitate the demonstrations to achieve
personal goals but also to learn how to avoid conflicts and collaborate. We visualize the state visitation
frequency of the personalized demonstrations and the joint policies learned by our algorithm and MAPPO,
where a darker color means a higher value. We observe that the demonstrations guide the agents in exploring
the state space more efficiently than in MAPPO.

scenarios where only personalized expert demonstrations that do not demonstrate how to collaborate are
available.

Learning from Demonstration (LfD). In contrast to IL methods, LfD aims to leverage demonstration
data to facilitate learning rather than simply mimicking expert behavior. Existing LfD works incorporate
demonstration data into a replay buffer with a prioritized replay mechanism to accelerate the learning process.
Due to the off-policy nature of the demonstration data, most methods are value-based (Hester et al., 2018;
Vecerik et al., 2017). There has been some recent work where the demonstrations are used to aid exploration,
especially in environments with large state-action spaces (Kang et al., 2018; Chen & Xu, 2022; Rengarajan
et al., 2022). For instance, POfD (Kang et al., 2018) learns an implicit reward from the demonstration data
using a discriminator and incorporates it into the original sparse reward. LOGO (Rengarajan et al., 2022)
uses the demonstration data to directly guide the policy update: during each update iteration, the algorithm
seeks a policy that closely resembles the behavior policy within a trust region. However, these approaches are
primarily focused on single-agent settings.

In multi-agent settings, Qiu et al. (2022) suggest using demonstrations to pretrain agents through imitation
learning as a warm start, followed by optimization of the pretrained policies using standard MARL algorithms.
Lee & Lee (2019) augment the experience buffer with demonstration trajectories and gradually decrease the
mixing of demonstration samples during training to prevent the learned policy from being overly influenced
by demonstrations. Similar to POfD, DM2 (Wang et al., 2023) enables agents to enhance their task-specific
rewards by training discriminators as well. Each agent matches toward a target distribution of concurrently
sampled trajectories from a joint expert policy to facilitate coordination. These approaches, however, require
joint demonstrations of the same team configurations sampled from cohesively trained policies. While effective,
this requirement can be cumbersome and limiting, especially in real-world scenarios where such coordinated
demonstrations are difficult to obtain (as mentioned in Section 1).

Our approach differs in that we leverage only personalized expert demonstrations to learn a cooperative
policy. Notably, PegMARL can also utilize joint demonstrations when they are available, including those
from non-co-trained policies. By accommodating these diverse and potentially conflicting demonstrations,
PegMARL can leverage a wider range of available data, offering greater flexibility and robustness across
various multi-agent applications.

3 Preliminaries

We start by considering a Markov Decision Process (S, A, P, r, γ) for a cooperative multi-agent setting with
N agents. Here, S denotes the global state across all the agents, which can be decomposed as the product of
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N local spaces Si as S = S1 × S2 × · · · × SN . By noting the local state of agent i as si ∈ Si, the global state
is s = (s1, s2, · · · , sN ). Similarly, we define the global action space A as A = A1 × A2 × · · · × AN , meaning
that for any a ∈ A, we may write a = (a1, a2, · · · , aN ) with ai ∈ Ai. The transition probability from state
s to s′ after taking a joint action a is denoted by P (s′|s, a) =

∏
i Pi(s′

i|s, a). All agents share a common
reward function r = R(s, a), and γ ∈ [0, 1] is the discount factor. In this work, we focus on decentralized
learning and define the global policy as πθ(a|s), where θ ∈ Θ are the policy parameters. Specifically, we have
θ = (θ1, θ2, · · · , θN ) as the factorized global policy parameters, and we can write πθ(a|s) =

∏
i πθi

(ai|s) using
policy factorization.

Personalized Tasks and MDPs. To introduce the notion of personalized demonstration, we need to
extract the individual tasks of each agent from the collective tasks of multiple agents. For example, in Figure
2, the green agent’s personalized task is to open the door and the red agent’s personalized task is to reach
the key without the other’s presence. We then define Personalized Markov Decision Processes (PerMDPs)
(Si, Ai, Qi, ri, γ) for each agent or, more generally, for each type of agents that share the same objective
within a heterogeneous team. Here, a type refers to behaviorally identical agents who share the same state
and action spaces, as well as the same reward function, using the formalism from Bettini et al. (2023), and we
provide the PerMDP definition for each agent for simplicity. We assume that the state space Si and action
space Ai of the personalized task Ti are the same as the local state and action spaces of agent i from the joint
task. The transition probability from state si to s′

i after taking a action ai is represented as Qi(s′
i|si, ai).

By following an arbitrary policy πi(ai|si) for this personalized task, we can collect a set of personalized
demonstrations Bi = {(st

i, at
i)}H

t=0, where H is the episode horizon. We’d like to emphasize that while we
assume the personalized tasks and the joint task are conducted in the same environment map, the underlying
transition dynamics are different. Additionally, the joint reward r may not necessarily equal the summation
of rewards ri for each personalized task.

