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Abstract
Symmetry is widely applied in problems such as
the design of equivariant networks and the dis-
covery of governing equations, but in complex
scenarios, it is not known in advance. Most pre-
vious symmetry discovery methods are limited
to linear symmetries, and recent attempts to dis-
cover nonlinear symmetries fail to explicitly get
the Lie algebra subspace. In this paper, we pro-
pose LieNLSD, which is, to our knowledge, the
first method capable of determining the number of
infinitesimal generators with nonlinear terms and
their explicit expressions. We specify a function
library for the infinitesimal group action and aim
to solve for its coefficient matrix, proving that its
prolongation formula for differential equations,
which governs dynamic data, is also linear with
respect to the coefficient matrix. By substituting
the central differences of the data and the Jaco-
bian matrix of the trained neural network into the
infinitesimal criterion, we get a system of linear
equations for the coefficient matrix, which can
then be solved using SVD. On top quark tagging
and a series of dynamic systems, LieNLSD shows
qualitative advantages over existing methods and
improves the long rollout accuracy of neural PDE
solvers by over 20% while applying to guide data
augmentation. Code and data are available at
https://github.com/hulx2002/LieNLSD.

1. Introduction
From traditional mathematical physics to deep learning,
symmetry plays an important role. In differential equations,
symmetries can assist in integration by reducing the order
(Olver, 1993; McLachlan, 1995; Ibragimov, 1999; Hydon,
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2000; Bluman & Anco, 2008; Bluman, 2010). Equivariant
networks embed symmetries into their structure, achieving
better performance on specific tasks (Zaheer et al., 2017;
Weiler et al., 2018b;a; Kondor & Trivedi, 2018; Wang et al.,
2021; Finzi et al., 2021; Satorras et al., 2021). Furthermore,
symmetries can guide the discovery of governing equations
from data (Yang et al., 2024b). However, these methods all
require prior knowledge of symmetries, which is challeng-
ing when dealing with complex tasks and messy datasets.
Therefore, automatically discovering symmetries from data
has become an important topic.

Most existing symmetry discovery methods can successfully
identify linear symmetries in the observation space (Zhou
et al., 2021; Dehmamy et al., 2021; Moskalev et al., 2022;
Yang et al., 2023). However, they are unable to discover
nonlinear symmetries, which are common in dynamical
systems. For example, in the case of the wave equation
utt = uxx + uyy, these methods can only find Lorentz
symmetry and scaling symmetry, while missing translation
symmetry and special conformal symmetry.

Recent works have attempted to explore nonlinear sym-
metries. LaLiGAN (Yang et al., 2024a) uses an encoder-
decoder architecture to map the observation space to a la-
tent space, making nonlinear symmetries in the observation
space appear as linear symmetries in the latent space. How-
ever, since the encoder and decoder are black boxes, they
cannot explicitly discover the nonlinear symmetries in the
observation space. Ko et al. (2024) and Shaw et al. (2024)
propose methods to directly find non-affine symmetries from
observed data. Nevertheless, Ko et al. (2024) use an MLP to
model the infinitesimal generators, which suffers from the
same interpretability issues as LaLiGAN, while Shaw et al.
(2024) are limited to one-parameter group symmetries.

In this paper, we propose the Lie algebra based NonLinear
Symmetry Discovery method (LieNLSD), which can deter-
mine the number of infinitesimal generators and explicitly
provide their expressions containing nonlinear terms. Our
setting assumes that the dataset originates from a dynamic
system governed by differential equations, with common
forms including first-order dynamic systems ut = f(u′)
and second-order dynamical systems utt = f(u′), where u′

represents u and its spatial derivatives. This is a general set-
ting, as static systems governed by algebraic equations are
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also included (i.e., zero-order dynamic systems). We spec-
ify a function library Θ for the infinitesimal group action,
which may include nonlinear terms. Then the infinitesimal
group action can be expressed in the form of WΘ. Our
ultimate goal is to solve for the coefficient matrix W of Θ,
thereby explicitly obtaining the expression for the infinitesi-
mal group action.

We first prove that the prolonged infinitesimal group action
is linear with respect to vec(W ), and thus the infinitesimal
criterion for the symmetry group of differential equations is
also linear with respect to vec(W ). We then estimate deriva-
tives from the dataset using the central difference method
and obtain the Jacobian matrix of differential equations
via automatic differentiation from the trained neural net-
work. Substituting these into the infinitesimal criterion, we
derive a system of linear equations for vec(W ), whose solu-
tion space is found based on Singular Value Decomposition
(SVD). Finally, we apply the Linearized Alternating Direc-
tion Method with Adaptive Penalty (LADMAP) (Lin et al.,
2011) to sparsify the infinitesimal generators for intuitive
and interpretable results.

In summary, our contributions are as follows: (1) we pro-
pose LieNLSD, a novel pipeline for discovering nonlinear
symmetries from dynamic data, which is the first method ca-
pable of determining the number of nonlinear infinitesimal
generators and explicitly solving for their expressions to
our knowledge; (2) we prove that if the infinitesimal group
action is linear with respect to the coefficient matrix W ,
then its prolongation formula is also linear with respect to
W ; (3) we construct and solve a system of linear equations
for the coefficient matrix vec(W ) of the infinitesimal group
action based on the infinitesimal criterion; (4) we apply
LADMAP to the sparsification of infinitesimal generators to
enhance the intuitiveness and interpretability of the results;
(5) the experimental results on top quark tagging and a series
of dynamic systems confirm the qualitative advantages of
LieNLSD over existing methods; (6) we apply LieNLSD to
guide data augmentation for neural PDE solvers, improving
their long rollout accuracy by over 20%.

2. Preliminary
Before discussing related works and methods, we first
briefly introduce some preliminary knowledge of Lie groups
and differential equations. For readers who are not familiar
with the relevant theory, we strongly recommend referring
to Appendix A or the textbook (Olver, 1993) for a detailed
version, and Appendix C for concrete examples.

Group actions and infinitesimal group actions. A Lie
group G is a mathematical object that is both a smooth
manifold and a group. The Lie algebra g serves as the
tangent space at the identity of the Lie group. A Lie algebra

element v ∈ g can be associated with a Lie group element
g ∈ G through the exponential map exp : g → G, i.e.,
g = exp(v). Representing the space of the Lie algebra
with a basis {v1,v2, . . . ,vr}, in the neighborhood of the
identity element, we have g = exp

(∑r
i=1 ϵ

ivi

)
, where

ϵ = (ϵ1, ϵ2, . . . , ϵr) ∈ Rr are the coefficients. The group
G acts on a vector space X = Rn via a group action Ψ :
G × X → X . Correspondingly, the infinitesimal group
action of v ∈ g at x ∈ X is defined as:

ψ(v)|x =
d

dϵ

∣∣∣∣
ϵ=0

Ψ(exp(ϵv), x) · ∇. (1)

We abbreviate Ψ(g, x) and ψ(v) as g ·x and v, respectively,
when the context is clear. We refer to the infinitesimal group
actions of the Lie algebra basis as infinitesimal generators.

This is a more general definition that encompasses the
nonlinear case. Previous works focusing on linear sym-
metries (Moskalev et al., 2022; Desai et al., 2022; Yang
et al., 2023) commonly use the group representation ρX :
G → GL(n) to characterize group transformations, i.e.,
∀g ∈ G, x ∈ X : Ψ(g, x) = ρX(g)x. The correspond-
ing Lie algebra representation dρX : g → gl(n) satisfies
∀v ∈ g : ρX(exp(v)) = exp(dρX(v)). Then, the re-
lationship between infinitesimal group actions and Lie
algebra representations is:

∀v ∈ g, x ∈ X : ψ(v)|x = dρX(v)x · ∇. (2)

A concrete example of group actions and infinitesimal group
actions is provided in Appendix C.1.

Symmetries of differential equations. Before defining
the symmetries of differential equations, we first explain
how groups act on functions. Let f : X → U be a function,
with its graph defined as Γf = {(x, f(x)) : x ∈ X} ⊂
X × U . Suppose a Lie group G acts on X × U . Then, the
transform of Γf by g ∈ G is given by g · Γf = {(x̃, ũ) =
g · (x, u) : (x, u) ∈ Γf}. We call a function f̃ : X → U

the transform of f by g, denoted as f̃ = g · f , if its graph
satisfies Γf̃ = g · Γf . Note that f̃ may not always exist,
but in this paper, we only consider cases where it does. A
concrete example is provided in Appendix C.2.

The solution of a differential equation is expressed in the
form of a function. Intuitively, the symmetries of a differen-
tial equation describe how one solution can be transformed
into another. Formally, let S be a system of differential
equations, with the independent and dependent variable
spaces denoted by X and U , respectively. Suppose that a
Lie group G acts on X × U . We call G the symmetry
group of S if, for any solution f : X → U of S , and
∀g ∈ G, the transformed function g · f : X → U is another
solution of S .
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Table 1. Comparison of LieNLSD and other symmetry discovery methods.

Applicability L-conv LieGG LieGAN LaLiGAN Ko et al. Shaw et al. LieNLSD (Ours)

Nonlinear? × × ×
√ √ √ √

Explicit?
√ √ √

× ×
√ √

Determine Lie algebra subspace dimension? ×
√

× × × ×
√

Discover Lie algebra subspace?
√ √ √ √ √

×
√

Prolongation. To further study the symmetries of differ-
ential equations, we need to “prolong” the group action on
the space of independent and dependent variables to the
space of derivatives. Given a function f : X → U , where
X = Rp andU = Rq , it has q·pk = q·

(
p+k−1

k

)
distinct k-th

order derivatives uαJ = ∂Jf
α(x) = ∂kfα(x)

∂xj1∂xj2 ...∂xjk
, where

α ∈ {1, . . . , q}, J = (j1, . . . , jk), and ji ∈ {1, . . . , p}. We
denote the space of all k-th order derivatives as Uk = Rq·pk

and the space of all derivatives up to order n as U (n) =

U × U1 × . . . Un = Rq·p(n)

, where p(n) =
(
p+n
n

)
. Then,

the n-th prolongation of f , pr(n)f : X → U (n), is defined
as pr(n)f(x) = u(n), where uαJ = ∂Jf

α(x).

Based on the above concepts, the n-th order system of dif-
ferential equations S can be formalized as F (x, u(n)) = 0,
where F : X×U (n) → Rl. A smooth function f : X → U
is a solution of S if it satisfies F (x, pr(n)f(x)) = 0.

Below, we explain how to prolong the group action onX×U
to X × U (n). Let G be a Lie group acting on the space of
independent and dependent variables X × U . Given a point
(x0, u

(n)
0 ) ∈ X × U (n), suppose that a smooth function

f : X → U satisfies u(n)0 = pr(n)f(x0). Then, the n-th
prolongation of g ∈ G at the point (x0, u

(n)
0 ) is defined

as pr(n)g · (x0, u(n)0 ) = (x̃0, ũ
(n)
0 ), where (x̃0, ũ0) = g ·

(x0, u0) and ũ(n)0 = pr(n)(g · f)(x̃0).

Note that by the chain rule, the definition of pr(n)g depends
only on (x0, u

(n)
0 ) and is independent of the choice of f .

Similarly, the n-th prolongation of v ∈ g at the point
(x, u(n)) ∈ X × U (n) is defined as:

pr(n)v
∣∣∣
(x,u(n))

=
d

dϵ

∣∣∣∣
ϵ=0

{
pr(n)[exp(ϵv)] · (x, u(n))

}
·∇.

