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Abstract
We propose a globally-accelerated, first-order method for the optimization of smooth and (strongly
or not) geodesically-convex functions in Hadamard manifolds. Our algorithm enjoys the same
convergence rates as Nesterov’s accelerated gradient descent, up to a multiplicative geometric
penalty and log factors. Crucially, we can enforce our method to stay within a compact set we
define. Prior fully accelerated works resort to assuming that the iterates of their algorithms stay in
some pre-specified compact set, except for two previous methods, whose applicability is limited to
local optimization and to spaces of constant curvature, respectively. Achieving global and general
Riemannian acceleration without iterates assumptively staying in the feasible set was asked as an
open question in [50], which we solve for Hadamard manifolds. In our solution, we show that
we can use a linearly convergent algorithm for constrained strongly g-convex smooth problems to
implement a Riemannian inexact proximal point operator that we use as a subroutine, which is of
independent interest.

1. Introduction

Riemannian optimization concerns the optimization of a function defined over a Riemannian manifold.
It is motivated by constrained problems that can be naturally expressed on Riemannian manifolds
allowing to exploit the geometric structure of the problem and effectively transforming it into an
unconstrained one. Moreover, there are problems that are not convex in the Euclidean setting, but
that when posed as problems over a manifold with the right metric, are convex when restricted to
every geodesic, and this allows for fast optimization [9, 14, 20, 27]. That is, they are geodesically
convex (g-convex) problems, cf. Definition 1. Some applications of Riemannian optimization in
machine learning include dictionary learning [22, 66], robust covariance estimation in Gaussian
distributions [80], Gaussian mixture models [37], operator scaling [9], computation of Brascamp-
Lieb constants [13], Karcher mean [83], Wasserstein Barycenters [76], low-rank matrix completion
[17, 35, 59, 68, 72], optimization under orthogonality constraints [31, 53], and sparse principal
component analysis [33, 41, 44]. The first seven problems are defined over Hadamard manifolds,
which we consider in this work. In fact, the optimization in these cases is over symmetric spaces,
which satisfy a property that one instance of our algorithm requires, cf. Theorem 6.

Riemannian optimization, whether under g-convexity or not, is an extensive and active area of
research, for which one aspires to develop Riemannian optimization algorithms that share analogous
properties to the more broadly studied Euclidean methods, such as the following kinds of Riemannian
first-order methods: deterministic [16, 78, 81], adaptive [47], projection-free [76, 77], saddle-point-
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escaping [24, 25, 67, 85], stochastic [38, 49, 70], variance-reduced [63, 64, 83], and min-max
methods [84], among others.

Riemannian generalizations to accelerated convex optimization are appealing due to their better
convergence rates with respect to unaccelerated methods, specially in ill-conditioned problems.
Acceleration in Euclidean convex optimization is a concept that has been broadly explored and
has provided many different fast algorithms. A paradigmatic example is Nesterov’s Accelerated
Gradient Descent (AGD), cf. [60], which is considered the first general accelerated method, where
the conjugate gradients method can be seen as an accelerated predecessor in a more limited scope
[58]. There have been recent efforts to better understand this phenomenon in the Euclidean case
[8, 29, 30, 45, 65, 79], which have yielded some fruitful techniques for the general development of
methods and analyses. These techniques have allowed for a considerable number of new results
going beyond the standard oracle model, convexity, or beyond first-order, in a wide variety of settings
[5–7, 12, 18, 23, 28, 32, 36, 42, 46, 71, 73], among many others. There have been some efforts to
achieve acceleration for Riemannian algorithms as generalizations of AGD, cf. Section 1.2. These
works try to answer the following fundamental question:

Can a Riemannian first-order method enjoy the same rates of convergence as Euclidean AGD?

The question is posed under (possibly strongly) geodesic convexity and smoothness of the
function to be optimized. And due to the lower bound in [26], we know the optimization must be
under bounded geodesic curvature of the Riemannian manifold, and we might have to optimize over
a bounded domain.
Main result In this work, we study the question above in the case of Hadamard manifoldsℳ of
bounded sectional curvature and provide an instance of our framework for a wide class of Hadamard
manifolds. For a differentiable 𝑓 :ℳ→ R with a global minimizer at 𝑥*, let 𝑥0 ∈ℳ be an initial
point and 𝑅 be an upper bound on the distance 𝑑(𝑥0, 𝑥

*). If 𝑓 is 𝐿-smooth and (possibly 𝜇-strongly)
g-convex in a closed ball of center 𝑥* and radius 𝑂(𝑅), our algorithms obtain the same rates of
convergence as AGD, up to logarithmic factors and up to a geometric penalty factor, cf. Theorem 6.
See Table 1 for a succint comparison among accelerated algorithm and their rates. This algorithm is
a consequence of the general framework we design:

General accelerated scheme Riemacon. Given a not necessarily accelerated, linearly-convergent
subroutine for strongly g-convex smooth problems, constrained to a geodesically convex set 𝒳 , we
design first-order algorithms that enjoy the same rates as AGD when approximating min𝑥∈𝒳 𝑓(𝑥),
up to logarithmic factors and up to a geometric penalty factor, where 𝑓 : 𝒩 ⊂ ℳ → R is a
differentiable function that is smooth and g-convex (or strongly g-convex) in 𝒳 ⊂ 𝒩 , cf. Theorem 4.

Importantly, our algorithms obtain acceleration without an undesirable assumption that most
previous works had to make: that the iterates of the algorithm stay inside of a pre-specified compact
set without any mechanism for enforcing or guarateeing this condition. To the best of our knowledge
only two previous methods are able to deal with some form of constraints, and they apply to
the limited settings of local optimization [26] and constant sectional curvature manifolds [58],
respectively. Techniques in the rest of papers resort to assuming that the iterates of their algorithms
are always feasible. Removing this condition in general, global, and fully accelerated methods was
posed as an open question in [50], that we solve for the case of Hadamard manifolds. The difficulty of
constraining problems in order to bound geometric penalties as well as the necessity of achieving this
goal in order to provide full optimization guarantees with bounded geometric penalties is something
that has also been noted in other kinds of Riemannian algorithms, cf. [39].
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We develop new techniques on inexact proximal methods in Riemannian manifolds and show
that with access to a (not necessarily accelerated) constrained linear subroutine for strongly g-convex
and smooth problems, we can inexactly solve a proximal subproblem to enough accuracy so it can
be used in our accelerated outer loop, in the spirit of other Euclidean algorithms like Catalyst [54].
After building this machinery, we show that we are able to implement an inexact ball optimization
oracle, cf. [19], as an instance of our solution. Crucially, the diameter 𝐷 of this ball depends on 𝑅
and the geometry only, so in particular it is independent on the condition number of 𝑓 . We can use
the linearly convergent algorithm in [26] for the implementation of the prox subroutine and we show
that iterating the application of the ball optimization oracle leads to global accelerated convergence.
See Appendix A for a review of the geometric concepts and definitions used in this work and see
Appendix B for a format statement of our theorems.

1.1. Notation

Letℳ be a uniquely geodesic 𝑛-dimensional Riemannian manifold. Given points 𝑥, 𝑦, 𝑧 ∈ ℳ,
we abuse the notation and write 𝑦 in non-ambiguous and well-defined contexts in which we should
write Log𝑥(𝑦). For example, for 𝑣 ∈ 𝑇𝑥ℳ we have ⟨𝑣, 𝑦 − 𝑥⟩ = −⟨𝑣, 𝑥 − 𝑦⟩ = ⟨𝑣,Log𝑥(𝑦) −
Log𝑥(𝑥)⟩ = ⟨𝑣,Log𝑥(𝑦)⟩; ‖𝑣 − 𝑦‖ = ‖𝑣 − Log𝑥(𝑦)‖; ‖𝑧 − 𝑦‖𝑥 = ‖Log𝑥(𝑧) − Log𝑥(𝑦)‖; and
‖𝑦 − 𝑥‖𝑥 = ‖Log𝑥(𝑦)‖ = 𝑑(𝑦, 𝑥). We denote by 𝒳 a compact, uniquely geodesic g-convex set of
diameter 𝐷 contained in an open set 𝒩 ⊂ℳ and we use 𝐼𝒳 for the indicator function of 𝒳 , which
is 0 at points in 𝒳 and +∞ otherwise. For a vector 𝑣 ∈ 𝑇𝑦ℳ, we use Γ𝑥

𝑦(𝑣) ∈ 𝑇𝑥ℳ to denote the
parallel transport of 𝑣 from 𝑇𝑦ℳ to 𝑇𝑥ℳ along the unique geodesic that connects 𝑦 to 𝑥. We call
𝑓 : 𝒩 ⊂ℳ→ R a differentiable 𝐿-smooth g-convex function we want to optimize. We use 𝜀 to
denote the approximation accuracy parameter, 𝑥0 ∈ 𝒳 for the initial point of our algorithms, and
𝑅̄

def
= 𝑑(𝑥0, 𝑥̄

*) for the initial distance to an arbitrary constrained minimizer 𝑥̄* ∈ arg min𝑥∈𝒳 𝑓(𝑥).
We use 𝑅 for an upper bound on the initial distance 𝑑(𝑥0, 𝑥

*) to an unconstrained minimizer 𝑥*, if it
exists. The big-𝑂 notation ̃︀𝑂(·) omits log factors. Note that in the setting of Hadamard manifolds,
the bounds on the sectional curvature are 𝜅min ≤ 𝜅max ≤ 0. Hence for notational convenience, we
define 𝜁 def

= 𝜁𝐷 = 𝐷
√︀
|𝜅min| coth(𝐷

√︀
|𝜅min|) ≥ 1, 𝛿 def

= 1, and similarly 𝜁 def
= 𝜁𝑅 and 𝛿 def

= 𝛿𝑅 = 1.
If 𝑣 ∈ 𝑇𝑥ℳ, we use Π𝐵̄(0,𝑟)(𝑣) ∈ 𝑇𝑥ℳ for the projection of 𝑣 onto the closed ball with center at 0
and radius 𝑟.

1.2. Our results and comparisons with related work

In this work, we optimize functions defined over Hadamard manifolds ℳ of finite dimension
𝑛 and of sectional curvature bounded lower bounded by 𝜅min. As all previous related works
discussed in the sequel, we assume that we can compute the exponential and inverse exponential
maps, and parallel transport of vectors for our manifold. The differentiable function 𝑓 to be
optimized is defined over an open set 𝒩 ⊂ ℳ that contains a compact g-convex set 𝒳 of finite
diameter 𝐷. Our function 𝑓 is 𝐿-smooth and g-convex (or 𝜇-strongly g-convex) in 𝒳 and we
have access to it via a gradient oracle that can be queried at points in 𝒳 . For this setting, we
show in Theorem 4 that with access to a (possibly unaccelerated) linearly convergent subroutine
for g-strongly smooth problems in 𝒳 , the algorithms we propose find a point 𝑦𝑇 ∈ 𝒳 such that
𝑓(𝑦𝑇 )−min𝑥∈𝒳 𝑓(𝑥) ≤ 𝜀 after calling the gradient oracle and the subroutine the following number
of times: ̃︀𝑂(𝜁

√︀
𝐿𝑅̄2/𝜀) for the g-convex case and ̃︀𝑂(𝜁

√︀
𝐿/𝜇 log(𝜇𝑅̄2/𝜀)) for the 𝜇-strongly

g-convex case, where 𝑅̄ def
= 𝑑(𝑥0, 𝑥̄

*) and 𝑥0 ∈ 𝒳 is an initial point. Then in Theorem 6, we
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Table 1: Convergence rates of related works with provable guarantees for smooth problems over
uniquely geodesic manifolds. *A mild condition on the covariant derivative of the metric
tensor is required, cf. Assumption 5.

Method g-convex 𝜇-st. g-cvx K? G? F? C?

[61, AGD] 𝑂(
√︁

𝐿𝑅2

𝜀 ) 𝑂(𝒲) 0 3 3 3

[82] - 𝑂(𝒲) bounded L 3 7

[2] - ̃︀𝑂(𝐿𝜇 +𝒲) bounded 3 7 7

[57] ̃︀𝑂(𝜁2
√︁
𝜁 + 𝐿𝑅2

𝜀 ) ̃︀𝑂(𝜁2 · 𝒲) ctant.̸= 0 3 3 3

[26] - 𝑂(𝒲) bounded* L′ 3 3

[50] 𝑂(𝜁
√︁

𝐿𝑅2

𝜀 ) 𝑂(𝜁 · 𝒲) bounded 3 3 7

Theorem 6 ̃︀𝑂(𝜁2
√︁
𝜁 + 𝐿𝑅2

𝜀 ) ̃︀𝑂(𝜁2 · 𝒲) Hadamard* 3 3 3

instantiate our algorithm with the method in [26] as subroutine and boost the convergence by
implementing and sequentially applying an inexact ball optimization oracle and we obtain the
rates ̃︀𝑂(𝜁2

√︀
𝜁 + 𝐿𝑅2/𝜀) and ̃︀𝑂(𝜁2

√︀
𝐿/𝜇 log(𝜇𝑅2/𝜀)) where 𝑅 is a bound on the initial distance

𝑑(𝑥0, 𝑥
*) to an unconstrained minimizer 𝑥*. In sum, the algorithms enjoy the same rates as AGD

in the Euclidean space up to a factor of 𝜁2 = 𝑅2𝜅2min coth2(𝑅
√︀
|𝜅min|) ≤ (1 + 𝑅 · |𝜅min|)2 (our

geometric penalty) and up to universal constants and log factors. Note that as the minimum curvature
𝜅min approaches 0 we have 𝜁 → 1.

We have summarized the comparison with related works in Table 1. There are some works on
Riemannian acceleration that focus on empirical evaluation or that work under strong assumptions
[3, 4, 40, 55, 56], see [57] for instance for a discussion on these works. We compare the most
related work with guarantees in Table 1. There, column K? refers to the supported values of the
sectional curvature, G? to whether the algorithm is global (any initial distance to a minimizer is
allowed). Here L and L′ mean they are local algorithms that require initial distance 𝑂((𝐿/𝜇)−3/4)
and 𝑂((𝐿/𝜇)−1/2), respectively. Column F? refers to whether there is full acceleration, meaning
dependence on 𝐿, 𝜇, and 𝜀 like AGD up to possibly log factors. Column C? refers to whether the
method can enforce some constraints. All methods require their iterates to be in some specified
compact set, but the works with 7 just assume the iterates will remain within the constraints. We use
𝒲 def

=
√︁

𝐿
𝜇 log(𝐿𝑅

2

𝜀 ). See Section 1.2 for a more thorough discussion on related work.