Occupancy Measures. For a joint policy π = (π1, π2, ..., πN ), we can write the global state action
occupancy measure λπ(s, a) as

λπ(s, a) =
∞∑

t=0
γt · P

(
st = s, at = a

∣∣∣ π
)

(1)

and write the corresponding local cumulative state-action occupancy measure as

λπ
i (si, ai) =

∞∑
t=0

γt · P
(

st
i = si, at

i = ai

∣∣∣ π
)

(2)

for ∀ai ∈ Ai, si ∈ Si. An interesting observation to note here is that we can write the local occupancy measure
as the marginalization of the global occupancy measure with respect to all other agents. Mathematically, it
holds that

λπ
i (si, ai) =

∑
a∈{ai}×A−i

∑
s∈{si}×S−i

λπ(s, a) (3)

with A−i=Πj ̸=iAj and S−i=Πj ̸=iSj .

4 MARL with Personalized Expert Demonstrations

Now, we are ready to present the main problem we are interested in solving in this work. Assume each agent
i is associated with a personalized task Ti. We collect one set of expert demonstrations for each agent i
or, equivalently, each personalized task Ti. By letting an expert user perform each personalized task in the
respective personalized MDP, we obtain a collection of expert demonstrations denoted by {BE1 , BE2 , ..., BEN

}.
We assume that the underlying expert policy associated with BEi

is πEi
(ai|si), and λπEi is the occupancy

measure following the expert’s policy πEi
for agent i. Note that while we establish the problem formulation

and develop our algorithm in a fully observable setting, the experiments are conducted in both fully and
partially observable settings, encompassing both discrete and continuous environments (details in Section 5).
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Figure 3: When joint demonstrations are sampled from co-trained policies, the agents’ behaviors exhibit
compatibility. In contrast, personalized demonstrations solely focus on how each agent achieves its individual
goal and lack cooperative elements, potentially leading to conflicts.

4.1 Formulating Personalized Expert-Guided MARL

In standard Multi-Agent Reinforcement Learning, agents aim to discover optimal joint policies that maximize
the long-term return R(πθ) := ⟨λπθ , r⟩ = 1

N

∑N
i=1⟨λπθ

i , r⟩. Typically, the learning process commences with
random exploration, which is often inefficient due to MARL’s exponentially growing exploration spaces,
especially when rewards are sparse. Beginning with the intuition of leveraging personalized demonstrations as
guidance for how each agent should accomplish their personalized tasks to promote more effective exploration,
akin to Kang et al. (2018) for single-agent cases, we can define the objective for learning from personalized
demonstrations in multi-agent settings as follows:

max
θ∈Θ

1
N

N∑
i=1

(
⟨λπθ

i , r⟩ − ηDJS
(
λπθ

i || λπEi

))
, (4)

Succeed

Fail

Personalized Demonstration

Imitate in multi-agent Env

Figure 4: A motivating example illustrating
the imitation of personalized demonstrations
in a multi-agent environment. The primary
technical challenge lies in the discrepancy
between the transition dynamics in the per-
sonalized MDP and the local transition dy-
namics for each agent in the multi-agent
environment.

where η is a weighting term balancing the long-term reward
and the personalized policy similarity. The Jensen-Shannon
(JS) Divergence terms enable individual agents to align their
actions with their respective personalized demonstrations and
facilitate the achievement of their specific objectives.

However, only imitating the personalized demonstration may
not always yield favorable outcomes and can even impede the
learning process. Previous works in MARL have predominantly
utilized joint demonstrations as guidance. As demonstrated by
DM2 (Wang et al. (2023)), trajectories must be sampled from a
co-trained joint expert policy for their joint action-matching ob-
jective to converge. The crucial aspect that jointly coordinated
demonstrations offer, which personalized demonstrations lack,
is compatibility. To illustrate, consider the example depicted
in Figure 3, where two agents aim to swap positions without
entering the danger region. Two sets of optimal joint policies
exist for this task: agent a takes path 1 and agent b takes path
2, or vice versa. When sampling joint demonstrations from a
set of co-trained policies, the agents’ behaviors will be naturally
compatible. In contrast, if personalized demonstrations were
provided, agents could indifferently choose between both paths
to reach their goals, potentially resulting in conflicting strategies
through naive imitation.

Hence, we pose the following question: How can we leverage
the benefits of using personalized demonstrations to enhance
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exploration efficiency while circumventing the imitation of conflicting behaviors that might hinder joint-policy
training?

Consider the scenario depicted in Figure 4, where the blue agent seeks to replicate its personalized demon-
stration within a multi-agent environment. The blue agent can successfully transition to the neighboring
grid on the right if it’s unoccupied; otherwise, the transition fails. Viewing the blue agent as the focal agent
and the green agent as part of the environment, successful imitation hinges on the agent’s “local transition”
matching those of the environment where the personalized demonstrations originated. We define P (s′

i|si, ai)
as an approximation for the i-th agent’s local transition probability in the multi-agent environment, which is
governed by the true transition dynamics P (s′|s, a) and the policy πθ. With this insight, we further refine
the objective function as follows:

max
θ∈Θ

1
N

N∑
i=1

(
⟨λπθ

i , r⟩ − ηDJS

(
λ̂πθ

i || λ̂πEi

))
, (5)

where λ̂πθ
i and λ̂πEi have the same definition as the original λπθ

i and λπEi but with a restricted domain:

domλ̂
πθ
i

= domλ̂
πEi = {(si, ai) ∈ Si × Ai|DJS

(
Pi(s′

i|si, ai) || Qi(s′
i|si, ai)

)
≤ ϵ}. (6)

where Q(s′
i|si, ai) represents the true transition dynamics of the personalized MDP from which demonstrations

are collected, and ϵ is a threshold parameter that theoretically controls transition mismatch tolerance. By
adjusting the learning objective in this manner, the occupancy matching only happens on those local
state-action pairs that guide us toward the desired next local state under the current policy.