(3)
Concrete examples of prolongation are provided in Ap-
pendix C.3.

3. Related Work
Symmetry discovery. Some previous works have at-
tempted to discover symmetries from data. Early methods
parameterize group symmetries as part of network training
(Benton et al., 2020; Zhou et al., 2021; Romero & Lohit,
2022; van der Ouderaa et al., 2024). However, they have

strong restrictions on the type of group symmetries—they
require prior knowledge of the parameterized form of group
actions or are limited to subgroups of a given group.

Subsequent works use Lie group and Lie algebra representa-
tions to characterize group symmetries. L-conv (Dehmamy
et al., 2021) proposes the Lie algebra convolutional net-
work, which serves as a building block for constructing
group-equivariant architectures and learns the Lie algebra
basis. LieGG (Moskalev et al., 2022) constructs a polariza-
tion matrix based on the trained network and training data,
extracting the Lie algebra basis from it. SymmetryGAN
(Desai et al., 2022) and LieGAN (Yang et al., 2023) use gen-
erative adversarial training to align data distributions before
and after transformations, where the generator generates
group transformations from the Lie algebra basis. As shown
in Equation (2), Lie group and Lie algebra representations
can only describe linear group actions, which limits these
methods to discovering linear symmetries.

Recently, some works have explored the discovery of nonlin-
ear group symmetries. LaLiGAN (Yang et al., 2024a) learns
a mapping from the observation space to a latent space
and extends the LieGAN approach to discover linear group
symmetries in the latent space. Ko et al. (2024) model the
infinitesimal generators using an MLP and optimize the va-
lidity score of the data transformed through ODE integration.
Shaw et al. (2024) propose an efficient method for detecting
non-affine group symmetries. However, LaLiGAN and Ko
et al. (2024) fail to explicitly provide the infinitesimal group
actions on the observation space. Shaw et al. (2024) are
limited to discovering a single Lie algebra element rather
than the subspace it belongs to. Furthermore, these meth-
ods cannot accurately determine the number of infinitesimal
generators, i.e., the dimension of the Lie algebra subspace.

We compare our LieNLSD with other symmetry discovery
methods in Table 1. To our knowledge, LieNLSD is the first
method capable of accurately determining the number of
nonlinear infinitesimal generators and explicitly solving for
their expressions.

Note that from an implementation perspective, the types
of PDE symmetries discovered by LieNLSD (ours) and
LaLiGAN (Yang et al., 2024a) differ. Taking X = R2, U =
R as an example (e.g. u(x, y) represents a planar image),
the symmetries found by LieNLSD act pointwise on X ×
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infinitesimal group action
Theorem 4.1

prolonged infinitesimal group action

infinitesimal criterionsymmetry group  of differential
equations Theorem 4.2

specify function library

dataset prolonged dataset
central difference automatic differentiation

number of infinitesimal
generators 

explicit expressions of
infinitesimal generators 

SVD

Output

Goal

Input

train neural network

Figure 1. Pipeline of LieNLSD.

U = R3. Such symmetries are commonly referred to in the
literature as “Lie point symmetries”. On the other hand, the
symmetries found by LaLiGAN are defined over the entire
discretized field. Specifically, if u is a field on a 100× 100
grid, then LaLiGAN’s symmetries act on R100×100 (see the
reaction-diffusion dataset in the original paper of LaLiGAN
for details). For PDEs, the setting of Lie point symmetries
(which act pointwise on both coordinates and the field) is
more common, as the search space is significantly reduced
compared to symmetries defined over the entire discretized
field, and the physical interpretation is more intuitive.

Applications of symmetry. Symmetry is widely applied
in problems such as the design of equivariant networks and
the discovery of governing equations. We summarize related
works in Appendix D.

4. Method
We formalize the problem as follows: given dynamic data
governed by differential equations, we aim to determine the
number of infinitesimal generators and their explicit expres-
sions. In Section 4.1, we provide a flexible function library
for the infinitesimal group action and present the prolonga-
tion formula in Theorem 4.1, which is linear with respect to
the coefficient matrix W . In Section 4.2, we introduce the
infinitesimal criterion for the symmetry group of differential
equations in Theorem 4.2. It is combined with central dif-
ferences of the data and automatic differentiation from the
trained neural network to construct a system of linear equa-
tions for vec(W ), whose solution space corresponds to the
infinitesimal generators. In Section 4.3, we summarize the
overall algorithm. In Section 4.4, we sparsify the infinitesi-
mal generators for better intuitiveness and interpretability.
We present the pipeline of LieNLSD in Figure 1.

4.1. Prolongation Formula of Infinitesimal Group
Actions

To explicitly obtain the infinitesimal group action on
X × U = Rp × Rq, we define v = WΘ(x, u) · ∇.
Here, Θ(x, u) ∈ Rr×1 is a predefined function library,
and W = [W1,W2, . . . ,Wp+q]

⊤ ∈ R(p+q)×r is a co-
efficient matrix to be determined. For example, in the

case where p = 1 and q = 1, we can specify the
function library to include terms up to the second order,
Θ(x, u) = [1, x, u, x2, u2, xu]⊤. Clearly, v is linear with re-
spect to W , i.e., v = Θ0(x, u)vec(W ), where Θ0(x, u) =
diag[Θ(x, u)⊤, . . . ,Θ(x, u)⊤] ∈ R(p+q)×((p+q)·r). To
study the symmetries of differential equations, we are inter-
ested in whether pr(n)v remains linear with respect to W .
In fact, the following theorem will provide the answer.

Theorem 4.1. Let G be a Lie group acting on X × U =
Rp×Rq , with its corresponding Lie algebra g. Assume that
the infinitesimal group action of v ∈ g takes the following
form:

v =WΘ(x, u) · ∇ (4)

=
[
W1 W2 · · · Wp+q

]⊤
Θ(x, u) · ∇ (5)

=

p∑
i=1

Θ(x, u)⊤Wi
∂

∂xi
+

q∑
α=1

Θ(x, u)⊤Wp+α
∂

∂uα
,

(6)

where W ∈ R(p+q)×r and Θ(x, u) ∈ Rr×1. Then, the n-th
prolongation of v is:

pr(n)v = v +

q∑
α=1

∑
J

ϕJα(x, u
(n))

∂

∂uαJ
, (7)

where J = (j1, . . . , jk), with ji ∈ {1, . . . , p} and k ∈
{1, . . . , n}. The coefficients ϕJα are given by:

ϕJα(x, u
(n)) = −

p∑
i=1

∑
I⊂J

uαI,iDJ\IΘ
⊤Wi +DJΘ

⊤Wp+α,

(8)
where uαJ,i =

∂uα
J

∂xi = ∂k+1uα

∂xi∂xj1 ...∂xjk
, J \ I denotes the set

difference, and DJ represents the total derivative.

The proof of Theorem 4.1 is provided in Appendix B.2.
Note the distinction between total derivatives and partial
derivatives. For a smooth function P (x, u(n)), they are
related by DiP = ∂P

∂xi +
∑q

α=1

∑
J u

α
J,i

∂P
∂uα

J
. Equations (7)

and (8) indicate that pr(n)v remains linear with respect to
W , thus it can be expressed as:

pr(n)v = Θn(x, u
(n))vec(W ) · ∇, (9)
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where Θn(x, u
(n)) ∈ R(p+q·p(n))×((p+q)·r). We provide

a concrete example of the construction of Θn in Ap-
pendix C.4.

Algorithm 1 LieNLSD
Input: DatasetD = {(x[i], u[i])}Ni=1, prolongation order
n, function library Θ : X × U → Rr×1, sample size M ,
thresholds ϵ1, ϵ2.
Output: Number of infinitesimal generators d, explicit
expressions of infinitesimal generators {vi}di=1.
Execute:
Estimate the derivatives of u with respect to x using
the central difference method, resulting in the prolonged
dataset pr(n)D = {(x[i], u(n)[i])}Ni=1.
Separate the variables of pr(n)D = Sin ∪ Sout into input
and output features (for example, for a first-order dynamic
system, Sin = {u′} and Sout = {ut}), and train a neural
network to fit the mapping f : Sin → Sout.
Construct Θn : X × U (n) → R(p+q·p(n))×((p+q)·r) from
Θ by Equations (7) to (9).
Apply automatic differentiation to the trained neural net-
work, obtaining JF : X × U (n) → Rl×(p+q·p(n)).
if M ·l

(p+q)·r < ϵ1 then
Compute C ∈ R(M ·l)×((p+q)·r) by Equation (13).
Perform SVD on C, the number of singular values less
than ϵ2 is d, and the corresponding right singular vector
matrix is Q ∈ R((p+q)·r)×d.

else
Initialize C⊤C ← 0((p+q)·r)×((p+q)·r).
for i = 1 to M do
Ci ← (JFΘn)(x[i], u

(n)[i]).
C⊤C ← C⊤C + C⊤

i Ci.
end for
Perform SVD on C⊤C, the number of singular values
less than ϵ22 is d, and the corresponding right singular
vector matrix is Q ∈ R((p+q)·r)×d.

end if
for i = 1 to d do
Wi ← Q[:, i].reshape(p+ q, r).
vi ←WiΘ(x, u) · ∇.

end for
Return d, {vi}di=1.

4.2. Explicit Discovery of Infinitesimal Group Actions

Our goal is to determine the coefficient matrix W of the in-
finitesimal group action v =WΘ(x, u) ·∇, and we have al-
ready derived the formula for its prolongation pr(n)v. Theo-
rem 2.31 in the textbook (Olver, 1993) relates the symmetry
group of a differential equation to its prolonged infinitesimal
group action, which is restated as follows.

Theorem 4.2. Suppose S :

Fν(x, u
(n)) = 0, ν = 1, . . . , l, (10)

is a system of differential equations, where F : X×U (n) →
Rl is of full rank (the Jacobian matrix JF (x, u

(n)) =(
∂Fν

∂xi ,
∂Fν

∂uα
J

)
∈ Rl×(p+q·p(n)) is of rank l whenever

F (x, u(n)) = 0). A Lie group G acts on X × U , with
its corresponding Lie algebra g. If ∀v ∈ g:

pr(n)v[Fν(x, u
(n))] = 0, ν = 1, . . . , l, (11)

whenever F (x, u(n)) = 0, then G is a symmetry group of
S .

Substituting Equation (9) into Equation (11), we find that
the infinitesimal criterion is also linear with respect to W :

JF (x, u
(n))Θn(x, u

(n))vec(W ) = 0, (12)

whenever F (x, u(n)) = 0. As shown in Equations (7) to (9),
Θn can be computed from Θ, which is manually specified.
Therefore, as long as JF and the data samples of (x, u(n))
are available, W can be solved for.

In practice, we use the central difference method to esti-
mate arbitrary-order derivatives of u with respect to x from
the dataset D = {(x[i], u[i])}Ni=1, obtaining the prolonged
dataset pr(n)D = {(x[i], u(n)[i])}Ni=1. We then separate the
variables in pr(n)D into input and output features, fitting
the mapping of this supervised learning problem using a
neural network. For example, a first-order dynamic system
is governed by a PDE of the form ut = f(u′) (Kantamneni
et al., 2024), where u′ represents the set of u and its spatial
derivatives. In this case, the differential equation can be
expressed as F (x, u(n)) = f(u′) − ut = 0, and a neural
network is used to fit f . The Jacobian matrix JF can then be
obtained by applying automatic differentiation to the trained
neural network.

