
Assessing the Interpretability of Programmatic Policies
with Large Language Models

Zahra Bashir, Michael Bowling, Levi H. S. Lelis
Department of Computing Science, University of Alberta, Canada

Alberta Machine Intelligence Institute(Amii)
zbashir1, mbowling, levi.lelis@ualberta.ca

Abstract
Although the synthesis of programs encoding poli-
cies often carries the promise of interpretability,
systematic evaluations were never performed to as-
sess the interpretability of these policies, likely be-
cause of the complexity of such an evaluation. In
this paper, we introduce a novel metric that uses
large-language models (LLM) to assess the inter-
pretability of programmatic policies. For our met-
ric, an LLM is given both a program and a de-
scription of its associated programming language.
The LLM then formulates a natural language ex-
planation of the program. This explanation is sub-
sequently fed into a second LLM, which tries to
reconstruct the program from the natural-language
explanation. Our metric then measures the be-
havioral similarity between the reconstructed pro-
gram and the original. We validate our approach
with synthesized and human-crafted programmatic
policies for playing a real-time strategy game,
comparing the interpretability scores of these pro-
grammatic policies to obfuscated versions of the
same programs. Our LLM-based interpretability
score consistently ranks less interpretable programs
lower and more interpretable ones higher. These
findings suggest that our metric could serve as a
reliable and inexpensive tool for evaluating the in-
terpretability of programmatic policies.

1 Introduction
There is a growing interest in the use of programmatic rep-
resentations of policies to solve sequential decision-making
problems, both in single-agent [Verma et al., 2018; Qiu and
Zhu, 2022] and multi-agent settings [Mariño et al., 2019;
Medeiros et al., 2022]. This interest is justified as one can
provide strong inductive bias to the learning process through
the domain-specific language defining the space of programs.
This bias can allow programmatic policies to generalize more
easily to unseen settings [Inala et al., 2020] and make them
more amenable to verification [Bastani et al., 2018].

Previous work on programmatic policies also often em-
phasizes interpretability. However, systematic studies that
assessed the interpretability of these policies were never

performed. A common method is to present specific pro-
grams and claim their interpretability [Verma et al., 2018;
Aleixo and Lelis, 2023]. The scarcity of comprehensive eval-
uations could be attributed to the fact that such studies are
time consuming and costly, mainly because they would in-
volve human programmers. This lack of a thorough analy-
sis hinders our understanding of what precisely makes a pro-
grammatic policy interpretable. For instance, neural networks
can be viewed as programs written in a domain-specific lan-
guage that allows the addition of layers and nodes to the neu-
ral architecture—clearly, the programmatic framing for poli-
cies does not guarantee interpretability. So, what are the prop-
erties that make a programmatic policy interpretable?

Any viable approach to addressing this question is likely to
involve evaluating the interpretability of programmatic poli-
cies. In this paper, we introduce a simple and cost-effective
methodology to assess program interpretability and demon-
strate its application to programmatic policies. Our method-
ology uses large language models (LLMs) [Brown et al.,
2020] to assign an interpretability score to a program. We call
this score the LLM-based INTerpretability (LINT) score. In
our methodology, we use an instance of an LLM to generate
a natural-language explanation of a program. This explana-
tion is given as input to another instance of an LLM, which is
asked to reconstruct the program described in the explanation.
A third instance of an LLM verifies that the explanation is in
natural language and does not provide step-by-step program-
ming instructions on how to write the program. The LINT
score is the value of a metric comparing the behavior of the
original and reconstructed programs. We introduce general
behavior metrics for sequential decision-making problems.

The evaluation of our methodology is based on methods
from the program obfuscation literature [Collberg and Na-
gra, 2009]. Obfuscated programs are designed to be non-
interpretable, and some obfuscation techniques allow us to
construct programs with different levels of obfuscation. As-
suming that obfuscation can be used as a proxy for inter-
pretability, we hypothesize that the LINT scores negatively
correlate with the degree of obfuscation we apply to the pro-
grams. Our methodology also includes the use of program-
matic policies written by humans. Our premise is that since
these policies are human-written, they should be inherently
interpretable, and thus be scored as such in our metric.

Empirical results on classical programming problems and

C Explainer π

DSL

Verifier

Reconstructor π′

B
LINT

Figure 1: General overview of LINT. The Explainer receives a pro-
gram π, a set of constraints C, and a description of the DSL in
which π was written; it produces a natural language explanation of
π, which is checked by the Verifier. The explanation is provided as
input, along with the description of the DSL, to the Reconstructor,
which attempts to reconstruct π from the explanation, thus produc-
ing π′. B scores the similarity (or dissimilarity) of π and π′.

programmatic policies for playing MicroRTS [Ontañón et al.,
2018] show that the LINT scores strongly and negatively cor-
relate with the level of obfuscation of the programs evaluated.
Although user studies should still be the gold standard for
evaluating interpretability, our results suggest that LINT can
be used as a reliable and inexpensive tool to help drive re-
search in interpretable programmatic policies.