4.2 Solving Personalized Expert-Guided MARL

Now, we can begin the development of a practical algorithm. By adopting Theorem 2 from Kang et al. (2018),
we can substitute the JS divergence between occupancy measures with

DJS
(
λπθ

i || λπEi

)
≈ sup

Di

(
Eπθ

[log(1 − Di(si, ai))] + EπEi
[log(Di(si, ai))]

)
, (7)

where D(si, ai) : Si × Ai → (0, 1) is a discriminative classifier to discern if the (si, ai) pair is from the
demonstration or the current policy. However, this doesn’t account for the constraint in equation 6. Therefore,
by introducing an indicator function 1(si, ai) for whether (si, ai) belongs to the domain of λ̂πθ

i and λ̂πEi , we
can obtain

DJS

(
λ̂πθ

i || λ̂πEi

)
≈ sup

Di

(
Eπθ

[
1(si, ai) · log(1 − Di(si, ai))

]
+ EπEi

[
1(si, ai) · log(Di(si, ai))

])
. (8)

Since direct access to the transition distributions is unavailable, verifying whether each (si, ai) pair is within
the domain is not directly feasible. To address this, we further approximate the indicator function using
another discriminative classifier Di(si, ai, s′

i) : Si × Ai × Si → (0, 1), estimating the likelihood of a (si, ai, s′
i)

tuple being from the demonstrations. In essence, it quantifies the likelihood that the corresponding (si, ai)
induces a desired change in local state transition as observed in the demonstrations, effectively serving as a
learned proxy for the ϵ-constrained domain in Equation 6.

After approximating the inner JS divergence term in equation 5 with two discriminators, we integrate the
discriminative rewards derived from these discriminators into the environmental reward for the outer problem.
Specifically, we estimate the reshaped reward r̂i as r̂i = r − ηDϕ̄i

(si, ai, s′
i) log(1 − Dϕi

(si, ai)), where ϕi and
ϕ̄i are parameters for the two discriminators. The personalized behavior discriminator Dϕi evaluates local
state-action pairs, providing positive incentives for actions that align with the demonstration and negative
incentives for divergent ones, while the personalized transition discriminator Dϕ̄i

assesses if a local state-action
pair induces a desired transition in local state akin to that observed in the demonstration, adjusting the
incentive weight accordingly. Subsequently, policy optimization is conducted by maximizing the long-term
return with the reshaped reward. Our PegMARL algorithm, detailed in Algorithm 1, is compatible with any
policy gradient methods, with MAPPO (Yu et al. (2021)) adopted in our implementation. While presented in a
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Algorithm 1 Personalized Expert-Guided MARL (PegMARL)
Input: Number of agents N ; environment env; personalized expert trajectories BE1 , ..., BEN

; batch size M ;
weight parameters {ηk}.
Initialize: Policies {πθi

}, discriminators {Dϕi
} and {Dϕ̄i

}, where i = 1, 2, ..., N .
Output: Learned policies {πθi

}.
1: for iteration k = 0, 1, 2, ... do
2: Gather trajectories of multi-agent rollouts from env, Bk = ROLLOUT (π, env).
3: for agent i = 0, 1, ..., N − 1 do
4: Sample M tuples of (si, ai, s′

i) from demonstration BEi and Bk;
5: Update personalized behavior discriminator Dϕi :

max
ϕi

(
EBk

[
log(1 − Dϕi

(si, ai))
]

+ EBEi

[
log Dϕi

(si, ai)
])

. (9)

6: Update personalized transition discriminator Dϕ̄i
:

max
ϕ̄i

(
EBk

[
log(1 − Dϕ̄i

(si, ai, s′
i))
]

+ EBEi

[
log Dϕ̄i

(si, ai, s′
i)
])

. (10)

7: Estimate the reshaped reward as r̂k
i = r − ηkDϕ̄i

(si, ai, s′
i) log(1 − Dϕi

(si, ai)).
8: Update agent policy πθi

.
9: end for

10: end for

fully observable setting, PegMARL can be adapted for partially observable scenarios. In such cases, we process
observations from joint environment rollouts by removing dimensions not observable in the Personalized
MDP for discriminators inputs. Notably, PegMARL can also utilize joint demonstrations; in this case, the
observation processing step is unnecessary as both demonstrations and environment rollouts are derived
from the same joint MDP. Compared to DM2 (Wang et al., 2023), which also uses a discriminator-based
approach for multi-agent learning from demonstrations, PegMARL introduces the personalized transition
discriminator Dϕ̄i

as a key innovation. This additional discriminator helps address the challenge illustrated
in Figure 3 by evaluating whether local state-action pairs induce desired transitions similar to those in the
demonstrations, effectively filtering out less desirable actions while retaining beneficial ones. This component
enables PegMARL to handle both personalized demonstrations and joint demonstrations from various sources,
including those sampled from non-co-trained policies, while DM2 requires demonstrations from co-trained
policies to achieve convergence.

