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Abstract

Tabular data are omnipresent in various sectors of industries. Neural networks for
tabular data such as TabNet have been proposed to make predictions while leverag-
ing the attention mechanism for interpretability. We find that the inferred attention
masks on high-dimensional data are often dense, hindering interpretability. To rem-
edy this, we propose the InterpreTabNet, a variant of the TabNet model that models
the attention mechanism as a latent variable sampled from a Gumbel-Softmax
distribution. This enables us to regularize the model to learn distinct concepts in the
attention masks via a KL Divergence regularizer. It prevents overlapping feature
selection which maximizes the model’s efficacy and improves interpretability. To
automate the interpretation of the features from our model, we employ GPT-4
and use prompt engineering to map from the learned feature mask onto natural
language text describing the learned signal. Through comprehensive experiments
on real-world datasets, we demonstrate that our InterpreTabNet Model outper-
forms previous methods for learning from tabular data while attaining competitive
accuracy and interpretability.

1 Introduction

The primary objective of our paper is to enhance the interpretability and accuracy of machine learning
models applied to tabular data. We introduce InterpreTabNet, a neural network architecture that
extracts actionable insights from tabular data while maintaining high accuracy in classification tasks.

The utility of this endeavor is underscored by the multifaceted applications of tabular data across
diverse industries such as healthcare [Clore and Strack, 2014] and finance [Moro and Cortez, 2012],
where the translation of data into intelligible insights is paramount. In complex, data-driven environ-
ments, the utility of a machine learning model is markedly amplified when it combines predictive
accuracy with interpretability. This amalgamation facilitates informed, strategic decision-making,
emphasizing the necessity for models that are as explanatory as they are accurate for practitioners.

Despite commendable advancements made by existing models such as TabNet [Arik and Pfister,
2020], there remains a discernible gap in achieving a harmonious integration of accuracy and
interpretability. TabNet’s ability to generate learnable mask for soft salient feature selection is
limited as its interpretation is ambiguous. The considerable overlap between multiple masks makes
it challenging for a user to discern the salient features used by the model for reasoning at each
decision step. Other interpretability metrics such as attention weights [Vaswani et al., 2017] and
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SHAP values [Lundberg and Lee, 2017] have been criticized for their inconsistency in providing
meaningful insights [Roberts et al., 2022] and computational intensity for complex datasets [Jain and
Wallace, 2019].

The premise of our work is that we can map the predictive signal onto a modified variant of the
TabNet neural architecture, enabling us to sparsify the identity of the predictive signal; then, using
tools such as large language models (LLMs) [OpenAI, 2023] we can perform a post-hoc interpretation
of the source of the learned signal.

Our work makes the following contributions:

1. TabNet’s Sparsity Regularizer from [Grandvalet and Bengio, 2004] promotes sparsity in the
form of entropy therefore, it reuses certain features without promoting diverse feature usage.
We devise a regularization scheme that maximizes diversity between masks in the TabNet
architecture. Empirically, under our regularization scheme, the model learns to concentrate
attention around fewer features, reducing the challenges implicit in interpreting the "soft"
salient feature masks generated by TabNet. Furthermore, our method suffers from only a
modest tradeoff between accuracy and interpretability: we find that our approach performs
comparably to (and in most cases, better than) TabNet on a broad suite of benchmark
evaluation tasks.

2. Our regularization scheme relies on maximizing the KL divergence [Kullback and Leibler,
1951] between the distributions from which each TabNet attention mask is implicitly sampled.
Whereas the original TabNet formulation does not explicitly characterize these distributions,
we leverage tools from variational inference to model the attention weights within TabNet as
samples drawn from a Gumbel-Softmax distribution. By reformulating the attention weights
within TabNet as a latent variable model, we can directly control properties of the mask
distributions (such as the KL divergence) using regularized gradient-based optimization.

3. Because our method simplifies the learned importance masks generated under TabNet, one
potential concern is that our method is unable to capture the rich interdependencies between
features that are needed to interpret model predictions in complex settings. We show that
leveraging rich linguistic priors in interpretation by means of a large language model largely
ameliorates these concerns. We demonstrate how language models can relate the learned
feature masks to a world model underlying the LLM [Hao et al., 2023] to form detailed
hypotheses about what is being learned at each step of the TabNet decision-making pipeline.

(a) Original TabNet Model (b) InterpreTabNet (r∗M = 9)

Figure 1: X/Y-axis labels denote the features and test samples for each respective mask. Left (a):
Learned masks associated with TabNet. Observe how, for each example, there exist overlaps in the
attention learned for each mask with no clear salience. This makes the masks challenging to interpret,
as there is no obvious way to reconcile attention that is distributed across multiple masks in this
manner. Right (b): Learned masks associated with InterpreTabNet. Observe how for each example,
there is minimal overlap in the attention learned across different masks with high salience. This
mutual exclusivity of attention across masks makes for easier visual interpretation of the learned
signal that InterpreTabNet leverages in its predictions. More details can be found in Section 4.1.
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2 Related Works

Learning from Tabular Data. Early work on deep learning architecture for tabular data, such as
TabNet, uses a sequential attention mechanism for tabular data analysis [Arik and Pfister, 2020].
Their prominent strength is the capability to outperform other neural networks and decision trees
on tabular datasets while yielding some level of interpretability for feature selections. However,
TabNet’s self-attention transformers’ inability to capture diversifying latent variables can lead to
suboptimal feature selection. To address this limitation, diversity-promoting regularizers and latent
models attempt to solve this problem [Xie et al., 2017] [Xie et al., 2016]. Subsequent work on tabular
data includes Net-DNF [Katzir et al., 2020], SubTab [Ucar et al., 2021], and TabTransformer [Huang
et al., 2020]. Net-DNF [Katzir et al., 2020] introduces an inductive bias that aligns model structures
with disjunctive normal form (DNF) and emphasizes localized decisions. SubTab [Ucar et al., 2021]
transforms tabular data into a multi-view representation learning task, enhancing latent representation.
Furthermore, TabTransformer [Huang et al., 2020] is a deep tabular data modelling architecture built
upon self-attention-based Transformers.

Latent Variable Models. Latent variable models like VAEs [Kingma and Welling, 2022] and their
variations have demonstrated attractive abilities to model complex distributions and produce latent
values. DirVAE has more interpretable latent values with no collapsing issues [Joo et al., 2019], while
the cVAE [Kristiadi, 2016] models latent variables and observed data, both on random variables,
which gain control of the data generation process on the VAE. Additionally, the cVAE also generates
diverse but realistic output representations using stochastic inference [Sohn et al., 2015]. Transformer-
based cVAE demonstrates its excellent representation learning capability and controllability [Fang
et al., 2021]. We draw inspiration from these VAE extensions and incorporate the cVAE into TabNet’s
architecture to capture and reconstruct discrete data.

Recent works in approximate inference for categorical data include Categorical Reparameterization
with Gumbel-Softmax [Jang et al., 2016]. In our paper, we leverage the Gumbel-Softmax distribution
as a key component of our methodology to strike a balance between interpretability and performance.

Model Interpretability. Methods from interpretability aim to surface information about why a
machine learning model is making certain predictions to user. Broadly, there are two families of
methods in model interpretability. Intrinsic interpretability refers to the scenario in which the user
can directly leverage the parameters learned by the model to understand the rationale underlying the
predictions. Linear models [Gauss, 1877], decision trees, Transformers (by means of their learned
attention weights), and TabNet [Arik and Pfister, 2020], are all, to varying degrees, intrinsincally
interpretable methods. In contrast, methods from post-hoc interpretability tackle the scenario in which
the model may be black-box: these methods instead attempt to approximate the decision-making
process underlying the model, which is then surfaced to the user. Methods like SHAP Lundberg
and Lee [2017], LIME Ribeiro et al. [2016], and Grad-CAM [Selvaraju et al., 2017] are methods
for post-hoc interpretability. The central tradeoff between intrinsic and post-hoc interpretability is
this: while an intrinsically interpretable model is (definitionally) faithful to its underlying decision
rule, it may be necessary to make simplifying assumptions in the design of the model. Conversely,
while post-hoc interpretability methods can interpret models of arbitrary complexity, the interpretable
decision rule surfaced by such procedures is only an approximate one Du et al. [2019]. Our approach
draws upon insights from both classes of methods: we leverage tools from variational inference to
improve upon the intrinsic interpretability of TabNet, and we employ a large language model to
provide a richer contextual interpretation of the learned features post-hoc.

3 The InterpreTabNet Model

Let (X,Y )
i.i.d.∼ X × Y represent the covariates and outcome that we want to model, respectively.

As we are operating in the tabular data regime, assume that X ∈ RN×D, where each d ∈ [1, ..., D]
corresponds to a single discrete feature in the data. Then, each x(i), y(i) represents D-vector and
label corresponding to a particular example.3 Let P (·|·) denote true probability density functions,
and Q(·|·) denote variational approximations of those densities.

3Unless otherwise stated, our notation uses uppercase letters to refer to distribution-level quantities, such
as the distribution over the covariates, and lowercase letters to refer to specific samples drawn from those
distributions.
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Figure 2: The InterpreTabNet architecture presents a variational formulation of the TabNet encoder.
In our formulation, the weights of the attention masks produced by the TabNet encoder at each step k
are treated as the parameters, β(i)

0 , ..., β
(i)
D−1, of a Gumbel-Softmax distribution, Λk, unique to each

instance (shown by the red dotted rectangle). This distribution is then sampled to produce a single
feature that is highlighted for each feature at each step (purple dot-dashed rectangle). This figure
shows k = 2 steps of the encoder architecture, over D = 5 features, for N = 3 samples.

3.1 High-Level Approach

The TabNet encoder architecture models the prediction process, P (y |x), as a nonlinear combination
of the covariates, x, and a sequence of k learned attention masks. Feature importance mask mk

depicts the feature selected at the k-th decision step. Each mask, mk, is learned by applying the
TabNet Transformer in the encoder to the covariates and previous attention mask at each step of
a multi-step decision process. Since the nonlinear combination is modeled using a multi-layer
perceptron [Haykin, 1994], inference within TabNet’s encoder can be expressed as:

Pr(y |x) = f (MLP)
ψ

(
K−1∑
k=0

f (TabNet_Transformer)
ψ (x,mk)

)
, (1)

where mk = ∅ if k = 0, and where ψ is a general-purpose variable used to denote the parameters
associated with a given MLP or TabNet Transformer sub-model. Our goal is to construct a version
of this model wherein each mask is treated as a latent variable in a deep generative model. Then
we can learn the model via amortized variational inference by inferring mk using some parametric
distribution Q that admits backpropagation by means of the reparameterization trick. While the
attention masks are represented in a continuous space m(i)

k ∈ RD×N , the prominent features within
these masks exhibit distinct patterns that we treat in a discrete-like manner for our modeling purposes
thus, we will sample these masks from a discrete latent distribution. By specifying the form of the
distribution from which the masks are sampled, we can directly adjust the properties of this latent
variable by regularizing the loss function. Specifically, as our objective is to promote sparsity among
the masks, we will then aim to maximize the KL divergence between learned masks.