2 LINT: LLM-based Interpretability Score
We define the function B(π1, π2) as a similarity metric for
the behavior of two programs. We consider functions B that
return a number between 0 and 1, where the value of 0 repre-
sents the most dissimilar behavior for the two programs and
1 represents identical behavior for the programs.1 We denote
by Le(π,G,C) an LLM that receives a program π, a domain-
specific language (DSL) G, a set of constraints C, and returns
a natural language explanation of π. We refer to this LLM as
explainer. We denote by Lr(e,G) an LLM that receives a
natural language explanation e of a program and a DSL G,
and returns a program accepted by the language G that ex-
hibits the behavior described in e. We refer to this LLM as
the reconstructor. Both the explainer and the reconstructor
receive a natural language description of G with a context-
free grammar that specifies the programs G accepts.

Given a set Π with n programs and a behavior metric B,
the LINT score is computed as

LINT(Π, B,G,C) =
1

n

∑
π∈Π

B

(
π,Lr

(
Le(π,G,C), G

))
.

(1)
The LINT score of set Π is the average value of how similar
the programs in Π are from the reconstructed ones. We define
the LINT score over a set of programs to measure the inter-
pretability of the programs a system generates. However, in
our experiments we also consider the case where |Π| = 1.

Figure 1 shows a schematic view of how the LINT score
is computed for a program π.

1In our experiments, we also consider a dissimilarity metric,
where 0 represents the most similar and 1 the most dissimilar be-
havior.

2.1 Set of Constraints for Explanation
The above formulation considers a set of constraints C to gen-
erate the explanation of a program. C prevents the LLM
from generating the explanation of the program with non-
interpretable elements that communicate the program to the
other LLM. The constraints are instructions in the LLM
prompt. We include the constraints shown in the list below.

1. Try to understand what is happening in the code and
explain it in natural language to someone who wants to
learn about this program.

2. Write a high-level explanation and do not explain the
code line-by-line, but it is fine to include numbers in your
natural language explanation.

3. You must not use programming language jargon as peo-
ple not familiar with programming might not understand
the explanation.

Without these constraints, the LLM could generate line-by-
line instructions of how to reconstruct the program. For ex-
ample, even if the program was an implementation of the
neural network, the LLM could provide instructions on how
to implement the architecture and copy the weights of the
model. Although this explanation could allow the second
LLM to reconstruct the program, the original program might
not be interpretable. Even with these constraints, the LLM
occasionally generates explanations that use programming in-
structions such as “[...] after a nested for-loop [...]”. We
use a third LLM, the verifier, to partially check for the con-
straints. Specifically, we ask it to verify whether the explana-
tion uses computer programming jargon and/or keywords of
the DSL. If the verifier answers ‘yes’ to the use of jargons,
then we sample another explanation from the explainer.

2.2 Multiple Trials
Due to the stochastic nature of how the LLMs generate the
explanations and programs, we repeat k times the computa-
tion of B(π,Lr(Le(π,G,C), G)) in Equation 1 and use in
the summation the best B-value of the k trials. Trials are car-
ried out by generating one explanation for each program, and
each explanation is used to generate k programs. The value
of k should be large enough to account for the variance of the
LLM generation and small enough to prevent the LLM from
reconstructing the original program by chance. Since the pro-
gram space is vast, as we evaluate empirically, it is safe to use
a few trials to compute the LINT score without allowing the
LLM to reconstruct the correct program by chance.

3 Caveats of LINT Score
When assessing the interpretability of programs, we assume
a level of knowledge of the person interpreting them. LINT
assumes the knowledge of an LLM, which may not reflect re-
ality due to a mismatch of knowledge between the LLM and
the target audience of the program. For example, if the goal of
having interpretable programs is to teach people strategies for
playing a real-time strategy game, then the LLM might have
deeper knowledge of this genre of game than rookie players
trying to learn strategies from the programs. As a result, a
policy that is “interpretable” for the LLM is not necessarily

interpretable to the target audience. Conversely, if the pro-
gram requires knowledge that the LLM does not possess (e.g.,
π is written in a DSL different from the languages with which
the LLM is trained), LINT can produce false negatives.

Similarly to the BLEU score [Papineni et al., 2002], LINT
should not be used as an objective function. Using LINT as
such could cause the system to disregard C, and the explainer
could generate non-interpretable explanations. Instead of us-
ing it as a target, LINT can be used as a tool to assess the
interpretability of computer-written programs, to bias design
decisions made during the development cycle of synthesizers.

4 Empirical Methodology
The primary objective of our evaluation is to check whether
the LINT scores correlate with the interpretability of a given
set of programs. We rely on methods from the static obfus-
cation literature [Collberg and Nagra, 2009] to generate pro-
grams with different levels of interpretability. Static obfus-
cation algorithms have the goal of transforming a program
before it starts running into less interpretable programs, with
the goal of making it harder for adversarial agents to gain
knowledge of the program by reading its implementation. For
that, we consider semantics-preserving obfuscation transfor-
mations, where we can control the degree to which a program
is obfuscated. We hypothesize that LINT scores correlate
with the degree of obfuscation of a set of programs.

We consider two instances of LINT: one for evaluating the
interpretability of programs that encode solutions to program-
ming tasks; and another for evaluating programmatic poli-
cies [Mariño et al., 2019] for playing MicroRTS, a real-time
strategy game [Ontañón et al., 2018]. We provide the com-
plete set of prompts used in our experiments in the Sup-
plementary Materials. All experiments used GPT-4 [Ope-
nAI et al., 2023]. We use k = 5 in all our experiments.