5 Experiments

In this section, we empirically evaluate the performance of PegMARL, focusing on the following questions:
(1) How does PegMARL, which leverages personalized demonstrations, compare to state-of-the-art MARL
techniques? (2) How does PegMARL scale with an increasing number of agents and in the case of continuous
state-action spaces? (3) How does the sub-optimality of personalized expert demonstrations affect the
performance of PegMARL? and (4) How does PegMARL perform when trained with joint demonstrations
sampled from co-trained or non-co-trained expert policies?

5.1 Main Results with Personalized Demonstrations

We evaluate PegMARL with personalized demonstrations on discrete gridworld environments (Figure 5)
and a continuous multi-agent particle environment (MPE, Figure 8a). The gridworld environment is fully
observable with discrete state and action spaces, while the MPE is partially observable with a continuous
state space and discrete action space. Both environments feature sparse reward signals, which adds to the
challenge for standard MARL algorithms to learn effectively.
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Our comparison includes four strong baselines: MAPPO (Yu et al. (2021)), a leading decentralized MARL
algorithm; MAGAIL (Song et al. (2018)), a state-of-the-art multi-agent imitation learning algorithm; DM2

(Wang et al. (2023)), which combines distribution matching reward with environmental reward; and ATA
(She et al. (2022)), one of the best multi-agent reward-shaping methods. Notably, MAGAIL and DM2 were
not originally designed for personalized demonstrations. Hence, we have adapted them for use in personalized
demonstration settings through necessary modifications. Specifically, we processed the observations from joint
environment rollouts by removing dimensions not observable in the Personalized MDP, similar to our approach
in PegMARL. This adjustment ensures that the inputs to their respective discriminators are compatible with
the personalized demonstration data. In this context, MAGAIL serves as an ablation of PegMARL lacking
the environmental signal and transition discriminator, while DM2 represents an ablation lacking only the
transition discriminator. Details on algorithm implementation and hyperparameter choices can be found in
Appendix C.

For each scenario, we collect two sets of personalized demonstrations for each agent: optimal and suboptimal,
by training single-agent RL in simplified environments that focus on each agent’s specific tasks. The average
episodic rewards of suboptimal demonstrations are approximately half of their optimal counterparts (more
details can be found in Appendix B). We execute each method in every environment with 10 distinct random
initializations and plot the mean and variance across all runs. Oracle denotes the best possible return
achievable with optimal policies.

How does PegMARL scale with an increasing number of agents? The lava scenario (Figure 5a)
contains three variations, each involving different quantities of agents and escalating levels of complexity.
The agents receive a positive reward only upon reaching the goal, incur penalties for collisions, and instantly
die and terminate the episodes if they step into the lava, making learning in this environment challenging. As
we observe from Figure 6, MAPPO struggles to develop meaningful behavior across all scenarios due to the
sparse reward structure. MAGAIL performs worse, primarily due to the absence of environmental reward
signals. The naive imitation of personalized agent demonstrations leads to frequent collisions among agents.
While ATA can learn suboptimal policies in the 2-agent setting, its learning efficacy declines drastically as the
number of agents increases. This underscores the challenges of training as the complexity of the multi-agent
environment increases.

In contrast, PegMARL demonstrates superior generalizability across scenarios with more agents, maintaining
stable performance despite suboptimal demonstrations. As DM2 has been adapted to accommodate person-
alized demonstrations, it closely resembles PegMARL but lacks the personalized transition discriminator
component. As the number of agents increases, we would expect the space of possible interactions among
agents to expand, and therefore for the personal demonstrations to be potentially misleading. Consequently,
DM2 experiences a decrease in convergence speed as the number of agents increases. This highlights the
importance of the personalized transition discriminator in PegMARL, enabling effective handling of inter-agent
interactions in personalized demonstration scenarios, thereby ensuring its efficacy across varying agent counts.

2 agents 3 agents 4 agents

(a) The lava scenario: the agents are homogeneous,
aiming to reach corresponding diagonal positions with-
out entering the lava. The episode ends if any agent
steps into the lava.

easy hard

(b) The door scenario: the agents are heterogeneous,
the assistant agent (green) must reach the green square
and remain there to hold the door open, allowing the
other agent (red) to reach the goal.

Figure 5: The discrete gridworld environments. Circles indicate the starting locations of the agents, while
squares of the same color denote their respective goal locations. More details can be found in Appendix A.1.
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Figure 6: Learning curves of PegMARL versus other baseline methods under the lava scenario. PegMARL
converges to higher rewards and generalizes better to larger numbers of agents. The star symbols (*) in the
legend indicate that suboptimal personalized demonstrations are adopted.
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Figure 7: Learning curves of PegMARL versus other baseline methods under the door scenario. PegMARL
shows better robustness in terms of convergence and generalizability.