In the following sections, we will introduce the Gumbel-Softmax distribution [Jang et al., 2016],
and how we leverage it in our variational formulation of the TabNet encoder. The Gumbel-Softmax
distribution offers a continuous relaxation of discrete variables, such as categorical variables, and
facilitates the reparameterization of categorical latent factors by approximating samples from a
categorical distribution, making it possible to compute gradients during training smoothly.

3.2 Mask Sampling Process

The mask sampling process for our model is the following, where Λ represents a Gumbel-Softmax
distribution.

P (mk|X) ∼ Λk(TabNet_Transformer(X)), k = 0

P (mk|Ŷk, X) ∼ Λk(TabNet_Transformer(Ŷk, X)), ∀k ∈ [1, . . . ,K − 1].
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TabNet’s model does not leverage its feature importance masks to make predictions. Instead, it acts
as a deterministic system by producing its masks directly via its attentive transformer. On the other
hand, since TabNet outputs a feature mask from the first training iteration onwards, we can utilize
these masks in the subsequent iterations as latent variables. These latent variables serve as a rich
source of embedded knowledge, allowing the model to improve its generalizations by acting as a
stochastic process. Furthermore, sampling this latent variable from the Gumbel-Softmax distribution
will act as a crucial component in improving interpretability (details explored in Section 3.4).

Let us represent the collection of all k masks, [m0, ...,mk−1] as a single latent variable, z ∈ RD×k,
drawn from a Gumbel-Softmax distribution (note that TabNet employs ReLU to construct the overall
decision embedding from the samples however, the Gumbel-Softmax does not require this attribute).
Drawing samples z from a categorical distribution with class probabilities π is as follows.

z = one_hot
(
argmax

i
(βi + log πi)

)
where β0, ..., βD−1 are i.i.d samples drawn from the TabNet_Transformer(·) Gumbel(0,1) output.

As observed, the mask sampling process is characterized as a latent variable problem. This necessitates
the implementation of inference techniques for effective learning.

3.3 Generating Predictions with the Conditional Variational Autoencoder

TabNet’s innate encoder-decoder architecture enables us to integrate a cVAE to generate predictions.
To reiterate, Y represents the predicted outcome, z represents the concatenation of all the mk masks
sampled from a Gumbel-Softmax distribution, and X represents the data. Using the aforementioned
problem setup, TabNet’s encoder is now conditioned on two variables, Y and X: Q(z|Y,X).
Similarly, TabNet’s decoder is also conditioned on two variables, z and X: P (Y |z,X). Therefore,
the cVAE’s objective is to model the outcome, P (Y |X) as follows:

∫
P (Y |X, z)P (z|X)dz. To do

so, we need to infer P (z) through P (z|Y ) using Q(z|Y ). This gives us a variational lower bound
objective of the following which we will maximize. The full derivation can be found in Appendix 5.1.

logP (Y |X)−DKL[Q(z|Y,X)||P (z|Y,X)] = E[logP (Y |z,X)]−DKL[Q(z|Y,X)||P (z|X)] (2)

z

Y

X

ϕ

θ

D

Figure 3: Graphical model of InterpreTabNet with D i.i.d samples. Solid lines denote the generative
model pθ(Y |z,X)pθ(z|X), dashed lines denote the variational approximation qϕ(z|X,Y ) to the
intractable posterior pθ(z|X,Y ). The variational parameters ϕ are learned jointly with the generative
model parameters θ.

3.4 Sparsity-Promoting Regularization

In the previous sections, we have modeled the original TabNet as a stochastic cVAE. This provides us
with a setup to leverage the Gumbel-Softmax distributed masks to promote sparsity. The idea is to
encourage diversity between masks for a more even selection of features and better interpretability.
Hence, we can incorporate a KL Divergence Sparsity Regularizer (rM ) in the model architecture.
With the KL Divergence, we aim to maximize the difference between the distribution of masks that
are subsequent to one another. This would reduce the number of selected features, ensuring that the
features selected are independent between masks. Additionally, with a sparser feature selection, the
model can focus on fewer high-salience features. Therefore, the ELBO of the InterpreTabNet model
is as follows with rM as a tunable regularizer weight.
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E[logP (Y |z,X)]−
∑
i

DKL

((
Q (zi|Y,X)

) ∣∣∣∣∣∣∣∣ (P (zi|X)
))

+

rM ·
∑
i ̸=j

DKL

((
Q (zi|Y,X)

) ∣∣∣∣∣∣∣∣ (Q (zj |Y,X)
))

(3)

3.5 Sparsity Regularizer (rM ) Algorithm

To assess the level of interpretability a feature mask provides, we divide it into two set criteria.

1. Number of selected features.

2. "Salience" of each feature.

Within a feature mask, we would like to swiftly identify the features that are of the highest salience
which contributes to its prediction. Thus, our aim is to minimize the number of selected features, and
only select those of the highest salience, while maintaining a competitive accuracy. This would yield
the most interpretable mask.

We propose an adaptive algorithm to optimize our KL Divergence Sparsity Regularizer, rM , for
better interpretability of the feature masks. Our method involves iterative training and evaluation of
the InterpreTabNet model with varying values of rM within a pre-defined range. Simultaneously,
the model’s feature importance masks are analyzed to validate that they meet a set criterion. Upon
fulfilling the criterion a specified number of times, the algorithm terminates. For increased efficiency,
the algorithm also employs a recursive search to narrow down the value range around the current best
rM , thereby reducing computational overhead. The end result is the optimal rM value corresponding
to the most interpretable feature mask and highest classification accuracy, improving the overall
efficacy of our model. The algorithm can be found in Appendix 5.2.

4 Experiments and Discussions

We evaluate the performance of the InterpreTabNet on real-world classification tasks both quantita-
tively and qualitatively.

Datasets The model performance is evaluated on real-world tabular datasets from UCI Machine
Learning Repository[Kelly et al., 2023] and OpenML[Vanschoren et al., 2013]. These datasets were
selected since they were used to evaluate the existing methods (baselines). Additionally, they have
varied size and nature, with both categorical and continuous features to ensure a holistic evaluation of
our methodology across multiple domains and scenarios. The training/validation/testing proportion
of the datasets for each split are 80/10/10% apart from the Higgs dataset. Due to the inherently large
Higgs dataset, we follow TabNet’s method of data split with 500k training samples, 100k validation
samples and 100k testing samples. Details of the datasets can be found in Appendix 5.4.

Baselines We compare our model against five other ML methods for tabular classification. This
includes the Original TabNet, transformer-based tabular model, TabTransformer [Huang et al., 2020],
tree-based boosting methods, XGBoost [Chen and Guestrin, 2016], LightGBM [Ke et al., 2017]
and multi-layer perceptrons [Huang et al., 2020]. For each ML model, we utilize the recommended
hyperparameters mentioned by the authors of their respective papers. Furthermore, we also conduct a
grid search within the range of the recommended hyperparameters to optimize the models, selecting
the best-performing hyperparameter configuration.

4.1 Results

The performance of our method relative to baselines for tabular learning is shown in Table 1.

In the following section, we will be exploring the Adult Census Income dataset [Becker and Kohavi,
1996] to evaluate InterpreTabNet against Original TabNet.

Figure 1 highlights the learned masks associated with InterpreTabNet using a sparsity regularizer
value of rM = 9 (right) compared to those of TabNet (left). The rows of each mask represent
individual data samples, while the columns represent discrete features in the tabular data. Colors
that are brighter indicate features of higher salience. As observed in Figure 1, feature masks of the
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Table 1: Test Accuracy Scores with Optimal Mask Regularizer Values (rM ) across Different Models
and Datasets. Our InterpreTabNet achieved substantial improvements in interpretability across all the
datasets and remains competitive in terms of accuracy in most datasets.

Model / Dataset Adult
Census

Forest
Cover

Poker
Hand

Mushroom Blastchar Diabetes Higgs

InterpreTabNet 87.42 94.75 99.50 96.62 72.96 55.37 53.08
Original TabNet 85.55 94.18 99.00 99.94 76.22 56.91 52.94
TabTransformer 85.09 82.55 99.81 100.00 73.17 44.45 51.97
XGBoost 86.60 92.30 75.57 99.69 77.29 61.44 72.70
LightGBM 86.20 86.38 78.47 100.00 77.86 60.87 72.62
MLP 79.76 84.89 99.70 99.82 75.16 53.99 63.17

Original TabNet are more difficult to interpret since each mask may highlight multiple features for a
given data sample. On the contrary, our InterpreTabNet model highlights mutually exclusive features
of high importance that are more easily interpretable.

In an ablation study on how varying rM values affect our masks (found in Appendix 5.7), we notice
that at low rM values, test accuracy is high but feature selection diversity is poor and interpretability
is difficult since almost all features are selected in the decision-making process. On the other hand, at
high rM values, the masks are sparse which are easily interpretable but at a cost of accuracy.

In terms of computational efficiency, our model necessitates an additional computation through the
Gumbel-Softmax reparameterization and also requires conditioning on the mask from the previous
time step when compared to TabNet. Nonetheless, this extra step incurs a minimal cost, leading
to a mere several-minute increase in training time. Furthermore, likewise to TabNet, our model
maintains greater computational efficiency compared to other baseline models without necessitating
an extensive search for fine-grained hyperparameters.

4.2 Feature Mask Aggregate Interpretability Analysis using Prompts with LLMs

To perform aggregate analysis on the feature masks, we leverage LLMs such as GPT-4 and design
a prompt to generate an informative explanation of the feature masks. The prompt is constructed
in the order of complexity from the simplest prompt to a complex prompt with more information.
Initially, a basic prompt of "Conduct aggregate analysis on the description of the following feature
mask. (followed by the mask description)". However, as predicted, the output clearly lacks a lot of
information such the ability to analyze the masks by its salient features and a precise output mapping.

In order to generate a precise output mapping, instructions are provided to GPT-4 that the extracted
salient features should be formatted into a dictionary where each mask corresponds to an individual
analysis followed by an aggregate analysis of all masks. Furthermore, a statement to ensure that no
other natural language generation is produced by GPT-4 is added in order to maintain a consistent
output map. Last but not least, GPT-4 is provided with in-context examples to enable prompt tuning
through few-shot learning. This is conducted via 3-fold cross-validation where dataset D1 and D2 is
used as part of prompt for tuning on D3; D2 and D3 as part of prompt for tuning on D1 and so on.
Only a 3-fold CV is conducted since increasing the subsets will decrease GPT-4’s performance as it
is unable to process extremely long sequences of texts.