2. Algorithmic Framework and Pseudocode

In this section, we present our Riemannian accelerated algorithm for constrained g-convex optimiza-
tion, or Riemacon. This is a general framework that we later instantiate to provide a full algorithm.
See the pseudocode in Appendix B.

We start with an interpretation of our algorithm that helps understanding its high-level ideas.
The following intends to be a qualitative explanation, and we refer to the pseudocode and the
supplementary material for the exact descriptions and analysis. Euclidean accelerated algorithms
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can be interpreted, cf. [8], as a combination of a gradient descent (GD) algorithm and an online
learning algorithm with losses being the affine lower bounds 𝑓(𝑥𝑘) + ⟨∇𝑓(𝑥𝑘), · − 𝑥𝑘⟩ we obtain
on 𝑓(·) by applying convexity at some points 𝑥𝑘. That is, the latter builds a lower bound estimation
on 𝑓 . By selecting the next query to the gradient oracle as a cleverly picked convex combination
of the predictions given by these two algorithms, one can show that the instantaneous regret of
the online learning algorithm can be compensated by the local progress GD makes, which leads to
accelerated convergence. In Riemannian optimization, there are two main obstacles. Firstly, the
first-order approximations of 𝑓 at points 𝑥𝑘 yield functions that are affine but only with respect to
their respective 𝑇𝑥𝑘

ℳ, and so combining these lower bounds that are only simple in their tangent
spaces makes obtaining good global estimations not simple. Secondly, when one obtains such global
estimations, then one naturally incurs an instantaneous regret that is worse by a factor than is usual
in Euclidean acceleration. This factor is a geometric constant depending on the diameter 𝐷 of a set
𝒳 where the iterates and a (possibly constrained) minimizer lie. As a consequence, the learning rate
of GD would need to be multiplicatively increased by such a constant with respect to the one of the
online learning algorithm in order for the regret to still be compensated with the local progress of
GD (and the rates worsen by this constant). But if we fix some 𝒳 of finite diameter, because GD’s
learning rate is now larger, it is not clear how to keep the iterates in 𝒳 . And if we do not have the
iterates in one such set 𝒳 , then our geometric penalties could grow arbitrarily.

We find the answer in implicit methods. An implicit Euclidean (sub)gradient descent step is one
that computes, from a point 𝑥𝑘 ∈ 𝒳 , another point 𝑦*𝑘 = 𝑥𝑘 − 𝜆𝑣𝑘 ∈ 𝒳 , where 𝑣𝑘 ∈ 𝜕(𝑓 + 𝐼𝒳 )(𝑦*𝑘),
is a subgradient of 𝑓 + 𝐼𝒳 at 𝑦*𝑘. Intuitively, if we could implement a Riemannian version of an
implicit GD step then it should be possible to still compensate the regret of the other algorithm
and keep all the iterates in the set 𝒳 . Computing such an implicit step is computationally hard
in general, but we show that approximating the proximal objective ℎ𝑘(𝑦)

def
= 𝑓(𝑦) + 1

2𝜆𝑑(𝑥𝑘, 𝑦)2

with enough accuracy yields an approximate subgradient that can be used to obtain an accelerated
algorithm as well. In particular, we provide an accelerated scheme for which we show that the error
incurred by the approximation of the subgradient can be bounded by some terms we can control, cf.
Lemma 8, namely a small term that appears in our Lyapunov function and also a term proportional
to the squared norm of the approximated subgradient, which only increases the final convergence
rates by a constant. This proximal approach works by exploiting the fact that the Riemannian
Moreau envelop is convex in Hadamard manifolds [10] and that the subproblem ℎ𝑘, defined with
our 𝜆 = 𝜁2𝐷/𝐿, is strongly g-convex and smooth with a condition number that only depends on
the geometry. For this reason, a local algorithm like the one in [26] can be implemented in balls
whose radius is independent on the condition number of 𝑓 . Besides these steps, we use a coupling
of the approximate implicit RGD and of a mirror descent (MD) algorithm, along with a technique
in [50] to move dual points to the right tangent spaces without incurring extra geometric penalties,
that we adapt to work with dual projections, cf. Lemma 9. Importantly, the MD algorithm keeps the
dual point close to the set 𝒳 by using the projection in Line 12, which implies that the point 𝑥𝑘 is
close to 𝒳 as well, and this is crucial to keep low geometric penalties. This MD approach is a mix
between follow-the-regularized-leader algorithms, that do not project the dual variable, and pure
mirror descent algorithms that always project the dual variable. In the analysis, we note that partial
projection also works, meaning that defining a new dual point that is closer to all of the points in
the feasible set but without being a full projection leads to the same guarantees. Because we use the
mirror descent lemma over 𝑇𝑦𝑘ℳ, what we described translates to: we can project the dual 𝑧𝑦𝑘𝑘 onto
a ball defined on 𝑇𝑦𝑘ℳ that contains the pulled-back set Log𝑦𝑘(𝒳 ) and by means of that trick we
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can keep the iterates 𝑥𝑘 close to 𝒳 . And at the same time, the point for which we prove guarantees,
namely 𝑦𝑘, is always in 𝒳 .

Finally, we instantiate our subroutine with the algorithm in [26], in balls of radius independent on
the condition number of 𝑓 and show in Theorem 6 that if we iterate this approximate implementation
of a ball optimization oracle, we obtain convergence at a globally accelerated rate. We note [81, Thm.
15] also provided a claimed linearly convergent algorithm for constrained strongly g-convex smooth
problems, and thus in principle it could be used for our subroutine. Unfortunately, we noticed that
the proof is flawed when the optimization is constrained. The first inequality in their proof only holds
in general for unconstrained problems and not for projected Riemannian gradient descent, not even
for the Euclidean constrained case.

3. Conclusion and future directions

In this work, we pursued an approach that, by designing and making use of inexact Riemannian
proximal methods, yielded accelerated optimization algorithms. Consequently we were able to work
without an undesirable assumption that most previous methods required, whose potential satisfiability
is not clear: that the iterates stay in certain specified geodesically-convex set without enforcing them
to be in the set. A future direction of research is the study of whether there are algorithms like ours
that incur even lower geometric penalties or that do not incur log(1/𝜀) factors. Another interesting
direction consists of studying generalizations of our approach to more general manifolds, namely the
full Hadamard case, and manifolds of non-negative or even of bounded sectional cuvature.
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Appendix A. Geometric preliminaries

We provide definitions of Riemannian geometry concepts that we use in this work. The interested
reader can refer to [11, 62] for an in-depth review of this topic, but for this work the following notions
will be enough. A Riemannian manifold (ℳ, g) is a real 𝐶∞ manifoldℳ equipped with a metric g,
which is a smoothly varying, i.e., 𝐶∞, inner product. For 𝑥 ∈ℳ, denote by 𝑇𝑥ℳ the tangent space
ofℳ at 𝑥. For vectors 𝑣, 𝑤 ∈ 𝑇𝑥ℳ, we denote the inner product of the metric by ⟨𝑣, 𝑤⟩𝑥 and the
norm it induces by ‖𝑣‖𝑥

def
=
√︀
⟨𝑣, 𝑣⟩𝑥. Most of the time, the point 𝑥 is known from context, in which

case we write ⟨𝑣, 𝑤⟩ or ‖𝑣‖.
A geodesic of length ℓ is a curve 𝛾 : [0, ℓ]→ℳ of unit speed that is locally distance minimizing.

A uniquely geodesic space is a space such that for every two points there is one and only one
geodesic that joins them. In such a case the exponential map Exp𝑥 : 𝑇𝑥ℳ→ℳ and the inverse
exponential map Log𝑥 :ℳ→ 𝑇𝑥ℳ are well defined for every pair of points, and are as follows.
Given 𝑥, 𝑦 ∈ ℳ, 𝑣 ∈ 𝑇𝑥ℳ, and a geodesic 𝛾 of length ‖𝑣‖ such that 𝛾(0) = 𝑥, 𝛾(‖𝑣‖) = 𝑦,
𝛾′(0) = 𝑣/‖𝑣‖, we have that Exp𝑥(𝑣) = 𝑦 and Log𝑥(𝑦) = 𝑣. We denote by 𝑑(𝑥, 𝑦) the distance
between 𝑥 and 𝑦, and note that it takes the same value as ‖Log𝑥(𝑦)‖. The manifoldℳ comes with
a natural parallel transport of vectors between tangent spaces, that formally is defined from a way of
identifying nearby tangent spaces, known as the Levi-Civita connection ∇ [51]. We use this parallel
transport throughout this work.

Given a 2-dimensional subspace 𝑉 ⊆ 𝑇𝑥ℳ of the tangent space of a point 𝑥, the sectional
curvature at 𝑥 with respect to 𝑉 is defined as the Gauss curvature, for the surface Exp𝑥(𝑉 ) at 𝑥. The
Gauss curvature at a point 𝑥 can be defined as the product of the maximum and minimum curvatures
of the curves resulting from intersecting the surface with planes that are normal to the surface at
𝑥. A Hadamard manifold is a complete simply connected Riemannian manifold whose sectional
curvature is non-positive, like the hyperbolic space or the space of 𝑛× 𝑛 symmetric positive definite
matrices with the metric ⟨𝑋,𝑌 ⟩𝐴

def
= Tr(𝐴−1𝑋𝐴−1𝑌 ) where 𝑋,𝑌 are in the tangent space of 𝐴.

Hadamard manifolds are uniquely geodesic. Note that in a general manifold Exp𝑥(·) might not be
defined for each 𝑣 ∈ 𝑇𝑥ℳ, but in a Hadamard manifold of dimension 𝑛, the exponential map at any
point is a global diffeomorphism between 𝑇𝑥ℳ∼= R𝑛 and the manifold, and so the exponential map
is defined everywhere. We now proceed to define the main properties that will be assumed on our
model for the function to be minimized and on the feasible set 𝒳 .

Definition 1 Let 𝑓 : 𝒩 ⊂ℳ→ R be a differentiable function defined on an open set 𝒩 contained
in a Riemannian manifold ℳ. Given 𝐿 ≥ 𝜇 > 0, we say that 𝑓 is 𝐿-smooth, and respectively
𝜇-strongly g-convex, in a set 𝒳 ⊆ 𝒩 if for any two points 𝑥, 𝑦 ∈ 𝒳 , 𝑓 satisfies

𝑓(𝑦) ≤ 𝑓(𝑥) + ⟨∇𝑓(𝑥),Log𝑥(𝑦)⟩+
𝐿

2
𝑑(𝑥, 𝑦)2, 𝑓(𝑦) ≥ 𝑓(𝑥) + ⟨∇𝑓(𝑥),Log𝑥(𝑦)⟩+

𝜇

2
𝑑(𝑥, 𝑦)2.
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If the previous inequality is satisfied with 𝜇 = 0, we say the function is g-convex in 𝒳 .

We present the following fact about the squared-distance function, when one of the arguments is
fixed. The constants 𝜁𝐷, 𝛿𝐷 below appear everywhere in Riemannian optimization because, among
other things, Fact 2 yields Riemannian inequalities that are analogous to the equality in the Euclidean
cosine law of a triangle, cf. Corollary 14, and these inequalities have wide applicability in the
analyses of Riemannian methods.

Fact 2 (Local information of the squared-distance) Let ℳ be a Riemannian manifold of sec-
tional curvature bounded by [𝜅min, 𝜅max] that contains a uniquely g-convex set 𝒳 ⊂ℳ of diameter
𝐷 <∞. Then, given 𝑥, 𝑦 ∈ 𝒳 we have the following for the function Φ𝑥 :ℳ→ R, 𝑦 ↦→ 1

2𝑑(𝑥, 𝑦)2:

∇Φ𝑥(𝑦) = −Log𝑦(𝑥) and 𝛿𝐷‖𝑣‖2 ≤ Hess Φ𝑥(𝑦)[𝑣, 𝑣] ≤ 𝜁𝐷‖𝑣‖2,

where

𝜁𝐷
def
=

{︃
𝐷
√︀
|𝜅min| coth(𝐷

√︀
|𝜅min|) if 𝜅min ≤ 0

1 if 𝜅min > 0
,

and

𝛿𝐷
def
=

{︃
1 if 𝜅max ≤ 0

𝐷
√
𝜅max cot(𝐷

√
𝜅max) if 𝜅max > 0

,

Consequently, Φ𝑥 is 𝛿𝐷-strongly g-convex and 𝜁𝐷-smooth in 𝒳 . See [52] for a proof. In particular,
for Hadamard manifolds, Φ𝑥 is 1-strongly g-convex and sublevel sets of g-convex functions are
g-convex sets, so balls are g-convex in these manifolds [11].

Appendix B. Algorithms’ Pseudocode and formal statements of our theoretical
results

Recall our abuse of notation for points 𝑝 ∈ ℳ to mean Log𝑞(𝑝) in contexts in which one should
place a vector in 𝑇𝑞ℳ and note that in our algorithm 𝑥𝑘 and 𝑦𝑘 are points inℳ whereas 𝑧𝑥𝑘

𝑘 ∈
𝑇𝑥𝑘
ℳ, 𝑧𝑦𝑘𝑘 , 𝑧

𝑦𝑘
𝑘 ∈ 𝑇𝑦𝑘ℳ. We present our algorithmic framework in Algorithm 1.

Using the insights explained in Section 2, we show the following inequality on 𝜓𝑘, defined
below, that will be used as a Lyapunov function to prove the convergence rates of our Riemannian
accelerated algorithm for constrained g-convex optimization, or Riemacon1 (Algorithm 1).

Proposition 3 [↓] By using the notation of Algorithm 1, let

𝜓𝑘
def
= 𝐴𝑘(𝑓(𝑦𝑘)− 𝑓(𝑥̄*)) +

1

2
‖𝑧𝑦𝑘𝑘 − Log𝑦𝑘(𝑥̄*)‖2𝑦𝑘 +

𝜉 − 1

2
‖𝑧𝑦𝑘𝑘 ‖

2
𝑦𝑘
.

Then, for all 𝑘 ≥ 1, we have (1−∆𝑘)𝜓𝑘 ≤ 𝜓𝑘−1.

Finally, we can state our theorem for the optimization of 𝐿-smooth and g-convex functions.