1 void subsets(char *av[], int c, int n,
2 char *sbset[], int sz) {
3 if (c == n) {
4 if (sz < n) {
5 for (int i = 0; i < sz; i++)
6 printf(sbset[i]);
7 printf("----------");
8 }
9 return;

10 }
11 sbsets(av, c+1, n, sbset, sz);
12 sbset[sz] = av[c];
13 sbsets(av, c+1, n, sbset, sz+1);}
14
15 main(Q,O)char**O;{if(--Q){main(Q,O);O[Q]
16 [0]ˆ=0X80;for(O[0][0]=0;O[++O[0][0]]!=0;)
17 if(O[O[0][0]][0]>0)puts(O[O[0][0]]);
18 puts("----------");main(Q,O);}}

Figure 2: Non-obfuscated code for computing proper subsets (lines
1–13); an obfuscated program for the same problem (line 15).

4.1 Classical Programming Problems
We consider 10 programs written in C for solving the fol-
lowing problems: computation of factorials, addition of two

numbers, conversion of byte to binary, computation of all
proper subsets of a set of arguments, of the value of π, of
ln(n) for any n, of the smallest 100 prime numbers, of the
square root of a number, sorting elements, and a program to
play tic-tac-toe. The obfuscated versions of these programs
were designed so that they would be as non-interpretable
as possible, since all obfuscated programs we use are win-
ning entries of the International Obfuscated C Code Con-
test [IOCCC, 1984]. The obfuscated programs were con-
structed using different techniques, such as replacing se-
quences of instructions with equivalents that are less inter-
pretable [Cohen, 1993]. Figure 2 shows an example of the
programs used in our experiment, where the first function is
a non-obfuscated implementation for computing the proper
subsets of a set of numbers, while the second is an obfus-
cated implementation to solve the same problem. The proper
subsets of a set I include all subsets except I . The complete
set of programs is provided in the Supplementary Materials.

The function B we consider in this experiment measures
the number of input values that the reconstructed program
correctly maps to their corresponding output value. A B-
value of 1.0 indicates that the reconstructed program mapped
all inputs to the correct output; a value of 0.0 indicates that
the reconstructed program failed on all inputs.

4.2 Programmatic Policies
We also used programmatic policies for MicroRTS. These
programs are categorized into two types: “synthesized” poli-
cies, written by a computer program in the domain-specific
language known as the Microlanguage [Mariño et al., 2019],
and “human-crafted” policies, written in Java by human pro-
grammers. Both types of programs receive a state of the game
and return the action the agent performs in that state.

We consider the two-player version of MicroRTS, where
each player controls a number of units to collect resources,
build structures, and train other units that will eventually bat-
tle the opponent. Programmatic policies are the current state
of the art in this domain, with programmatic policies win-
ning the last three competitions.2 MicroRTS has the follow-
ing types of unit: Worker, Light, Ranged, Heavy, Base, and
Barracks. The first four types can move around a gridded map
where the game is played and attack opponent units; Work-
ers can collect resources and build Bases and Barracks; Bases
can train more Worker units and store resources, while Bar-
racks can train non-Worker units. Units differ in how much
damage they can inflict on opponent units and in how much
damage they can suffer before being removed from the game.
Microlanguage
The Microlanguage allows programs to iterate through all
units the player controls, so it assigns an action to each of
the units. The language also supports if-then-else structures.
Figure 3 shows an example of a program synthesized with Lo-
cal Learner (2L), a self-play algorithm [Moraes et al., 2023].
The loops allow for an action prioritization scheme. This is
because once an action is assigned to a unit, it cannot be over-
written by another action, so the instructions in the earlier for-
loops will be assigned first. In the program shown in Figure 3,

2https://sites.google.com/site/micrortsaicompetition

https://sites.google.com/site/micrortsaicompetition

1 for(Unit u)
2 for(Unit u)
3 u.train(Worker,Up,2)
4 u.attack_if_in_range()
5 u.train(Heavy,EnemyDir,8)
6 for(Unit u)
7 u.train(Light,Left,100)
8 u.build(Barracks,EnemyDir,1)
9 u.harvest(25)

10 u.attack(Closest)

Figure 3: Policy written in the Microlanguage.

training Worker units has the highest priority because the in-
struction for training these units is in the first nested for-loop
to be executed (lines 2 and 3), which iterates through all units
until it eventually finds a Base that will train them. Other
actions that require the use of resources (e.g., constructing a
Barracks in line 10), will be executed only if the player has
enough resources after training Worker units.
Java
The human-crafted policies are written in Java and follow
standard Java principles. This allows for the representa-
tion of more complex policies, but lacks the Microlanguage’s
domain-specific approach. Figure 4 shows an example.

1 for (Unit u : pgs.getUnits())
2 if (u.getType() == barracks
3 && u.getPlayer()== player
4 && gs.getActionAssignment(u) == null)
5 if (p.getResources() >= light.cost)
6 train(u, light);

Figure 4: Policy written in Java by human programmer.