How does PegMARL perform under the heterogeneous setting? The door scenario (Figure 5b)
contains two variants with varying levels of difficulty. The easy case is fairly straightforward: success should
be achievable by adhering to personalized demonstrations, which illustrate how each agent navigates to their
respective goal locations. As shown in Figure 7, most algorithms, except for MAGAIL, showcase proficient
performance. Notably, PegMARL exhibits the swiftest convergence. We attribute MAGAIL’s failure in this
case to its inability to direct the green agent to remain positioned at the green square — a behavior not
explicitly demonstrated. This underscores the importance of environmental reward signals when integrating
personalized demonstrations into multi-agent learning paradigms. The hard case necessitates a higher degree
of agent cooperation: once the red agent gains entry to the middle room, the green agent must move aside
from the green square to enable the red agent’s passage into the right room. In this complex setting, only
PegMARL and DM2 demonstrate commendable convergence. PegMARL, equipped with the personalized
transition discriminator, maintains faster convergence compared to DM2.

How does PegMARL perform in the continuous setting? We modified the cooperative navigation
task from the multi-agent particle environment (Lowe et al. (2017); Mordatch & Abbeel (2017)) to evaluate
the performance of our algorithm in a continuous environment (more details can be found in Appendix A.2).
Figure 8b demonstrates the learning curves of PegMARL versus MAPPO and DM2. This validates the ability
of PegMARL in continuous environments.

5.2 Results with Joint Demonstrations

While PegMARL is primarily designed to leverage personalized demonstrations, it can also be extended to
utilize joint demonstrations. Unlike other MARL algorithms like DM2 (Wang et al. (2023)) that require
compatible joint demonstrations sampled from co-trained policies to achieve convergence, PegMARL has
the flexibility to utilize joint demonstrations even from non-co-trained policies, which potentially contain
conflicting behaviors. To demonstrate, we conduct comparative experiments within the StarCraft Multi-Agent
Challenge (SMAC) environment (Samvelyan et al. (2019)). We adopted DM2’s original implementation and
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(a) The modified cooperative navigation scenario: the
agents need to navigate around the wall to occupy
both landmarks.
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(b) Learning curves of PegMARL versus MAPPO
and DM2 under the modified cooperative navigation
scenario

Figure 8: (a) The modified cooperative navigation scenario. (b) The learning curves demonstrate that
PegMARL is effective in continuous environments.

parameters for accurate results replication. We employed the same two tasks that were used in DM2: 5mv6m,
which involves 5 Marines (allies) against 6 Marines (enemies), and 3sv4z, which features 3 Stalkers (allies)
versus 4 Zealots (enemies). The win rates of the demonstrations in both cases are approximately 30%.
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Figure 9: Learning curves of PegMARL versus DM2 in two tasks under the SMAC scenarios. The suffix
“diff” in the legend indicates that the joint demonstrations used are sampled from non-co-trained policies.
Otherwise, the demonstrations are sampled from co-trained policies.

How does PegMARL scale with joint demonstrations? Figure 9 presents the learning curves of
PegMARL alongside the DM2 baseline in both the 5mv6m and 3sv4z configurations within the SMAC
environment. When the joint demonstrations are sampled from co-trained policies, PegMARL achieves a
comparable, and in some cases even higher, success rate compared to DM2 in both tasks.

When the joint demonstrations are sampled from policies that are non-co-trained, the success rate of
DM2 exhibits a significant decline in both tasks. In the 5mv6m task, DM2’s success rate drops to nearly
0, indicating a failure to learn. In contrast, PegMARL maintains a similar level of performance compared
to results from co-trained demonstrations, with only a slight decrease in convergence speed. These findings
underscore the versatility and effectiveness of PegMARL in scenarios requiring collaboration among diverse
agents, demonstrating its applicability and robustness across various multi-agent scenarios and demonstration
types.

6 Conclusions

In this work, we introduce PegMARL, a novel approach for Multi-Agent Reinforcement Learning, which adopts
personalized expert demonstrations as guidance and allows agents to learn to cooperate. Specifically, the

10



Under review as submission to TMLR

algorithm utilizes two discriminators to dynamically reshape the reward function: one provides incentives to
encourage the alignment between the policy behavior with provided demonstrations, and the other regulates
incentives based on whether the behavior leads to the desired objective. We demonstrate PegMARL’s
effectiveness, scalability, and robustness in both discrete and continuous environments, where it outperforms
state-of-the-art decentralized MARL algorithms, pure imitation learning, and reward-shaping techniques. We
observe that PegMARL can achieve near-optimal policies even with suboptimal demonstrations. Furthermore,
We showcase PegMARL’s capability to leverage joint demonstrations and converge successfully, regardless of
whether they are sampled from co-trained or non-co-trained policies.