Equation (12) holds for each data sample in pr(n)D. We
sample M points from it for symmetry discovery, resulting
in the following system of linear equations:

Cvec(W ) =


(JFΘn)(x[1], u

(n)[1])
(JFΘn)(x[2], u

(n)[2])
...

(JFΘn)(x[M ], u(n)[M ])

 vec(W ) = 0.

(13)
Perform Singular Value Decomposition (SVD) on C:

Cvec(W ) = U

[
Σ 0
0 0

] [
P⊤

Q⊤

]
vec(W ) = 0. Then, the null

space of C is the solution space of vec(W ), with the general
solution being vec(W ) = Qβ. In other words, the column
vectors of Q ∈ R((p+q)·r)×d form a basis for the space of
vec(W ), and β ∈ Rd×1 is the coordinate vector. Overall,
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the number of zero singular values of C represents the num-
ber of infinitesimal generators, and the corresponding right
singular vectors are their coefficient matrices. Therefore,
compared with recent methods for discovering nonlinear
symmetries (Yang et al., 2024a; Ko et al., 2024; Shaw et al.,
2024), our approach can mathematically determine the di-
mension of the Lie algebra subspace and explicitly reveal
the infinitesimal generators.

When the hyperparameter M ≫ r, for efficiency, we
compute C⊤C ∈ R((p+q)·r)×((p+q)·r) instead of C ∈
R(M ·l)×((p+q)·r). Specifically, C⊤C =

∑M
i=1 C

⊤
i Ci,

where Ci = (JFΘn)(x[i], u
(n)[i]). Note that if C =

UΣV ⊤, then C⊤C = V Σ2V ⊤. Therefore, performing
SVD on C⊤C will give us the singular values and right
singular vectors of C that we are interested in.

4.3. The Overall Algorithm

We now summarize the LieNLSD method in Algorithm 1.
LieNLSD consists of two main stages: neural network train-
ing and symmetry discovery, which are decoupled from each
other. In other words, the symmetry discovery procedure
is plug-and-play for a trained neural network. The time
and space complexity analysis of LieNLSD is provided in
Appendix E. Although LieNLSD starts from the setting of
nonlinear symmetries and dynamic data, it can still handle
cases of linear/affine symmetries and static data (governed
by the arithmetic equation F (x) = 0), which are discussed
in Appendix F.

4.4. Basis Sparsification

In Algorithm 1, SVD guarantees the orthogonality of the
basis, but it does not ensure its sparsity. For example,
if the ground truth basis vectors are

√
2
2 [1, 0, 1, 0]⊤ and

√
2
2 [0,−1, 0, 1]⊤, we might solve for 1

2 [1,−1, 1, 1]
⊤ and

1
2 [1, 1, 1,−1]

⊤. Although they span the same subspace and
are both orthogonal, the latter lacks intuitiveness and inter-
pretability. Therefore, we aim to find an orthogonal trans-
formation that makes the transformed basis as sparse as
possible, which can be formalized as:

min
R
∥QR∥1,1, s.t. R⊤R = I, (14)

whereQ ∈ R((p+q)·r)×d,R ∈ Rd×d, and the (1, 1)-norm of
a matrix ∥A∥1,1 =

∑
i,j |Aij | is the sum of the absolute val-

ues of all its elements. Note that due to the non-smoothness
of the objective function, gradient-based optimization meth-
ods such as SGD (Robbins & Monro, 1951), Adam (Kingma,
2014), etc., cannot work. We use the Linearized Alternating
Direction Method with Adaptive Penalty (LADMAP) (Lin
et al., 2011) to solve this constrained optimization problem.
By introducing an auxiliary variable Z ∈ R((p+q)·r)×d, the

original problem is transformed into:

min
R,Z
∥Z∥1,1, s.t. R⊤R = I, Z = QR. (15)

As shown in Algorithm 2, during the iterative process, we
alternately update R and Z. Here, the 2-norm of a matrix
∥A∥2 = σmax(A) is the largest singular value, and the∞-
norm of a matrix ∥A∥∞ = maxi

∑
j |Aij | is the maximum

row sum. The detailed derivation is provided in Appendix G.

Algorithm 2 Basis sparsification

Input: Basis matrix Q ∈ R((p+q)·r)×d.
Output: Sparse basis matrix Q∗ ∈ R((p+q)·r)×d.
Initialize ϵ1 > 0, ϵ2 > 0, βmax ≫ β0 > 0, ρ0 ≥ 1,
ηR > ∥Q∥22, ηZ > 1, R0 = Id, Z0 = QR0, Λ0 =
0((p+q)·r)×d, and k ← 0.
repeat

Update Rk+1 = UV ⊤, where UΣV ⊤ is the SVD of
Rk − Q⊤(Λk+βk(QRk−Zk))

βkηR
.

UpdateZk+1 = S(βkηZ)−1

(
Zk + Λk+βk(QRk+1−Zk)

βkηZ

)
,

where Sϵ(x) = sgn(x)max(|x| − ϵ, 0) is the soft
thresholding operator.
Update Λk+1 = Λk + βk(QRk+1 − Zk+1).
if βk max(

√
ηR∥Rk+1 − Rk∥∞,

√
ηZ∥Zk+1 −

Zk∥∞) < ϵ2 then
Set ρ = ρ0.

else
Set ρ = 1.

end if
Update βk+1 = min(βmax, ρβk).
k ← k + 1.

until ∥QRk − Zk∥∞ < ϵ1 and βk−1 max(
√
ηR∥Rk −

Rk−1∥∞,
√
ηZ∥Zk − Zk−1∥∞) ≤ ϵ2

Return QRk.

5. Experiment
In this section, we evaluate LieNLSD on top quark tagging
(Section 5.2) and a series of dynamic systems (Section 5.3).
The selection of the quantitative metric and baseline is dis-
cussed in Section 5.1. We demonstrate the application of
LieNLSD in guiding data augmentation for neural PDE
solvers in Section 5.4. The additional experiments are pro-
vided in Appendix I.

5.1. Quantitative Metric: Grassmann Distance

LieNLSD uses the subspace where the Lie algebra resides
to represent symmetries. Therefore, we choose the Grass-
mann distance, which measures the difference between the
computed subspace and the ground truth subspace, as a
quantitative metric. Let Q1, Q2 ∈ Rn×d be the orthogonal
bases of two d-dimensional subspaces in Rn. Perform SVD
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on Q⊤
1 Q2 to obtain the singular values {σi}di=1. The Grass-

mann distance between the two subspaces is then defined as

dG(Q1, Q2) =
√∑d

i=1 θ
2
i , where θi = arccosσi are the

principal angles.

As shown in Table 1, other methods for discovering nonlin-
ear symmetries (Yang et al., 2024a; Ko et al., 2024; Shaw
et al., 2024) cannot explicitly provide the subspace where
the Lie algebra resides, rendering this quantitative metric
inapplicable. We extract linear infinitesimal generators from
LieNLSD for comparison with LieGAN (Yang et al., 2023),
the state-of-the-art method for explicitly discovering Lie al-
gebra basis. Before calculating the Grassmann distance, we
perform QR decomposition on all basis matrices to ensure
orthogonality and normalization. Furthermore, we will com-
pare the number of parameters in LieNLSD and LieGAN.
The parameter overhead of LieNLSD is mainly focused on
the neural network used to fit the mapping, while that of
LieGAN is mainly concentrated in the discriminator.

We quantitatively compare LieNLSD with LieGAN on all
experiments in this section in Table 2. The randomness of
LieNLSD mainly comes from the selection of sample points
for symmetry discovery, while that of LieGAN mainly arises
from the random seed setting.

Table 2. Quantitative comparison of LieNLSD and LieGAN on all
experiments in this section. The Grassmann distance is presented
in the format of mean ± std over three runs.

Dataset Model Grassmann distance (↓) Parameters

Top quark tagging LieNLSD (9.20± 1.83)× 10−2 97K
LieGAN (2.51± 0.41)× 10−1 321K

Burgers’ equation LieNLSD (1.26± 0.20)× 10−2 81K
LieGAN 1.58± 0.05 265K

Wave equation LieNLSD (1.40± 0.01)× 10−2 82K
LieGAN 2.36± 0.15 266K

Schrödinger equation LieNLSD (8.62± 1.31)× 10−2 83K
LieGAN 2.22± 0.05 266K

5.2. Linear Symmetry Discovery

Top quark tagging. We first evaluate the ability of
LieNLSD to discover linear symmetries on top quark tag-
ging (Kasieczka et al., 2019). The task is to classify hadronic
tops from QCD backgrounds. Its input consists of the four-
momenta pµi = (p0i , p

1
i , p

2
i , p

3
i ) ∈ R4 of several jet con-

stituents produced in an event, and the output is the event
label (1 for top quark decay, 0 for other events).

This is a static system, so we set the prolongation order to
n = 0. To discover linear symmetries, the function library
is specified as Θ(pµ) = [p0, p1, p2, p3]⊤ ∈ R4×1. We use
an MLP with 3 hidden layers and hidden dimension 200 to
fit the mapping. The sample size for symmetry discovery

is M = 100. For LieGAN, we set the dimension of the
Lie algebra basis to 7, using an MLP with 2 hidden layers
and hidden dimension 512 as the discriminator, which is
the same setting as in the original paper (Yang et al., 2023).
More implementation details are provided in Appendix H.1.

We present the visualization result of LieNLSD on top quark
tagging in Figure 2 (in Appendix H.1). LieNLSD obtains 7
nearly zero singular values, which indicates that the number
of infinitesimal generators is 7. The corresponding explicit
expressions are shown in Table 3. These constitute Lorentz
symmetry and scaling symmetry, where v1,v3,v5 repre-
sent spatial rotations, v2,v4,v6 represent Lorentz boosts,
and v7 represents scaling transformations. As shown in
Table 2, even for linear symmetry discovery, LieNLSD out-
performs LieGAN with fewer parameters. Additionally,
LieNLSD can automatically determine the dimension of the
Lie algebra subspace, whereas LieGAN requires manual
specification.

5.3. Nonlinear Symmetry Discovery

We next evaluate the ability of LieNLSD to capture non-
linear symmetries on dynamic data governed by Burgers’
equation, the wave equation, and the Schrödinger equation.
We generate several initial conditions by randomly sampling
the coefficients of the Fourier series. Then, we estimate the
spatial derivatives at each point using central differences
and numerically integrate the trajectories corresponding to
these initial conditions using the fourth-order Runge-Kutta
method (RK4). By selecting time and space steps for sam-
pling, we obtain a discrete dataset.

For LieNLSD, the function library is specified as up to
second-order terms. We set the prolongation order to n =
2, and use the central difference method to estimate all
derivatives up to the second order. We train an MLP with 3
hidden layers and hidden dimension 200 to fit the mapping
ut = f(u(2)) for first-order dynamic systems, or utt =
f(u(2)) for second-order dynamic systems. The sample size
for symmetry discovery is M = 100. More implementation
details of dataset generation and symmetry discovery are
provided in Appendix H.2.

Burgers’ equation. Burgers’ equation describes the
convection-diffusion phenomenon, which is widely applied
in areas such as fluid mechanics, nonlinear acoustics, gas dy-
namics, and traffic flow. Its potential form is ut = uxx+u

2
x.

We present the visualization result of LieNLSD on Burgers’
equation in Figure 3 (in Appendix H.2). LieNLSD ob-
tains 6 nearly zero singular values, which indicates that the
number of infinitesimal generators is 6. The corresponding
explicit expressions are shown in Table 3. The group actions
they generate for the symmetry group are g1 · (t, x, u) =
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Table 3. Infinitesimal generators found on all experiments in this section by LieNLSD.