Overall, this improves the generalization of GPT-4 when extracting salient features from new datasets.
The structure of the designed prompt can be found in Table 2. The full prompts and outputs can be
found in Appendix 5.8 and 5.9 respectively.

4.3 Evaluating the Interpretability of InterpreTabNet against other baselines

Figure 4 illustrates the complex pathways of model interpretation inherent in prominent machine
learning architectures like TabTransformer, XGBoost, and LightGBM. These models, while powerful,
necessitate nuanced or additional tools to render interpretative insights. TabTransformer relies on
attention weights, and both XGBoost and LightGBM are augmented with SHAP values derived from
external SHAP packages to achieve interpretability.
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Table 2: Prompt Structure Design
Section Description

Dataset Description The Adult Census Income dataset is considered...

Mask Description At the 0th step of feature selection, we observe mask 0 with the main features
highlighted as 1, 5, and 7 which are workclass, marital status, and relationship...

In-Context Example 1 The Poker Hand dataset is considered...

In-Context Output 1 Output: {"Mask 0": "Initially, the rank of card 2 is recognized...}

In-Context Example 2 The Forest Cover Type dataset is considered...

In-Context Output 2 Output: {"Mask 0": "The initial feature selection identifies...}

GPT-4 Output {"Mask 0": "This suggests that early in the feature selection process, the model
finds that work-related factors...}

(a) TabTransformer Att. Wgts. (b) XGBoost SHAP (c) LightGBM SHAP

Figure 4: (a), (b), and (c) depict the TabTransformer Attention Weights, XGBoost SHAP analysis,
and LightGBM SHAP analysis for the Adult Census Income Dataset, respectively.

Building upon the foundation laid by the original TabNet, our InterpreTabNet elevates the standard
of intrinsic interpretability. While TabNet is celebrated for its feature selection masks, which offer
real-time insights into feature contributions, the InterpreTabNet refines and enhances this feature,
offering an advanced level of clarity and detail in feature importance interpretation.

The enhanced masks of the InterpreTabNet illuminate feature contributions with heightened clarity,
offering practitioners and stakeholders an unprecedented level of understanding. This improvement fa-
cilitates more informed decision-making, bridging gaps in knowledge and enabling a closer alignment
between model predictions and actionable insights. The immediacy and clarity of these enhanced
masks combined with the feature analysis capabilities of GPT-4 underscore the model’s adaptability
and effectiveness in scenarios demanding rapid, yet deeply insightful, interpretations.

5 Conclusion

We propose an interpretable variant of the TabNet neural network that is as expressive in learning
the distributions of tabular data while enabling an enhanced level of interpretability. This model
is designed by blending a Gumbel-Softmax distribution with a KL divergence sparsity regularizer
between the attention-based feature masks to create a sparse and semantically meaningful decomposi-
tion of the predictive signal. Relative to TabNet, our model outputs more interpretable feature masks
while maintaining its competitive accuracy across all baselines for most datasets. The salient features
from our masks are channelled into GPT-4 via a carefully engineered prompt that outputs an analysis
of the features. For practitioners, the InterpreTabNet stands as a practical toolkit for understanding
where predictive signal from tabular data comes from. It bridges the often challenging gap between
intricate machine learning outputs and real-world decision-making, ensuring that insights are not just
extracted but are also intuitively understood and readily actionable.
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Appendix

5.1 Proof: cVAE Evidence Lower Bound

DKL[Q(z|Y,X)||P (z|Y,X)] =
∑
z

Q(z|Y,X) log
Q(z|Y,X)

P (z|Y,X)

= E[log
Q(z|Y,X)

P (z|Y,X)
]

= E[logQ(z|Y,X)− logP (z|Y,X)]

using Bayes’ rule

= E[logQ(z|Y,X)− log
P (z, Y,X)

P (Y,X)
]

= E[logQ(z|Y,X)− log
P (Y |z,X)P (z,X)

P (Y,X)
]

= E[logQ(z|Y,X)− log
P (Y |z,X)P (z|X)P (X)

P (Y,X)
]

= E[logQ(z|Y,X)− log
P (Y |z,X)P (z|X)P (X)

P (Y |X)P (X)
]

= E[logQ(z|Y,X)− log
P (Y |z,X)P (z|X)

P (Y |X)
]

= E[logQ(z|Y,X)− (logP (Y |z,X) + logP (z|X)− logP (Y |X))]

= E[logQ(z|Y,X)− logP (Y |z,X)− logP (z|X) + logP (Y |X)]

= E[logQ(z|Y,X)− logP (Y |z,X)− logP (z|X)] + logP (Y |X)

DKL[Q(z|Y,X)||P (z|Y,X)]− logP (Y |X) = E[logQ(z|Y,X)− logP (Y |z,X)− logP (z|X)]

rearranging the sign to rewrite RHS as another KL Divergence
logP (Y |X)−DKL[Q(z|Y,X)||P (z|Y,X)] = E[logP (Y |z,X)− (logQ(z|Y,X)− logP (z|X))]

logP (Y |X)−DKL[Q(z|Y,X)||P (z|Y,X)] = E[logP (Y |z,X)]− E[logQ(z|Y,X)− logP (z|X)]

logP (Y |X)−DKL[Q(z|Y,X)||P (z|Y,X)] = E[logP (Y |z,X)]− E[log
Q(z|Y,X)

P (z|X)
]

logP (Y |X)−DKL[Q(z|Y,X)||P (z|Y,X)] = E[logP (Y |z,X)]−DKL[Q(z|Y,X)||P (z|X)]

which is the cVAE objective function
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5.2 Algorithm: KL Divergence Sparsity Regularizer rM

Algorithm 1 Our proposed algorithm for interpretability optimization. Good default settings for
the tested machine learning problems are α = 0, β = [0, 10000000], δ = [0.20, 0.25], γ = [2, 3]
ϵ = [3, 5]. For β, δ and γ, it would depend on the nature of the dataset. More samples require higher
parameter values.
Require: α: Starting range (start)
Require: β: Ending range (end)
Require: δ: Percentage of feature importance captured by one feature in each feature mask (col_threshold_val)
Require: γ: Number of columns that satisfies δ in each feature mask (col_threshold)
Require: ι: Number of complete-feature masks that passes the algorithm’s feature selection criteria

(all_mask_pass)
Require: ϵ: Threshold for the number of complete-feature masks that passes the algorithm’s feature selection

criteria (all_mask_pass_thresh)
Require: ζ: Step size computed using a logarithmic scale at high levels (step_size)
Require: θ: Dictionary storing rM -accuracy pairs (reg_m_acc_dict)
Require: λ: Flag for recursion (is_recursive)
Ensure: Optimal regularization parameter r∗M

1: Initialize θ if θ is None.
2: Initialize ι if ι is None.
3: if ι = ϵ then
4: r∗M = argmax(θ)
5: return r∗M
6: end if
7: while α ≤ β and ι < ϵ do
8: Train TabNet, Compute Accuracy and Generate Masks

▷ Inner loop evaluating each feature mask here.
9: if Criteria for updating θ and ι are met then

10: Update θ, ι
11: end if
12: if λ then
13: α = α+ ζ
14: else if α = 0 then
15: α = 10
16: else
17: α∗ = 10
18: end if
19: end while
20: if r∗M is Not None & Length of θ = 1 then
21: Recurse with updated boundaries.
22: else
23: r∗M = argmax(θ)
24: return r∗M
25: end if
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5.3 Reproducibility

Code Release The code for InterpreTabNet and files to reproduce the experiments are available
on GitHub at https://github.com/jacobyokehongsi/InterpreTabNet. The code will be
released once the paper is finalized, and the release aims to ensure the research’s reproducibility.

Availability of Datasets The datasets used in this paper are all freely accessible on OpenML.
OpenML.org and UCI Machine Learning Repository. Download links and additional statistical
details about the datasets can be found in Appendix 5.4 of the paper.

5.4 Additional Dataset Information

We evaluated our model on 7 datasets. These datasets contain 4 binary classification tasks and 3
multi-class classification tasks. We provided statistical details in Table 3, and download links in Table
4. In each of our datasets, we applied label encoding to the categorical features to transform textual
values into numerical representations. Additionally, we introduced a distinct token to handle missing
data within these categorical columns. This uniform preprocessing approach was applied consistently
across all datasets, ensuring compatibility and reliability for subsequent machine learning analyses.

Table 3: Datasets used for evaluation
Dataset Task # Features # Categorical # Instances # Classes # NaNs
Adult Cen-
sus Income

Binary 14 8 32,560 2 0

Forest
Cover Type

Multi-Class 54 44 581,012 7 0

Poker Hand Multi-Class 10 10 1,025,010 10 0
Mushroom Binary 22 22 8,124 2 0
Blastchar Binary 20 17 7,043 2 0
Diabetes Multi-Class 49 39 101,766 3 0
Higgs Binary 28 0 11,000,000 2 0

Table 4: Dataset Links
Dataset Name Dataset Link
Adult Census Income https://archive.ics.uci.edu/dataset/2/adult
Forest Cover Type https://archive.ics.uci.edu/dataset/31/covertype
Poker Hand https://archive.ics.uci.edu/dataset/158/poker+hand
Mushroom https://archive.ics.uci.edu/dataset/73/mushroom
Blastchar https://www.kaggle.com/datasets/blastchar/

telco-customer-churn
Diabetes https://archive.ics.uci.edu/dataset/296/diabetes+

130-us+hospitals+for+years+1999-2008
Higgs https://archive.ics.uci.edu/dataset/280/higgs
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5.5 Hyperparameters Search Space

We provided hyperparameter search spaces for all models in Table 5. For TabTransformer, we used the
same hyperparameter space mentioned in their paper Huang et al. [2020]. XGboost and LightGBM
were designed from scratch and used common hyperparameter choices with suggestions from the
official documentation Chen and Guestrin [2016] Ke et al. [2017]. For MLP, we followed the exact
hyperparameter search space as Huang et al. [2020].