1. Riemacon rhymes with “rima con” in Spanish.

15



ACCELERATED RIEMANNIAN OPTIMIZATION: HANDLING CONSTRAINTS TO BOUND GEOMETRIC PENALTIES

Algorithm 1 Riemacon: Riemannian Acceleration - Constrained g-Convex Optimization
Input: Feasible set 𝒳 . Initial point 𝑥0 ∈ 𝒳 ⊂ 𝒩 . Diff. function 𝑓 : 𝒩 ⊂ℳ→ R for a Hadamard

manifoldℳ that is 𝐿-smooth and g-convex in 𝒳 . Optionally: final iteration 𝑇 or accuracy 𝜀. If
𝜀 is provided, compute the corresponding 𝑇 , cf. Theorem 4.
Parameters:

• Geometric penalty 𝜉 def
= 4𝜁2𝐷 − 3 ≤ 8𝜁 − 3 = 𝑂(𝜁).

• Implicit Gradient Descent learning rate 𝜆 def
= 𝜁2𝐷/𝐿.

• Mirror Descent learning rates 𝜂𝑘
def
= 𝑎𝑘/𝜉.

• Proportionality constant in the proximal subproblem accuracies: ∆𝑘
def
= 1

(𝑘+1)2
.

Definition: (computation of this value is not needed)

• Prox. accuracies: 𝜎𝑘
def
=

Δ𝑘𝑑(𝑥𝑘,𝑦
*
𝑘)

2

78𝜆 where 𝑦*𝑘
def
= arg min𝑦∈𝒳 {𝑓(𝑦) + 1

2𝜆𝑑(𝑥𝑘, 𝑦)2}.

1: 𝑦0 ← 𝑥0; 𝐴0 ← 200𝜆𝜉
2: 𝑧𝑥0

0 ← 0 ∈ 𝑇𝑥0ℳ; 𝑧𝑦00 ← 𝑧𝑦00 ← 0 ∈ 𝑇𝑦0ℳ
3: for 𝑘 = 1 to 𝑇 do
4: 𝑎𝑘 ← 2𝜆𝑘+32𝜉

5

5: 𝐴𝑘 ← 𝑎𝑘/𝜉 +𝐴𝑘−1 =
∑︀𝑘

𝑖=1 𝑎𝑖/𝜉 +𝐴0 = 𝜆
(︁
𝑘(𝑘+1+64𝜉)

5𝜉 + 200𝜉
)︁

6: 𝑥𝑘 ← Exp𝑦𝑘−1
(

𝑎𝑘
𝐴𝑘−1+𝑎𝑘

𝑧
𝑦𝑘−1

𝑘−1 +
𝐴𝑘−1

𝐴𝑘−1+𝑎𝑘
𝑦𝑘−1) = Exp𝑦𝑘−1

(
𝑎𝑘

𝐴𝑘−1+𝑎𝑘
𝑧
𝑦𝑘−1

𝑘−1 ) ◇ Coupling

7: 𝑧𝑥𝑘
𝑘−1 ← Γ

𝑥𝑘
𝑦𝑘−1(𝑧

𝑦𝑘−1

𝑘−1 ) + Log𝑥𝑘
(𝑦𝑘−1) = Log𝑥𝑘

(Exp𝑦𝑘
(𝑧

𝑦𝑘−1

𝑘−1 ))

8: 𝑦𝑘 ← 𝜎𝑘-minimizer of the proximal problem min𝑦∈𝒳 {𝑓(𝑦) + 1
2𝜆𝑑(𝑥𝑘, 𝑦)2}

9: 𝑣𝑥𝑘 ← −Log𝑥𝑘
(𝑦𝑘)/𝜆 ◇ Approximate subgradient

10: 𝑧𝑥𝑘
𝑘 ← 𝑧𝑥𝑘

𝑘−1 − 𝜂𝑘𝑣
𝑥
𝑘 ◇Mirror Descent step

11: 𝑧𝑦𝑘𝑘 ← Γ𝑦𝑘
𝑥𝑘

(𝑧𝑥𝑘
𝑘 ) + Log𝑦𝑘(𝑥𝑘) ◇Moving the dual point to 𝑇𝑦𝑘ℳ

12: 𝑧𝑦𝑘𝑘 ← Π𝐵̄(0,𝐷)(𝑧
𝑦𝑘
𝑘 ) ∈ 𝑇𝑦𝑘ℳ ◇ Easy projection done so the dual point is not very far

13: end for
14: return 𝑦𝑇 .

Theorem 4 [↓] Letℳ be a finite-dimensional Hadamard manifold of bounded sectional curvature,
and consider 𝑓 : 𝒩 ⊂ℳ→ R be an 𝐿-smooth and g-convex differentiable function in a compact
g-convex set 𝒳 ⊂ 𝒩 of diameter 𝐷, 𝑥̄* ∈ arg min𝑥∈𝒳 𝑓(𝑥), and 𝑅̄ def

= 𝑑(𝑥0, 𝑥̄
*). For any 𝜀 > 0,

Algorithm 1 yields an 𝜀-minimizer 𝑦𝑇 ∈ 𝒳 after 𝑇 = 𝑂(𝜁
√︁

𝐿𝑅̄2

𝜀 ) iterations. If the function is

𝜇-strongly convex then, via a sequence of restarts, we converge in 𝑂(𝜁
√︁

𝐿
𝜇 log(𝜇𝑅̄

2

𝜀 )) iterations.

We note that a straightforward corollary from our results is that if we can compute the exact
Riemannian proximal point operator and we use it as the implicit gradient descent step in Line 8
of Algorithm 1, then the method is an accelerated proximal point method. One such Riemannian
algorithm was previously unknown in the literature as well. Finally, we instantiate Algorithm 1 to
implement approximate ball optimization oracles in an accelerated way. We show that applying these
oracles sequentially leads to global accelerated convergence. Moreover, we show that the iterates do
not get farther than 2𝑅 from 𝑥*, which ultimately leads to the geometric penalty being a function of
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Algorithm 2 Ball Optimization Boosting of a Riemacon instance (Algorithm 1)
Input: Differentiable function 𝑓 : 𝒩 ⊂ ℳ → R that is 𝐿-smooth and 𝜇-strongly g-convex in

𝐵̄(𝑥*, 3𝑅) ⊂ 𝒩 ; initial point 𝑥0 ∈ 𝒩 ; bound 𝑅 ≥ 𝑑(𝑥0, 𝑥
*); constant 𝐹 from 𝐴𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 5;

accuracy 𝜀.

1: if 2𝑅 ≤ (46𝑅|𝜅min|𝜁2𝑅)−1 then return RiemaconSC(𝐵̄(𝑥0, 𝑅), 𝑥0, 𝑓 , 𝜀)
2: Compute 𝐷 such that 𝐷 = (46𝑅|𝜅min|𝜁𝐷)−1. Alternatively, make 𝐷 ← (70𝑅|𝜅min|)−1.
3: 𝑇 ← ⌈4𝑅𝐷 ln(𝐿𝑅

2

𝜀 )⌉; 𝜀′ ← min{𝐷𝜀
8𝑅 ,

𝜇𝑅2

2𝑇 2 }
4: for 𝑘 = 1 to 𝑇 do
5: 𝒳 𝑘 ← 𝐵̄(𝑥𝑘−1, 𝐷/2)
6: 𝑥𝑘 ← RiemaconSC(𝒳 𝑘, 𝑥𝑘−1, 𝑓 , 𝜀

′) ◇ [26] as subroutine
7: ◇ RiemaconSC is the strongly convex version of Algorithm 1 in Theorem 4 (cf. its proof).
8: end for
9: return 𝑥𝑇 .

𝜁 and not on the condition number of 𝑓 . For the subroutine in Line 8 of Algorithm 1, we use the
algorithm in [26, Section 6], and for that we require the following.

Assumption 5 Let R be the curvature tensor of a Riemannian manifoldℳ. Its covariant derivative
is∇R = 0.

We note that locally symmetric manifolds, like SO(𝑛), the SPD matrix manifold, the Grasman-
nian manifold, manifolds of constant sectional curvature are all manifolds such that∇R = 0. We
argue that this assumption is mild, since in particular these manifolds cover all of the applications in
Section 1.

Theorem 6 [↓] Letℳ be a finite-dimensional Hadamard manifold of bounded sectional curvature
satisfying Assumption 5. Consider 𝑓 : 𝒩 ⊂ ℳ → R be an 𝐿-smooth and 𝜇-strongly g-convex
differentiable function in 𝐵̄(𝑥*, 3𝑅), where 𝑥* is its global minimizer and where 𝑅 ≥ 𝑑(𝑥0, 𝑥

*) for
an initial point 𝑥0. For any 𝜀 > 0, Algorithm 2 yields an 𝜀-minimizer after ̃︀𝑂(𝜁2

√︀
𝐿/𝜇 log(𝐿𝑅2/𝜀))

calls to the gradient oracle of 𝑓 . By using regularization, this algorithm 𝜀-minimizes the g-convex
case (𝜇 = 0) after ̃︀𝑂(𝜁2

√︀
𝜁 + 𝐿𝑅2/𝜀) gradient oracle calls.

Appendix C. More related work

We comment on the related work in Table 1 and discuss more related work. [82] obtain an algorithm
that, up to constants, achieves the same rates as AGD in the Euclidean space, for 𝐿-smooth and
𝜇-strongly g-convex functions but only locally, namely when the initial point starts in a small
neighborhood 𝑁 of the minimizer 𝑥*: a ball of radius 𝑂((𝜇/𝐿)3/4) around it. [2] generalize the
previous algorithm and, by using similar ideas as in [82] for estimating a lower bound on 𝑓 , they
adapt the algorithm to work globally, proving that it eventually decreases the objective as fast as AGD.
However, as [57] noted, it takes as many iterations as the ones needed by Riemannian gradient descent
(RGD) to reach the neighborhood of the previous algorithm. The latter work also noted that in fact
RGD and the algorithm in [82] can be run in parallel and combined to obtain the same convergence
rates as in [2], which suggested that for this technique, full acceleration with the rates of AGD only
happens over the small neighborhood 𝑁 in [82]. Note however that [2] show that their algorithm will
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decrease the function value faster than RGD, but this is not quantified. [43] developed a different
framework, arising from [2] but with the same guarantees for accelerated first-order methods. We
do not feature it in the table. [26] showed, under mild assumptions, that in a ball of center 𝑥 ∈ℳ
and radius 𝑂((𝜇/𝐿)1/2) containing 𝑥*, the pullback function 𝑓 ∘ Exp𝑥 : 𝑇𝑥ℳ→ R is Euclidean,
strongly convex, and smooth with condition number 𝑂(𝐿/𝜇), so AGD yields local acceleration as
well. In short, acceleration is possible in a small neighborhood because there the manifold is almost
Euclidean and the geometric deformations are small in comparison to the curvature of the objective.
These techniques fail for the g-convex case since the neighborhood becomes a point (𝜇/𝐿 = 0).

Finding fully accelerated algorithms that are global presents a harder challenge. By a fully
accelerated algorithm we mean one with rates with same dependence as AGD on 𝐿, 𝜀, and if it
applies, on 𝜇. [57] provided such algorithms for g-convex functions, strongly or not, defined over
manifolds of constant sectional curvature and constrained to a ball of radius𝑅. The convergence rates
initially had large constants with respect to 𝑅 but were later improved, cf. Table 1. Kim and Yang
[50] designed global algorithms with the same rates as AGD up to universal constants and a factor of
𝜁, their geometric penalty. However, they need to assume that the iterates of their algorithm remain
in their feasible set 𝒳 and they point out on the necessity of removing such an assumption, which
they leave as an open question. Our work solves this question for the case of Hadamard manifolds.
In their technique, they show that they can use the structure of the accelerated scheme to move lower
bound estimations on 𝑓(𝑥*) from one particular tangent space to another without incurring extra
errors, when the right Lyapunov function is used. By moving lower bounds here we mean finding
suitable lower bounds that are simple (a quadratic in their case), if pulled-back to one tangent space,
if we start with a similar bound that is simple when pulled-back to another tangent space.
Lower bounds. In this paragraph, we omit constants depending on the curvature bounds in the
big-𝑂 notations for simplicity. [34] proved an optimization lower bound showing that acceleration in
Riemannian manifolds is harder than in the Euclidean space. [26] largely generalized their results.
They essentially show that for a large family of Hadamard manifolds, there is a function that is
smooth and strongly g-convex in a ball of radius 𝑅 that contains the minimizer 𝑥*, and for which
finding a point that is 𝑅/5 close to 𝑥* requires ̃︀Ω(𝑅) calls to the gradient oracle. Note that these
results do not preclude the existence of a fully accelerated algorithm with rates ̃︀𝑂(𝑅)+AGD rates,
for instance. A similar hardness statement is provided for smooth and only g-convex functions. Also,
reductions as in [57] evince this hardness is also present in this case.
Handling constraints to bound geometric penalties. In our algorithm and in all other known
fully accelerated algorithms, learning rates depend on the diameter of the feasible set. This is natural:
estimation errors due to geometric deformations depend on the diameter via the constants 𝜁𝐷, 𝛿𝐷, the
cosine-law inequalities Corollary 14, or other analogous inequalities, and the algorithms take these
errors into account. All other previous works are not able to deal with any constraints and hence they
simply assume that the iterates of their algorithms stay within one such specified set, except for [57]
and [26] that enforce a ball constraint, as we explained above. However, these two works have their
applicability limited to spaces of constant curvature and to local optimization, respectively. Note that
even if one could show that given a choice of learning rate, convergence implies that the iterates will
remain in some compact set, then because the learning rates depend on the diameter of the set, and
the diameter of the set would depend on the learning rates, one cannot conclude from this argument
that the assumption these works make is going to be satisfied. In contrast, in this work, we design
a general accelerated framework and an instance of it that keep the iterates bounded, effectively
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bounding geometric penalties while we do not need to resort to any other extra assumptions, solving
the open question in [50].
Riemannian proximal methods There have been some works that study proximal methods in
Riemannian manifolds, but most of them focus on asymptotic results or assume the proximal operator
can be computed exactly [15, 16, 21, 48, 74]. The rest of these works study proximal point methods
under different inexact versions of the proximal operator as ours and they do not show how to
implement their inexact version in applications, like in our case of smooth and g-convex optimization.
In contrast, we implement the inexact proximal operator with a first-order method [1] provide a
convergence analysis of an inexact proximal point method but when applied to optimization they
assume the computation of the proximal operator is exact. [69] uses a different inexact condition
and proves linear convergence, under a growth condition on 𝑓 . [75] obtains linear convergence of an
inexact proximal point method under a different growth assumption on 𝑓 and under an absolute error
condition on the proximal function.