Dataset Top quark tagging Burgers’ equation Wave equation Schrödinger equation

Generators

v1 = −p3 ∂

∂p2
+ p2

∂

∂p3
,

v2 = p1
∂

∂p0
+ p0

∂

∂p1
,

v3 = −p3 ∂

∂p1
+ p1

∂

∂p3
,

v4 = p3
∂

∂p0
+ p0

∂

∂p3
,

v5 = −p2 ∂

∂p1
+ p1

∂

∂p2
,

v6 = p2
∂

∂p0
+ p0

∂

∂p2
,

v7 = p0
∂

∂p0
+ p1

∂

∂p1
+ p2

∂

∂p2
+ p3

∂

∂p3

v1 = 4t2
∂

∂t
+ 4tx

∂

∂x
− (2t+ x2)

∂

∂u
,

v2 = 2t
∂

∂t
+ x

∂

∂x
,

v3 = 2t
∂

∂x
− x ∂

∂u
,

v4 =
∂

∂u
,

v5 =
∂

∂t
,

v6 =
∂

∂x

v1 = 2tx
∂

∂t
+ (t2 + x2 − y2) ∂

∂x
+ 2xy

∂

∂y
− xu ∂

∂u
,

v2 = 2ty
∂

∂t
+ 2xy

∂

∂x
+ (t2 − x2 + y2)

∂

∂y
− yu ∂

∂u
,

v3 = (t2 + y2)
∂

∂u
, v4 = (t2 + 2x2 − y2) ∂

∂u
, v5 = xy

∂

∂u
,

v6 = (t2 + x2 + y2)
∂

∂t
+ 2tx

∂

∂x
+ 2ty

∂

∂y
− tu ∂

∂u
,

v7 = tx
∂

∂u
, v8 = x

∂

∂t
+ t

∂

∂x
, v9 = y

∂

∂t
+ t

∂

∂y
,

v10 = t
∂

∂t
+ x

∂

∂x
+ y

∂

∂y
, v11 = ty

∂

∂u
, v12 = −y ∂

∂x
+ x

∂

∂y
,

v13 = u
∂

∂u
, v14 = y

∂

∂u
, v15 = x

∂

∂u
, v16 = t

∂

∂u
,

v17 =
∂

∂u
, v18 =

∂

∂t
, v19 =

∂

∂x
, v20 =

∂

∂y

v1 = −2t ∂
∂t
− x ∂

∂x
− y ∂

∂y
+ u

∂

∂u
+ v

∂

∂v
,

v2 = −v ∂
∂u

+ u
∂

∂v
,

v3 = −y ∂
∂x

+ x
∂

∂y
,

v4 =
∂

∂t
,

v5 =
∂

∂x
,

v6 =
∂

∂y

(
t

1−4ϵt ,
x

1−4ϵt , u+ 1
2 ln(1− 4ϵt)− ϵx2

1−4ϵt

)
, g2 ·(t, x, u) =

(e2ϵt, eϵx, u), g3 · (t, x, u) = (t, x + 2ϵt, u − ϵx − ϵ2t),
g4 · (t, x, u) = (t, x, u+ ϵ), g5 · (t, x, u) = (t+ ϵ, x, u), and
g6 ·(t, x, u) = (t, x+ϵ, u), where gi = exp(ϵvi). The prac-
tical meaning is that, if u = f(t, x) is a solution to Burgers’
equation, then u1 = f

(
t

1+4ϵt ,
x

1+4ϵt

)
− 1

2 ln(1 + 4ϵt) −
ϵx2

1+4ϵt , u2 = f(e−2ϵt, e−ϵx), u3 = f(t, x−2ϵt)− ϵx+ ϵ2t,
u4 = f(t, x) + ϵ, u5 = f(t − ϵ, x), and u6 = f(t, x − ϵ)
are also solutions.

Wave equation. The wave equation describes how waves
propagate through various mediums. Its form in two-
dimensional space is utt = uxx + uyy, where u(t, x, y) is
the displacement or, more generally, the conserved quantity
at time t and position (x, y).

We present the visualization result of LieNLSD on the wave
equation in Figure 4 (in Appendix H.2). LieNLSD ob-
tains 20 nearly zero singular values, which indicates that
the number of infinitesimal generators is 20. The corre-
sponding explicit expressions are shown in Table 3. There
are 10 infinitesimal generators that constitute the confor-
mal symmetry, where v8,v9,v12 represent Lorentz trans-
formations, v18,v19,v20 represent translations, v10 rep-
resents scaling transformations, and v1,v2,v6 represent
special conformal transformations. Additionally, v13 gener-
ates the group action exp(ϵv13)(t, x, y, u) = (t, x, y, eϵu),
and v3,v4,v5,v7,v11,v14,v15,v16,v17 can be unified as
vα = α(t, x, y) ∂

∂u , where α is a solution to the wave equa-
tion αtt = αxx + αyy. This implies that if u = f(t, x, y)
is a solution to the wave equation, then u13 = eϵf(t, x, y)
and uα = f(t, x, y) + ϵα(t, x, y) are also solutions.

Schrödinger equation. The Schrödinger equation de-
scribes the evolution of the quantum state of microscopic
particles over time. Its parameterization on a plane in terms
of real (u) and imaginary (v) components is expressed as:{

ut = −0.5(vxx + vyy) + vu2 + v3,

vt = 0.5(uxx + uyy)− uv2 − u3.
(16)

We present the visualization result of LieNLSD on the
Schrödinger equation in Figure 5 (in Appendix H.2).
LieNLSD obtains 6 nearly zero singular values, which in-
dicates that the number of infinitesimal generators is 6.
The corresponding explicit expressions are shown in Ta-
ble 3. Then, if u = f(t,x) is a solution to the Schrödinger
equation, we can obtain several derived solutions through
these infinitesimal generators. Specifically, v1 represents
scaling u1 = eϵf(e2ϵt, eϵx), v2 represents rotation in the
complex plane u2 = Rf(t,x), v3 represents space ro-
tation u3 = f(t, R−1x), v4 represents time translation
u4 = f(t − ϵ,x), and v5,v6 represent space translation
u5,6 = f(t,x− ϵ), where R ∈ SO(2) and ϵ ∈ R2.

LieNLSD has already demonstrated qualitative advantages
over LieGAN, such as the discovery of nonlinear symme-
tries and the determination of Lie algebra subspace dimen-
sion. Furthermore, we extract the linear infinitesimal gen-
erators found by LieNLSD on the aforementioned three
dynamic datasets and quantitatively compare their accuracy
with the results from LieGAN. The discriminator of Lie-
GAN is set as an MLP with 2 hidden layers and hidden
dimension 512, which is the same setting as in the original
paper (Yang et al., 2023). As shown in Table 2, although
LieNLSD expands the function library Θ to include up to
second-order terms, while LieGAN’s symmetry discovery
is limited to a linear search space, LieNLSD still achieves
more accurate linear symmetries with fewer parameters.

5.4. Application: Guiding Data Augmentation for
Neural PDE Solvers

We further apply the symmetries identified by LieNLSD to
Lie Point Symmetry Data Augmentation (LPSDA) (Brand-
stetter et al., 2022) to improve the long rollout accuracy of
the Fourier Neural Operator (FNO) (Li et al., 2021), a type
of neural PDE solver. Due to the technical limitation of
LPSDA to one-dimensional cases, we evaluate it on Burg-
ers’ equation, the heat equation (see Appendix I.1), and
the KdV equation (see Appendix I.2). The implementation
details remain consistent with the original paper (Brandstet-
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Table 4. Comparison of long rollout test NMSE for FNO without data augmentation, FNO with LPSDA based on Ko et al. (2024), FNO
with LPSDA based on LieNLSD, and FNO with LPSDA based on ground truth (GT). The results are presented in the format of mean ±
std over three runs with different random seeds.

Dataset FNO + ∅ FNO + Ko et al. FNO + LieNLSD FNO + GT

Burgers’ equation (2.33± 1.07)× 10−4 (1.93± 0.75)× 10−4 (1.80± 0.56)× 10−4 (1.75± 0.37)× 10−4

Heat equation (1.07± 0.10)× 10−1 (7.33± 1.07)× 10−2 (5.99± 0.04)× 10−2 (6.01± 0.20)× 10−2

KdV equation (1.74± 0.10)× 10−1 (1.51± 0.01)× 10−1 (1.42± 0.16)× 10−1 (1.47± 0.02)× 10−1

ter et al., 2022). As shown in Table 4, compared to FNO
without data augmentation, FNO with LPSDA based on
LieNLSD improves accuracy by over 20%, which is com-
parable to FNO with LPSDA based on ground truth (GT).
This further validates the effectiveness of LieNLSD results.

Additionally, we compare the long rollout accuracy of FNO
with LPSDA based on LieNLSD and FNO with LPSDA
based on Ko et al. (2024). For Ko et al. (2024), although
they cannot obtain explicit expressions for the infinitesimal
generators, feeding a given point into their trained MLP
still yields the specific values of the infinitesimal generators
at that point, thereby guiding data augmentation. The im-
plementation details are consistent with the original paper.
As shown in Table 4, Ko et al. (2024) can improve the ac-
curacy of FNO, but not as significantly as our method. In
addition to quantitative advantages, Ko et al. (2024) require
the explicit expression of the PDE to compute the validity
score (see Section 4.2 of their original paper), whereas our
LieNLSD does not rely on this prior knowledge.

6. Conclusion
To our knowledge, we propose the first pipeline that can
determine the number of infinitesimal generators and explic-
itly provide their expressions containing nonlinear terms.
The selection of the function library Θ is more flexible com-
pared with the Lie algebra representation. This is why the
infinitesimal group action solved by LieNLSD can include
more nonlinear terms. After training the neural network,
we solve for the coefficient matrix W of the infinitesimal
group action using mathematical methods. This is why
LieNLSD can obtain the entire Lie algebra subspace and
determine its dimension. In the future, we expect to use the
symmetries identified by LieNLSD to guide the discovery
of conserved quantities or differential equations.
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A. Preliminary
In this section, we provide an in-depth introduction to some preliminary knowledge of Lie groups and differential equations.
For more details, please refer to the textbook (Olver, 1993).

A.1. Group Actions and Infinitesimal Group Actions

A Lie group G is a mathematical object that is both a smooth manifold and a group. The Lie algebra g serves as the
tangent space at the identity of the Lie group. A Lie algebra element v ∈ g can be associated with a Lie group element
g ∈ G through the exponential map exp : g→ G, i.e., g = exp(v). Representing the space of the Lie algebra with a basis
{v1,v2, . . . ,vr}, we have g = exp

(∑r
i=1 ϵ

ivi

)
, where ϵ = (ϵ1, ϵ2, . . . , ϵr) ∈ Rr are the coefficients. The group G acts

on a vector space X = Rn via a group action Ψ : G×X → X . Correspondingly, we can define the infinitesimal group
action of g on X .

Definition A.1. Let G be a Lie group with its corresponding Lie algebra g. The group action of G on a vector space X is
given by Ψ : G×X → X . Then, the infinitesimal group action of v ∈ g at x ∈ X is:

ψ(v)|x =
d

dϵ

∣∣∣∣
ϵ=0

Ψ(exp(ϵv), x) · ∇. (17)

We abbreviate Ψ(g, x) and ψ(v) as g · x and v, respectively, when the context is clear. We refer to the infinitesimal group
actions of the Lie algebra basis as infinitesimal generators.