Table 5: Hyperparameter spaces for all models
Model Hyperparameter Space

InterpreTabNet

Nd = Na (output dimension): [16, 32, 128],
Nsteps: [3, 4, 5],
γ: [1.0, 1.2, 1.5, 2.0],
λ: [0.001, 0.01, 0.1, 0.3],
Learning Rate: [0.005, 0.01, 0.02, 0.025],
rM : range from [0, 1,000,000,000,000]

Original TabNet

Nd = Na (output dimension): [16, 32, 128],
Nsteps: [3, 4, 5],
γ: [1.0, 1.2, 1.5, 2.0],
λ: [0.001, 0.01, 0.1, 0.3],
Learning Rate: [0.005, 0.01, 0.02, 0.025],
rM : range from [0, 1,000,000,000,000]

TabTransformer

Hidden Dimension: [32, 54, 128, 256],
Number of Layers: [1, 2, 3, 6, 12],
Number of Attention Heads: [2, 4, 8],
MLP First Hidden Layer: x = m× l,m ∈ Z|1 ≤ m ≤ 8,
where l is the input size,
MLP Second Hidden Layer: x = m× l,m ∈ Z|1 ≤ m ≤ 3,
where l is the input size

XGBoost

learning_rate: [0.01, 0.1, 0.2],
max_depth: [3, 4, 5, 6],
n_estimators: [50, 100, 200],
subsample: [0.8, 0.9],
colsample_bytree: [0.8, 0.9],
min_child_weight: [1, 2, 3]

LightGBM

num_leaves: [20, 30, 40],
learning_rate: [0.05, 0.1, 0.2],
n_estimators: [100, 200],
subsample: [0.8, 0.9],
colsample_bytree: [0.8, 0.9]

MLP

First Hidden Layer: x = m× l,m ∈ Z|1 ≤ m ≤ 8, where l is
the input size,
Second Hidden Layer: x = m× l,m ∈ Z|1 ≤ m ≤ 3, where l
is the input size
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5.6 Results from other datasets (Accuracies & Masks)

Forest Cover Type [Dua and Graff, 2017]

Model Test Accuracy (%)
XGBoost 92.30
LightGBM 86.38
TabTransformer 82.55
MLP 94.27
Original TabNet 94.18
InterpreTabNet (r∗M = 900) 94.75

Figure 5: InterpreTabNet with r∗M = 900 (Best Performing Model) for Forest Cover Type Dataset

Figure 6: Original TabNet Model for Forest Cover Type Dataset

Poker Hand [Cattral and Oppacher, 2007]

Model Test Accuracy (%)
XGBoost 75.41
LightGBM 78.47
TabTransformer 99.81
MLP 99.98
Original TabNet 99.00
InterpreTabNet (r∗M = 1000) 99.50

Higgs [Whiteson, 2014]

Model Test Accuracy (%)
XGBoost 72.91
LightGBM 72.62
TabTransformer 51.97
MLP 68.67
Original TabNet 52.94
InterpreTabNet (r∗M = 10000) 53.08
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(a) InterpreTabNet (b) Original TabNet Model

Figure 7: (a) Best performing model using InterpreTabNet, r∗M = 1000, with an accuracy of 99.13%
on the Poker Hand Dataset. (b) The baseline performance using the Original TabNet model, attaining
an accuracy of 99.23%.

(a) InterpreTabNet (b) Original TabNet Model

Figure 8: (a) Best performing model using InterpreTabNet, r∗M = 10000, with an accuracy of 53.08%
on the Higgs Dataset. (b) The baseline performance using the Original TabNet model, attaining an
accuracy of 60.22%.

Mushroom [mus, 1987]

Model Test Accuracy (%)
XGBoost 100.00
LightGBM 100.00
TabTransformer 100.00
MLP 100.00
Original TabNet 99.94
InterpreTabNet (r∗M = 10, 000, 000, 000, 000) 96.62

Blastchar [BlastChar, 2018]

Model Test Accuracy (%)
XGBoost 77.29
LightGBM 77.86
TabTransformer 73.17
MLP 73.67
Original TabNet 76.22
InterpreTabNet (r∗M = 10, 000, 000, 000, 000) 72.96
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(a) InterpreTabNet (b) Original TabNet Model

Figure 9: (a) Best performing model using InterpreTabNet, r∗M = 1, 000, 000, 000, 0000, with an
accuracy of 96.62% on the Mushroom Dataset. (b) The baseline performance using the Original
TabNet model, attaining an accuracy of 99.94%.

(a) InterpreTabNet (b) Original TabNet Model

Figure 10: (a) Best performing model using InterpreTabNet, r∗M = 10, 000, 000, 000, 000, with
an accuracy of 72.96% on the Blastchar Dataset. (b) The baseline performance using the Original
TabNet model, attaining an accuracy of 76.22%.

Diabetes [Clore and Strack, 2014]

Model Test Accuracy (%)
XGBoost 61.44
LightGBM 60.87
TabTransformer 44.45
MLP 57.19
Original TabNet 56.91
InterpreTabNet (r∗M = 100, 000, 000) 55.37

Figure 11: InterpreTabNet with r∗M = 100, 000, 000 (Best Performing Model) for Diabetes Dataset
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Figure 12: Original TabNet Model for Diabetes Dataset

5.7 Ablation Study on InterpreTabNet’s Interpretability for varying rM values

Adult Census Income Mask Figures

(a) InterpreTabNet (rM = 0) (b) InterpreTabNet (rM = 1)

(c) InterpreTabNet (rM = 100) (d) InterpreTabNet (r∗M = 1000)

Figure 13: As the rM value increases, both feature mask sparsity and feature importance increases,
improving the interpretability of the masks.
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5.8 Prompts for all datasets

Adult Census Income

Conduct aggregate analysis on the description of the following feature mask. Please output ONLY a
dictionary and no other natural language generation when generating the sentence as shown in the
in-context example below. Please use single-word classification that encapsulates the meaning of the
features if possible.

The Adult Census Income dataset is considered which predicts whether an individual’s income
exceeds $50,000 per year. There are 50 test samples and 14 features.

At the 0th step of feature selection, we observe mask 0 with the main features highlighted as 1, 5 and
7 which are workclass, marital status and relationship. At the 1st step of feature selection, we observe
mask 0 with the main features highlighted as 1 and 5 which are workclass and marital status. At
the 2nd step of feature selection, we observe mask 2 with the main features highlighted as 8, 10 and
12 which are race, capital gain and hours-per-week. Lastly, at the 3rd step of feature selection, we
observe mask 3 with the main features highlighted as 1, 7 and 10 which are workclass, relationship
and capital-gain.

Here are in-context examples for few-shot learning.

The Poker Hand dataset is considered, which is a classification of poker hands into 10 distinct types
based on attributes like rank of individual cards, suits, and card combinations. There are 50 test
samples and 10 features.

At the 0th step of feature selection, we observe mask 0 with the main feature highlighted as 3 which
is the rank of the card 2. At the 1st step of feature selection, we observe mask 1 with the main feature
highlighted as 7 which is the rank of card 3. At the 2nd step of feature selection, we observe mask 2
with the main feature highlighted as 6 which is the suit of card 3. Lastly, at the 3rd step of feature
selection, we observe mask 3 with the main features highlighted as 3, 6, 7 and 10 which are the rank
of cards 1 and 3 as well as the suits of cards 3 and 5.

Output: {"Mask 0": "Initially, the rank of card 2 is recognized as a significant predictor in the
classification of poker hands. The rank of individual cards seems crucial at this stage.", "Mask 1":
"At this step, the rank of card 3 is highlighted, further emphasizing the importance of individual
card ranks in determining poker hand types.", "Mask 2": "Here, besides the rank of card 3, the suit
of the same card is considered, suggesting that both rank and suit play roles in classifying poker
hands.", "Mask 3": "This step combines multiple features, both ranks (cards 1 and 3) and suits
(cards 3 and 5), indicating that a combination of these factors provides a broader understanding of
poker hand classifications.", "Aggregate": "The rank of cards, specifically card 2 and card 3, appears
consistently across different masks, indicating their primary role in poker hand classification. Suits,
particularly of card 3, also have importance but are introduced later in the feature selection. The
combined importance of both ranks and suits in the final step suggests that while individual card
ranks are pivotal in initial classifications, understanding the relationship between card ranks and their
respective suits provides a more comprehensive insight into the poker hand types. The consistent
presence of card 3’s attributes (both rank and suit) underscores its pivotal role in determining poker
hand categories."}

The Forest Cover Type dataset is considered which is a classification of pixels into 7 forest cover
types based on attributes such as elevation, aspect, slope, and more. There are 50 test samples and 54
features.

At the 0th step of feature selection, we observe mask 0 with the main features highlighted as 24, 29
and 34 which are different soil types. At the 1st step of feature selection, we observe mask 1 with the
main feature highlighted as 34 which is soil type. At the 2nd step of feature selection, we observe
mask 2 with the main features highlighted as 10, 34 and 37 which are wilderness area and soil types.
Lastly, at the 3rd step of feature selection, we observe mask 3 with the main features highlighted as 0
and 29 which are elevation, and soil type.

Output: {"Mask 0": "The initial feature selection identifies that various soil types are significant
predictors for the forest cover types. It appears that the characteristics of the soil play a vital role in
determining the type of forest cover.", "Mask 1": "At this step, the model emphasizes even more on
one particular soil type (34), suggesting it as a primary driver for the classification. This specific soil

19



type may have unique characteristics making it a distinctive feature for certain forest cover types.",
"Mask 2": "Here, besides the emphasis on soil type 34, another soil type (37) and wilderness area are
considered. This suggests that both the nature of the terrain (wilderness) and the characteristics of
the soil together contribute to the forest cover type.", "Mask 3": "This step introduces elevation as a
significant predictor while still retaining a soil type. Elevation, combined with soil characteristics,
might influence specific flora and subsequently determine forest cover types.", "Aggregate": "Soil
type 34 is the most consistent feature across all the masks, appearing in every step, emphasizing its
importance in the forest cover type classification. Another soil type, 29, is also consistent, appearing
in both mask 0 and 3. The presence of different features across the steps, like wilderness area (mask 2)
and elevation (mask 3), indicates that the landscape’s nature and the physical height of the terrain are
also important but might offer secondary or nuanced insights into forest cover types. The dominant
predictor seems to be soil types, particularly soil type 34, suggesting that specific soil characteristics
play a crucial role in determining forest cover types. However, aspects like elevation and the nature
of the terrain (wilderness area) also contribute to the classification and shouldn’t be overlooked."}

Forest Cover Type

Conduct aggregate analysis on the description of the following feature mask. Please output ONLY a
dictionary and no other natural language generation when generating the sentence as shown in the
in-context example below. Please use single-word classification that encapsulates the meaning of the
features if possible.

The Forest Cover Type dataset is considered which is a classification of pixels into 7 forest cover
types based on attributes such as elevation, aspect, slope, and more. There are 50 test samples and 54
features.

At the 0th step of feature selection, we observe mask 0 with the main features highlighted as 24, 29
and 34 which are different soil types. At the 1st step of feature selection, we observe mask 1 with the
main feature highlighted as 34 which is soil type. At the 2nd step of feature selection, we observe
mask 2 with the main features highlighted as 10, 34 and 37 which are wilderness area and soil types.
Lastly, at the 3rd step of feature selection, we observe mask 3 with the main features highlighted as 0
and 29 which are elevation, and soil type.

Here are in-context examples for few-shot learning.