Obfuscating Programmatic Policies
In the experiment with programmatic policies, we modified
the programs to create different levels of interpretability, to
verify whether the LINT scores correlate with these levels.
We achieve this using the obfuscation technique of adding
useless snippets to the programs, which is a known program
obfuscation technique [Cohen, 1993]. We consider two lev-
els of obfuscation: level 1, where we add a few lines of code
that do not change the behavior of policy, and level 2, where
we add a greater number of such lines compared to level 1.
For the synthesized set, we add 10 and 23 lines for levels 1
and 2, respectively; for the human-crafted set, we add 38 and
71 lines for levels 1 and 2, respectively. Under the assump-
tion that programs with longer useless snippets are less inter-
pretable than programs with shorter snippets, we hypothesize
that LINT assigns higher scores to non-obfuscated programs,
lower scores to level 1, and the lowest scores to level 2.

Figure 5 shows a sample of a snippet that we add to the
programmatic policies used in our experiments for level 1 of
obfuscation; all snippets are shown in the Supplementary Ma-
terials, including level 2 snippets. The snippet in Figure 5
does not change the behavior of the policy because the only
unit that can harvest resources is a builder, so line 6 does not

change the behavior of the policy.

1 if (u.canHarvest()):
2 for (unit u)
3 if (u.isBuilder()):
4 pass
5 else:
6 u.harvest(50)

Figure 5: Sample of useless code snippet used in level 1.

Set of Policies Evaluated
For the synthesized set Π, we selected a subset of size 20 pro-
grams from the totally ordered set with approximately 1, 000
programmatic policies 2L synthesized for the BaseWorkers-
16×16A map. Two adjacent policies in the ordered set are
likely to be similar to each other due to the process in which
2L synthesizes them. We select 20 uniformly spaced policies
from the ordered set to obtain a more diverse subset. That is,
given that we have m policies in the ordered set, we select
the policies with indices

⌊ i×(m−1)
(19)

⌋
with i = 0, · · · , 19. For

the human-crafted set, we used 10 programs selected from a
collection available on GitHub.3 We present all the programs
used in our study in the Supplementary Materials.
Behavior Metrics
We used three behavior metrics B for programmatic policies.
For all metrics, we consider a set of 10 policies, which are
chosen from a totally ordered set of programmatic policies
2L synthesized; we refer to this set as the set of opponents
O. Although the policies evaluated and the set of opponents
are selected from the same pool of programs, there is no over-
lap between the two sets. We ensure that our metric results
are not skewed by having overly weak or overly strong op-
ponents. This is achieved by, while sampling policies for O,
rejecting those that win or lose all matches against the set of
20 policies we evaluate in our experiment. Let Sπ,o be the set
of states in which the policy π is to act in a match played with
the opponent o in O. Also, let Sπ =

⋃
o∈O Sπ,o be the union

of the states of all matches played with the opponents.
The first metric, which can be applied to any sequential

decision-making problem with discrete action spaces, is the
fraction in which the actions chosen by the reconstructed pro-
gram π′ match the actions chosen by the original program π
for states in the set Sπ: |Sπ|−1 ×

∑
s∈Sπ

1[π(s) = π′(s)],
where 1[·] is the indicator function. We refer to this metric as
the action metric. If the reconstructed program is equivalent
to the original, then the action metric is 1.0.

The second metric, which can be applied to any zero-sum
game, compares the signature of wins, draws, and losses of
the reconstructed policy with the signature of the original pol-
icy. The signature aπ of a policy π is a vector of size |O|
where each entry i assumes the values of 1, 0, or −1, rep-
resenting the result of a win, draw, or loss, respectively, of
a match played between π and the i-th opponent in O. This
metric computes |O|−1×

∑|O|
i=1 1[aπ[i] = aπ′ [i]], where aπ[i]

3https://github.com/rubensolv/SCV/tree/master/pvai

https://github.com/rubensolv/SCV/tree/master/pvai

represents the i-th entry of aπ . We call this metric the out-
come metric. Similarly to the action metric, if π′ is equiva-
lent to π, then the outcome metric value is 1.0.

The third metric compares the set of features observed in
matches between the reconstructed program and O with the
features observed in matches between the original program
and O. Let F (π, o) be a vector of features observed in a
match between π and o. We use the seven features of Aleixo
and Lelis [2023], where each feature is the sum of the number
of units of a given type that the player trained (or built) in all
states of the match; the types can be Worker, Light, Heavy,
Ranged, Base, or Barracks. A last feature sums up the amount
of resources collected in the match. This metric measures the
average normalized L1 norm between the feature vector of the
original and reconstructed programs. We refer to this metric
as feature metric. If the reconstructed program is equivalent
to the original, then this metric is 0.0. While other metrics
measure similarity, the feature metric measures dissimilarity.

We use these three metrics because each of them individu-
ally has weaknesses; together, they offer a more reliable sum-
mary of the behavior of a policy. Many of the actions in a
MicroRTS match are related to Worker units collecting re-
sources, so while two policies might encode totally different
strategies, due to the large number of Worker units collect-
ing resources, the policies could have a large action metric
value. The outcome metric can also be misleading if almost
any policy defeats the set of opponents or is defeated by the
set of opponents (i.e., the opponents are too weak and/or too
strong). Finally, the feature metric simply counts the number
of units and resources, without measuring their behavior.

Baselines for Reconstructed Programs
We consider a number of programs as baselines for the pro-
grams LINT reconstructs. Namely, for each program π in Π,
we compare the behavior metric values for the reconstructed
program π′ of π with a randomly selected program from Π
that is different from π; we call this baseline Rand. In the
experiment with the synthesized set, since all programs in Π
were generated in a single run of 2L and for a fixed map, the
programs Rand selects can be similar to π.