This is a more general definition that encompasses the nonlinear case. Previous works focusing on linear symmetries
(Moskalev et al., 2022; Desai et al., 2022; Yang et al., 2023) commonly use the group representation ρX : G→ GL(n) to
characterize group transformations, i.e., ∀g ∈ G, x ∈ X : Ψ(g, x) = ρX(g)x. The corresponding Lie algebra representation
dρX : g → gl(n) satisfies ∀v ∈ g : ρX(exp(v)) = exp(dρX(v)). Below, we demonstrate the relationship between
infinitesimal group actions and Lie algebra representations.

Proposition A.2. Let G be a Lie group with its corresponding Lie algebra g. Suppose the group action of G on a vector
space X is linear:

∀g ∈ G, x ∈ X : Ψ(g, x) = ρX(g)x. (18)

Then, we have:
∀v ∈ g, x ∈ X : ψ(v)|x = dρX(v)x · ∇. (19)

The proof of Proposition A.2 and a concrete example of group actions and infinitesimal group actions are provided in
Appendices B.1 and C.1.

A.2. Symmetries of Differential Equations

Before defining the symmetries of differential equations, we first explain how groups act on functions. A concrete example
is provided in Appendix C.2.

Definition A.3. Let f : X → U be a function, with its graph defined as Γf = {(x, f(x)) : x ∈ X} ⊂ X × U . Suppose a
Lie group G acts on X × U . Then, the transform of Γf by g ∈ G is given by g · Γf = {(x̃, ũ) = g · (x, u) : (x, u) ∈ Γf}.
We call a function f̃ : X → U the transform of f by g, denoted as f̃ = g · f , if its graph satisfies Γf̃ = g · Γf .

Note that f̃ may not always exist, but in this paper, we only consider cases where it does. The solution of a differential
equation is expressed in the form of a function. Intuitively, the symmetries of a differential equation describe how one
solution can be transformed into another.

Definition A.4. Let S be a system of differential equations, with the independent and dependent variable spaces denoted
by X and U , respectively. Suppose that a Lie group G acts on X × U . We call G the symmetry group of S if, for any
solution f : X → U of S , and ∀g ∈ G, the transformed function g · f : X → U is another solution of S .

A.3. Prolongation

To further study the symmetries of differential equations, we need to “prolong” the group action on the space of independent
and dependent variables to the space of derivatives. Given a function f : X → U , where X = Rp and U = Rq,
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it has q · pk = q ·
(
p+k−1

k

)
distinct k-th order derivatives uαJ = ∂Jf

α(x) = ∂kfα(x)

∂xj1∂xj2 ...∂xjk
, where α ∈ {1, . . . , q},

J = (j1, . . . , jk), and ji ∈ {1, . . . , p}. We denote the space of all k-th order derivatives as Uk = Rq·pk and the space of all
derivatives up to order n as U (n) = U × U1 × . . . Un = Rq·p(n)

, where p(n) =
(
p+n
n

)
. Then, we define the prolongation of

f .

Definition A.5. Let f : X → U be a smooth function. Then the n-th prolongation of f , pr(n)f : X → U (n), is defined as:

pr(n)f(x) = u(n), uαJ = ∂Jf
α(x). (20)

Based on the above concepts, the n-th order system of differential equations S can be formalized as:

Fν(x, u
(n)) = 0, ν = 1, . . . , l, (21)

where F : X × U (n) → Rl. A smooth function f : X → U is a solution of S if it satisfies F (x, pr(n)f(x)) = 0.

Below, we explain how to prolong the group action on X × U to X × U (n).

Definition A.6. Let G be a Lie group acting on the space of independent and dependent variables X × U . Given a
point (x0, u

(n)
0 ) ∈ X × U (n), suppose that a smooth function f : X → U satisfies u(n)0 = pr(n)f(x0). Then, the n-th

prolongation of g ∈ G at the point (x0, u
(n)
0 ) is defined as:

pr(n)g · (x0, u(n)0 ) = (x̃0, ũ
(n)
0 ), (22)

where
(x̃0, ũ0) = g · (x0, u0), ũ

(n)
0 = pr(n)(g · f)(x̃0). (23)

Note that by the chain rule, the definition of pr(n)g depends only on (x0, u
(n)
0 ) and is independent of the choice of f .

Similarly, we can prolong the infinitesimal group action on X × U to X × U (n).

Definition A.7. Let G be a Lie group acting on X × U , with its corresponding Lie algebra g. Then, the n-th prolongation
of v ∈ g at the point (x, u(n)) ∈ X × U (n) is defined as:

pr(n)v
∣∣∣
(x,u(n))

=
d

dϵ

∣∣∣∣
ϵ=0

{
pr(n)[exp(ϵv)] · (x, u(n))

}
· ∇. (24)

Concrete examples of prolongation are provided in Appendix C.3.

B. Proof
B.1. Proof of Proposition A.2

Proof. ∀v ∈ g, x ∈ X , we have:

ψ(v)|x =
d

dϵ

∣∣∣∣
ϵ=0

Ψ(exp(ϵv), x) · ∇ (25)

=
d

dϵ

∣∣∣∣
ϵ=0

ρX(exp(ϵv))x · ∇ (26)

=
d

dϵ

∣∣∣∣
ϵ=0

exp(dρX(ϵv))x · ∇ (27)

=
d

dϵ

∣∣∣∣
ϵ=0

exp(ϵdρX(v))x · ∇ (28)

= dρX(v)x · ∇. (29)
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B.2. Proof of Theorem 4.1

Before proving Theorem 4.1, we first introduce Theorem 2.36 from the textbook (Olver, 1993) as a lemma.

Lemma B.1. Let G be a Lie group acting on X × U = Rp × Rq, with its corresponding Lie algebra g. Denote the
infinitesimal group action of v ∈ g as:

v =

p∑
i=1

ξi(x, u)
∂

∂xi
+

q∑
α=1

ϕα(x, u)
∂

∂uα
, (30)

Then, the n-th prolongation of v is:

pr(n)v = v +

q∑
α=1

∑
J

ϕJα(x, u
(n))

∂

∂uαJ
, (31)

where J = (j1, . . . , jk), with ji = 1, . . . , p and k = 1, . . . , n. The coefficients ϕJα are given by:

ϕJα(x, u
(n)) = DJ

(
ϕα −

p∑
i=1

ξiuαi

)
+

p∑
i=1

ξiuαJ,i, (32)

where uαi = ∂uα

∂xi , uαJ,i =
∂uα

J

∂xi = ∂k+1uα

∂xi∂xj1 ...∂xjk
, and DJ represents the total derivative.

Next, we prove Theorem 4.1 as follows.

Proof. By Lemma B.1 and the multivariable derivative formula, we have:

ϕJα(x, u
(n)) = DJ

(
Θ⊤Wp+α −

p∑
i=1

Θ⊤Wiu
α
i

)
+

p∑
i=1

Θ⊤Wiu
α
J,i (33)

= DJΘ
⊤Wp+α −

p∑
i=1

∑
I⊆J

uαI,iDJ\IΘ
⊤Wi +

p∑
i=1

uαJ,iΘ
⊤Wi (34)

= −
p∑

i=1

∑
I⊂J

Uα
I,iDJ\IΘ

⊤Wi +DJΘ
⊤Wp+α. (35)

C. Example
In Appendices C.1 to C.3, we present several key examples from the textbook (Olver, 1993) to help readers intuitively
understand the preliminaries. In Appendix C.4, we provide an example of the construction of Θn in Equation (9).

C.1. Example of Group Actions and Infinitesimal Group Actions

Example C.1. Consider the 2D rotation group G = SO(2), with its group action given by:

Ψ(ϵ, (x, y)) = (x cos ϵ− y sin ϵ, x sin ϵ+ y cos ϵ). (36)

Then, according to Equation (1) (or Definition A.1), its infinitesimal group action is:

ψ(v)|(x,y) = −y
∂

∂x
+ x

∂

∂y
. (37)

Its Lie algebra representation is:

dρX(v) =

[
0 −1
1 0

]
. (38)

Thus, Equation (2) (or Proposition A.2) is satisfied.
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C.2. Example of Group Actions on Functions

Example C.2. Let X = R and U = R. The 2D rotation group G = SO(2) acts on X × U :

ϵ · (x, u) = (x cos ϵ− u sin ϵ, x sin ϵ+ u cos ϵ). (39)

Let f : X → U be a linear function u = f(x) = ax+ b. The points on the graph of f transform as follows:

(x̃, ũ) = (x cos ϵ− (ax+ b) sin ϵ, x sin ϵ+ (ax+ b) cos ϵ). (40)

To solve ũ = f̃(x̃), we first solve for x inversely (assuming cos ϵ− a sin ϵ ̸= 0):

x =
x̃+ b sin ϵ

cos ϵ− a sin ϵ
. (41)

Then we obtain the transformed function f̃ = ϵ · f :

ũ = f̃(x̃) =
sin ϵ+ a cos ϵ

cos ϵ− a sin ϵ
x̃+

b

cos ϵ− a sin ϵ
. (42)

C.3. Examples of Prolongation

We first provide an example of the prolongation of a function.

Example C.3. Let X = R2 with coordinates (x, y), and U = R with coordinate u. Then U1 = R2 has coordinates (ux, uy),
U2 = R3 has coordinates (uxx, uxy, uyy), and U (2) = U×U1×U2 = R6 has coordinates u(2) = (u;ux, uy;uxx, uxy, uyy).

Consider the function u = f(x, y). Then its second prolongation u(2) = pr(2)f(x, y) is:

(u;ux, uy;uxx, uxy, uyy) =

(
f ;
∂f

∂x
,
∂f

∂y
;
∂2f

∂x2
,
∂2f

∂x∂y
,
∂2f

∂y2

)
. (43)

We next provide an example of the prolongation of a group action.

Example C.4. Let X = R and U = R. The 2D rotation group G = SO(2) acts on X × U as shown in Equation (39).
Given a point (x0, u0, u0x) ∈ X × U (1), we choose a function f : X → U as:

f(x) = u0xx+ (u0 − u0xx0), (44)

which satisfies:
f(x0) = u0, f ′(x0) = u0x. (45)

From Equation (42), the transform of f by ϵ is (assuming cos ϵ− u0x sin ϵ ̸= 0):

f̃(x̃) = ϵ · f(x̃) = sin ϵ+ u0x cos ϵ

cos ϵ− u0x sin ϵ
x̃+

u0 − u0xx0

cos ϵ− u0x sin ϵ
. (46)

Let pr(1)ϵ · (x0, u0, u0x) = (x̃0, ũ0, ũ0x). Then, we have:

ũ0x = f̃ ′(x̃0) =
sin ϵ+ u0x cos ϵ

cos ϵ− u0x sin ϵ
. (47)

Thus, the first prolongation pr(1)SO(2) on X × U (1) is:

pr(1)ϵ · (x, u, ux) =
(
x cos ϵ− u sin ϵ, x sin ϵ+ u cos ϵ,

sin ϵ+ ux cos ϵ

cos ϵ− ux sin ϵ

)
. (48)

We finally provide an example of the prolongation of an infinitesimal group action.
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Example C.5. Let X = R and U = R. The 2D rotation group G = SO(2) acts on X × U as shown in Equation (39). Its
corresponding infinitesimal group action is:

v = −u ∂

∂x
+ x

∂

∂u
. (49)

As shown in Equation (48), we have:

pr(1)[exp(ϵv)](x, u, ux) =

(
x cos ϵ− u sin ϵ, x sin ϵ+ u cos ϵ,

sin ϵ+ ux cos ϵ

cos ϵ− ux sin ϵ

)
. (50)

Then, according to Equation (3) (or Definition A.7), we obtain the first prolongation of v:

pr(1)v = −u ∂

∂x
+ x

∂

∂u
+ (1 + u2x)

∂

∂ux
. (51)

C.4. Example of the Construction of Θn

Example C.6. Consider the case where X = R and U = R. In this case, W = [W1,W2]
⊤ ∈ R2×r and v =

Θ(x, u)⊤W1
∂
∂x + Θ(x, u)⊤W2

∂
∂u . According to Equations (7) and (8), we have pr(1)v = v + ϕx(x, u(1)) ∂

∂ux
, where

ϕx(x, u(1)) = −uxDxΘ
⊤W1 +DxΘ

⊤W2. This can be rewritten as:

pr(1)v =

 Θ⊤ 0
0 Θ⊤

−uxDxΘ
⊤ DxΘ

⊤

[W1

W2

]
· ∇ (52)

= Θ1(x, u
(1))vec(W ) · ∇. (53)

If we specify the function library Θ(x, u) = [1, x, u, x2, u2, xu]⊤, then its total derivative is computed as DxΘ =
[0, 1, ux, 2x, 2uux, u+ xux]

⊤.