The Adult Census Income dataset is considered which predicts whether an individual’s income
exceeds $50,000 per year. There are 50 test samples and 14 features.

At the 0th step of feature selection, we observe mask 0 with the main features highlighted as 1, 5 and
7 which are workclass, marital status and relationship. At the 1st step of feature selection, we observe
mask 0 with the main features highlighted as 1 and 5 which are workclass and marital status. At
the 2nd step of feature selection, we observe mask 2 with the main features highlighted as 8, 10 and
12 which are race, capital gain and hours-per-week. Lastly, at the 3rd step of feature selection, we
observe mask 3 with the main features highlighted as 1, 7 and 10 which are workclass, relationship
and capital-gain.

Output: {"Mask 0": "This suggests that early in the feature selection process, the model finds that
work-related factors (like the type of work) and personal relationships (both marital status and other
relationships) are significant predictors for income exceeding $50,000.", "Mask 1": "Here, the model
emphasizes even more on work nature and marital status, suggesting these two as the primary drivers
for the prediction. Relationship as a feature has been excluded in this step, which might indicate a
possible correlation with marital status.", "Mask 2": "At this step, the model seems to be looking
beyond just personal and work nature to more financial and demographic aspects. Capital gain, which
is directly related to financial health, is considered along with hours-per-week, potentially pointing to
a relationship between longer working hours and higher income. The inclusion of race might indicate
underlying societal or economic factors at play.", "Mask 3": "This combination brings back features
from both the initial and second masks. Workclass and relationship are revisited, which further
underscores their importance. Capital gain remains consistent from the second step, emphasizing its
importance as a predictor for income.", "Aggregate": "The features that consistently appear across
multiple masks are: workclass (masks 0, 1, and 3), relationship (masks 0 and 3), and capital gain
(masks 2 and 3). This highlights that these features play a pivotal role in predicting whether an
individual’s income exceeds $50,000 per year. Marital status is seen in the initial stages but disappears
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later, while hours-per-week and race come into play at the second step. This could indicate that while
some features provide foundational predictive power, others may provide more nuanced insight or
refinement to the model’s predictions. Work-related aspects, personal relationships, and financial
metrics seem to be the main predictors of an individual’s income level in this dataset. It would be
crucial to further analyze these features’ exact impacts and understand any potential correlations
among them for a more comprehensive understanding."}

The Poker Hand dataset is considered, which is a classification of poker hands into 10 distinct types
based on attributes like rank of individual cards, suits, and card combinations. There are 50 test
samples and 10 features.

At the 0th step of feature selection, we observe mask 0 with the main feature highlighted as 3 which
is the rank of the card 2. At the 1st step of feature selection, we observe mask 1 with the main feature
highlighted as 7 which is the rank of card 3. At the 2nd step of feature selection, we observe mask 2
with the main feature highlighted as 6 which is the suit of card 3. Lastly, at the 3rd step of feature
selection, we observe mask 3 with the main features highlighted as 3, 6, 7 and 10 which are the rank
of cards 1 and 3 as well as the suits of cards 3 and 5.

Output: {"Mask 0": "Initially, the rank of card 2 is recognized as a significant predictor in the
classification of poker hands. The rank of individual cards seems crucial at this stage.", "Mask 1":
"At this step, the rank of card 3 is highlighted, further emphasizing the importance of individual
card ranks in determining poker hand types.", "Mask 2": "Here, besides the rank of card 3, the suit
of the same card is considered, suggesting that both rank and suit play roles in classifying poker
hands.", "Mask 3": "This step combines multiple features, both ranks (cards 1 and 3) and suits
(cards 3 and 5), indicating that a combination of these factors provides a broader understanding of
poker hand classifications.", "Aggregate": "The rank of cards, specifically card 2 and card 3, appears
consistently across different masks, indicating their primary role in poker hand classification. Suits,
particularly of card 3, also have importance but are introduced later in the feature selection. The
combined importance of both ranks and suits in the final step suggests that while individual card
ranks are pivotal in initial classifications, understanding the relationship between card ranks and their
respective suits provides a more comprehensive insight into the poker hand types. The consistent
presence of card 3’s attributes (both rank and suit) underscores its pivotal role in determining poker
hand categories."}

Poker Hand Prompt

Conduct aggregate analysis on the description of the following feature mask. Please output ONLY a
dictionary and no other natural language generation when generating the sentence as shown in the
in-context example below. Please use single-word classification that encapsulates the meaning of the
features if possible.

The Poker Hand dataset is considered, which is a classification of poker hands into 10 distinct types
based on attributes like rank of individual cards, suits, and card combinations. There are 50 test
samples and 10 features.

At the 0th step of feature selection, we observe mask 0 with the main feature highlighted as 3 which
is the rank of the card 2. At the 1st step of feature selection, we observe mask 1 with the main feature
highlighted as 7 which is the rank of card 3. At the 2nd step of feature selection, we observe mask 2
with the main feature highlighted as 6 which is the suit of card 3. Lastly, at the 3rd step of feature
selection, we observe mask 3 with the main features highlighted as 3, 6, 7 and 10 which are the rank
of cards 1 and 3 as well as the suits of cards 3 and 5.

Here are in-context examples for few-shot learning.

The Adult Census Income dataset is considered which predicts whether an individual’s income
exceeds $50,000 per year. There are 50 test samples and 14 features. At the 0th step of feature
selection, we observe mask 0 with the main features highlighted as 1, 5 and 7 which are workclass,
marital status and relationship. At the 1st step of feature selection, we observe mask 0 with the main
features highlighted as 1 and 5 which are workclass and marital status. At the 2nd step of feature
selection, we observe mask 2 with the main features highlighted as 8, 10 and 12 which are race,
capital gain and hours-per-week. Lastly, at the 3rd step of feature selection, we observe mask 3 with
the main features highlighted as 1, 7 and 10 which are workclass, relationship and capital-gain.
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Output: {"Mask 0": "This suggests that early in the feature selection process, the model finds that
work-related factors (like the type of work) and personal relationships (both marital status and other
relationships) are significant predictors for income exceeding $50,000.", "Mask 1": "Here, the model
emphasizes even more on work nature and marital status, suggesting these two as the primary drivers
for the prediction. Relationship as a feature has been excluded in this step, which might indicate a
possible correlation with marital status.", "Mask 2": "At this step, the model seems to be looking
beyond just personal and work nature to more financial and demographic aspects. Capital gain, which
is directly related to financial health, is considered along with hours-per-week, potentially pointing to
a relationship between longer working hours and higher income. The inclusion of race might indicate
underlying societal or economic factors at play.", "Mask 3": "This combination brings back features
from both the initial and second masks. Workclass and relationship are revisited, which further
underscores their importance. Capital gain remains consistent from the second step, emphasizing its
importance as a predictor for income.", "Aggregate": "The features that consistently appear across
multiple masks are: workclass (masks 0, 1, and 3), relationship (masks 0 and 3), and capital gain
(masks 2 and 3). This highlights that these features play a pivotal role in predicting whether an
individual’s income exceeds $50,000 per year. Marital status is seen in the initial stages but disappears
later, while hours-per-week and race come into play at the second step. This could indicate that while
some features provide foundational predictive power, others may provide more nuanced insight or
refinement to the model’s predictions. Work-related aspects, personal relationships, and financial
metrics seem to be the main predictors of an individual’s income level in this dataset. It would be
crucial to further analyze these features’ exact impacts and understand any potential correlations
among them for a more comprehensive understanding."}

The Forest Cover Type dataset is considered which is a classification of pixels into 7 forest cover
types based on attributes such as elevation, aspect, slope, and more. There are 50 test samples and 54
features.

At the 0th step of feature selection, we observe mask 0 with the main features highlighted as 24, 29
and 34 which are different soil types. At the 1st step of feature selection, we observe mask 1 with the
main feature highlighted as 34 which is soil type. At the 2nd step of feature selection, we observe
mask 2 with the main features highlighted as 10, 34 and 37 which are wilderness area and soil types.
Lastly, at the 3rd step of feature selection, we observe mask 3 with the main features highlighted as 0
and 29 which are elevation, and soil type.

Output: {"Mask 0": "The initial feature selection identifies that various soil types are significant
predictors for the forest cover types. It appears that the characteristics of the soil play a vital role in
determining the type of forest cover.", "Mask 1": "At this step, the model emphasizes even more on
one particular soil type (34), suggesting it as a primary driver for the classification. This specific soil
type may have unique characteristics making it a distinctive feature for certain forest cover types.",
"Mask 2": "Here, besides the emphasis on soil type 34, another soil type (37) and wilderness area are
considered. This suggests that both the nature of the terrain (wilderness) and the characteristics of
the soil together contribute to the forest cover type.", "Mask 3": "This step introduces elevation as a
significant predictor while still retaining a soil type. Elevation, combined with soil characteristics,
might influence specific flora and subsequently determine forest cover types.", "Aggregate": "Soil
type 34 is the most consistent feature across all the masks, appearing in every step, emphasizing its
importance in the forest cover type classification. Another soil type, 29, is also consistent, appearing
in both mask 0 and 3. The presence of different features across the steps, like wilderness area (mask 2)
and elevation (mask 3), indicates that the landscape’s nature and the physical height of the terrain are
also important but might offer secondary or nuanced insights into forest cover types. The dominant
predictor seems to be soil types, particularly soil type 34, suggesting that specific soil characteristics
play a crucial role in determining forest cover types. However, aspects like elevation and the nature
of the terrain (wilderness area) also contribute to the classification and shouldn’t be overlooked."}

Mushroom Prompt

Conduct aggregate analysis on the description of the following feature masks. Start off with an
analysis of the individual masks, followed by an aggregate analysis of all masks combined. Please
format the output into a dictionary as shown in the in-context examples. The output should only
contain the formatted output, no other natural language generation is required.
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The Mushroom dataset is considered, which is a classification of mushrooms into edible or poisonous
categories based on attributes like cap shape, gill color, stalk length, and other morphological
characteristics. There are 50 test samples and 22 features.

At the 0th step of feature selection, we observe mask 0 with the main features highlighted as 5, 6
and 17 which are bruises, odor and veil-type. At the 1st step of feature selection, we observe mask 1
with the main feature highlighted as 5, 6, 11 which are bruises, odor and stalk-shape. At the 2nd step
of feature selection, we observe mask 2 with the main features highlighted as 7, 14, 17 which are
gill-attachment, stalk-surface-below-ring and veil-type. Lastly, at the 3rd step of feature selection,
we observe mask 3 with the main features highlighted as 5, 6, 7 and 17 which are bruises, odor,
gill-attachment and veil-type.

Here are in-context examples for few-shot learning.