In another baseline, where we select a random program
from the pool of programs 2L synthesizes for a different map;
we use programs synthesized for the BaseWorkers-8×8 map
with this baseline. Since the strategy for playing the game can
change drastically from map to map, this randomly selected
program is likely to be less similar to π than the programs
Rand selects. We call this baseline Rand-Other.

Another baseline we consider selects the policy from the
set of evaluated policies Π that is different from π but is most
similar to π with respect to its syntax. We treat each line of a
program as an element of a set. The program most similar to
π is the one whose intersection with the syntax set of π is the
largest. We refer to this baseline as Closest-Syntax.

The last baseline we consider returns the policy in Π differ-
ent from the evaluated program π with the smallest L2 norm
for the difference between its feature vector and the feature
vector of π. We refer to this baseline as Closest-Feature.

Baseline for the Reconstruction System
The Reconstructor relies on the natural language explanation

of the original program that the Explainer provides. To ensure
that the program cannot be reconstructed by sampling pro-
grams without the explanation, we consider a baseline where
we ask an LLM to generate a program for playing on a given
map of MicroRTS. We provide a natural language description
of the BaseWorkers-16×16A map and ask the model to gen-
erate a program written in the Microlanguage that can “play
well” the game. We repeat this process k times, exactly how
it is implemented in the reconstruction system for LINT, and
we return the program with the best behavior score out of the
k evaluated. We refer to this baseline as the k-Shot LLM.

5 Empirical Results: Programming Problems
The system was able to reconstruct all non-obfuscated pro-
grams to solve the programming problems and achieved the
score of 1.0. The system was unable to reconstruct any of
the obfuscated programs, resulting in a score of 0.0. As a
representative example, Explanation 1 shows the Explainer’s
output for the non-obfuscated program shown in Figure 2.
Explanation 1 (Proper Subset - Non-Obfuscated). Imagine
you have a list of items, and you want to figure out all the dif-
ferent ways you can select some of these items without taking
all of them at once. When the program starts, it first checks
if you’ve given it any items to work with. If not, it asks for
some. Once it has the list of items, it begins to explore all
the possible selections. It does this by starting with the first
item and deciding whether to include it in the current selec-
tion or not. If it decides not to include the first item, it moves
to the next item and makes the same decision. It continues
doing this until it has considered every item in the list. After
considering all the items, if it has left out at least one item
from the current selection, it displays that selection for you
to see. Then, it goes back and tries a different combination
by including some items that it previously left out and leaving
out some that it previously included. It continues this process
until it has explored and shown you all possible selections of
items from the list, always making sure it never shows you a
selection that includes all the items at once. In the end, you’re
left with a display of all the different ways you can select some
of the items without taking all of them.

The explanation of the program is high-level and makes
an analogy with a list of items, and the process of comput-
ing the proper subsets is described as a process of “selecting”
and “displaying” the items, where all possible combinations
of subsets are selected: “It does this by starting with the first
item and deciding whether to include it in the current selec-
tion or not”. The Reconstructor can produce a correct im-
plementation of a program that computes the proper subsets
from this explanation. Explanation 2 shows the explanation
LINT generated for the obfuscated program in Figure 2.
Explanation 2 (Proper Subset - Obfuscated). Imagine you
have a list of items. Initially, all items are marked as “nor-
mal.” The program goes through the following steps:

1. It starts at the end of the list and works its way to the
beginning. For each item, the program does two ac-
tions:First, it keeps the item as “normal” and then dis-
plays all the items marked as “greater than normal.” Af-
ter displaying these items, it separates them with a line

Metrics B

Action (↑) Outcome (↑) Feature (↓)

LINT 0.940± 0.010 0.840± 0.042 0.133± 0.020
Rand 0.733± 0.015 0.615± 0.057 0.418± 0.018
Rand-Other 0.564± 0.025 0.470± 0.058 0.486± 0.012
Closest-Syntax 0.799± 0.015 0.600± 0.056 0.403± 0.018
Closest-Feature 0.823± 0.013 0.770± 0.049 0.189± 0.014
k-Shot LLM 0.343± 0.010 0.420± 0.057 0.441± 0.009

Table 1: Value of the behavior metrics for programmatic policies.
Action and Outcome metrics are similarity metrics, so higher values
are better (↑), while Feature is a metric of dissimilarity, so lower
values are better (↓). The cells show the metric values and the 95%
confidence interval.

Metric Original
Program

Obfuscation Level

Level 1 Level 2

Action 0.945 ±0.010 0.866 ±0.014 0.732 ±0.012
Outcome 0.840 ±0.042 0.705 ±0.053 0.490 ±0.058
Feature 0.133 ±0.020 0.272 ±0.024 0.418 ±0.018

Table 2: Average values of the behavior metrics for the original pro-
gram and for the two levels of obfuscation; the cells also show the
95% confidence interval.

of dashes. Second, it switches the item from “normal” to
“greater than normal” and repeats the display process.

2. After dealing with an item, the program moves to the
next item closer to the beginning of the list and repeats
step 2.

This process continues until the program has considered all
items in the list.

This explanation is well-structured and includes the steps
that supposedly need to be performed. However, the descrip-
tion is not clear in some parts. For example, it is not clear
what “greater than normal” means.