D. Applications of Symmetry
One application of symmetry is the design of equivariant networks, which embed group symmetries into the network
structure such that when the input undergoes a transformation, the output will undergo a corresponding transformation.
Cohen & Welling (2016) propose the method of group convolutions, which has been extended to different types of groups
(Sosnovik et al., 2021; Worrall & Welling, 2019; Zhu et al., 2022; Naderi et al., 2020; Finzi et al., 2020; MacDonald
et al., 2022; Li et al., 2024) and action spaces (Lenssen et al., 2018; Li et al., 2018; Bekkers et al., 2018; Romero et al.,
2020; Worrall & Brostow, 2018; Winkels & Cohen, 2019; Esteves et al., 2018; 2019a;b). At the same time, some works
construct partial equivariant networks (Wang et al., 2022b) and color equivariant networks (Lengyel et al., 2024) based on
the framework of group convolutions. Later, Cohen & Welling (2017) propose the method of steerable convolutions, which
is generalized by Weiler & Cesa (2019) to an equivariant convolution framework for the general E(2) group. It has also
been applied to different kinds of groups and action spaces (Worrall et al., 2017; Graham et al., 2020; Wang et al., 2022a;
Esteves et al., 2020; Li et al., 2025).

Another application of symmetry is the discovery of governing equations (Loiseau & Brunton, 2018; Guan et al., 2021; Yang
et al., 2024b), which helps reduce the search space of equations and improve accuracy. In neural PDE solvers, recent works
have successfully incorporated symmetries into Physics-Informed Neural Networks (PINNs) (Arora et al., 2024; Lagrave &
Tron, 2022; Shumaylov et al., 2024; Zhang et al., 2023; Wang et al., 2025; Akhound-Sadegh et al., 2023) or performed
data augmentation based on PDE symmetries (Li et al., 2022; Brandstetter et al., 2022), leading to significant performance
improvements. Furthermore, symmetry concepts have enabled notable advances in generative modeling, with a series of
works making outstanding contributions to extending diffusion models from Euclidean space to Lie groups (Bertolini et al.,
2025; Zhu et al., 2025). However, these works require prior knowledge of symmetries, and incorrect symmetries can have
negative effects. Therefore, symmetry discovery from data has become an important topic. We expect to combine our
data-driven symmetry discovery approach with these works in the future, eliminating the need for prior knowledge of the
symmetry group to guide their processes.

17



Explicit Discovery of Nonlinear Symmetries from Dynamic Data

E. Time and Space Complexity Analysis of LieNLSD
The computational cost of the symmetry discovery procedure is concentrated in the SVD, which has time and space
complexities of O(mnmin(m,n)) and O(mn) for a matrix A ∈ Rm×n (Li et al., 2019). When M ·l

(p+q)·r < ϵ1, the time and

space complexities of performing SVD on C ∈ R(M ·l)×((p+q)·r) are O(M2l2(p+ q)r) and O(Ml(p+ q)r). Otherwise,
performing SVD onC⊤C ∈ R((p+q)·r)×((p+q)·r) results in time and space complexities ofO((p+q)3r3) andO((p+q)2r2).
In summary, the time and space complexities of the symmetry discovery procedure are O((p+ q)rmin(Ml, (p+ q)r)2)
and O((p+ q)rmin(Ml, (p+ q)r)), respectively.

F. Extension of LieNLSD to Linear/Affine Symmetries and Static Data
Linear/affine symmetry discovery. LieNLSD can discover a broader range of nonlinear symmetries compared with
group representation-based methods (Dehmamy et al., 2021; Moskalev et al., 2022; Yang et al., 2023), thanks to the
flexibility in the choice of the function library Θ(x, u). If we want to restrict LieNLSD to discovering linear symmetries,
we can set Θ(x, u) = [x, u]⊤ ∈ R(p+q)×1, where the coefficient matrix W corresponds to the Lie algebra representation
according to Equation (2). Furthermore, for affine symmetry discovery, we can include a constant term in the function
library: Θ(x, u) = [1, x, u]⊤ ∈ R(1+p+q)×1.

Symmetry discovery from static data. Relative to the dynamic data governed by the differential equation F (x, u(n)) = 0,
we refer to the data governed by the arithmetic equation F (x) = 0 as static data. The infinitesimal criterion for the arithmetic
equation, similar to Equation (11), is v[F (x)] = 0 whenever F (x) = 0. To apply LieNLSD for symmetry discovery from
static data, we simply set the prolongation order n = 0. In this case, the procedure no longer needs to estimate derivatives
but directly uses the original dataset.

G. Detailed Derivation of Basis Sparsification
We use LADMAP (Lin et al., 2011) to solve the constrained optimization problem presented in Equation (15). The
augmented Lagrangian function is constructed as:

L(R,Z,Λ) = ∥Z∥1,1 + ⟨Λ, QR− Z⟩+
β

2
∥QR− Z∥2F , (54)

where Λ ∈ R((p+q)·r)×d is the Lagrange multiplier, β > 0 is the penalty parameter, and the Frobenius norm of a matrix is
∥A∥F =

√∑
i,j A

2
ij . During the iteration process, we alternately update R and Z.

We first update R with Z fixed, as shown in Equation (8) of Lin et al. (2011):

Rk+1 = arg min
R⊤R=I

βkηR
2

∥∥∥∥R−Rk +
Q⊤(Λk + βk(QRk − Zk))

βkηR

∥∥∥∥2
F

. (55)

Let R̃ = Rk − Q⊤(Λk+βk(QRk−Zk))
βkηR

, then we have:

Rk+1 = arg min
R⊤R=I

∥R− R̃∥2F (56)

= arg min
R⊤R=I

tr((R− R̃)⊤(R− R̃)) (57)

= arg min
R⊤R=I

tr(R⊤R)− 2tr(R⊤R̃) + tr(R̃⊤R̃) (58)

= arg min
R⊤R=I

d− 2tr(R⊤R̃) + tr(R̃⊤R̃) (59)

= arg max
R⊤R=I

tr(R⊤R̃). (60)

Let UΣV ⊤ be the SVD of R̃ = Rk − Q⊤(Λk+βk(QRk−Zk))
βkηR

, then:

Rk+1 = arg max
R⊤R=I

tr(R⊤UΣV ⊤) (61)

= arg max
R⊤R=I

tr(V ⊤R⊤UΣ). (62)
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Let S = V ⊤R⊤U , then S⊤S = U⊤RV V ⊤R⊤U = I . We have:

Rk+1 = arg max
R⊤R=I

tr(SΣ) (63)

= arg max
R⊤R=I

d∑
i=1

Siiσi. (64)

The orthogonality of S and the non-negativity of the singular values imply that |Sii| ≤ 1 and σi ≥ 0. Therefore, when
Sii = 1, i.e., when S = V ⊤R⊤U = I , the expression

∑d
i=1 Siiσi reaches its maximum. Due to the orthogonality of U and

V , we have R = UV ⊤. Thus, we obtain the update formula for R:

Rk+1 = UV ⊤. (65)

We then update Z with R fixed, as shown in Equation (9) of Lin et al. (2011):

Zk+1 = argmin
Z
∥Z∥1,1 +

βkηZ
2

∥∥∥∥Z − Zk −
Λk + βk(QRk+1 − Zk)

βkηZ

∥∥∥∥2
F

. (66)

Let Z̃ = Zk + Λk+βk(QRk+1−Zk)
βkηZ

, then:

Zk+1 = argmin
Z
∥Z∥1,1 +

βkηZ
2
∥Z − Z̃∥2F (67)

= argmin
Z

∑
i,j

|Zij |+
βkηZ
2

∑
i,j

(Zij − Z̃ij)
2. (68)

This problem can be optimized element-wise:

(Zk+1)ij = argmin
z
|z|+ βkηZ

2
(z − Z̃ij)

2. (69)

Let f(z) = |z| + βkηZ

2 (z − Z̃ij)
2. When z > 0, f ′(z) = 1 + βkηZ(z − Z̃ij) = 0 implies z = Z̃ij − 1

βkηZ
, where

Z̃ij >
1

βkηZ
. When z < 0, f ′(z) = −1 + βkηZ(z − Z̃ij) = 0 implies z = Z̃ij +

1
βkηZ

, where Z̃ij < − 1
βkηZ

. When z = 0,

if it is the optimal solution, then 0 ∈ ∂f(0) = [−1− βkηZZ̃ij , 1− βkηZZ̃ij ], and in this case, − 1
βkηZ

≤ Z̃ij ≤ 1
βkηZ

. In
summary:

(Zk+1)ij =


Z̃ij − 1

βkηZ
, Z̃ij >

1
βkηZ

,

Z̃ij +
1

βkηZ
, Z̃ij < − 1

βkηZ
,

0, − 1
βkηZ

≤ Z̃ij ≤ 1
βkηZ

.

(70)

Thus, we obtain the update formula for Z:

Zk+1 = S(βkηZ)−1(Z̃) (71)

= S(βkηZ)−1

(
Zk +

Λk + βk(QRk+1 − Zk)

βkηZ

)
, (72)

where Sϵ(x) = sgn(x)max(|x| − ϵ, 0) is the soft thresholding operator.

H. Implementation Detail and Visualization Result
H.1. Linear Symmetry Discovery

Top quark tagging. In this task, we observe the four-momenta {pµi }20i=1 ∈ R4 of the 20 jet constituents with the highest
transverse momentum pT , and predict the event label (1 for top quark decay, 0 for other events). We configure an MLP
with 3 hidden layers, setting the input dimension to 80, the hidden dimension to 200, and the output dimension to 1. The
activation function is ReLU. This is a binary classification task, so we apply the Sigmoid function to the output and use BCE
as the loss function. For training, we set the batch size to 256 and use the Adan optimizer (Xie et al., 2024) with a learning
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rate of 10−3. For symmetry discovery, we use Theorem 3 in LieSD (Hu et al., 2025) to ensure that the 20 four-momenta
share a group action, which allows us to treat these 20 channels as a single channel in the subsequent analysis. This is a
static system, so we set the prolongation order to n = 0. With the function library set to Θ(pµ) = [p0, p1, p2, p3]⊤ ∈ R4×1,
Theorem 4.1 gives Θ0 in Equation (9) as:

Θ0 =


Θ⊤ 0 0 0
0 Θ⊤ 0 0
0 0 Θ⊤ 0
0 0 0 Θ⊤

 ∈ R4×16. (73)

We sample M = 100 points from the training set to construct C ∈ R100×16 in Equation (13) (in practice, we construct
C⊤C ∈ R16×16). For quantitative analysis, we conduct multiple experiments with different sampled points to report error
bars. As shown in Figure 2, we consider the singular values smaller than ϵ2 = 10 as the effective information of the
symmetry group, where the singular values drop sharply to nearly zero. For basis sparsification, we set ϵ1 = 10−2 and
ϵ2 = 10−1, while keeping the remaining hyperparameters consistent with the original paper (Lin et al., 2011).
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Figure 2. Visualization result of symmetry discovery on top quark tagging by LieNLSD. The first subplot shows the last 8 singular values.
The other seven subplots display the infinitesimal generators corresponding to the nearly-zero singular values after sparsification.