The Adult Census Income dataset is considered which predicts whether an individual’s income
exceeds $50,000 per year. There are 50 test samples and 14 features. At the 0th step of feature
selection, we observe mask 0 with the main features highlighted as 1, 5 and 7 which are workclass,
marital status and relationship. At the 1st step of feature selection, we observe mask 0 with the main
features highlighted as 1 and 5 which are workclass and marital status. At the 2nd step of feature
selection, we observe mask 2 with the main features highlighted as 8, 10 and 12 which are race,
capital gain and hours-per-week. Lastly, at the 3rd step of feature selection, we observe mask 3 with
the main features highlighted as 1, 7 and 10 which are workclass, relationship and capital-gain.

Output: {"Mask 0": "This suggests that early in the feature selection process, the model finds that
work-related factors (like the type of work) and personal relationships (both marital status and other
relationships) are significant predictors for income exceeding $50,000.", "Mask 1": "Here, the model
emphasizes even more on work nature and marital status, suggesting these two as the primary drivers
for the prediction. Relationship as a feature has been excluded in this step, which might indicate a
possible correlation with marital status.", "Mask 2": "At this step, the model seems to be looking
beyond just personal and work nature to more financial and demographic aspects. Capital gain, which
is directly related to financial health, is considered along with hours-per-week, potentially pointing to
a relationship between longer working hours and higher income. The inclusion of race might indicate
underlying societal or economic factors at play.", "Mask 3": "This combination brings back features
from both the initial and second masks. Workclass and relationship are revisited, which further
underscores their importance. Capital gain remains consistent from the second step, emphasizing its
importance as a predictor for income.", "Aggregate": "The features that consistently appear across
multiple masks are: workclass (masks 0, 1, and 3), relationship (masks 0 and 3), and capital gain
(masks 2 and 3). This highlights that these features play a pivotal role in predicting whether an
individual’s income exceeds $50,000 per year. Marital status is seen in the initial stages but disappears
later, while hours-per-week and race come into play at the second step. This could indicate that while
some features provide foundational predictive power, others may provide more nuanced insight or
refinement to the model’s predictions. Work-related aspects, personal relationships, and financial
metrics seem to be the main predictors of an individual’s income level in this dataset. It would be
crucial to further analyze these features’ exact impacts and understand any potential correlations
among them for a more comprehensive understanding."}

The Forest Cover Type dataset is considered which is a classification of pixels into 7 forest cover
types based on attributes such as elevation, aspect, slope, and more. There are 50 test samples and 54
features.

At the 0th step of feature selection, we observe mask 0 with the main features highlighted as 24, 29
and 34 which are different soil types. At the 1st step of feature selection, we observe mask 1 with the
main feature highlighted as 34 which is soil type. At the 2nd step of feature selection, we observe
mask 2 with the main features highlighted as 10, 34 and 37 which are wilderness area and soil types.
Lastly, at the 3rd step of feature selection, we observe mask 3 with the main features highlighted as 0
and 29 which are elevation, and soil type.

Output: {"Mask 0": "The initial feature selection identifies that various soil types are significant
predictors for the forest cover types. It appears that the characteristics of the soil play a vital role in
determining the type of forest cover.", "Mask 1": "At this step, the model emphasizes even more on
one particular soil type (34), suggesting it as a primary driver for the classification. This specific soil
type may have unique characteristics making it a distinctive feature for certain forest cover types.",
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"Mask 2": "Here, besides the emphasis on soil type 34, another soil type (37) and wilderness area are
considered. This suggests that both the nature of the terrain (wilderness) and the characteristics of
the soil together contribute to the forest cover type.", "Mask 3": "This step introduces elevation as a
significant predictor while still retaining a soil type. Elevation, combined with soil characteristics,
might influence specific flora and subsequently determine forest cover types.", "Aggregate": "Soil
type 34 is the most consistent feature across all the masks, appearing in every step, emphasizing its
importance in the forest cover type classification. Another soil type, 29, is also consistent, appearing
in both mask 0 and 3. The presence of different features across the steps, like wilderness area (mask 2)
and elevation (mask 3), indicates that the landscape’s nature and the physical height of the terrain are
also important but might offer secondary or nuanced insights into forest cover types. The dominant
predictor seems to be soil types, particularly soil type 34, suggesting that specific soil characteristics
play a crucial role in determining forest cover types. However, aspects like elevation and the nature
of the terrain (wilderness area) also contribute to the classification and shouldn’t be overlooked."}

Blastchar Prompt

Conduct aggregate analysis on the description of the following feature masks. Start off with an
analysis of the individual masks, followed by an aggregate analysis of all masks combined. Please
format the output into a dictionary as shown in the in-context examples. The output should only
contain the formatted output, no other natural language generation is required.

The BlastChar Telco Customer Churn dataset is considered, which is a classification of customers into
retained or churned categories based on attributes like gender, seniority, tenure, service subscriptions,
contract type, billing methods, and charges, among others. There are 50 test samples and 21 features.

At the 0th step of feature selection, we observe mask 0 with the main features highlighted as 13, 16,
and 17 which are StreamingTV, PaperlessBilling and PaymentMethod. At the 1st step of feature
selection, we observe mask 1 with the main feature highlighted as 2 and 16 which are SeniorCitizen
and PaperlessBilling. At the 2nd step of feature selection, we observe mask 2 with the main features
highlighted as 8, 11, and 18 which are InternetService, DeviceProtection, and MonthlyCharges.
Lastly, at the 3rd step of feature selection, we observe mask 3 with the main features highlighted as 3,
11, and 17 which are Partner, DeviceProtection, and PaymentMethod.

Here are in-context examples for few-shot learning.

The Adult Census Income dataset is considered which predicts whether an individual’s income
exceeds $50,000 per year. There are 50 test samples and 14 features. At the 0th step of feature
selection, we observe mask 0 with the main features highlighted as 1, 5 and 7 which are workclass,
marital status and relationship. At the 1st step of feature selection, we observe mask 0 with the main
features highlighted as 1 and 5 which are workclass and marital status. At the 2nd step of feature
selection, we observe mask 2 with the main features highlighted as 8, 10 and 12 which are race,
capital gain and hours-per-week. Lastly, at the 3rd step of feature selection, we observe mask 3 with
the main features highlighted as 1, 7 and 10 which are workclass, relationship and capital-gain.

Output: {"Mask 0": "This suggests that early in the feature selection process, the model finds that
work-related factors (like the type of work) and personal relationships (both marital status and other
relationships) are significant predictors for income exceeding $50,000.", "Mask 1": "Here, the model
emphasizes even more on work nature and marital status, suggesting these two as the primary drivers
for the prediction. Relationship as a feature has been excluded in this step, which might indicate a
possible correlation with marital status.", "Mask 2": "At this step, the model seems to be looking
beyond just personal and work nature to more financial and demographic aspects. Capital gain, which
is directly related to financial health, is considered along with hours-per-week, potentially pointing to
a relationship between longer working hours and higher income. The inclusion of race might indicate
underlying societal or economic factors at play.", "Mask 3": "This combination brings back features
from both the initial and second masks. Workclass and relationship are revisited, which further
underscores their importance. Capital gain remains consistent from the second step, emphasizing its
importance as a predictor for income.", "Aggregate": "The features that consistently appear across
multiple masks are: workclass (masks 0, 1, and 3), relationship (masks 0 and 3), and capital gain
(masks 2 and 3). This highlights that these features play a pivotal role in predicting whether an
individual’s income exceeds $50,000 per year. Marital status is seen in the initial stages but disappears
later, while hours-per-week and race come into play at the second step. This could indicate that while
some features provide foundational predictive power, others may provide more nuanced insight or
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refinement to the model’s predictions. Work-related aspects, personal relationships, and financial
metrics seem to be the main predictors of an individual’s income level in this dataset. It would be
crucial to further analyze these features’ exact impacts and understand any potential correlations
among them for a more comprehensive understanding."}

The Forest Cover Type dataset is considered which is a classification of pixels into 7 forest cover
types based on attributes such as elevation, aspect, slope, and more. There are 50 test samples and 54
features.

At the 0th step of feature selection, we observe mask 0 with the main features highlighted as 24, 29
and 34 which are different soil types. At the 1st step of feature selection, we observe mask 1 with the
main feature highlighted as 34 which is soil type. At the 2nd step of feature selection, we observe
mask 2 with the main features highlighted as 10, 34 and 37 which are wilderness area and soil types.
Lastly, at the 3rd step of feature selection, we observe mask 3 with the main features highlighted as 0
and 29 which are elevation, and soil type.

Output: {"Mask 0": "The initial feature selection identifies that various soil types are significant
predictors for the forest cover types. It appears that the characteristics of the soil play a vital role in
determining the type of forest cover.", "Mask 1": "At this step, the model emphasizes even more on
one particular soil type (34), suggesting it as a primary driver for the classification. This specific soil
type may have unique characteristics making it a distinctive feature for certain forest cover types.",
"Mask 2": "Here, besides the emphasis on soil type 34, another soil type (37) and wilderness area are
considered. This suggests that both the nature of the terrain (wilderness) and the characteristics of
the soil together contribute to the forest cover type.", "Mask 3": "This step introduces elevation as a
significant predictor while still retaining a soil type. Elevation, combined with soil characteristics,
might influence specific flora and subsequently determine forest cover types.", "Aggregate": "Soil
type 34 is the most consistent feature across all the masks, appearing in every step, emphasizing its
importance in the forest cover type classification. Another soil type, 29, is also consistent, appearing
in both mask 0 and 3. The presence of different features across the steps, like wilderness area (mask 2)
and elevation (mask 3), indicates that the landscape’s nature and the physical height of the terrain are
also important but might offer secondary or nuanced insights into forest cover types. The dominant
predictor seems to be soil types, particularly soil type 34, suggesting that specific soil characteristics
play a crucial role in determining forest cover types. However, aspects like elevation and the nature
of the terrain (wilderness area) also contribute to the classification and shouldn’t be overlooked."}

Diabetes Prompt

Conduct aggregate analysis on the description of the following feature masks. Start off with an
analysis of the individual masks, followed by an aggregate analysis of all masks combined. Please
format the output into a dictionary as shown in the in-context examples. The output should only
contain the formatted output, no other natural language generation is required.

The Diabetes 130-US hospitals for years 1999-2008 dataset is considered, which is a classification of
patient encounters into readmitted or not readmitted categories based on attributes like the number of
laboratory tests performed, the number of medications prescribed, diagnoses, and other clinical and
administrative data. There are 50 test samples and 50 features.

At the 0th step of feature selection, we observe mask 0 with the main features highlighted as 7, 21, 31,
and 40 which are discharge disposition id, number diagnoses, glyburide, and citoglipton. At the 1st
step of feature selection, we observe mask 1 with the main feature highlighted as 6 and 7 which are
admission type id and discharge disposition id. At the 2nd step of feature selection, we observe mask
2 with the main features highlighted as 6, 21, and 45 which are admission type id, number diagnoses,
and metformin. Lastly, at the 3rd step of feature selection, we observe mask 3 with the main features
highlighted as 21, 30, 45 which are number diagnoses, glipizide, and metformin.