Appendix D. Proof of Theorem 4, Analysis of Algorithm 1

We start by noting a property that our parameters satisfy.

Lemma 7 For the parameter choices of 𝑎𝑘 and 𝐴𝑘−1 in Algorithm 1 we have, for all 𝑘 ≥ 1:

8𝜆

9
(𝜉𝐴𝑘−1 + 𝑎𝑘) ≥ 𝑎2𝑘 ≥

3𝜆

4
(𝜉𝐴𝑘−1 + 𝜉𝑎𝑘).

Proof It is a simple computation to check that 𝑎𝑘 and 𝐴𝑘−1 satisfy such inequality. The inequalities
are equivalent to the following, which trivially holds:

8

9
((𝑘2 − 𝑘 + 64𝑘𝜉 − 64𝜉 + 1000𝜉2) + (2𝑘 + 64𝜉)) ≥ 4

5
(𝑘2 + 64𝑘𝜉 + 1024𝜉2)

≥ 3

4
((𝑘2 − 𝑘 + 64𝑘𝜉 − 64𝜉 + 1000𝜉2) + (2𝑘𝜉 + 64𝜉2))

We now prove Proposition 3, which will allow us to use 𝜓𝑘 as a Lyapunov function to show
the final convergence rates. The proof will use Lemma 8 and Lemma 9, that we state and prove
afterwards.
Proof [Proposition 3]Inequality (1−∆𝑘)𝜓𝑘 ≤ 𝜓𝑘−1 is equivalent to

(1−∆𝑘)

(︂
𝐴𝑘(𝑓(𝑦𝑘)− 𝑓(𝑥̄*)) +

1

2
‖𝑧𝑦𝑘𝑘 − 𝑥̄

*‖2𝑦𝑘 +
𝜉 − 1

2
‖𝑦𝑘 − 𝑧𝑦𝑘𝑘 ‖

2
𝑦𝑘

)︂
≤ 𝐴𝑘−1(𝑓(𝑦𝑘−1)− 𝑓(𝑥̄*)) +

(︂
1

2
‖𝑧𝑦𝑘−1

𝑘−1 − 𝑥̄
*‖2𝑦𝑘−1

+
𝜉 − 1

2
‖𝑦𝑘−1 − 𝑧

𝑦𝑘−1

𝑘−1 ‖
2
𝑦𝑘−1

)︂
which, by bounding (1−∆𝑘)(𝑓(𝑦𝑘)− 𝑓(𝑥̄*)) ≤ 𝑓(𝑦𝑘)− 𝑓(𝑥̄*) and reorganizing, is implied by the
following:

𝐴𝑘−1(𝑓(𝑦𝑘)− 𝑓(𝑦𝑘−1)) +
𝑎𝑘
𝜉

(𝑓(𝑦𝑘)− 𝑓(𝑥̄*)) ≤ 1

2
‖𝑧𝑦𝑘−1

𝑘−1 − 𝑥̄
*‖2𝑦𝑘−1

−
1−∆𝑘

2
‖𝑧𝑦𝑘𝑘 − 𝑥̄

*‖2𝑦𝑘

+
𝜉 − 1

2

(︁
‖𝑦𝑘−1 − 𝑧

𝑦𝑘−1

𝑘−1 ‖
2
𝑦𝑘−1
− (1−∆𝑘)‖𝑦𝑘 − 𝑧𝑦𝑘𝑘 ‖

2
𝑦𝑘

)︁
.
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We have that due to the projection in Line 12, then 𝑥𝑘 is not very far from any 𝑝 ∈ 𝒳 :

𝑑(𝑥𝑘, 𝑝) ≤ ‖𝑥𝑘 − 𝑦𝑘−1‖𝑦𝑘−1
+ 𝑑(𝑦𝑘−1, 𝑝)

1
< ‖𝑧𝑦𝑘−1

𝑘−1 − 𝑦𝑘−1‖𝑦𝑘−1
+𝐷

2
≤ 2𝐷, (1)

where 1 holds by the definition of 𝑥𝑘 and the fact 𝑦𝑘−1, 𝑝 ∈ 𝒳 , and 2 is due to the projection
defining 𝑧𝑦𝑘−1

𝑘−1 . Now we use the first part of Lemma 8 with both 𝑥 ← 𝑦𝑘−1 and 𝑥 ← 𝑥̄* and we
bound the resulting errors 𝜀𝑘(·) by using the second part of Lemma 8. We also use Lemma 9, so it is
enough to prove the following:

𝐴𝑘−1⟨𝑣𝑥𝑘 , 𝑥𝑘 − 𝑦𝑘−1⟩+ (𝑎𝑘/𝜉)⟨𝑣𝑥𝑘 , 𝑥𝑘 − 𝑧
𝑥𝑘
𝑘−1 + 𝑧𝑥𝑘

𝑘−1 − 𝑥̄
*⟩ − 4𝜆

9
(𝐴𝑘−1 + 𝑎𝑘/𝜉)‖𝑣𝑥𝑘‖2

≤ 1

2
‖𝑧𝑥𝑘

𝑘−1 − 𝑥̄
*‖2𝑥𝑘

− 1

2
‖𝑧𝑥𝑘

𝑘 − 𝑥̄
*‖2𝑥𝑘

+
𝜉 − 1

2

(︁
‖𝑥𝑘 − 𝑧

𝑥𝑘
𝑘−1‖

2
𝑥𝑘
− ‖𝑥𝑘 − 𝑧

𝑥𝑘
𝑘 ‖

2
𝑥𝑘

)︁
,

Note that thanks to Lemma 9 now we have the potentials on the right hand side as expressions in the
tangent space of 𝑥𝑘. Also, note that we have canceled some potentials proportional to ∆𝑘 coming
from the bound on the error 𝜀𝑘(·). Now we use that by definition of 𝑥𝑘 we have, for all 𝑣 ∈ 𝑇𝑥𝑘

ℳ,
𝐴𝑘−1⟨𝑣, 𝑥𝑘 − 𝑦𝑘−1⟩ = −𝑎𝑘⟨𝑣, 𝑥𝑘 − 𝑧

𝑥𝑘
𝑘−1⟩, so we use this fact for 𝑣 = 𝑣𝑥𝑘 and use the following

identity, that holds by the definion of 𝑧𝑥𝑘
𝑘

def
= 𝑧𝑥𝑘

𝑘−1 − 𝜂𝑘𝑣
𝑥
𝑘 :

𝑎𝑘/𝜉

𝜂𝑘
⟨𝜂𝑘𝑣𝑥𝑘 , 𝑧

𝑥𝑘
𝑘−1 − 𝑥̄

*⟩ =
𝑎𝑘/𝜉

2𝜂𝑘

(︁
𝜂2𝑘‖𝑣𝑥𝑘‖2𝑥𝑘

+ ‖𝑧𝑥𝑘
𝑘−1 − 𝑥̄

*‖2𝑥𝑘
− ‖𝑧𝑥𝑘

𝑘 − 𝑥̄
*‖2𝑥𝑘

)︁
.

so that, after canceling terms, it is enough to prove:

𝑎𝑘(1− 1/𝜉)⟨−𝑣𝑥𝑘 , 𝑥𝑘 − 𝑧
𝑥𝑘
𝑘−1⟩ −

𝑎𝑘(1− 1/𝜉)

2𝜂𝑘
𝜂2𝑘‖𝑣𝑥𝑘‖2

+ ‖𝑣𝑥𝑘‖2(−
4

9
(𝐴𝑘−1𝜆+ 𝑎𝑘𝜆/𝜉) +

𝑎𝑘𝜂𝑘
2

)

≤ 𝜉 − 1

2

(︁
‖𝑥𝑘 − 𝑧

𝑥𝑘
𝑘−1‖

2
𝑥𝑘
− ‖𝑥𝑘 − 𝑧

𝑥𝑘
𝑘 ‖

2
𝑥𝑘

)︁
,

(2)

Now we show that in the previous inequality (2), the first line cancels with the last line. Note that
(𝑎𝑘(1− 1/𝜉))/𝜂𝑘 = (1− 1/𝜉)/(1/𝜉) = 𝜉 − 1. Thus, by using again the definition of 𝑧𝑥𝑘

𝑘 , we have:

𝑎𝑘(1− 1/𝜉)

𝜂𝑘
⟨−𝜂𝑘𝑣𝑥𝑘 , 𝑥𝑘 − 𝑧

𝑥𝑘
𝑘−1⟩ =

𝑎𝑘(1− 1/𝜉)

2𝜂𝑘

(︁
𝜂2𝑘‖𝑣𝑥𝑘‖2𝑥𝑘

+ ‖𝑥𝑘 − 𝑧
𝑥𝑘
𝑘−1‖

2
𝑥𝑘
− ‖𝑥𝑘 − 𝑧

𝑥𝑘
𝑘 ‖

2
𝑥𝑘

)︁
.

Finally, it only remains to prove:

‖𝑣𝑥𝑘‖2

2𝜉
·
(︂
−8

9
(𝜉𝐴𝑘−1𝜆+ 𝑎𝑘𝜆) + 𝑎2𝑘

)︂
≤ 0, (3)

which holds by Lemma 7.

We now show the two auxiliary lemmas that we used in the previous proof.
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Lemma 8 Let ℎ𝑘(𝑥)
def
= 𝑓(𝑥) + 1

2𝜆𝑑(𝑥𝑘, 𝑥)2 be the strongly g-convex function used at step 𝑘, and
let 𝑦*𝑘 = arg min𝑦∈𝒳 ℎ𝑘(𝑦). Then, for 𝑦𝑘 ∈ 𝒳 , if we let 𝑣𝑥𝑘

def
= −Log𝑥𝑘

(𝑦𝑘)/𝜆, then the following
holds, for all 𝑥 ∈ 𝒳 :

𝑓(𝑥) ≥ 𝑓(𝑦𝑘) + ⟨𝑣𝑥𝑘 , 𝑥− 𝑥𝑘⟩𝑥𝑘
+
𝜆

2
‖𝑣𝑥𝑘‖2 − 𝜀𝑘(𝑥)

where 𝜀𝑘(𝑥)
def
= − 1

𝜆⟨𝑦𝑘 − 𝑦
*
𝑘, 𝑥− 𝑥𝑘⟩𝑥𝑘

+ (ℎ𝑘(𝑦𝑘)− ℎ𝑘(𝑦*𝑘)). Moreover, if 𝑦𝑘 satisfies

ℎ𝑘(𝑦𝑘)− ℎ𝑘(𝑦*𝑘) ≤
∆𝑘𝑑(𝑥𝑘, 𝑦

*
𝑘)2

78𝜆
,

then we have

−𝜆
2
‖𝑣𝑥𝑘‖2(𝐴𝑘−1 + 𝑎𝑘/𝜉) + 𝑎𝑘𝜀𝑘(𝑥̄*)/𝜉 +𝐴𝑘−1𝜀𝑘(𝑦𝑘−1)

≤ −
4𝜆‖𝑣𝑥𝑘‖2

9
(𝐴𝑘−1 + 𝑎𝑘/𝜉) +

∆𝑘

2

(︁
‖𝑥̄* − 𝑧𝑥𝑘

𝑘−1‖
2
𝑥𝑘

+ (𝜉 − 1)‖𝑥𝑘 − 𝑧
𝑥𝑘
𝑘−1‖

2
𝑥𝑘

)︁
.

Proof The function ℎ𝑘 is 1
𝜆 -strongly g-convex because by Fact 2 the function 1

2𝑑(𝑥𝑘, 𝑥)2 is 1-
strongly g-convex in a Hadamard manifold. By the first-order optimality condition of ℎ𝑘 at 𝑦*𝑘 we
have that 𝑣𝑦𝑘

def
= 𝜆−1 Log𝑦*𝑘

(𝑥𝑘) ∈ 𝜕(𝑓 + 𝐼𝒳 )(𝑦*𝑘) is a subgradient of 𝑓 + 𝐼𝒳 at 𝑦*𝑘. Thus, we have,

for all 𝑥 ∈ 𝒳 and for 𝑣𝑥𝑘
def
= Γ

𝑥𝑘
𝑦*𝑘

(𝑣𝑦𝑘):

𝑓(𝑥)
1
≥ 𝑓(𝑦*𝑘) + ⟨𝑣𝑦𝑘 , 𝑥− 𝑦

*
𝑘⟩𝑦*𝑘

2
≥ 𝑓(𝑦*𝑘) + ⟨𝑣𝑥𝑘 , 𝑥− 𝑥𝑘⟩𝑥𝑘

+ 𝜆‖𝑣𝑥𝑘‖2

3
= 𝑓(𝑦𝑘) + ⟨𝑣𝑥𝑘 , 𝑥− 𝑥𝑘⟩𝑥𝑘

+
𝜆

2
‖𝑣𝑥𝑘‖2 +

𝜆

2
‖𝑣𝑥𝑘‖2

+ ⟨𝑣𝑥𝑘 − 𝑣𝑥𝑘 , 𝑥− 𝑥𝑘⟩𝑥𝑘
+

(︂
(𝑓(𝑦*𝑘) +

𝜆

2
‖𝑣𝑥𝑘‖2)− (𝑓(𝑦𝑘) +

𝜆

2
‖𝑣𝑥𝑘‖2)

)︂
4
≥ 𝑓(𝑦𝑘) + ⟨𝑣𝑥𝑘 , 𝑥− 𝑥𝑘⟩𝑥𝑘

+
𝜆

2
‖𝑣𝑥𝑘‖2 +

1

𝜆
⟨𝑦𝑘 − 𝑦*𝑘, 𝑥− 𝑥𝑘⟩𝑥𝑘

− (ℎ𝑘(𝑦𝑘)− ℎ𝑘(𝑦*𝑘))

where 1 holds because 𝑣𝑦𝑘 ∈ 𝜕(𝑓 + 𝐼𝒳 )(𝑦*𝑘) and 𝑥, 𝑦*𝑘 ∈ 𝒳 . In 2 , we used the first part of
Lemma 16 along with 𝛿 = 1. We just added and subtracted some terms in 3 , and in 4 , we dropped
𝜆
2‖𝑣

𝑥
𝑘‖2, and we used the definitions of ℎ𝑘, 𝑣𝑥𝑘 , and 𝑣𝑥𝑘 = −Log𝑥𝑘

(𝑦𝑘)/𝜆.
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Now we proceed to prove the second part. The following holds:

−
𝑎𝑘
𝜆𝜉
⟨𝑦𝑘 − 𝑦*𝑘, 𝑥̄* − 𝑥𝑘⟩𝑥𝑘

−𝐴𝑘−1

1

𝜆
⟨𝑦𝑘 − 𝑦*𝑘, 𝑦𝑘−1 − 𝑥𝑘⟩𝑥𝑘

1
≤ 1

𝜆
‖𝑦𝑘 − 𝑦*𝑘‖𝑥𝑘

· ‖
𝑎𝑘
𝜉
𝑥̄* +𝐴𝑘−1𝑦𝑘−1 − (

𝑎𝑘
𝜉

+𝐴𝑘−1)𝑥𝑘‖𝑥𝑘

2
≤ 1

𝜆
𝑑(𝑦𝑘, 𝑦

*
𝑘) ·

𝑎𝑘
𝜉
‖𝑥̄* − 𝑧𝑥𝑘

𝑘−1 + (𝜉 − 1)(𝑥𝑘 − 𝑧
𝑥𝑘
𝑘−1)‖𝑥𝑘

3
≤ 1

𝜆

√︁
2𝜆(ℎ𝑘(𝑦𝑘)− ℎ𝑘(𝑦*𝑘)) ·

𝑎𝑘
𝜉

√︀
𝜉
√︁
‖𝑥̄* − 𝑧𝑥𝑘

𝑘−1‖2𝑥𝑘
+ (𝜉 − 1)‖(𝑥𝑘 − 𝑧

𝑥𝑘
𝑘−1)‖2𝑥𝑘

=

√︃
2𝑎2𝑘(ℎ𝑘(𝑦𝑘)− ℎ𝑘(𝑦*𝑘))

∆𝑘𝜆𝜉
·
√︀

∆𝑘

√︁
‖𝑥̄* − 𝑧𝑥𝑘

𝑘−1‖2𝑥𝑘
+ (𝜉 − 1)‖(𝑥𝑘 − 𝑧

𝑥𝑘
𝑘−1)‖2𝑥𝑘

4
≤

𝑎2𝑘(ℎ𝑘(𝑦𝑘)− ℎ𝑘(𝑦*𝑘))

∆𝑘𝜆𝜉
+

∆𝑘

2
(‖𝑥̄* − 𝑧𝑥𝑘

𝑘−1‖
2
𝑥𝑘

+ (𝜉 − 1)‖(𝑥𝑘 − 𝑧
𝑥𝑘
𝑘−1)‖

2
𝑥𝑘

),

(4)

where 1 groups some terms and uses Cauchy-Schwartz. In inequality 2 , for the first term we
bounded the distance between 𝑦*𝑘 and 𝑦𝑘 estimated from 𝑇𝑥𝑘

ℳ by the actual distance, which is a
property that holds in Hadamard manifolds and it holds by the first part of Corollary 13 with 𝛿 = 1,
𝑝 ← 𝑦*𝑘, 𝑦 ← 𝑦𝑘, 𝑥 ← 𝑥𝑘, 𝑧𝑦 ← 0. The second term is substituted by a term of equal value by
using Euclidean trigonometry in 𝑇𝑥𝑘

ℳ, as in the following. Let 𝑤 def
= 1

𝑎𝑘/𝜉+𝐴𝑘−1
(
𝑎𝑘
𝜉 Log𝑥𝑘

(𝑥̄*) +

𝐴𝑘−1 Log𝑥𝑘
(𝑦𝑘−1)) and let 𝑢 ∈ 𝑇𝑥𝑘

be the point in the line containing Log𝑥𝑘
(𝑦𝑘−1) and 0 =

Log𝑥𝑘
(𝑥𝑘) ∈ 𝑇𝑥𝑘

such that the triangle with vertices 0, Log𝑥𝑘
(𝑦𝑘−1) and 𝑤 and the triangle with

vertices 𝑢, Log𝑥𝑘
(𝑦𝑘−1) and Log𝑥𝑘

(𝑥̄*) are similar triangles, and so

‖Log𝑥𝑘
(𝑥̄*)− 𝑢‖

‖𝑤 − Log𝑥𝑘
(𝑥𝑘)‖

5
=
‖Log𝑥𝑘

(𝑥̄*)− Log𝑥𝑘
(𝑦𝑘−1)‖

‖𝑤 − Log𝑥𝑘
(𝑦𝑘−1)‖

6
=

𝐴𝑘−1 + 𝑎𝑘/𝜉

𝑎𝑘/𝜉
. (5)

We used the triangle similarity in 5 and in 6 we used the definition of 𝑤 as a convex combination
of Log𝑥𝑘

(𝑥̄*) and Log𝑥𝑘
(𝑦𝑘−1). It is enough to show 𝑢 = 𝜉𝑧𝑥𝑘

𝑘−1 as in such a case what we applied
in 2 is equivalent to the equality (5) above. By the definition of 𝑥𝑘, we have 7 below and by
triangle similarity we have 8 below:

𝑧𝑥𝑘
𝑘−1

7
= −

𝐴𝑘−1

𝑎𝑘
Log𝑥𝑘

(𝑦𝑘−1)
8
=

𝐴𝑘−1

𝑎𝑘
·
𝑎𝑘/𝜉

𝐴𝑘−1

𝑢 =
1

𝜉
𝑢,

as desired. In the next inequality 3 , we used that by (1/𝜆)-strong g-convexity of ℎ𝑘 and by optimality
of 𝑦*𝑘, we have 1

2𝜆𝑑(·, 𝑦*𝑘)2 ≤ ℎ𝑘(·)−ℎ𝑘(𝑦*𝑘). For the second term, we used that for vectors 𝑏, 𝑐 ∈ R𝑛

and 𝜔 ∈ R≥0, we have, by Young’s inequality, ‖𝑏 + 𝑤𝑐‖ =
√︀
‖𝑏‖2 + 𝜔2‖𝑐‖2 + 2⟨

√
𝜔𝑏,
√
𝜔𝑐⟩ ≤√︀

(1 + 𝜔)(‖𝑏‖2 + 𝜔‖𝑐‖2). In 4 we used Young’s inequality.
Before we conclude, we note that

𝑑(𝑥𝑘, 𝑦
*
𝑘) ≤

√
2𝑑(𝑥𝑘, 𝑦𝑘), (6)
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which is implied by the following, where we use the same as in 3 above, the assumption on 𝑦𝑘 and
∆𝑘 ≤ 1:

𝑑(𝑥𝑘, 𝑦
*
𝑘) ≤ 𝑑(𝑥𝑘, 𝑦𝑘) + 𝑑(𝑦𝑘, 𝑦

*
𝑘) ≤ 𝑑(𝑥𝑘, 𝑦𝑘) +

√︁
2𝜆(ℎ𝑘(𝑦𝑘)− ℎ𝑘(𝑦*𝑘))

≤ 𝑑(𝑥𝑘, 𝑦𝑘) +
√︁

∆𝑘/34 · 𝑑(𝑥𝑘, 𝑦
*
𝑘) ≤ 𝑑(𝑥𝑘, 𝑦𝑘) + 𝑑(𝑥𝑘, 𝑦

*
𝑘)/4.

Finally, we can make use of (4) and (6) to obtain the claim in the second part of the lemma:

−𝜆
2
‖𝑣𝑥𝑘‖2(𝐴𝑘−1 + 𝑎𝑘/𝜉) + 𝑎𝑘𝜀𝑘(𝑥̄*)/𝜉 +𝐴𝑘−1𝜀𝑘(𝑦𝑘−1)−

∆𝑘

2
‖𝑥̄* − 𝑧𝑥𝑘

𝑘−1‖
2
𝑥𝑘

−∆𝑘

𝜉 − 1

2
‖(𝑥𝑘 − 𝑧

𝑥𝑘
𝑘−1)‖

2
𝑥𝑘

≤ −𝜆
2
‖𝑣𝑥𝑘‖2(𝐴𝑘−1 + 𝑎𝑘/𝜉) +

(︂
𝐴𝑘−1 + 𝑎𝑘/𝜉 +

𝑎2𝑘
∆𝑘𝜆𝜉

)︂
(ℎ𝑘(𝑦𝑘)− ℎ𝑘(𝑦*𝑘))

1
≤ −𝜆

2
‖𝑣𝑥𝑘‖2(𝐴𝑘−1 + 𝑎𝑘/𝜉) + (𝐴𝑘−1 + 𝑎𝑘/𝜉)

(︃
1 +

𝑎2𝑘
(𝜉𝐴𝑘−1 + 𝑎𝑘)𝜆

)︃
𝑑(𝑥𝑘, 𝑦𝑘)2

34𝜆

2
≤ −𝜆

2
‖𝑣𝑥𝑘‖2(𝐴𝑘−1 + 𝑎𝑘/𝜉) +

𝑑(𝑥𝑘, 𝑦𝑘)2

18𝜆
(𝐴𝑘−1 + 𝑎𝑘/𝜉)

3
= −

4𝜆‖𝑣𝑥𝑘‖2

9
(𝐴𝑘−1 + 𝑎𝑘/𝜉),

where 1 holds by the assumption on 𝑦𝑘, ∆𝑘 ≤ 1, and (6). Inequality 2 uses the upper bound on 𝑎2𝑘
in Lemma 7, and 3 uses the definition 𝑣𝑥𝑘

def
= −Log𝑥𝑘

(𝑦𝑘)/𝜆.

The following lemma allows to move the regularized lower bounds on the objective without
incurring extra geometric penalties.

Lemma 9 (Translating Potentials with no Geometric Penalty) Using the variables in Algorithm 1,
for any ∆𝑘 ∈ [0, 1), we have

‖𝑧𝑥𝑘
𝑘−1 − 𝑥̄

*‖2𝑥𝑘
− (1−∆𝑘)‖𝑧𝑥𝑘

𝑘 − 𝑥̄
*‖2𝑥𝑘

+ (𝜉 − 1)
(︁
‖𝑥𝑘 − 𝑧

𝑥𝑘
𝑘−1‖

2
𝑥𝑘
− (1−∆𝑘)‖𝑥𝑘 − 𝑧

𝑥𝑘
𝑘 ‖

2
𝑥𝑘

)︁
≤ ‖𝑧𝑦𝑘−1

𝑘−1 − 𝑥̄
*‖2𝑦𝑘−1

− (1−∆𝑘)‖𝑧𝑦𝑘𝑘 − 𝑥̄
*‖2𝑦𝑘

+ (𝜉 − 1)
(︁
‖𝑦𝑘−1 − 𝑧

𝑦𝑘−1

𝑘−1 ‖
2
𝑦𝑘−1
− (1−∆𝑘)‖𝑦𝑘 − 𝑧𝑦𝑘𝑘 ‖

2
𝑦𝑘

)︁
.

Proof Firstly, by the projection step in Line 12, we have

‖𝑧𝑦𝑘−1

𝑘−1 − 𝑥̄
*‖2𝑦𝑘 ≥ ‖𝑧

𝑦𝑘−1

𝑘−1 − 𝑥̄
*‖2𝑦𝑘 and (𝜉 − 1)‖𝑧𝑦𝑘−1

𝑘−1 ‖
2
𝑦𝑘
≥ (𝜉 − 1)‖𝑧𝑦𝑘−1

𝑘−1 ‖
2
𝑦𝑘

(7)
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since the operation is a simple Euclidean projection onto the closed ball 𝐵̄(0, 𝐷) in 𝑇𝑦𝑘ℳ . By the
second part of Corollary 13, 𝑦 = 𝑥𝑘 and 𝑥 = 𝑦𝑘−1 and by (1), we have 1 below

‖𝑧𝑦𝑘−1

𝑘−1 − 𝑥̄
*‖2𝑦𝑘−1

+ (𝜉 − 1)‖𝑧𝑦𝑘−1

𝑘−1 ‖
2
𝑦𝑘−1

1
≥ ‖𝑧𝑥𝑘

𝑘−1 − 𝑥̄
*‖2𝑥𝑘

+ (𝜁2𝐷 − 1)‖𝑧𝑥𝑘
𝑘−1‖

2
𝑥𝑘

+ (𝜉 − 𝜁2𝐷)‖𝑧𝑦𝑘−1

𝑘−1 ‖
2
𝑦𝑘−1

2
≥ ‖𝑧𝑥𝑘

𝑘−1 − 𝑥̄
*‖2𝑥𝑘

+ (𝜉 − 1)‖𝑧𝑥𝑘
𝑘−1‖

2
𝑥𝑘

+ (𝜉 − 𝜁2𝐷)

⎛⎝(︃𝐴𝑘−1 + 𝑎𝑘
𝐴𝑘−1

)︃2

− 1

⎞⎠ ‖𝑧𝑥𝑘
𝑘−1‖

2
𝑥𝑘

3
≥ ‖𝑧𝑥𝑘

𝑘−1 − 𝑥̄
*‖2𝑥𝑘

+ (𝜉 − 1)‖𝑧𝑥𝑘
𝑘−1‖

2
𝑥𝑘

+
3(𝜉 − 1)

2

(︂
1

1− 𝜏𝑘
− 1

)︂
‖𝑧𝑥𝑘

𝑘−1‖
2
𝑥𝑘
,

(8)

and 2 uses the definition of 𝑥𝑘. In 3 , we used the definition of 𝜉 = 4𝜁2𝐷 − 3 that implies
𝜉−𝜁2𝐷 ≥ 3

4(𝜉−1) and for 𝜏𝑘
def
= 𝑎𝑘/(𝑎𝑘+𝐴𝑘−1) we have that (1+

𝑎𝑘
𝐴𝑘−1

)2−1 ≥ 2𝑎𝑘
𝐴𝑘−1

= 2( 1
1−𝜏𝑘
−1).

Now, using the second part of Lemma 12 with 𝑦 = 𝑦𝑘, 𝑥 = 𝑥𝑘 𝑧
𝑥 = −𝜂𝑘𝑣𝑥𝑘 , 𝑎𝑥 = 𝑧𝑥𝑘

𝑘−1, so that
𝑧𝑥 + 𝑎𝑥 = 𝑧𝑥𝑘

𝑘 and 𝑧𝑦 + 𝑎𝑦 = 𝑧𝑦𝑘𝑘 and

𝑟 =
‖Log𝑥𝑘

(𝑦𝑘)‖
‖𝑧𝑥‖

=
𝜆‖𝑣𝑥𝑘‖
𝜂𝑘‖𝑣𝑥𝑘‖

=
𝜉𝜆

𝑎𝑘
=

5𝜉

2𝑘 + 64𝜉
< 5/6 < 1. (9)

Note that by the choice of parameters and the fact that 𝑟 < 1, the assumptions in Lemma 12 are
satisfied. Thus, the following holds

‖𝑧𝑥𝑘
𝑘 − 𝑥̄

*‖2𝑥𝑘
+ (𝜉 − 1)‖𝑧𝑥𝑘

𝑘 ‖
2
𝑥𝑘

+
𝜉 − 1

2

(︂
𝑟

1− 𝑟

)︂
‖𝑧𝑥𝑘

𝑘−1‖
2 ≥ ‖𝑧𝑦𝑘𝑘 − 𝑥̄

*‖2𝑦𝑘 + (𝜉 − 1)‖𝑧𝑦𝑘𝑘 ‖
2
𝑦𝑘
.