H.2. Nonlinear Symmetry Discovery

Burgers’ equation. For dataset generation, we first uniformly sample Nx spatial points x ∈ RNx on the interval
[
−L

2 ,
L
2

]
.

By sampling the coefficients of the Fourier series f(x) = a0

2 +
∑Nf

n=1

(
an cos

2nπx
L + bn sin

2nπx
L

)
from a Gaussian

distribution, we obtain Nics initial conditions u0 ∈ RNics×Nx . We then uniformly sample Nt time points t ∈ RNt on the
interval [0, T ], and numerically integrate the trajectories u ∈ RNics×Nt×Nx using the fourth-order Runge-Kutta method
(RK4), which, along with t and x, forms the discrete dataset. In practice, we set L = 20, Nx = 100, Nf = 10, Nics = 10,
T = 2, and Nt = 1000.

For LieNLSD, we set the prolongation order to n = 2, and use the central difference method to estimate the derivatives
ut, ux, uxx, utx. We configure an MLP with 3 hidden layers to fit the mapping ut = f(u, ux, uxx), setting the input
dimension to 3, the hidden dimension to 200, and the output dimension to 1. The activation function is Sigmoid. For training,
we set the batch size to 256 and use the Adan optimizer (Xie et al., 2024) with a learning rate of 10−3. For symmetry
discovery, we specify the function library up to second-order terms as Θ(t, x, u) = [1, t, x, u, t2, x2, u2, tx, tu, xu]⊤ ∈
R10×1. The infinitesimal group action v has the form:

v = Θ(t, x, u)⊤W1
∂

∂t
+Θ(t, x, u)⊤W2

∂

∂x
+Θ(t, x, u)⊤W3

∂

∂u
, (74)
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where W = [W1,W2,W3]
⊤ ∈ R3×10. According to Theorem 4.1, the second prolongation of v is:

pr(2)v =Θ⊤W3
∂

∂u

+ (−utDxΘ
⊤W1 − uxDxΘ

⊤W2 +DxΘ
⊤W3)

∂

∂ux

+ [−(utDxxΘ
⊤ + 2utxDxΘ

⊤)W1 − (uxDxxΘ
⊤ + 2uxxDxΘ

⊤)W2 +DxxΘ
⊤W3]

∂

∂uxx

+ (−utDtΘ
⊤W1 − uxDtΘ

⊤W2 +DtΘ
⊤W3)

∂

∂ut
+ . . . , (75)

where DtΘ = [0, 1, 0, ut, 2t, 0, 2uut, x, u + tut, xut]
⊤, DxΘ = [0, 0, 1, ux, 0, 2x, 2uux, t, tux, u+ xux]

⊤, and DxxΘ =
[0, 0, 0, uxx, 0, 2, 2(u

2
x + uuxx), 0, tuxx, 2ux + xuxx]

⊤. We omit the irrelevant terms here because we assume the form
of the differential equation is F (u, ux, uxx, ut) = f(u, ux, uxx) − ut = 0, which only depends on u, ux, uxx, ut. More
specifically, for example, since we have ∂F

∂utx
= 0, the row corresponding to ∂

∂utx
in Θ2 of Equation (12) will be ignored.

Equation (75) gives Θ2 in Equation (9) as:

Θ2 =


0 0 Θ⊤

−utDxΘ
⊤ −uxDxΘ

⊤ DxΘ
⊤

−(utDxxΘ
⊤ + 2utxDxΘ

⊤) −(uxDxxΘ
⊤ + 2uxxDxΘ

⊤) DxxΘ
⊤

−utDtΘ
⊤ −uxDtΘ

⊤ DtΘ
⊤

 ∈ R4×30. (76)

We sample M = 100 points from the training set to construct C ∈ R100×30 in Equation (13) (in practice, we construct
C⊤C ∈ R30×30). For quantitative analysis, we conduct multiple experiments with different sampled points to report error
bars. As shown in Figure 3, we consider the singular values smaller than ϵ2 = 0.5 as the effective information of the
symmetry group, where the singular values drop sharply to nearly zero. For basis sparsification, we set ϵ1 = 10−4 and
ϵ2 = 10−4, while keeping the remaining hyperparameters consistent with the original paper (Lin et al., 2011).
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Figure 3. Visualization result of symmetry discovery on Burgers’ equation by LieNLSD. The first subplot shows the last 7 singular values.
The other six subplots display the infinitesimal generators corresponding to the nearly-zero singular values after sparsification.

Wave equation. For dataset generation, we first rewrite the equation in its first-order form:{
ut = v,

vt = uxx + uyy.
(77)

We uniformly sample N2
x spatial points on the interval

[
−L

2 ,
L
2

]2
, with coordinates x ∈

RN2
x and y ∈ RN2

x . By sampling the coefficients of the Fourier series f(x, y) = a0

4 +∑Nf

m=1

∑Nf

n=1

(
amn cos

2mπx
L cos 2nπy

L + bmn cos
2mπx

L sin 2nπy
L + cmn sin

2mπx
L cos 2nπy

L + dmn sin
2mπx

L sin 2nπy
L

)
from a Gaussian distribution, we obtain Nics initial conditions u0 ∈ RNics×N2

x and v0 ∈ RNics×N2
x . We then uniformly

sample Nt time points t ∈ RNt on the interval [0, T ], and numerically integrate the trajectories u ∈ RNics×Nt×N2
x and

v ∈ RNics×Nt×N2
x using the fourth-order Runge-Kutta method (RK4). We sample every 10 points in space to obtain the

discrete dataset t ∈ RNt , x̃ ∈ R(Nx/10)
2

, ỹ ∈ R(Nx/10)
2

, ũ ∈ RNics×Nt×(Nx/10)
2

. In practice, we set L = 20, Nx = 100,
Nf = 3, Nics = 10, T = 2, and Nt = 1000.
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For LieNLSD, we set the prolongation order to n = 2, and use the central difference method to estimate the deriva-
tives ut, ux, uy, utt, uxx, uyy, utx, uty, uxy. We configure an MLP with 3 hidden layers to fit the mapping utt =
f(u, ux, uy, uxx, uyy, uxy), setting the input dimension to 6, the hidden dimension to 200, and the output dimension
to 1. The activation function is Sigmoid. For training, we set the batch size to 256 and use the Adan optimizer (Xie et al.,
2024) with a learning rate of 10−3. For symmetry discovery, we specify the function library up to second-order terms as
Θ(t, x, y, u) = [1, t, x, y, u, t2, x2, y2, u2, tx, ty, tu, xy, xu, yu]⊤ ∈ R15×1. The infinitesimal group action v has the form:

v = Θ(t, x, y, u)⊤W1
∂

∂t
+Θ(t, x, y, u)⊤W2

∂

∂x
+Θ(t, x, y, u)⊤W3

∂

∂y
+Θ(t, x, y, u)⊤W4

∂

∂u
, (78)

where W = [W1,W2,W3,W4]
⊤ ∈ R4×15. According to Theorem 4.1, the second prolongation of v is:

pr(2)v =Θ⊤W4
∂

∂u

+ (−utDxΘ
⊤W1 − uxDxΘ

⊤W2 − uyDxΘ
⊤W3 +DxΘ

⊤W4)
∂

∂ux

+ (−utDyΘ
⊤W1 − uxDyΘ

⊤W2 − uyDyΘ
⊤W3 +DyΘ

⊤W4)
∂

∂uy

+ [−(utDxxΘ
⊤ + 2utxDxΘ

⊤)W1 − (uxDxxΘ
⊤ + 2uxxDxΘ

⊤)W2

− (uyDxxΘ
⊤ + 2uxyDxΘ

⊤)W3 +DxxΘ
⊤W4]

∂

∂uxx

+ [−(utDyyΘ
⊤ + 2utyDyΘ

⊤)W1 − (uxDyyΘ
⊤ + 2uxyDyΘ

⊤)W2

− (uyDyyΘ
⊤ + 2uyyDyΘ

⊤)W3 +DyyΘ
⊤W4]

∂

∂uyy

+ [−(utDxyΘ
⊤ + utxDyΘ

⊤ + utyDxΘ
⊤)W1 − (uxDxyΘ

⊤ + uxxDyΘ
⊤ + uxyDxΘ

⊤)W2

− (uyDxyΘ
⊤ + uxyDyΘ

⊤ + uyyDxΘ
⊤)W3 +DxyΘ

⊤W4]
∂

∂uxy

+ [−(utDttΘ
⊤ + 2uttDtΘ

⊤)W1 − (uxDttΘ
⊤ + 2utxDtΘ

⊤)W2

− (uyDttΘ
⊤ + 2utyDtΘ

⊤)W3 +DttΘ
⊤W4]

∂

∂utt
+ . . . , (79)

where 

DtΘ = [0, 1, 0, 0, ut, 2t, 0, 0, 2uut, x, y, u+ tut, 0, xut, yut]
⊤,

DxΘ = [0, 0, 1, 0, ux, 0, 2x, 0, 2uux, t, 0, tux, y, u+ xux, yux]
⊤,

DyΘ = [0, 0, 0, 1, uy, 0, 0, 2y, 2uuy, 0, t, tuy, x, xuy, u+ yuy]
⊤,

DttΘ = [0, 0, 0, 0, utt, 2, 0, 0, 2(u
2
t + uutt), 0, 0, 2ut + tutt, 0, xutt, yutt]

⊤,

DxxΘ = [0, 0, 0, 0, uxx, 0, 2, 0, 2(u
2
x + uuxx), 0, 0, tuxx, 0, 2ux + xuxx, yuxx]

⊤,

DyyΘ = [0, 0, 0, 0, uyy, 0, 0, 2, 2(u
2
y + uuyy), 0, 0, tuyy, 0, xuyy, 2uy + yuyy]

⊤,

DxyΘ = [0, 0, 0, 0, uxy, 0, 0, 0, 2(uxuy + uuxy), 0, 0, tuxy, 1, uy + xuxy, ux + yuxy]
⊤.