Here are in-context examples for few-shot learning.

The Adult Census Income dataset is considered which predicts whether an individual’s income
exceeds $50,000 per year. There are 50 test samples and 14 features. At the 0th step of feature
selection, we observe mask 0 with the main features highlighted as 1, 5 and 7 which are workclass,
marital status and relationship. At the 1st step of feature selection, we observe mask 0 with the main
features highlighted as 1 and 5 which are workclass and marital status. At the 2nd step of feature
selection, we observe mask 2 with the main features highlighted as 8, 10 and 12 which are race,
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capital gain and hours-per-week. Lastly, at the 3rd step of feature selection, we observe mask 3 with
the main features highlighted as 1, 7 and 10 which are workclass, relationship and capital-gain.

Output: {"Mask 0": "This suggests that early in the feature selection process, the model finds that
work-related factors (like the type of work) and personal relationships (both marital status and other
relationships) are significant predictors for income exceeding $50,000.", "Mask 1": "Here, the model
emphasizes even more on work nature and marital status, suggesting these two as the primary drivers
for the prediction. Relationship as a feature has been excluded in this step, which might indicate a
possible correlation with marital status.", "Mask 2": "At this step, the model seems to be looking
beyond just personal and work nature to more financial and demographic aspects. Capital gain, which
is directly related to financial health, is considered along with hours-per-week, potentially pointing to
a relationship between longer working hours and higher income. The inclusion of race might indicate
underlying societal or economic factors at play.", "Mask 3": "This combination brings back features
from both the initial and second masks. Workclass and relationship are revisited, which further
underscores their importance. Capital gain remains consistent from the second step, emphasizing its
importance as a predictor for income.", "Aggregate": "The features that consistently appear across
multiple masks are: workclass (masks 0, 1, and 3), relationship (masks 0 and 3), and capital gain
(masks 2 and 3). This highlights that these features play a pivotal role in predicting whether an
individual’s income exceeds $50,000 per year. Marital status is seen in the initial stages but disappears
later, while hours-per-week and race come into play at the second step. This could indicate that while
some features provide foundational predictive power, others may provide more nuanced insight or
refinement to the model’s predictions. Work-related aspects, personal relationships, and financial
metrics seem to be the main predictors of an individual’s income level in this dataset. It would be
crucial to further analyze these features’ exact impacts and understand any potential correlations
among them for a more comprehensive understanding."}

The Forest Cover Type dataset is considered which is a classification of pixels into 7 forest cover
types based on attributes such as elevation, aspect, slope, and more. There are 50 test samples and 54
features.

At the 0th step of feature selection, we observe mask 0 with the main features highlighted as 24, 29
and 34 which are different soil types. At the 1st step of feature selection, we observe mask 1 with the
main feature highlighted as 34 which is soil type. At the 2nd step of feature selection, we observe
mask 2 with the main features highlighted as 10, 34 and 37 which are wilderness area and soil types.
Lastly, at the 3rd step of feature selection, we observe mask 3 with the main features highlighted as 0
and 29 which are elevation, and soil type.

Output: {"Mask 0": "The initial feature selection identifies that various soil types are significant
predictors for the forest cover types. It appears that the characteristics of the soil play a vital role in
determining the type of forest cover.", "Mask 1": "At this step, the model emphasizes even more on
one particular soil type (34), suggesting it as a primary driver for the classification. This specific soil
type may have unique characteristics making it a distinctive feature for certain forest cover types.",
"Mask 2": "Here, besides the emphasis on soil type 34, another soil type (37) and wilderness area are
considered. This suggests that both the nature of the terrain (wilderness) and the characteristics of
the soil together contribute to the forest cover type.", "Mask 3": "This step introduces elevation as a
significant predictor while still retaining a soil type. Elevation, combined with soil characteristics,
might influence specific flora and subsequently determine forest cover types.", "Aggregate": "Soil
type 34 is the most consistent feature across all the masks, appearing in every step, emphasizing its
importance in the forest cover type classification. Another soil type, 29, is also consistent, appearing
in both mask 0 and 3. The presence of different features across the steps, like wilderness area (mask 2)
and elevation (mask 3), indicates that the landscape’s nature and the physical height of the terrain are
also important but might offer secondary or nuanced insights into forest cover types. The dominant
predictor seems to be soil types, particularly soil type 34, suggesting that specific soil characteristics
play a crucial role in determining forest cover types. However, aspects like elevation and the nature
of the terrain (wilderness area) also contribute to the classification and shouldn’t be overlooked."}

Higgs Prompt

Conduct aggregate analysis on the description of the following feature mask. Please output ONLY a
dictionary and no other natural language generation when generating the sentence as shown in the
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in-context example below. Please use single-word classification that encapsulates the meaning of the
features if possible.

The Higgs dataset is considered, which is a classification of events into signal and background
processes based on attributes like jet kinematics, lepton momentum, and other high-energy physics
variables. There are 50 test samples and 28 features. At the 0th step of feature selection, we observe
mask 0 with the main features highlighted as 22 and 25 which are the invariant mass of the lepton,
the missing energy, and the leading jet, as well as the four leading jets. At the 1st step of feature
selection, we observe mask 1 with the main feature highlighted as 6 which is the Azimuthal angle
for the second leading jet. At the 2nd step of feature selection, we observe mask 2 with the main
features highlighted as 15 and 25 which are the transverse momentum for the second leading jet and
the invariant mass of the lepton, the missing energy, and the leading jet.. Lastly, at the 3rd step of
feature selection, we observe mask 3 with the main features highlighted as 8 and 16 which are the
B-tagging score for the second leading jet and the pseudorapidity of the lepton.

Here are in-context examples for few-shot learning.

The Adult Census Income dataset is considered which predicts whether an individual’s income
exceeds $50,000 per year. There are 50 test samples and 14 features. At the 0th step of feature
selection, we observe mask 0 with the main features highlighted as 1, 5 and 7 which are workclass,
marital status and relationship. At the 1st step of feature selection, we observe mask 0 with the main
features highlighted as 1 and 5 which are workclass and marital status. At the 2nd step of feature
selection, we observe mask 2 with the main features highlighted as 8, 10 and 12 which are race,
capital gain and hours-per-week. Lastly, at the 3rd step of feature selection, we observe mask 3 with
the main features highlighted as 1, 7 and 10 which are workclass, relationship and capital-gain.

Output: {"Mask 0": "This suggests that early in the feature selection process, the model finds that
work-related factors (like the type of work) and personal relationships (both marital status and other
relationships) are significant predictors for income exceeding $50,000.", "Mask 1": "Here, the model
emphasizes even more on work nature and marital status, suggesting these two as the primary drivers
for the prediction. Relationship as a feature has been excluded in this step, which might indicate a
possible correlation with marital status.", "Mask 2": "At this step, the model seems to be looking
beyond just personal and work nature to more financial and demographic aspects. Capital gain, which
is directly related to financial health, is considered along with hours-per-week, potentially pointing to
a relationship between longer working hours and higher income. The inclusion of race might indicate
underlying societal or economic factors at play.", "Mask 3": "This combination brings back features
from both the initial and second masks. Workclass and relationship are revisited, which further
underscores their importance. Capital gain remains consistent from the second step, emphasizing its
importance as a predictor for income.", "Aggregate": "The features that consistently appear across
multiple masks are: workclass (masks 0, 1, and 3), relationship (masks 0 and 3), and capital gain
(masks 2 and 3). This highlights that these features play a pivotal role in predicting whether an
individual’s income exceeds $50,000 per year. Marital status is seen in the initial stages but disappears
later, while hours-per-week and race come into play at the second step. This could indicate that while
some features provide foundational predictive power, others may provide more nuanced insight or
refinement to the model’s predictions. Work-related aspects, personal relationships, and financial
metrics seem to be the main predictors of an individual’s income level in this dataset. It would be
crucial to further analyze these features’ exact impacts and understand any potential correlations
among them for a more comprehensive understanding."}

The Forest Cover Type dataset is considered which is a classification of pixels into 7 forest cover
types based on attributes such as elevation, aspect, slope, and more. There are 50 test samples and 54
features.

At the 0th step of feature selection, we observe mask 0 with the main features highlighted as 24, 29
and 34 which are different soil types. At the 1st step of feature selection, we observe mask 1 with the
main feature highlighted as 34 which is soil type. At the 2nd step of feature selection, we observe
mask 2 with the main features highlighted as 10, 34 and 37 which are wilderness area and soil types.
Lastly, at the 3rd step of feature selection, we observe mask 3 with the main features highlighted as 0
and 29 which are elevation, and soil type.

Output: {"Mask 0": "The initial feature selection identifies that various soil types are significant
predictors for the forest cover types. It appears that the characteristics of the soil play a vital role in
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determining the type of forest cover.", "Mask 1": "At this step, the model emphasizes even more on
one particular soil type (34), suggesting it as a primary driver for the classification. This specific soil
type may have unique characteristics making it a distinctive feature for certain forest cover types.",
"Mask 2": "Here, besides the emphasis on soil type 34, another soil type (37) and wilderness area are
considered. This suggests that both the nature of the terrain (wilderness) and the characteristics of
the soil together contribute to the forest cover type.", "Mask 3": "This step introduces elevation as a
significant predictor while still retaining a soil type. Elevation, combined with soil characteristics,
might influence specific flora and subsequently determine forest cover types.", "Aggregate": "Soil
type 34 is the most consistent feature across all the masks, appearing in every step, emphasizing its
importance in the forest cover type classification. Another soil type, 29, is also consistent, appearing
in both mask 0 and 3. The presence of different features across the steps, like wilderness area (mask 2)
and elevation (mask 3), indicates that the landscape’s nature and the physical height of the terrain are
also important but might offer secondary or nuanced insights into forest cover types. The dominant
predictor seems to be soil types, particularly soil type 34, suggesting that specific soil characteristics
play a crucial role in determining forest cover types. However, aspects like elevation and the nature
of the terrain (wilderness area) also contribute to the classification and shouldn’t be overlooked."}
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5.9 Output text from GPT-4 on all datasets for mask interpretation