6 Empirical Results: Programmatic Policies
Table 1 shows the average and 95% confidence interval values
for the 20 programs used in our experiment with the synthe-
sized set. The LINT row shows the metric values computed
for the original programs and their reconstructions. The base-
line values represent the measurements between the original
programs and the baseline programs. The values of LINT are
the best according to all metrics, which shows that the recon-
structed programs are more similar to the original than any
of the baselines. Table 1 also shows that the baselines that
obtain values closer to LINT are Rand, Closest-Syntax, and
Closest-Feature. This is because these baselines select a pro-
gram from the pool of programs 2L synthesized for the same
map, and these programs tend to be similar to each other.
Rand-Other obtained lower Action and Outcome values and a
higher Feature value, demonstrating that the metrics can cap-
ture the expected differences between policies synthesized for
playing in different maps. Finally, k-Shot LLM presents the
lowest similarity values, demonstrating the importance of the
explanation of the original program the Explainer generates.

Metric Original
Program

Obfuscation Level

Level 1 Level 2

Action 0.98 ±0.003 0.92 ±0.017 0.85 ±0.031
Outcome 0.95 ±0.036 0.84 ±0.060 0.80 ±0.066
Feature 0.07 ±0.022 0.19 ±0.029 0.22 ±0.031

Table 3: Average values of the behavior metrics for the original pro-
gram and for the two levels of obfuscation; the cells also show the
95% confidence interval.

Table 2 presents the results that test our hypothesis that
LINT correlates with the degree of interpretability of the pro-
grams. The results indicate a higher similarity between the
original and reconstructed programs for the policies 2L syn-
thesizes than between the original obfuscated programs and
their reconstructions. Also, LINT provides higher similar-
ity scores and a lower dissimilarity score for Level 1 than
for Level 2 obfuscation. Table 3 presents the results for the
human-crafted set. These results align with those of the syn-
thesized set, where the LINT-score decreases as we increase
the level of obfuscation. Under the assumption that higher
degrees of obfuscation result in less interpretable programs,
the results support our hypothesis.

6.1 Representative Sample
In this section, we present the natural language explanation
the Explainer generated for the program in Figure 3 (Expla-
nation 3). Then, we present the program the Reconstructor
generates from the explanation (Figure 6). This is a represen-
tative example of the programs used in the experiments.

Explanation 3 (Programmatic Policy). The script outlines a
two-tiered strategy in the game of MicroRTS. It focuses on the
tactical management of different types of units, ranging from
Workers, to Heavy units, and finally Light units. The first part
of the strategy involves a layered assignment of tasks. Ev-
ery unit is asked to train two Worker units if possible. These
Workers can be seen as the backbone of your army since they
are the only units that can build structures, which in turn pro-
duce other units. At the same time, if a unit can’t train a
Worker, it is assigned to remain idle, thus serving as a de-
fensive guard to your base. In addition, every unit is asked
to train up to 8 Heavy units, that typically are stronger and
can inflict more damage, acting as the frontline offensive unit.
This phase essentially sets up your base with a balance of
productive Workers and Heavy units.

In the second part of the strategy, each unit is tasked with
producing as many Light units as possible, up to a whopping
100. Light units are generally quicker and can swiftly react
to the changes in the battlefield. Additionally, every unit is
tasked to build a Barracks near the enemy’s direction, effec-
tively establishing a forward base closer to the enemy terri-
tory. They are also asked to harvest resources, up to 25 units,
ensuring a steady supply for creating more units and struc-
tures. Finally, units are directed to attack the closest enemy
units, marking an aggressive stance towards the opponent.

The overall goal of this strategy is to ensure a robust base
with a mixture of Worker and Heavy units, while also main-
taining an aggressive stance with a large army of Light units

1 for(Unit u):
2 u.train(Worker, Up, 2)
3 u.attack_if_in_range()
4 for(Unit u):
5 u.train(Heavy, EnemyDir, 8)
6 for(Unit u):
7 u.train(Light, Left, 100)
8 u.build(Barracks, EnemyDir, 1)
9 u.harvest(25)

10 u.attack(Closest)

Figure 6: Reconstruction of the program shown in Figure 3.

and Barracks near the enemy territory. It aims at resource
gathering for continued production of units and structures,
and pushing the opponent back through relentless attack.

Similarly to Explanation 1, the explanation describes the
policy in a level of detail that allows for the reconstruction
of a program that behaves identically to the original program
according to our metrics. Figure 6 shows the reconstructed
program. The reconstructed program is not identical in terms
of line-by-line syntax, since information regarding the syntax
is lost in the process of translating the program into a nat-
ural language explanation and back to a program. A casual
inspection might even suggest that the reconstructed program
does not behave as the original. This is because the origi-
nal program has an instruction for training Worker units in-
side a nested loop, thus giving it the highest priority. The
reconstructed program has training Worker units instruction
inside the main loop. This means that the program can use
the player’s resources to assign actions to other units (e.g.,
train Light units in line 7) and by the time u is a Base in
the outer loop, the player no longer has resources for train-
ing Worker units. However, a more careful inspection of the
program reveals that, in the first states of the game, where
the player trains Worker units, none of the actions that use
resources can be assigned to a unit: the player cannot train
Heavy and Light units (lines 5 and 7, respectively) because
the player does not have a Barracks yet; the player cannot
build a Barracks (line 8) because it does not have enough re-
sources to do so. Thus, similarly to the original program, the
reconstructed one prioritizes the training of Worker units.