(10)

Hence, combining (7), (8) and (10) we obtain that it is enough to prove

−(1−∆𝑘)

(︂
𝑟

1− 𝑟

)︂
+ 3

(︂
1

1− 𝜏𝑘
− 1

)︂
≥ 0,

The proof will be finished if we prove the result for ∆𝑘 = 0. If we use this last inequality, and the

fact that for 𝑟 ≤ 5/6, we have 𝑟
1−𝑟 ≤ 3

(︁
1

1−3𝑟/4 − 1
)︁

, we deduce that it suffices to show 𝜏𝑘 ≥ 3
4𝑟 to

conclude
𝑟

1− 𝑟
≤ 3

(︂
1

1− 3𝑟/4
− 1

)︂
≤ 3

(︂
1

1− 𝜏𝑘
− 1

)︂
.

Such inequality, namely 𝜏𝑘 ≥ 3
4𝑟, is equivalent to 𝑎2𝑘

𝜆 ≥
3𝜉
4 (𝑎𝑘 +𝐴𝑘−1) and it holds by Lemma 7.

Finally, we use Proposition 3 to show the final convergence rates.
Proof [Theorem 4]Given the inequality (1 − ∆𝑘)𝜓𝑘 ≤ 𝜓𝑘−1, proven in Proposition 3, we can
use 𝜓𝑘 as a Lyapunov function in order to prove convergence rates of Algorithm 1. It follows
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straightforwardly by definition of 𝜓𝑘, in the following way

𝑓(𝑦𝑘)− 𝑓(𝑥̄*) ≤ 𝜓𝑘

𝐴𝑘

≤
𝑘∏︁

𝑖=1

(1−∆𝑖)
−1 𝜓0

𝐴𝑘

1
≤ 2𝜓0

𝐴𝑘

2
≤ 2𝐿𝑅̄2

(︂
𝐴0

𝐴𝑘

+
1

4𝐿𝐴𝑘

)︂

= 𝑂

⎛⎝𝐿𝑅̄2

⎛⎝ 𝜆𝜉

𝜆
(︁
𝑘2+𝜉𝑘

𝜉 + 𝜉
)︁ +

1

𝜆𝐿
(︁
𝑘2+𝜉𝑘

𝜉 + 𝜉
)︁
⎞⎠⎞⎠

= 𝑂

(︂
𝐿𝑅̄2

(︂
𝜉2

𝑘2 + 𝜉𝑘 + 𝜉2

)︂)︂
3
= 𝑂

(︂
𝐿𝑅̄2

𝑘2
· 𝜁2
)︂
.

In 1 , we used
∏︀𝑘

𝑖=1(1 − ∆𝑘) =
∏︀𝑘

𝑖=1
𝑖(𝑖+2)
(𝑖+1)2

= 𝑘+2
2(𝑘+1) ≥

1
2 . We used smoothness in 2 . Note

𝜉−1
2 ‖𝑦0 − 𝑧

𝑦0
0 ‖𝑦0 = 0 and ‖𝑧𝑦00 − 𝑥̄*‖2𝑦0 = 𝑅̄2. In 3 , we used 𝜉 = 𝑂(𝜁) and we dropped some

terms in the denominator. This means that the number of iterations is 𝑂(𝜁
√︁

𝐿𝑅̄2

𝜀 ) if we want the
right hand side to be bounded by 𝜀.

The algorithm and analysis for strongly g-convex and smooth functions follows directly by apply-
ing the reduction in [57, Theorem 7] to Algorithm 1. We denote this algorithm by RiemaconSC(𝒳 , 𝑥0, 𝑓 , 𝜀),
where 𝒳 is the feasible set, 𝑥0 is the initial point, 𝑓 is the function to optimize and 𝜀 is an optional
parameter specifying the desired accuracy. Although the statement of the reduction in this paper
assumes a function 𝑓 :ℳ→ R to be optimized has a global minimizer in an unconstrained problem,
the same proof of this theorem works if we have a 𝜇-strongly g-convex and 𝐿-smooth function
𝑓 defined over an open set containing a closed geodesically convex set 𝒳 and a minimizer 𝑥̄* of
this function restricted to 𝒳 . The algorithm runs the algorithm for g-convex smooth minimization
for Timens(𝐿, 𝜇,𝑅), where this is defined as the number of iterations needed by the non-strongly
g-convex algorithm to reach accuracy 𝜇𝑅2/8 if the initial distance is upper bounded by 𝑅. In
such a case it guaranteed that the distance to the minimizer is reduced by half, and we restart the
algorithm and run it again with the initial distance parameter equal to 𝑅/2, and so on. This happens
𝑂(log(𝜇𝑅̄2𝜀)) times if we want to achieve accuracy 𝜀 from an initial distance 𝑅̄. Thus, the total
complexity in number of iterations can be bounded by 𝑂(Timens(𝐿, 𝜇, 𝑅̄) log(𝜇𝑅̄2/𝜀)), since all
initial distances are ≤ 𝑅̄. In our case, since we optimize over the set 𝒳 with diameter 𝐷, so it is
Timens(𝐿, 𝜇,𝑅) = 𝑂(𝜁

√︀
𝐿/𝜇), and the total number of iterations is 𝑂(𝜁

√︀
𝐿/𝜇 log(𝜇𝑅̄2/𝜀)). We

note that the reverse reduction in [57] yields extra geometric penalties but this one does not.

Appendix E. Proofs of Proposition 3, Theorem 6, analysis of Algorithm 2

We start by showing that the iterates of Algorithm 2 stay reasonably bounded, which is crucial in
order to bound geometric penalties.

Proposition 10 The iterates 𝑥𝑘 of Algorithm 2 satisfy 𝑑(𝑥𝑘, 𝑥
*) ≤ 2𝑅.

Proof
We first show that the optimizer 𝑥*𝑘 in the ball 𝒳 𝑘 is no farther than the center of 𝒳 𝑘 to 𝑥*, that

is, 𝑑(𝑥*𝑘, 𝑥
*) ≤ 𝑑(𝑥𝑘−1, 𝑥

*). We assume 𝑥* is not in the ball because otherwise the property holds
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trivially. The geodesic segment joining 𝑥*𝑘 and 𝑥* does not contain any other point of the ball, since
otherwise by strong convexity we would have that the function value of one such point would be
lower than 𝑓(𝑥*𝑘). This fact implies that the angle between Log𝑥*

𝑘
(𝑥*) and Log𝑥*

𝑘
(𝑥𝑘−1) is obtuse,

and so 1 holds below and by using Corollary 14 we conclude 𝑑(𝑥*𝑘, 𝑥
*) ≤ 𝑑(𝑥𝑘−1, 𝑥

*):

0
1
≥ 2⟨Log𝑥*

𝑘
(𝑥*),Log𝑥*

𝑘
(𝑥𝑘−1)⟩ ≥ 𝑑(𝑥*𝑘, 𝑥

*)2 + 𝛿 · 𝑑(𝑥*𝑘, 𝑥𝑘−1)
2 − 𝑑(𝑥𝑘−1, 𝑥

*)2

≥ 𝑑(𝑥*𝑘, 𝑥
*)2 − 𝑑(𝑥𝑘−1, 𝑥

*)2.

If instead of optimizing exactly in the ball we obtain a close approximation, the iterates will not
get very far from 𝑥*. Indeed, by 𝜇-strong convexity, if 𝑥𝑘 is an 𝜀′-minimizer of 𝑓 in 𝒳 𝑘, we have that
𝑑(𝑥*𝑘, 𝑥𝑘) ≤

√︁
2𝜀′

𝜇 ≤
𝑅
𝑇 , where we used the definition of 𝜀′ = min{𝐷𝜀

8𝑅 ,
𝜇𝑅2

2𝑇 2 } in the last inequality.
Consequently, applying the non-expansiveness and this last inequality recursively, we obtain

𝑑(𝑥𝑇 , 𝑥
*) ≤ 𝑑(𝑥*𝑇 , 𝑥

*) + 𝑑(𝑥*𝑇 , 𝑥𝑇 ) ≤ 𝑑(𝑥𝑇−1, 𝑥
*) +

𝑅

𝑇
≤ · · · ≤ 𝑑(𝑥0, 𝑥

*) +𝑅 ≤ 2𝑅.

Before we prove Theorem 6, let’s discuss about the initialization of 𝐷. As we explain in
Appendix E.1, we can apply the subroutine in [26, Section 6] for any value of 𝐷 that satisfies (notice
𝐷 is twice the radius of the ball):

𝐷 ≤ (46𝑅|𝜅min|𝜁2𝐷)−1, (11)

If 𝐷 = 2𝑅 satisfies the inequality, then the algorithm uses this value. If it is not satisfied,
then for any value 𝐷 ≥ 0 that satisfies the inequality it must be 𝐷 < 2𝑅, so we assume that
this inequality holds for the rest of the argument. Indeed, it is a consequence of the function
𝑥2 coth(𝑥) being monotonously increasing for 𝑥 ≥ 0 and that given the definition of 𝜁𝐷 =
𝐷
√︀
|𝜅min| coth(𝐷

√︀
|𝜅min|), we have that inequality (11) is equivalent to𝐷2|𝜅min| coth(𝐷

√︀
|𝜅min|) ≤

(46𝑅
√︀
|𝜅min|)−1. In this case, the larger 𝐷 is, the faster the algorithm runs. So one could solve the

1-dimensional problem 𝐷 = (46𝑅|𝜅min|𝜁𝐷)−1 on 𝐷 in order to obtain the best guarantee. On the
other hand, we can provide the simple bound on this 1-dimensional problem 𝐷 = 1/(70𝑅|𝜅min|)
which would only lose a constant in the final convergence rates. We show now how this is indeed a
bound. Let 𝑥 be 𝐷

√︀
|𝜅min|, for some 𝐷 satisfying inequality (11) and let 𝑆 be the set of all such

𝑥 ≥ 0. Because we want 𝑥2 coth(𝑥) ≤ (46𝑅
√︀
|𝜅min|)−1 and the right hand side is upper bounded

by ≤ 1/(23𝑥), then by monotonicity it must be 𝑆 ⊂ [0, 1/4]. It holds that for this interval the fourth
derivative of 𝑥2 coth(𝑥) ≤ 0, which along with its third order Taylor expansion yields 1 below, so
the points satisfying 3 below are in 𝑆 and we can use 𝐷 = 𝑥√

|𝜅min|
= 1

70𝑅|𝜅min|
≤ 3

4·46𝑅|𝜅min|
as

our simple-to-compute bound:

𝑥2 coth(𝑥)
1
≤ 𝑥+

𝑥3

3

2
≤ 4

3
𝑥

3
≤ 1

46𝑅
√︀
|𝜅min|

.

where in 2 we used 𝑥 < 1 for all 𝑥 ∈ 𝑆. Now, we can proceed to prove the theorem.
Proof [Theorem 6]
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If 𝐷 = 2𝑅, which is the case in which the condition in Line 1 of Algorithm 2 is satisfied, then we
just need to call Algorithm 1 once in the corresponding ball 𝐵̄(𝑥0, 𝑅) and we obtain rates ̃︀𝑂(𝜁2

√︁
𝐿
𝜇 ).

So from now on we assume 𝐷 < 2𝑅. Let 𝑇 = ⌈4𝑅𝐷 ln(𝐿𝑅
2

𝜀 )⌉ and let 𝜀′ = min{𝐷𝜀
8𝑅 ,

𝜇𝑅2

2𝑇 2 }. Since

every time we call Algorithm 1 we do it over a ball of diameter 𝐷, we still use the notation 𝜁 def
= 𝜁𝐷

to refer to the geometric constant associated to the sets 𝒳 𝑘, for every 𝑘 ≥ 1. Recall that we use
𝜁

def
= 𝜁𝑅 = 𝑅

√︀
|𝜅min| coth(𝑅

√︀
|𝜅min|) ∈ [𝑅

√︀
|𝜅min|, 𝑅

√︀
|𝜅min|+ 1].

By definition, it is 𝐷 ≤ (46𝑅|𝜅min|𝜁)−1. Using 2𝑅 > 𝐷 and 𝜁 ∈ [𝐷
√︀
|𝜅min|, 𝐷

√︀
|𝜅min|+ 1],

we conclude 𝐷 ≤ 1/ 3
√

46
√︀
|𝜅min| ≤ 1/

√︀
|𝜅min| and 𝜁 ≤ 𝐷

√︀
|𝜅min|+ 1 ≤ 2. Since 𝜁 = 𝑂(1), the

subroutine in Line 8 takes ̃︀𝑂(1) gradient oracle calls by the analysis in Appendix E.1 and thus, Line 6

of Algorithm 2 takes ̃︀𝑂(
√︁

𝐿
𝜇 log( 1

𝜀′ )) gradient oracle calls to optimize in the ball 𝒳 𝑘 of diameter 𝐷,
for any 𝑘. Recall that we denote the global optimizer of 𝑓 by 𝑥*. Define the g-convex combination

𝑥̃𝑘 = Exp𝑥𝑘−1

(︂
𝐷

4𝑅
Log𝑥𝑘−1

(𝑥*)

)︂
= Exp𝑥𝑘−1

(︂
(1− 𝐷

4𝑅
)𝑥𝑘−1 +

𝐷

4𝑅
𝑥*
)︂
.

Since 𝒳 𝑘 is a ball of radius 𝐷/2 and by Proposition 10, it is 𝑑(𝑥𝑘, 𝑥
*) ≤ 2𝑅, we have 𝑥̃𝑘 ∈ 𝒳 𝑘.