Dataset Output from GPT-4
Adult Census Income {"Mask 0": "This suggests that early in the feature selection process, the

model finds that work-related factors (like the type of work) and personal
relationships (both marital status and other relationships) are significant
predictors for income exceeding $50,000.",
"Mask 1": "Here, the model emphasizes even more on work nature
and marital status, suggesting these two as the primary drivers for the
prediction. Relationship as a feature has been excluded in this step,
which might indicate a possible correlation with marital status.",
"Mask 2": "At this step, the model seems to be looking beyond just
personal and work nature to more financial and demographic aspects.
Capital gain, which is directly related to financial health, is considered
along with hours-per-week, potentially pointing to a relationship between
longer working hours and higher income. The inclusion of race might
indicate underlying societal or economic factors at play.",
"Mask 3": "This combination brings back features from both the initial
and second masks. Workclass and relationship are revisited, which
further underscores their importance. Capital gain remains consistent
from the second step, emphasizing its importance as a predictor for
income.",
"Aggregate": "The features that consistently appear across multiple
masks are: workclass (masks 0, 1, and 3), relationship (masks 0 and
3), and capital gain (masks 2 and 3). This highlights that these features
play a pivotal role in predicting whether an individual’s income exceeds
$50,000 per year. Marital status is seen in the initial stages but disap-
pears later, while hours-per-week and race come into play at the second
step. This could indicate that while some features provide foundational
predictive power, others may provide more nuanced insight or refinement
to the model’s predictions. Work-related aspects, personal relationships,
and financial metrics seem to be the main predictors of an individual’s
income level in this dataset. It would be crucial to further analyze these
features’ exact impacts and understand any potential correlations among
them for a more comprehensive understanding."}
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Forest Cover Type {"Mask 0": "The initial feature selection identifies that various soil types
are significant predictors for the forest cover types. It appears that the
characteristics of the soil play a vital role in determining the type of
forest cover.",
"Mask 1": "At this step, the model emphasizes even more on one partic-
ular soil type (34), suggesting it as a primary driver for the classification.
This specific soil type may have unique characteristics making it a dis-
tinctive feature for certain forest cover types.",
"Mask 2": "Here, besides the emphasis on soil type 34, another soil
type (37) and wilderness area are considered. This suggests that both
the nature of the terrain (wilderness) and the characteristics of the soil
together contribute to the forest cover type.",
"Mask 3": "This step introduces elevation as a significant predictor while
still retaining a soil type. Elevation, combined with soil characteristics,
might influence specific flora and subsequently determine forest cover
types.",
"Aggregate": "Soil type 34 is the most consistent feature across all
the masks, appearing in every step, emphasizing its importance in the
forest cover type classification. Another soil type, 29, is also consistent,
appearing in both mask 0 and 3. The presence of different features across
the steps, like wilderness area (mask 2) and elevation (mask 3), indicates
that the landscape’s nature and the physical height of the terrain are also
important but might offer secondary or nuanced insights into forest cover
types. The dominant predictor seems to be soil types, particularly soil
type 34, suggesting that specific soil characteristics play a crucial role in
determining forest cover types. However, aspects like elevation and the
nature of the terrain (wilderness area) also contribute to the classification
and shouldn’t be overlooked."}

Poker Hand {"Mask 0": "Initially, the rank of card 2 is recognized as a significant
predictor in the classification of poker hands. The rank of individual
cards seems crucial at this stage.",
"Mask 1": "At this step, the rank of card 3 is highlighted, further em-
phasizing the importance of individual card ranks in determining poker
hand types.",
"Mask 2": "Here, besides the rank of card 3, the suit of the same card is
considered, suggesting that both rank and suit play roles in classifying
poker hands.",
"Mask 3": "This step combines multiple features, both ranks (cards 1
and 3) and suits (cards 3 and 5), indicating that a combination of these
factors provides a broader understanding of poker hand classifications.",
"Aggregate": "The rank of cards, specifically card 2 and card 3, appears
consistently across different masks, indicating their primary role in poker
hand classification. Suits, particularly of card 3, also have importance but
are introduced later in the feature selection. The combined importance of
both ranks and suits in the final step suggests that while individual card
ranks are pivotal in initial classifications, understanding the relationship
between card ranks and their respective suits provides a more compre-
hensive insight into the poker hand types. The consistent presence of
card 3’s attributes (both rank and suit) underscores its pivotal role in
determining poker hand categories."}
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Mushroom {"Mask 0": "At the outset of the feature selection process, the model
identifies physical attributes such as bruises, odor, and veil-type as
significant indicators for classifying mushrooms into edible or poisonous
categories. This suggests that visible physical changes and inherent
characteristics play an essential role in the initial classification stages.",
"Mask 1": "In this step, stalk-shape is introduced while retaining bruises
and odor from the previous mask. Here, the model seems to emphasize
the physical appearance (bruises and stalk-shape) in conjunction with
inherent characteristics (odor) for the classification. Veil-type, although
significant in the initial step, is omitted here, hinting at its reduced
relevance or a possible correlation with other selected features.",
"Mask 2": "The model shifts its attention here, emphasizing gill-
attachment and stalk-surface-below-ring while still retaining the veil-
type. This shift indicates the significance of features directly related to
the mushroom’s growth structure and its underlying layers. The absence
of previously highlighted features suggests a refined approach to feature
importance at this step.",
"Mask 3": "This combination merges the significant features from the
earlier masks, highlighting bruises, odor, gill-attachment, and veil-type.
The recurrence of these features underscores their consistent importance
in classifying mushrooms. The introduction of gill-attachment here,
combined with its presence in the previous mask, further emphasizes its
role.",
"Aggregate": "The features that consistently appear across multiple
masks are: bruises (masks 0, 1, and 3), odor (masks 0, 1, and 3), and
veil-type (masks 0, 2, and 3). This suggests that these attributes play a
crucial role in distinguishing between edible and poisonous mushrooms
in this dataset. Gill-attachment, although appearing in the latter stages
(masks 2 and 3), indicates its significance in the classification process.
The dataset appears to highlight the importance of physical attributes
(like bruises and stalk-shape), inherent characteristics (like odor), and
growth-related features (like gill-attachment and stalk-surface-below-
ring) in determining the edibility of mushrooms. Further investigation
into these features’ interactions and exact impacts would provide deeper
insights into the classification process."}
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Blastchar { "Mask 0": "The initial feature selection suggests that aspects related
to customer service preferences such as StreamingTV and billing and
payment methods like PaperlessBilling and PaymentMethod are signif-
icant predictors for customer churn. These features might be pointing
towards a customer’s comfort and adaptability with the service’s digital
offerings.",
"Mask 1": "In this step, demographic aspects come into play with the
inclusion of SeniorCitizen, suggesting that age or seniority might have a
bearing on customer churn. The continued emphasis on PaperlessBilling
also underlines its importance in this prediction.",
"Mask 2": "At this juncture, the model considers the type of service
subscribed by the customer, as seen from the inclusion of InternetService
and DeviceProtection. MonthlyCharges also comes into the picture,
indicating that the amount being charged could play a role in a customer’s
decision to stay or leave the service. It’s possible that customers assess
the value they receive from these services against what they are being
charged.",
"Mask 3": "In this combination, there’s a mix of service-related (Devi-
ceProtection), demographic (Partner), and payment (PaymentMethod)
features. The appearance of Partner might indicate the influence of fam-
ily decisions or joint subscriptions on customer churn.",
"Aggregate": "PaperlessBilling (masks 0 and 1) and DeviceProtection
(masks 2 and 3) consistently appear in multiple steps, highlighting their
significance in predicting customer churn. PaymentMethod also appears
in masks 0 and 3, suggesting the importance of billing methods in this
context. On the other hand, unique features like SeniorCitizen and
InternetService give insight into the potential impact of demographics
and service type respectively. In essence, customer service preferences,
billing methods, and charges, along with certain demographic elements,
are key in predicting customer churn in this dataset. For a comprehensive
understanding, a deeper dive into the interaction of these features and
their respective weights in the prediction model would be beneficial." }
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Diabetes { "Mask 0": "In the initial step, the model identifies discharge disposi-
tion id, number of diagnoses, and specific medications (glyburide, and
citoglipton) as key features. This suggests a combination of administra-
tive data (discharge process), clinical data (diagnoses), and prescribed
medications play a significant role in predicting patient readmission.",
"Mask 1": "Here, the model focuses on the patient’s admission type and
discharge disposition, emphasizing the importance of the hospital admis-
sion and discharge process in determining the likelihood of readmission.
The absence of clinical and medication features in this step indicates
a potential higher influence of administrative processes at this stage of
feature selection.",
"Mask 2": "The model reintroduces clinical data (number of diagnoses)
and adds a new medication (metformin), while retaining admission type
id. This combination underscores a nuanced interplay between the nature
of hospital admission, the complexity of patient’s health conditions, and
specific treatments in predicting readmissions.",
"Mask 3": "This step focuses on the number of diagnoses and two
medications (glipizide and metformin). The consistency of number of
diagnoses across masks highlights its pivotal role, while the introduction
of glipizide and retention of metformin point towards an evolving em-
phasis on medication in conjunction with clinical data.",
"Aggregate": "Number diagnoses (masks 0, 2, and 3) and discharge
disposition id (masks 0 and 1) are recurrent, underscoring their per-
sistent importance in predicting readmissions. Admission type id also
appears consistently (masks 1 and 2), linking the administrative process
tightly with readmission predictions. The changing set of medications
across the masks (glyburide, citoglipton, metformin, glipizide) points
to the dynamic nature of treatment’s role in the prediction, warranting a
closer look into specific medication combinations and their interactions
with clinical and administrative data. The aggregate analysis reveals a
complex interplay between administrative processes, clinical data, and
medication in predicting patient readmissions, suggesting a multifaceted
approach for model refinement and interpretation." }
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Higgs { "Mask 0": "The initial feature selection emphasizes on variables related
to kinematics and energy in the Higgs dataset, particularly invariant mass
of the lepton, missing energy, and jets, implying these measurements play
a fundamental role in distinguishing signal from background processes.",
"Mask 1": "At this step, the model focuses on the Azimuthal angle for
the second leading jet, suggesting that the orientation or direction of this
jet may have a unique significance in the classification process.",
"Mask 2": "Here, the model considers the transverse momentum of the
second leading jet alongside the invariant mass of the lepton, missing
energy, and leading jet. This suggests an interplay between momentum
and energy variables as critical determinants in the classification.",
"Mask 3": "In this step, the B-tagging score for the second leading jet
and the pseudorapidity of the lepton are highlighted. B-tagging, used to
identify the presence of a b-quark, combined with the pseudorapidity,
indicates the model’s attempt to understand particle behavior and proper-
ties for classification.",
"Aggregate": "Over the feature selection steps, emphasis is consistently
placed on high-energy physics variables, particularly those related to
jets and leptons. The invariant mass of the lepton and missing energy
are repeated features, appearing in both masks 0 and 2, showcasing
their importance in the classification process. Momentum and angular
measurements, like the Azimuthal angle and transverse momentum, also
play a pivotal role. As the steps progress, there’s an evident shift from
energy-related features to more particle-specific characteristics, such as
B-tagging. Overall, the classification in the Higgs dataset relies heavily
on a combination of energy measurements, momentum, and particle
properties."}
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