7 Related Works
In contrast to the literature on programmatic policies, it is
common to find evaluations of the interpretability of models
in the context of supervised learning [Ribeiro et al., 2016;
Lundberg and Lee, 2017; Fong and Vedaldi, 2017]. We con-
jecture that the methodological difference between the pro-
grammatic policies and the supervised learning literature is
due to the need of enlisting participants who understand both
the application domain and computer programming for eval-
uating programmatic policies, while the latter only requires
participants who understand the application domain.

Previous work in programmatic policies, such as
NDPS [Verma et al., 2018], Viper [Bastani et al., 2018], Pro-
pel [Verma et al., 2019], and π-PRL [Qiu and Zhu, 2022],
describe systems that synthesize programmatic policies in the

space of oblique decision trees [Murthy et al., 1994]. Such
trees represent programs with if-then-else structures with lin-
ear transformations of the inputs. Oblique decision trees are
often assumed to be interpretable, which is likely true for
small trees and low-dimensional problems, but it is unlikely
to hold true for deep trees and high-dimensional problems.

Metrics to measure code understandability [Buse and
Weimer, 2010; Posnett et al., 2011; Daka et al., 2015;
Scalabrino et al., 2016; Oliveira et al., 2020] from the Soft-
ware Engineering literature attempt to solve a related but
different problem from the interpretability of programmatic
policies we tackle in this paper. Code understandability con-
siders scenarios where people write computer code that is
meant to be understandable by other people, but it may not
be because the person reading the code is not familiar with
the API being used, the API documentation is lacking [Scal-
abrino et al., 2021], or because the code is too long and time-
consuming for one to understand. This is in contrast to our
experiments on the interpretability of policies, where we as-
sume that one has access to the correct resources (e.g., API
description) and enough time to interpret a policy. In the in-
terpretability of policies, we are interested in evaluating pro-
grams generated by other programs with the goal of maximiz-
ing the agent’s reward and not necessarily to be interpretable.

Recent work showed that there is currently no effective
metric to measure code understandability [Scalabrino et al.,
2021]. This contrasts with our results, which suggest that
LINT can be used as a reliable metric to assess the inter-
pretability of policies. Although the two problems have nu-
anced but important differences, our encouraging results on
policy interpretability suggest that future research could in-
vestigate the use of LLMs to measure code understandability.

8 Conclusions

Programmatic policies are often synthesized with the expec-
tation of interpretability. However, to our knowledge, there
has not been a systematic evaluation of the interpretability
of such policies, probably due to the cost associated with
such an evaluation. Especially because the evaluation of pro-
grammatic policies might require human users proficient in
computer programming. In this paper, we presented an in-
expensive methodology based on LLMs to assess the inter-
pretability of programmatic policies. Namely, we introduced
the LLM-based Interpretability (LINT) score for programs.
The LINT score of a program is computed by having an LLM
generate a description of it in natural language, which is pro-
vided as input to another LLM. This second LLM tries to re-
construct the program from the natural language description.
The LINT score measures the similarity between the orig-
inal and reconstructed programs. Our empirical evaluation
of LINT relied on the literature on program obfuscation and
we assumed that obfuscated programs are less interpretable
than non-obfuscated ones. Empirical results on programming
problems and programmatic policies showed that the LINT
scores of the evaluated programs correlate with their inter-
pretability. Our results suggest that LINT can be used as a
tool to assess the interpretability of programmatic policies.

References
[Aleixo and Lelis, 2023] David S. Aleixo and Levi H. S.

Lelis. Show me the way! Bilevel search for synthesiz-
ing programmatic strategies. In Proceedings of the AAAI
Conference on Artificial Intelligence. AAAI Press, 2023.

[Bastani et al., 2018] Osbert Bastani, Yewen Pu, and Ar-
mando Solar-Lezama. Verifiable reinforcement learning
via policy extraction. In Proceedings of the International
Conference on Neural Information Processing Systems,
pages 2499–2509. Curran Associates Inc., 2018.

[Brown et al., 2020] Tom B Brown, Benjamin Mann, Nick
Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, et al. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165, 2020.

[Buse and Weimer, 2010] Raymond P. L. Buse and West-
ley R. Weimer. Learning a metric for code readability.
IEEE Transactions on Software Engineering, 36:546–558,
2010.

[Cohen, 1993] Frederick B. Cohen. Operating system pro-
tection through program evolution. Computer Security,
12(6):565–584, 1993.

[Collberg and Nagra, 2009] Christian Collberg and Jasvir
Nagra. Surreptitious Software: Obfuscation, Water-
marking, and Tamperproofing for Software Protection.
Addison-Wesley Professional, 2009.

[Daka et al., 2015] Ermira Daka, José Campos, Gordon
Fraser, Jonathan Dorn, and Westley Weimer. Model-
ing readability to improve unit tests. In Proceedings of
the Joint Meeting on Foundations of Software Engineer-
ing, page 107–118. Association for Computing Machinery,
2015.