Consequently, we have

𝑓(𝑥𝑘)
1
≤ 𝑓(𝑥̃𝑘) + 𝜀′

2
≤ (1− 𝐷

4𝑅
)𝑓(𝑥𝑘−1) +

𝐷

4𝑅
𝑓(𝑥*) + 𝜀′,

where 1 is due to the guarantees of the optimization in the ball and the fact that 𝑥̃𝑘 ∈ 𝒳 𝑘, 2 holds
due to g-convexity. Subtracting 𝑓(𝑥*) in both sides and rearranging, we obtain

𝑓(𝑥𝑘)− 𝑓(𝑥*) ≤ (1− 𝐷

4𝑅
)(𝑓(𝑥𝑘−1)− 𝑓(𝑥*)) + 𝜀′.

Applying this inequality recursively, we obtain

𝑓(𝑥𝑇 )− 𝑓(𝑥*) ≤ (1− 𝐷

4𝑅
)𝑇 (𝑓(𝑥0)− 𝑓(𝑥*)) + 𝜀′

𝑇−1∑︁
𝑖=0

(1− 𝐷

4𝑅
)𝑖

1
≤ exp(−𝐷𝑇

4𝑅
)
𝐿𝑅2

2
+

4𝑅

𝐷
𝜀′

≤ 𝜀

2
+
𝜀

2
= 𝜀.

Above, we used 1− 𝑥 ≤ exp(−𝑥), we used smoothness to bound 𝑓(𝑥0)− 𝑓(𝑥*) ≤ 𝐿𝑑(𝑥0,𝑥*)2

2 , we
bounded

∑︀𝑇−1
𝑖=0 (1 − 𝐷

4𝑅)𝑖 ≤
∑︀∞

𝑖=0(1 −
𝐷
4𝑅)𝑖 = 4𝑅

𝐷 and we used the values of 𝜀′ and 𝑇 . Finally,

we compute the complexity of this algorithm. We have 𝑇 iterations taking ̃︀𝑂(
√︁

𝐿
𝜇 ) gradient oracle

queries each. Using the value of 𝑇 and 𝐷, we obtain that in total, we call the gradient oraclẽ︀𝑂(𝑅
𝐷

√︁
𝐿
𝜇 ) = ̃︀𝑂(𝑅2|𝜅min|

√︁
𝐿
𝜇 ) = ̃︀𝑂(𝜁2

√︁
𝐿
𝜇 ) times, in both of the suggested initializations for 𝐷,

cf. Algorithm 2.
We conclude by studying the case in which 𝑓 is not strongly convex. Assume there is a global

optimizer 𝑥* and as before let 𝑅 ≥ 𝑑(𝑥0, 𝑥
*). Given 𝜀 > 0, we use the regularizer 𝑟(𝑥) =
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𝜀
2𝑅2 Φ𝑥0(𝑥) = 𝜀

2𝑅2𝑑(𝑥0, 𝑥)2. Let 𝑥*𝜀 be the minimizer of 𝑓 + 𝑟. By [57, Lemma 21], we have
𝑑(𝑥0, 𝑥

*
𝜀) ≤ 𝑑(𝑥0, 𝑥

*) ≤ 𝑅. We run Algorithm 2 on 𝑓 + 𝑟, which satisfies that the iterates of the
algorithm and the subroutine go no farther than 2𝑅 + 𝐷/2 < 3𝑅 from 𝑥*𝜀. Indeed, the centers of
the balls 𝒳 𝑘 are at a distance at most 2𝑅 from 𝑥*𝜀 by Proposition 10 and each ball has radius 𝐷/2.
Recall that we are still optimizing over a Hadamard manifold. So in 𝐵̄(𝑥*𝜀, 3𝑅), we have that 𝑓 + 𝑟
is ( 𝜀

𝑅2 )-strongly convex and its smoothness constant is 𝜁3𝑅 · 𝜀
𝑅2 + 𝐿 = 𝑂(𝜁 · 𝜀

𝑅2 + 𝐿), by Fact 2.

Hence, the algorithm finds an 𝜀/2 minimizer 𝑥𝑇 ′ of 𝑓 + 𝑟 after 𝑇 ′ = ̃︀𝑂(𝜁2
√︁
𝜁 + 𝐿𝑅2

𝜀 ) queries to
the gradient oracle. By definition, it is 𝑑(𝑥0, 𝑥

*) ≤ 𝑅 so 𝑟(𝑥*) ≤ 𝜀
2𝑅2 ·𝑅2 = 𝜀

2 and thus 𝑥𝑇 ′ is an
𝜀-minimizer of 𝑓 :

𝑓(𝑥𝑇 ′) ≤ 𝑓(𝑥𝑇 ′) + 𝑟(𝑥𝑇 ′) ≤ 𝑓(𝑥*) + 𝑟(𝑥*) +
𝜀

2
≤ 𝑓(𝑥*) + 𝜀.

E.1. Details of the subroutine chosen by Algorithm 2 for Line 8 of Algorithm 1

Given a constant 𝐹 such that ‖∇R‖ ≤ 𝐹 , in their Proposition 6.1, Criscitiello and Boumal
[26] argue that given an 𝐿′-smooth and 𝜇′-strongly g-convex function in a ball of radius 𝑟 ≤
min{

√
𝜇′

4
√
𝐿′|𝜅min|

,
|𝜅min|
4𝐹 }

2, the retraction of the function in the ball to the Euclidean space ℎ̂(·) def
=

ℎ ∘ Exp𝑥𝑘
(·) is strongly convex and smooth with condition number 3𝐿′

𝜇′ . Here, 1
𝐹 is interpreted as

+∞. They assume that the global minimizer is in this ball, but this fact is only used in order to
use 𝐿′-smoothness to bound the Lipschitz constant of the function by 2𝑟𝐿′. In our case, the global
optimizer is at a distance at most 3𝑅 from any point in any of our balls 𝒳 𝑘, as argued in the previous
section. However, we can bound the Lipschitz constant by other means. The functions we will apply
this subroutine to have the form ℎ(𝑦)

def
= 𝑓(𝑦)+ 1

𝜆𝑑(𝑥, 𝑦)2, where 𝑥 is a point such that 𝑑(𝑥, 𝑦) ≤ 2𝐷
for all 𝑦 ∈ 𝒳 𝑘, cf. Line 8 in Algorithm 1 and (1). Here 𝐷 = 2𝑟 is the diameter of 𝒳 𝑘. Using the
value of 𝜆, we have that the smoothness of 𝑔 : 𝑦 ↦→ 1

𝜆𝑑(𝑥, 𝑦)2 in the ball 𝒳 𝑘 is 𝐿 and the global
minimizer of this function is at most a distance 2𝐷 = 4𝑟. So we can estimate the Lipschitz constant
of such an ℎ as

max
𝑦∈𝒳𝑘

‖∇ℎ(𝑦)‖ ≤ max
𝑦∈𝒳𝑘

‖∇𝑓(𝑦)‖+ max
𝑦∈𝒳𝑘

‖∇𝑔(𝑦)‖ ≤ 6𝑅𝐿+ 8𝑟𝐿 ≤ 14𝑅𝐿,

where the last inequality uses 𝑟 ≤ 𝑅 which holds by construction of Algorithm 2. Now, it is enough
to satisfy the following inequality in Proposition 6.1 in [26] in order to have that the Euclidean
pulled-back function has condition number of the same order as ℎ, which is 𝑂(𝜁) for 𝒳 𝑘:

7

9
𝐿′|𝜅min|𝑟2 +

3

2
|𝜅min|𝑟 max

𝑦∈𝒳𝑘

‖∇ℎ(𝑦)‖ ≤ 𝜇′

2
=
𝜇+ 𝐿/𝜁2𝐷

2
.

Since 𝑟 ≤ 𝑅, 𝜁2𝐷 ≤ 2𝜁𝐷, 𝐿′ = 2𝐿 and 𝜇 ≥ 0, it is enough to have 23𝐿𝑟𝑅|𝜅min| ≤ 𝐿/(4𝜁𝐷). Note
that in Algorithm 2, we ensure 𝑟 ≤ (92𝑅|𝜅min|𝜁2𝑟)−1 which satisfies the previous inequality and
also the initial requirement in Proposition 6.1 in [26].

2. This bound corresponds to the case of Hadamard manifolds. Their statement applies more generally to manifolds of
bounded sectional curvature, in which case |𝜅min| would be substituted by max{|𝜅min|, 𝜅max}.
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After this result, we can use Euclidean machinery on ℎ̂ : Log𝑥𝑘−1
(𝒳 𝑘)→ R, namely AGD [61]

with a warm start in order to satisfy the condition in Line 8 of Algorithm 1. The algorithm requires
projecting into the feasible set, and we note that in our case it is a Euclidean ball so the operation is
very simple. Indeed, let 𝒳̂ 𝑘

def
= Log𝑥𝑘−1

(𝒳 𝑘) and let 𝑥̂ def
= Log𝑥𝑘−1

(𝑥), where 𝑥 is the center of the

prox defining 𝑔 above. By [54, Proposition 15] we have that 𝑥̂′ def
= Π𝒳̂𝑘

(Π𝒳̂𝑘
(𝑥̂)− 1

𝐿′∇ℎ̂(Π𝒳̂𝑘
(𝑥̂)))

is a point that satisfies

ℎ̂(𝑥̂′)− ℎ̂(𝑦*ℎ) ≤ 𝐿′

2
‖𝑦*ℎ −Π𝒳̂𝑘

(𝑥̂)‖2 ≤ 𝐿′

2
‖𝑦*ℎ − 𝑥̂‖2, (12)

where 𝑦*ℎ
def
= arg min𝑦∈𝒳̂𝑘

ℎ̂(𝑦) is the minimizer of ℎ̂, that is, the exact prox. By [61], the convergence

rate of AGD with 𝑥̂′ as initial point is 𝑂(
√︁

𝐿′

𝜇′ log(
ℎ̂(𝑥̂′)−ℎ(𝑦*ℎ)

𝜀̂ )), where 𝜀̂ def
= ∆𝑘′‖𝑦*ℎ − 𝑥̂‖2/(78𝜆) is

the accuracy we will require, which is less than the accuracy required by Algorithm 1: ∆𝑘′𝑑(𝑥̂, 𝑦*ℎ)2/(78𝜆).
Here 𝑘′ is the internal counter for Algorithm 1 and we used the reasoning above yielding that the
condition number of ℎ̂ is 𝑂(𝐿

′

𝜇′ ) = 𝑂(𝜁). Using (12), we conclude that it is enough to run AGD for

𝑂(𝜁
1
2 log(78𝜆𝐿

′

2Δ𝑘′
)) = ̃︀𝑂(𝜁

1
2 ) gradient oracle queries.

Remark 11 We can make Algorithm 2 work under a weaker assumption than Assumption 5 after
a minor modification on the algorithm. Because the algorithm in [26] can work with bounded
‖∇R‖ ≤ 𝐹 for a constant 𝐹 , we can use it as a subroutine in this more generic case. In such a case,
the diameter of the balls 𝒳 𝑘 must be 𝐷 ≤ |𝜅min|

2𝐹 , and it is enough to change the condition in Line
1 to 2𝑅 ≤ min{(46𝑅|𝜅min|𝜁2𝑅)−1, |𝜅min|/(2𝐹 )} and if this condition is not satisfied, then after
computing 𝐷 in Line 2, we further update 𝐷 ← min{𝐷, |𝜅min|/(2𝐹 )}. In this way, the condition is
satisfied and the geometric penalty is ̃︀𝑂(𝑅

𝐷 ) = ̃︀𝑂(𝜁2 + 𝑅𝐹
|𝜅min|

) instead of ̃︀𝑂(𝜁2).

Appendix F. Geometric lemmas

In this section, we state and prove Lemma 16, which is used in the proof of Theorem 4 to show that
the lower bound given by 𝑓(𝑦*𝑘) + ⟨𝑣𝑦𝑘 , 𝑥− 𝑦

*
𝑘⟩ that is affine if pulled back to 𝑇𝑦*𝑘 can be bounded

by another function, that is affine if pulled back to 𝑇𝑥𝑘
. We also include and prove, with some

generalizations, some known Riemannian inequalities that are used in Riemannian optimization
methods and that we also use. The second part of the following lemma appeared in [50]. Similarly
with the second part of the corollary that follows.

In this section, unless otherwise specified, ℳ is an 𝑛-dimensional Riemannian manifold of
bounded sectional curvature.

Lemma 12 Let 𝑥, 𝑦, 𝑝 ∈ℳ be the vertices of a uniquely geodesic triangle 𝒯 of diameter 𝐷, and
let 𝑧𝑥 ∈ 𝑇𝑥ℳ, 𝑧𝑦 def

= Γ𝑦
𝑥(𝑧𝑥) + Log𝑦(𝑥), such that 𝑦 = Exp𝑥(𝑟𝑧𝑥) for some 𝑟 ∈ [0, 1). If we take

vectors 𝑎𝑦 ∈ 𝑇𝑦ℳ, 𝑎𝑥 def
= Γ𝑥

𝑦(𝑎𝑦) ∈ 𝑇𝑥ℳ, then we have the following, for all 𝜉 ≥ 𝜁𝐷:

‖𝑧𝑦 + 𝑎𝑦 − Log𝑦(𝑝)‖2𝑦 + (𝛿𝐷 − 1)‖𝑧𝑦 + 𝑎𝑦‖2𝑦

≥ ‖𝑧𝑥 + 𝑎𝑥 − Log𝑥(𝑝)‖2𝑥 + (𝛿𝐷 − 1)‖𝑧𝑥 + 𝑎𝑥‖2𝑥 −
𝜉 − 𝛿𝐷

2

(︂
𝑟

1− 𝑟

)︂
‖𝑎𝑥‖2𝑥,
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and

‖𝑧𝑦 + 𝑎𝑦 − Log𝑦(𝑝)‖2𝑦 + (𝜉 − 1)‖𝑧𝑦 + 𝑎𝑦‖2𝑦

≤ ‖𝑧𝑥 + 𝑎𝑥 − Log𝑥(𝑝)‖2𝑥 + (𝜉 − 1)‖𝑧𝑥 + 𝑎𝑥‖2𝑥 +
𝜉 − 𝛿𝐷

2

(︂
𝑟

1− 𝑟

)︂
‖𝑎𝑥‖2𝑥.