Applicability and Limitations: PegMARL is most applicable when: a) The task allows for some degree
of independent decision-making, allowing individual agent behaviors to be isolated and demonstrated,
even if only partially. b) The environment provides feedback on cooperative behaviors, enabling agents
to learn coordination beyond individual demonstrations. For example, in the door scenario, agents gain
exploration guidance for door operation and navigation from personalized demonstrations. At the same time,
environmental feedback on joint success drives them to learn coordination about timing and positioning
(e.g., the green agent learning to make way for the red agent). Similarly, in the lava scenario, personalized
demonstrations provide guidance for lava-avoiding paths. Still, environmental penalties for collisions and
rewards for collective goal achievement encourage the emergence of cooperative navigation strategies.

However, PegMARL may face challenges in tasks requiring continuous, seamless collaboration among agents,
such as cooperative object lifting and relocation by multiple agents. In these scenarios, where constant,
integrated teamwork is crucial, the reliance on personalized demonstrations may not provide sufficient guidance
for complex, ongoing coordination. Despite this, PegMARL’s capability to utilize joint demonstrations from
diverse sources, including non-co-trained policies, suggests the potential for addressing this limitation. It
would be interesting future work to explore PegMARL’s capabilities to handle more intricate and continuously
collaborative tasks.

Another limitation of our work is the absence of formal convergence guarantees. While DM2 establishes
convergence for individual agents optimizing distribution matching objectives, our approach introduces addi-
tional complexity through the transition discriminator’s dynamic adjustment of demonstration influence. The
interplay between the dual discriminators and multi-agent dynamics poses challenges for theoretical analysis,
particularly since the joint distribution cannot be directly recovered from individual agent demonstrations in
our setting. While our extensive empirical results demonstrate robust convergence across diverse scenarios,
establishing theoretical convergence guarantees remains an interesting direction for future work.
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A Environment Details

A.1 Discrete Gridworld Environments

We use two gridworld environments with discrete state and action space: the lava scenario and the door
scenario (Figure 5). The agents in the lava scenario are homogeneous because they have the same objective:
navigating to their corresponding goal location. The door scenario has heterogeneous agents: the assistant
agent (green) must open the door while the other agent (red) must reach the goal.

• The lava scenario: This environment has a 6-by-6 lava pond in the center (Figure 5a). We provide three
variations of this scenario, each with varying numbers of agents and increasing levels of complexity. The
main goal for the agents is to efficiently navigate to their assigned goal locations while avoiding stepping
into the lava. An episode terminates when all agents reach their respective goals (succeed), or if any agents
step into the lava or the maximum episode length is reached (fail).

• The door scenario: This environment is adapted from Franzmeyer et al. (2022) (see Figure 5b). In this
scenario, the green agent must navigate to a designated green square and maintain its presence there to
sustain the open state of the green door, thereby enabling the entry of a red agent into the right side room.
An episode ends when the red agent reaches the red goal location (succeed) or the maximum episode
length is reached (fail).

Each agent’s local state space is its {x, y} coordinates in the map. We concatenate all the local states together
to form the global state and assume all agents have access to the global state, which has a dimension of Rn×2

(n is the agent number). The local action space includes five actions: left, right, up, down, and stay. A sparse
reward is granted when an episode succeeds, while a small penalty will be subtracted according to the steps
taken (10 − step_count/max_step). Agents will receive a penalty of −1 if they collide with each other.

A.2 Cooperative Navigation

We modified the cooperative navigation task of multi-agent particle environment Lowe et al. (2017); Mordatch
& Abbeel (2017) to evaluate the performance of our algorithm in a continuous environment. The modified
environment consists of 2 agents, 2 goal landmarks and 1 wall between the agents and the goals. The agents
need to navigate around the wall to occupy both landmarks. Each agent has a partial observation of the
environment, including its position and velocity as well as the relative positions of other agents and landmarks.
The action space is discrete, consisting of moving left, right, up, down, and staying in place. We sparsify
their original reward as follows:

r =
∑
a∈A

min(0.3, min
g∈G

d(a, g)) +
∑
g∈G

min(0.3, min
a∈A

d(a, g)). (11)

A.3 The SMAC Environment

The StarCraft Multi-Agent Challenge (SMAC) (Samvelyan et al. (2019)) is an environment specifically
designed for evaluating multi-agent reinforcement learning (MARL) algorithms. Built on the StarCraft II
game, SMAC presents a variety of challenging scenarios where multiple agents must collaborate to control
individual units in combat. Each agent has partial observation of its surroundings within a certain sight
range. The action space is discrete, including move[direction], attack[enemy_id], stop, and no-op. A global
reward is given at each timestep based on the total damage dealt to the enemy units, with an additional
bonus of 10 or 200 awarded for killing each enemy unit or for winning a combat respectively. We consider the
same two tasks as used in DM2 (Wang et al. (2023)):

• 5m_vs_6m: The allied team consists of 5 Marines and the enemy team controls 6 Marines.
• 3s_vs_4z: The allied team controls 3 stalker units and faces 4 enemy Zealot units.
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B Demonstration Details

B.1 Personalized Demonstrations

We let each individual agent perform their designated task in the same environment map without the other
agents’ presence to collect personalized demonstrations. This can be implemented through two main methods:
a) recording expert human demonstrations for each agent type, and b) training single-agent RL in simplified
environments that focus on their specific tasks. In our experiments, we adopted the latter option. It takes
about 2 hours to train a single-agent PPO for each personalized task.