[Fong and Vedaldi, 2017] Ruth C Fong and Andrea Vedaldi.
Interpretable explanations of black boxes by meaningful
perturbation. In Proceedings of the IEEE International
Conference on Computer Vision, 2017.

[Inala et al., 2020] Jeevana Priya Inala, Osbert Bastani,
Zenna Tavares, and Armando Solar-Lezama. Synthe-
sizing programmatic policies that inductively generalize.
In International Conference on Learning Representations,
2020.

[IOCCC, 1984] IOCCC. International obfuscated c code
contest, 1984. Accessed: 2023-08-11.

[Lundberg and Lee, 2017] Scott M Lundberg and Su-In Lee.
A unified approach to interpreting model predictions.
In Advances in Neural Information Processing Systems,
2017.

[Mariño et al., 2019] Julian R. H. Mariño, Rubens O.
Moraes, Claudio F. M. Toledo, and Levi H. S. Lelis.
Evolving action abstractionsfor real-time planning in
extensive-form games. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, 2019.

[Medeiros et al., 2022] Leandro C. Medeiros, David S.
Aleixo, and Levi H. S. Lelis. What can we learn even from

the weakest? Learning sketches for programmatic strate-
gies. In Proceedings of the AAAI Conference on Artificial
Intelligence, pages 7761–7769. AAAI Press, 2022.

[Moraes et al., 2023] Rubens O. Moraes, David S. Aleixo,
Lucas N. Ferreira, and Levi H. S. Lelis. Choosing well
your opponents: How to guide the synthesis of program-
matic strategies, 2023.

[Murthy et al., 1994] Sreerama K. Murthy, Simon Kasif, and
Steven Salzberg. A system for induction of oblique de-
cision trees. Journal of Artificial Intelligence Research,
2(1):1–32, 1994.

[Oliveira et al., 2020] Delano Oliveira, Reydne Bruno, Fer-
nanda Madeiral, and Fernando Castor. Evaluating code
readability and legibility: An examination of human-
centric studies. In 2020 IEEE International Conference
on Software Maintenance and Evolution (ICSME), pages
348–359, 2020.

[Ontañón et al., 2018] Santiago Ontañón, Nicolas A. Bar-
riga, Cleyton R. Silva, Rubens O. Moraes, and Levi H. S.
Lelis. The first microrts artificial intelligence competition.
AI Magazine, 39(1), 2018.

[OpenAI et al., 2023] OpenAI, :, Josh Achiam, Steven
Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya,
Florencia Leoni Aleman, Diogo Almeida, Janko Al-
tenschmidt, Sam Altman, Shyamal Anadkat, Red Avila,
Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Bal-
tescu, Haiming Bao, Mo Bavarian, Jeff Belgum, Irwan
Bello, and ... Barret Zoph. Gpt-4 technical report, 2023.

[Papineni et al., 2002] Kishore Papineni, Salim Roukos,
Todd Ward, and Wei-Jing Zhu. Bleu: a method for au-
tomatic evaluation of machine translation. In Proceedings
of the 40th annual meeting of the Association for Compu-
tational Linguistics, pages 311–318. Association for Com-
putational Linguistics, 2002.

[Posnett et al., 2011] Daryl Posnett, Abram Hindle, and
Premkumar Devanbu. A simpler model of software read-
ability. In Proceedings of the Working Conference on Min-
ing Software Repositories, page 73–82. Association for
Computing Machinery, 2011.

[Qiu and Zhu, 2022] Wenjie Qiu and He Zhu. Programmatic
reinforcement learning without oracles. In International
Conference on Learning Representations, 2022.

[Ribeiro et al., 2016] Marco T Ribeiro, Sameer Singh, and
Carlos Guestrin. ”why should i trust you?” explaining the
predictions of any classifier. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 2016.

[Scalabrino et al., 2016] Simone Scalabrino, Mario Linares-
Vásquez, Denys Poshyvanyk, and Rocco Oliveto. Im-
proving code readability models with textual features. In
IEEE International Conference on Program Comprehen-
sion, pages 1–10, 2016.

[Scalabrino et al., 2021] Simone Scalabrino, Gabriele
Bavota, Christopher Vendome, Mario Linares-Vásquez,
Denys Poshyvanyk, and Rocco Oliveto. Automatically

assessing code understandability. IEEE Transactions on
Software Engineering, 47(3):595–613, 2021.

[Verma et al., 2018] Abhinav Verma, Vijayaraghavan Mu-
rali, Rishabh Singh, Pushmeet Kohli, and Swarat Chaud-
huri. Programmatically interpretable reinforcement learn-
ing. In Proceedings of the 35th International Conference
on Machine Learning, volume 80 of Proceedings of Ma-
chine Learning Research, pages 5045–5054. PMLR, 2018.

[Verma et al., 2019] Abhinav Verma, Hoang M. Le, Yisong
Yue, and Swarat Chaudhuri. Imitation-projected program-
matic reinforcement learning. In Proceedings of the In-
ternational Conference on Neural Information Processing
Systems. Curran Associates Inc., 2019.

	Introduction
	LINT: LLM-based Interpretability Score
	Set of Constraints for Explanation
	Multiple Trials

	Caveats of LINT Score
	Empirical Methodology
	Classical Programming Problems
	Programmatic Policies

	Empirical Results: Programming Problems
	Empirical Results: Programmatic Policies
	Representative Sample

	Related Works
	Conclusions