Proof Let 𝛾 be the unique geodesic in 𝒯 such that 𝛾(0) = 𝑥 and 𝛾(𝑟) = 𝑦. We have 𝛾′(0) = 𝑧𝑥.
Along 𝛾, we define the vector field 𝑉 (𝑡) = Γ𝑡

0(𝛾)(𝑧𝑥 − 𝑡𝛾′(0)). Then, it is 𝑉 ′(𝑡) = −𝛾′(𝑡),
and ‖𝑉 (𝑡)‖ = ‖𝑎 + (1 − 𝑡)𝑧𝑥‖. We will make use of the potential 𝑤 : [0, 𝑟] → R defined as
𝑤(𝑡) = ‖Log𝛾(𝑡)(𝑥)− 𝑉 (𝑡)‖2. We can compute

𝑑

𝑑𝑡
𝑤(𝑡) = 2⟨𝐷𝑡(Log𝛾(𝑡)(𝑥)− 𝑉 (𝑡)),Log𝛾(𝑡)(𝑥)− 𝑉 (𝑡)⟩

= 2⟨𝐷𝑡 Log𝛾(𝑡)(𝑥),Log𝛾(𝑡)(𝑥)⟩ − 2⟨𝐷𝑡 Log𝛾(𝑡)(𝑥), 𝑉 (𝑡)⟩
− 2⟨𝐷𝑡𝑉 (𝑡),Log𝛾(𝑡)(𝑥)⟩+ 2⟨𝐷𝑡𝑉 (𝑡), 𝑉 (𝑡)⟩

= −2⟨𝐷𝑡(Log𝛾(𝑡)(𝑥), 𝑉 (𝑡)⟩+ 2⟨𝐷𝑡𝑉 (𝑡), 𝑉 (𝑡)⟩.

(13)

Now, we bound the first summand. We use that for the function Φ𝑝(𝑥) = 1
2𝑑(𝑥, 𝑝)2 it holds, for

every 𝜉 ≥ 𝜁𝐷:

−𝜉 − 𝛿𝐷
2
‖𝑣‖2 ≤ ⟨Hess Φ𝑝(𝛾(𝑡))[𝑣]− 𝜉 + 𝛿𝐷

2
𝑣, 𝑣⟩ ≤ 𝜉 − 𝛿𝐷

2
‖𝑣‖2,

due to Fact 2. So for 𝛽 ∈ {−1, 1} we obtain the following bound:

−2𝛽⟨𝐷𝑡 Log𝛾(𝑡)(𝑥), 𝑉 (𝑡)⟩ = 2𝛽⟨Hess Φ𝑝(𝛾(𝑡))[𝛾′(𝑡)], 𝑉 (𝑡)⟩

= 2𝛽⟨( Hess Φ𝑝(𝛾(𝑡))− 𝜉 + 𝛿𝐷
2

𝐼 )[𝛾′(𝑡)], 𝑉 (𝑡)⟩+ 𝛽⟨(𝜉 + 𝛿𝐷)𝛾′(𝑡), 𝑉 (𝑡)⟩

≤ 2‖Hess Φ𝑝(𝛾(𝑡))− 𝜉 + 𝛿𝐷
2

𝐼‖ · ‖𝛾′(𝑡)‖ · ‖𝑉 (𝑡)‖+ 𝛽⟨(𝜉 + 𝛿𝐷)𝛾′(𝑡), 𝑉 (𝑡)⟩

≤ 2
𝜉 − 𝛿𝐷

2
‖𝛾′(𝑡)‖ · ‖𝑉 (𝑡)‖+ 𝛽⟨(𝜉 + 𝛿𝐷)𝛾′(𝑡), 𝑉 (𝑡)⟩

1
= 2

𝜉 − 𝛿𝐷
2
‖𝑧𝑥‖ · ‖𝑎+ (1− 𝑡)𝑧𝑥‖+ 𝛽(𝜉 + 𝛿𝐷)⟨𝑧𝑥, 𝑎+ (1− 𝑡)𝑧𝑥⟩

Gauss lemma is used in the last summand of 1 . Now, if 𝛽 = −1, we have

−2⟨𝐷𝑡 Log𝛾(𝑡)(𝑥), 𝑉 (𝑡)⟩ ≥ −2
𝜉 − 𝛿𝐷

2
‖𝑧𝑥‖ · ‖𝑎+ (1− 𝑡)𝑧𝑥‖+ (𝜉 + 𝛿𝐷)⟨𝑧𝑥, 𝑎+ (1− 𝑡)𝑧𝑥⟩

1
≥ − 𝜉 − 𝛿𝐷

2(1− 𝑡)
(‖(1− 𝑡)𝑧𝑥‖2 + ‖𝑎+ (1− 𝑡)𝑧𝑥‖2) + (𝜉 − 𝛿𝐷)⟨𝑧𝑥, 𝑎+ (1− 𝑡)𝑧𝑥⟩ − 2𝛿𝐷⟨−𝑧𝑥, 𝑎+ (1− 𝑡)𝑏⟩

≥ − 𝜉 − 𝛿𝐷
2(1− 𝑡)

(‖𝑎‖2 + 2⟨𝑎+ (1− 𝑡)𝑧𝑥⟩) + (𝜉 − 𝛿𝐷)⟨𝑧𝑥, 𝑎⟩ − 2𝛿𝐷⟨−𝑧𝑥, 𝑎+ (1− 𝑡)𝑏⟩

≥ − 𝜉 − 𝛿𝐷
2(1− 𝑡)

‖𝑎‖2 − 2𝛿𝐷⟨𝐷𝑡𝑉 (𝑡), 𝑉 (𝑡)⟩.

(14)
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On the other hand, analogously, if 𝛽 = 1, we have

−2⟨𝐷𝑡 Log𝛾(𝑡)(𝑥), 𝑉 (𝑡)⟩ ≤ 2
𝜉 − 𝛿𝐷

2
‖𝑧𝑥‖ · ‖𝑎+ (1− 𝑡)𝑧𝑥‖+ (𝜉 + 𝛿𝐷)⟨𝑧𝑥, 𝑎+ (1− 𝑡)𝑧𝑥⟩

1
≤ 𝜉 − 𝛿𝐷

2(1− 𝑡)
(‖(1− 𝑡)𝑧𝑥‖2 + ‖𝑎+ (1− 𝑡)𝑧𝑥‖2)− (𝜉 − 𝛿𝐷)⟨𝑧𝑥, 𝑎+ (1− 𝑡)𝑧𝑥⟩ − 2𝜉⟨−𝑧𝑥, 𝑎+ (1− 𝑡)𝑏⟩

≤ 𝜉 − 𝛿𝐷
2(1− 𝑡)

(‖𝑎‖2 + 2⟨𝑎+ (1− 𝑡)𝑧𝑥⟩)− (𝜉 − 𝛿𝐷)⟨𝑧𝑥, 𝑎⟩ − 2𝜉⟨−𝑧𝑥, 𝑎+ (1− 𝑡)𝑏⟩

≤ 𝜉 − 𝛿𝐷
2(1− 𝑡)

‖𝑎‖2 − 2𝜉⟨𝐷𝑡𝑉 (𝑡), 𝑉 (𝑡)⟩,

(15)

where 1 is Young’s inequality 2𝑐𝑑 ≤ 𝑐2 + 𝑑2. Combining (13), (14), (15), we obtain

− 𝜉 − 𝛿𝐷
2(1− 𝑡)

‖𝑎‖2−2(𝛿𝐷−1)⟨𝐷𝑡𝑉 (𝑡), 𝑉 (𝑡)⟩ ≤ 𝑑

𝑑𝑡
𝑤(𝑡) ≤ 𝜉 − 𝛿𝐷

2(1− 𝑡)
‖𝑎‖2−2(𝜉−1)⟨𝐷𝑡𝑉 (𝑡), 𝑉 (𝑡)⟩.

Integrating between 0 and 𝑟 < 1, it results in

𝜉 − 𝛿𝐷
2

log(1− 𝑟)‖𝑎‖2 − (𝛿𝐷 − 1)(‖𝑉 (𝑟)‖2 − ‖𝑉 (0)‖2) ≤ 𝑤(𝑟)− 𝑤(0)

≤ −𝜉 − 𝛿𝐷
2

log(1− 𝑟)‖𝑎‖2 − (𝜉 − 1)(‖𝑉 (𝑟)‖2 − ‖𝑉 (0)‖2).

Using the bound − log(1− 𝑟) ≤ 𝑟
1−𝑟 for 𝑟 ∈ [0, 1) and using the values of 𝑤(·) and 𝑉 (·), we obtain

the result.

Corollary 13 Let 𝑥, 𝑦, 𝑝 ∈ℳ be the vertices of a uniquely geodesic triangle of diameter 𝐷, and
let 𝑧𝑥 ∈ 𝑇𝑥ℳ, 𝑧𝑦 def

= Γ𝑦
𝑥(𝑧𝑥) + Log𝑦(𝑥), such that 𝑦 = Exp𝑥(𝑟𝑧𝑥) for some 𝑟 ∈ [0, 1). Then, the

following holds

‖𝑧𝑦 − Log𝑦(𝑝)‖2 + (𝛿𝐷 − 1)‖𝑧𝑦‖2 ≥ ‖𝑧𝑥 − Log𝑥(𝑝)‖2 + (𝛿𝐷 − 1)‖𝑧𝑥‖2,

and
‖𝑧𝑦 − Log𝑦(𝑝)‖2 + (𝜁𝐷 − 1)‖𝑧𝑦‖2 ≤ ‖𝑧𝑥 − Log𝑥(𝑝)‖2 + (𝜁𝐷 − 1)‖𝑧𝑥‖2.

Proof Use Lemma 12 with 𝑎𝑦 = 0. Note that this corollary allows 𝑟 = 1 as well. We obtain this
result, by continuity, by taking a limit when 𝑟 → 1.

The following is a lemma that is already known and is used extensively in Riemannian first-order
optimization. It turns out it is a special case of Corollary 13.

Corollary 14 (Cosine-Law Inequalities) For the vertices 𝑥, 𝑦, 𝑝 ∈ ℳ of a uniquely geodesic
triangle of diameter 𝐷, we have

⟨Log𝑥(𝑦),Log𝑥(𝑝)⟩ ≥ 𝛿𝐷
2
𝑑(𝑥, 𝑦)2 +

1

2
𝑑(𝑝, 𝑥)2 − 1

2
𝑑(𝑝, 𝑦)2.

and
⟨Log𝑥(𝑦),Log𝑥(𝑝)⟩ ≤ 𝜁𝐷

2
𝑑(𝑥, 𝑦)2 +

1

2
𝑑(𝑝, 𝑥)2 − 1

2
𝑑(𝑝, 𝑦)2
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Proof This is Corollary 13 for 𝑟 = 1. Indeed, given 𝑦 ∈ 𝒯 we can use Corollary 13 with 𝑧𝑥 =
Log𝑥(𝑦). Note that in such a case we have ‖𝑧𝑥‖ = 𝑑(𝑥, 𝑦) and 𝑧𝑦 = 0. Using ‖Log𝑦(𝑝)‖ = 𝑑(𝑦, 𝑝)

and

‖𝑧𝑥 − Log𝑥(𝑝)‖ = ‖𝑧𝑥‖2 − ⟨𝑧𝑥,Log𝑥(𝑝)⟩+ ‖Log𝑥(𝑝)‖2

= 𝑑(𝑥, 𝑦)2 − 2⟨Log𝑥(𝑦),Log𝑥(𝑝)⟩+ 𝑑(𝑝, 𝑥)2,

we obtain the result.

Remark 15 Actually, in Hadamard manifolds, if we substitute the constants 𝛿𝐷 and 𝜁𝐷 in the
previous Corollary 14 by the tighter constants 𝛿𝑑(𝑝,𝑥) and 𝜁𝑑(𝑝,𝑥), the result also holds. See [81].

We now proceed to prove a lemma that intuitively says that solving the exact proximal point
problem can be used to lower bound 𝑓 . One should think about the following lemma as being
applied to 𝑦 ← 𝑦*𝑘, 𝑥← 𝑥𝑘. Compare the result of the following lemma with the Euclidean equality
⟨𝑔, 𝑝− 𝑦⟩ = ⟨𝑔, 𝑝− 𝑥⟩+ ‖𝑔‖2, for 𝑔 = 𝑥− 𝑦 and 𝑥, 𝑦, 𝑝 ∈ R𝑛.

Lemma 16 Let 𝑥, 𝑦, 𝑝 ∈ℳ be the vertices of a uniquely geodesic triangle of diameter 𝐷. Define
the vectors 𝑔 def

= Log𝑦(𝑥) ∈ 𝑇𝑦ℳ and 𝑔𝑥 = Γ𝑥
𝑦(𝑔) = −Log𝑥(𝑦) ∈ 𝑇𝑥ℳ. Then we have

⟨𝑔,Log𝑦(𝑝)⟩ ≥ ⟨𝑔𝑥,Log𝑥(𝑝)⟩+ 𝛿𝐷‖𝑔‖2,

and
⟨𝑔,Log𝑦(𝑝)⟩ ≤ ⟨𝑔𝑥,Log𝑥(𝑝)⟩+ 𝜁𝐷‖𝑔‖2.

Proof [Lemma 16]Using the definition of 𝑔, we have 1 below, by the first part of Corollary 14:

⟨𝑔,Log𝑦(𝑝)⟩
1
≥ 𝛿𝐷

2
‖𝑔‖2 +

𝑑(𝑦, 𝑝)2

2
− 𝑑(𝑥, 𝑝)2

2

2
≥ ⟨𝑔𝑥,Log𝑥(𝑝)⟩+ 𝛿𝐷‖𝑔𝑥‖2,

and in 2 we used Corollary 14 again but with a different choice of vertices so we have 𝑑(𝑦,𝑝)2

2 ≥
𝛿𝐷
2 ‖𝑔

𝑥‖2 + 𝑑(𝑥,𝑝)2

2 + ⟨𝑔𝑥,Log𝑥(𝑝)⟩.
The proof of the second part is analogous: using the definition of 𝑔, we have 1 below, by the

second part of Corollary 14:

⟨𝑔,Log𝑦(𝑝)⟩
1
≤ 𝜁𝐷

2
‖𝑔‖2 +

𝑑(𝑦, 𝑝)2

2
− 𝑑(𝑥, 𝑝)2

2

2
≤ ⟨𝑔𝑥,Log𝑥(𝑝)⟩+ 𝜁𝐷‖𝑔𝑥‖2,

and in 2 we used Corollary 14 again but with a different choice of vertices so we have 𝑑(𝑦,𝑝)2

2 ≤
𝜁𝐷
2 ‖𝑔

𝑥‖2 + 𝑑(𝑥,𝑝)2

2 + ⟨𝑔𝑥,Log𝑥(𝑝)⟩.
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