Discrete Gridworld Environments: Figure 10 shows an example of personalized demonstrations for the
lava scenario, and Figure 2 visualizes the personalized demonstrations for the door scenario. We summarize
the details of the suboptimal demonstrations for the gridworld environment in Table 1, where the average
episodic rewards are approximately 4.5, about half of their optimal counterparts.

Start

Goal

Figure 10: An example of person-
alized demonstrations for the lava
scenario (we did not visualize all
the optimal paths). There is only
one agent in the environment. The
agent may take both the left and
the right path toward the goal.

Agent Id S A Samples Average Episodic Reward
1 R2 5 300 4.42
2 R2 5 440 4.79
3 R2 5 344 4.3
4 R2 5 360 4.41

(a) The lava scenario
Case Agent S A Samples Average Episodic Reward

easy red R2 5 643 4.01
green R2 5 612 4.39

hard red R2 5 607 4.34
green R2 5 593 4.36

(b) The door scenario

Table 1: The details of suboptimal demonstrations for the gridworld
environment.

We provide visual representations of the policy and state occupancy measure corresponding to suboptimal
demonstrations in Figure 11 for the lava scenarios and in Figure 12 for the door scenario. The red square
symbolizes the agent’s initial position in these visualizations, while the green square designates its respective
goal location. Arrows within the figures denote available actions at each state, with arrow length indicating
the probability associated with each action.

Figure 13: An illustration of person-
alized demonstrations for the coopera-
tive navigation task. There is only one
agent in the environment. The agent’s
objective is to reach one of the two
goal locations.

Cooperative Navigation: For the cooperative navigation task from
the multi-agent particle environment (Lowe et al. (2017); Mordatch
& Abbeel (2017)), the collaborative goal is for the two agents to cover
both goals, regardless of which agent covers which goal. Therefore,
we design the personalized task such that a single agent covers either
of the two goals without the other agent’s presence. An illustration
of personalized demonstration for this task is shown in Figure 13.

B.2 Joint Demonstrations

The SMAC Environment: Regarding the joint demonstrations
utilized in the SMAC environment (Samvelyan et al. (2019)), we
adopted the demonstrations provided by the authors of DM2 (Wang
et al. (2023)). For joint demonstrations sampled from co-trained
policies, they are derived from jointly trained expert policies that
achieve approximately a 30% win rate. For joint demonstrations
sampled from non-co-trained policies, they are obtained from expert
policies that were trained independently in separate teams but executed together in the same environment.
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(a) Agent 1 (b) Agent 2

(c) Agent 3 (d) Agent 4

Figure 11: Agent policies and state occupancy measures estimated from the suboptimal demonstrations for
the lava scenario.

(a) The easy case (b) The hard case

Figure 12: Agent policies and state occupancy measures estimated from the suboptimal demonstrations for
the door scenario. The top row is for the red agent, and the bottom row is for the green agent.
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C Network architecture and hyperparameters

C.1 Training with Personalized Demonstrations

The algorithms are implemented based on MAPPO (Yu et al. (2021)), with each agent having separate
policy and critic networks, discriminators, and optimizers. Both the policy and critic networks are two-layer
MLPs with a hidden dimension of 64 and Tanh activation. The discriminators, including the personalized
behavior discriminator and the personalized transition discriminator, are three-layer MLPs with a hidden
dimension of 64 and Tanh activation. The personalized behavior discriminator takes (si, ai) as input, while
the personalized transition discriminator takes (si, ai, s′

i) as input.

In partially observable settings, let’s assume that the agent’s observation in the multi-agent MDP is denoted
as oi ∈ Oi, while in the PerMDP, it is denoted as o′

i ∈ O′
i . Since the PerMDP involves a single agent and the

multi-agent MDP involves multiple agents, the observation space for each agent cannot be the same in these
two settings. For experiments on cooperative navigation, we use a heuristic function to convert oi by removing
the dimensions that is not within the observation space O′

i before passing them to the discriminators.

All baseline algorithms, except ATA, use the same codebase we implemented. MAGAIL is trained with
the personalized behavior discriminator but does not use the environmental reward. DM2 uses both the
environmental reward and the personalized behavior discriminator. PegMARL utilizes the environmental
reward, the personalized behavior discriminator, and the personalized transition discriminator. ATA’s original
implementation is adopted for comparison. We summarized the common hyperparameters used for PegMARL,
DM2 and MAGAIL in Table 2. The gail rew coef in DM2 is set to be 0.02 for all the gridworld scenarios and
0.1 for the cooperative navigation task. The η coefficient in PegMARL is 0.05 for all the gridworld scenarios
and 0.2 for the cooperative navigation task.

epochs 4
buffer size 4096
clip 0.2
lr 0.0001

Table 2: MAPPO Hyperparamters

C.2 Training with Joint Demonstrations

We implement PegMARL based on the original DM2’s codebase to conduct experiments in the SMAC
environment, augmenting it with our personalized transition discriminator. The hyperparameters for IPPO
and GAIL were set to be identical to those used in DM2, as shown in Table 3 and 4. PegMARL adopted the
same hyperparameters as DM2.

5v6 3sv4z
epochs 10 15
buffer size 1024 1024
gain 0.01 0.01
clip 0.05 0.2

Table 3: DM2’s IPPO Hyperparameters

5v6 3sv4z
gail rew coef 0.3 0.05
discr epochs 120 120
buffer size 1024 1024
batch size 64 64
n exp eps 1000 1000

Table 4: DM2’s GAIL Hyperparameters

C.3 The influence of the weighting term η

In our experiments, we chose η through a grid search to optimize performance. Interestingly, we found
that PegMARL is relatively insensitive to η, which we attribute to the dynamic weighting provided by the
personalized transition discriminator. This discriminator adaptively adjusts the influence of demonstration
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Figure 14: Ablation study over the weighting term η on the lava environment using optimal personalized
demonstrations.
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Figure 15: Ablation study over the weighting term η on the 5m_vs_6m SMAC map. Left: results using joint
demonstrations sampled from co-trained policies; Right: results using joint demonstrations sampled from
non-co-trained policies.

alignment based on the likelihood of local state-action pairs leading to desired outcomes, thereby mitigating
the impact of suboptimal η values.

D Additional Visualizations

We additionally depict the state visitation frequencies of the joint policies learned by PegMARL with
suboptimal demonstrations and MAPPO for both the lava (Figure 16) and the door scenario (Figure 17).

PegMARL MAPPO

(a) 2-agent case

PegMARL MAPPO

(b) 3-agent case

PegMARL MAPPO

(c) 4-agent case

Figure 16: State visitation frequency of the joint policies learned by PegMARL (with suboptimal demonstra-
tions) and MAPPO for the lava scenario. The darker color means a higher value. MAPPO failed to learn
any meaningful policies in all three settings.
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PegMARL MAPPO

(a) The easy case

PegMARL MAPPO

(b) The hard case

Figure 17: State visitation frequency of the joint policies learned by PegMARL (with suboptimal demonstra-
tions) and MAPPO for the door scenario. The darker color means a higher value. MAPPO converges to a
suboptimal policy in the easy case, while failing to learn in the hard case.

E Derivation of Equation (7) Following Kang et al. (2018)

We provide the derivation of Equation (7) following the proof of Theorem 2 in Kang et al. (2018). Let
f(v) = v log(v) − (v + 1) log(v + 1), and f∗(t) = supv∈domf

{vt − f(v)} be the conjugate function. We can see
that f(v) is a continuous and convex function. We thus can rewrite f using its convex conjugate function f∗:

f(v) = f∗∗(v) = sup
t∈domf∗

{tv − f∗(t)}. (12)

Substituting f∗∗ into DJS(λπθ
i , λπEi ), we have

DJS(λπθ
i , λπEi ) ≜

∫
S×A

λπθ
i log 2λπθ

i

λπθ
i + λπEi

+ λπEi log 2λπEi

λπθ
i + λπEi

ds da

=
∫

S×A

λπθ
i log λπθ

i

λπθ
i + λπEi

+ λπEi log λπEi

λπθ
i + λπEi

ds da + log 4

=
∫

S×A

λπθ
i f

(
λπEi

λπθ
i

)
ds da + log 4

=
∫

S×A

λπθ
i sup

t∈domf∗

{
t
λπEi

λπθ
i

− f∗(t)
}

ds da + log 4

≥ sup
T ∈T

(∫
S×A

λπEi T (s, a) − λπθ
i f∗(T (s, a)) ds da

)
+ log 4

= sup
T ∈T

(
E(s,a)∼λ

πEi [T (s, a)] + E(s,a)∼λ
πθ
i

[−f∗(T (s, a))]
)

+ log 4. (13)

where the inequality in the second last line is achieved by applying the Jensen’s inequality and replacing t by
T (s, a) which is a function whose range is equal to domf∗ .
First, we have

f∗(t) = sup
v∈domf

{vt − f(v)}

= sup
v∈domf

{vt − v log(v) + (v + 1) log(v + 1)}. (14)

Consider g(v) = vt − v log(v) + (v + 1) log(v + 1). The supremum of g(v) is at g′ = 0, which leads
to t = log v

v+1 ∈ (−∞, 0) which is domf∗ . Let us define h(u) = log( 1
1+e−u ), h̄(u) = log( e−u

1+e−u ), and
U(s, a) : S × A → R as an arbitrary function. Since U(s, a) ∈ R, h(u) ∈ (−∞, 0), thus T (s, a) can be formed
with h(U(s, a)) which satisfies rangeT = domf∗ .
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Second, we have

−f∗(T (s, a)) = −f∗(h(U(s, a)))

= log(1 − e− log(1+e−U(s,a)))

= log e−U(s,a)

1 + e−U(s,a) = h̄(U(s, a)) (15)

.
Substituting the above into Equation (13) we obtain

DJS(λπθ
i , λπEi ) ≥ sup

U

(
Eλ

πEi [h(U(s, a))] + Eλ
πθ
i

[h̄(U(s, a))]
)

+ log 4. (16)

Denote D(s, a) = 1
1+e−U(s,a) : S ×A → (0, 1) as an discriminative classifier and substitute it into Equation (16),

we obtain Equation (7).
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