(80)

It gives Θ2 in Equation (9) as:

Θ2 =



0 0 0 Θ⊤

−utDxΘ
⊤ −uxDxΘ

⊤ −uyDxΘ
⊤ DxΘ

⊤

−utDyΘ
⊤ −uxDyΘ

⊤ −uyDyΘ
⊤ DyΘ

⊤

−(utDxxΘ
⊤ + 2utxDxΘ

⊤) −(uxDxxΘ
⊤ + 2uxxDxΘ

⊤) −(uyDxxΘ
⊤ + 2uxyDxΘ

⊤) DxxΘ
⊤

−(utDyyΘ
⊤ + 2utyDyΘ

⊤) −(uxDyyΘ
⊤ + 2uxyDyΘ

⊤) −(uyDyyΘ
⊤ + 2uyyDyΘ

⊤) DyyΘ
⊤

−(utDxyΘ
⊤ + utxDyΘ

⊤ + utyDxΘ
⊤) −(uxDxyΘ

⊤ + uxxDyΘ
⊤ + uxyDxΘ

⊤) −(uyDxyΘ
⊤ + uxyDyΘ

⊤ + uyyDxΘ
⊤) DxyΘ

⊤

−(utDttΘ
⊤ + 2uttDtΘ

⊤) −(uxDttΘ
⊤ + 2utxDtΘ

⊤) −(uyDttΘ
⊤ + 2utyDtΘ

⊤) DttΘ
⊤


∈ R7×60.

(81)
We sample M = 100 points from the training set to construct C ∈ R100×60 in Equation (13) (in practice, we construct
C⊤C ∈ R60×60). For quantitative analysis, we conduct multiple experiments with different sampled points to report error
bars. As shown in Figure 4, we consider the singular values smaller than ϵ2 = 1 as the effective information of the symmetry
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group, where the singular values drop sharply to nearly zero. For basis sparsification, we set ϵ1 = 10−4 and ϵ2 = 10−3,
while keeping the remaining hyperparameters consistent with the original paper (Lin et al., 2011).
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Figure 4. Visualization result of symmetry discovery on the wave equation by LieNLSD. The first subplot shows the last 21 singular
values. The other twenty subplots display the infinitesimal generators corresponding to the nearly-zero singular values after sparsification.

Schrödinger equation. For dataset generation, we follow the same approach as the wave equation to obtain the time
series t ∈ RNt , grid coordinates x, y ∈ RN2

x , and trajectories u, v ∈ RNics×Nt×N2
x . We sample every 10 points in space to

get the discrete dataset t ∈ RNt , x̃ ∈ R(Nx/10)
2

, ỹ ∈ R(Nx/10)
2

, ũ ∈ RNics×Nt×(Nx/10)
2

, ṽ ∈ RNics×Nt×(Nx/10)
2

. For the
parameters, we set L = 20, Nx = 100, Nf = 2, Nics = 10, T = 2, and Nt = 1000.

For LieNLSD, we set the prolongation order to n = 2, and use the central difference method to estimate the derivatives
ut, ux, uy, uxx, uyy, utx, uty, uxy, vt, vx, vy, vxx, vyy, vtx, vty, vxy. We configure an MLP with 3 hidden layers to fit the
mapping (ut, vt) = f(u, ux, uy, uxx, uyy, uxy, v, vx, vy, vxx, vyy, vxy), setting the input dimension to 12, the hidden dimen-
sion to 200, and the output dimension to 2. The activation function is Sigmoid. For training, we set the batch size to 256 and
use the Adan optimizer (Xie et al., 2024) with a learning rate of 10−3. For symmetry discovery, we specify the function library
up to second-order terms as Θ(t, x, y, u, v) = [1, t, x, y, u, v, t2, x2, y2, u2, v2, tx, ty, tu, tv, xy, xu, xv, yu, yv, uv]⊤ ∈
R21×1. The infinitesimal group action v has the form:

v = Θ(t, x, y, u, v)⊤W1
∂
∂t +Θ(t, x, y, u, v)⊤W2

∂
∂x +Θ(t, x, y, u, v)⊤W3

∂
∂y +Θ(t, x, y, u, v)⊤W4

∂
∂u +Θ(t, x, y, u, v)⊤W5

∂
∂v ,

(82)
where W = [W1,W2,W3,W4,W5]

⊤ ∈ R5×21. Similarly to the wave equation, Theorem 4.1 gives Θ2 in Equation (9) as:

Θ2 =



0 0 0 Θ⊤ 0
−utDxΘ

⊤ −uxDxΘ
⊤ −uyDxΘ

⊤ DxΘ
⊤ 0

−utDyΘ
⊤ −uxDyΘ

⊤ −uyDyΘ
⊤ DyΘ

⊤ 0
−(utDxxΘ

⊤ + 2utxDxΘ
⊤) −(uxDxxΘ

⊤ + 2uxxDxΘ
⊤) −(uyDxxΘ

⊤ + 2uxyDxΘ
⊤) DxxΘ

⊤ 0
−(utDyyΘ

⊤ + 2utyDyΘ
⊤) −(uxDyyΘ

⊤ + 2uxyDyΘ
⊤) −(uyDyyΘ

⊤ + 2uyyDyΘ
⊤) DyyΘ

⊤ 0
−(utDxyΘ

⊤ + utxDyΘ
⊤ + utyDxΘ

⊤) −(uxDxyΘ
⊤ + uxxDyΘ

⊤ + uxyDxΘ
⊤) −(uyDxyΘ

⊤ + uxyDyΘ
⊤ + uyyDxΘ

⊤) DxyΘ
⊤ 0

0 0 0 0 Θ⊤

−vtDxΘ
⊤ −vxDxΘ

⊤ −vyDxΘ
⊤ 0 DxΘ

⊤

−vtDyΘ
⊤ −vxDyΘ

⊤ −vyDyΘ
⊤ 0 DyΘ

⊤

−(vtDxxΘ
⊤ + 2vtxDxΘ

⊤) −(vxDxxΘ
⊤ + 2vxxDxΘ

⊤) −(vyDxxΘ
⊤ + 2vxyDxΘ

⊤) 0 DxxΘ
⊤

−(vtDyyΘ
⊤ + 2vtyDyΘ

⊤) −(vxDyyΘ
⊤ + 2vxyDyΘ

⊤) −(vyDyyΘ
⊤ + 2vyyDyΘ

⊤) 0 DyyΘ
⊤

−(vtDxyΘ
⊤ + vtxDyΘ

⊤ + vtyDxΘ
⊤) −(vxDxyΘ

⊤ + vxxDyΘ
⊤ + vxyDxΘ

⊤) −(vyDxyΘ
⊤ + vxyDyΘ

⊤ + vyyDxΘ
⊤) 0 DxyΘ

⊤

−utDtΘ
⊤ −uxDtΘ

⊤ −uyDtΘ
⊤ DtΘ

⊤ 0
−vtDtΘ

⊤ −vxDtΘ
⊤ −vyDtΘ

⊤ 0 DtΘ
⊤



∈ R14×105.

(83)
We sample M = 100 points from the training set to construct C ∈ R100×105 in Equation (13). For quantitative analysis,
we conduct multiple experiments with different sampled points to report error bars. As shown in Figure 5, we consider
the singular values smaller than ϵ2 = 2 as the effective information of the symmetry group, where the singular values
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drop sharply to nearly zero. For basis sparsification, we set ϵ1 = 10−4 and ϵ2 = 10−3, while keeping the remaining
hyperparameters consistent with the original paper (Lin et al., 2011).
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Figure 5. Visualization result of symmetry discovery on the Schrödinger equation by LieNLSD. The first subplot shows the last 7 singular
values. The other six subplots display the infinitesimal generators corresponding to the nearly-zero singular values after sparsification.

I. Additional Experiment
We supplement experiments on dynamic data governed by the heat equation, the Korteweg-De Vries (KdV) equation, and
reaction-diffusion system. The quantitative comparison between LieNLSD and LieGAN on additional experiments is
provided in Table 5.

Table 5. Quantitative comparison of LieNLSD and LieGAN on additional experiments. The Grassmann distance is presented in the format
of mean ± std over three runs.

Dataset Model Grassmann distance (↓) Parameters

Heat equation LieNLSD (7.39± 1.04)× 10−4 81K
LieGAN 2.59± 0.04 265K

KdV equation LieNLSD (5.24± 1.55)× 10−3 82K
LieGAN 1.56± 0.00 265K

Reaction-diffusion system LieNLSD (1.24± 0.18)× 10−1 83K
LieGAN 1.11± 0.11 266K

Table 6. Infinitesimal generators found on additional experiments by LieNLSD.

Dataset Heat equation KdV equation Reaction-diffusion system

Generators

v1 = (2t+ x2)
∂

∂u
, v2 = 2t

∂

∂t
+ x

∂

∂x
,

v3 = 2t
∂

∂x
− xu ∂

∂u
, v4 = x

∂

∂u
, v5 = u

∂

∂u
,

v6 =
∂

∂u
, v7 =

∂

∂x
, v8 =

∂

∂t

v1 = −3t ∂
∂t
− x ∂

∂x
+ 2u

∂

∂u
,

v2 = t
∂

∂x
+

∂

∂u
,

v3 =
∂

∂t
, v4 =

∂

∂x

v1 = −v ∂
∂u

+ u
∂

∂v
,

v2 = −y ∂
∂x

+ x
∂

∂y
,

v3 =
∂

∂t
, v4 =

∂

∂x
, v5 =

∂

∂y

I.1. Heat Equation

The heat equation describes the evolution of the temperature distribution over time in a given medium. Its one-dimensional
form is:

ut = uxx, (84)
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where u(t, x) is the temperature at time t and position x. The experimental setup is consistent with Burgers’ equation.
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Figure 6. Visualization result of symmetry discovery on the heat equation by LieNLSD. The first subplot shows the last 9 singular values.
The other eight subplots display the infinitesimal generators corresponding to the nearly-zero singular values after sparsification.

We present the visualization result of LieNLSD on the heat equation in Figure 6. LieNLSD obtains 8 nearly zero singular
values, which indicates that the number of infinitesimal generators is 8. The corresponding explicit expressions are
shown in Table 6. The group actions they generate for the symmetry group are exp(ϵv1)(t, x, u) = (t, x, u + ϵ(2t +

x2)), exp(ϵv2)(t, x, u) = (e2ϵt, eϵx, u), exp(ϵv3)(t, x, u) = (t, x + 2ϵt, ue−ϵx−ϵ2t), exp(ϵv4)(t, x, u) = (t, x, u + ϵx),
exp(ϵv5)(t, x, u) = (t, x, eϵu), exp(ϵv6)(t, x, u) = (t, x, u+ϵ), exp(ϵv7)(t, x, u) = (t, x+ϵ, u), and exp(ϵv8)(t, x, u) =
(t+ ϵ, x, u). The practical meaning is that, if u = f(t, x) is a solution to the heat equation, then u1 = f(t, x) + ϵ(2t+ x2),
u2 = f(e−2ϵt, e−ϵx), u3 = e−ϵx+ϵ2tf(t, x− 2ϵt), u4 = f(t, x) + ϵx, u5 = eϵf(t, x), u6 = f(t, x) + ϵ, u7 = f(t, x− ϵ),
and u8 = f(t− ϵ, x) are also solutions.

I.2. Korteweg-De Vries (KdV) Equation

The KdV equation describes the propagation of solitary waves on shallow water surfaces. Its standard form is:

ut + uxxx + uux = 0, (85)

where u(t, x) is the wave profile at time t and position x. The experimental setup is consistent with Burgers’ equation.
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Figure 7. Visualization result of symmetry discovery on the KdV equation by LieNLSD. The first subplot shows the last 5 singular values.
The other four subplots display the infinitesimal generators corresponding to the nearly-zero singular values after sparsification.

We present the visualization result of LieNLSD on the KdV equation in Figure 7. LieNLSD obtains 4 nearly zero singular
values, which indicates that the number of infinitesimal generators is 4. The corresponding explicit expressions are shown
in Table 6. Then, if u = f(t, x) is a solution to the KdV equation, we can obtain several derived solutions through
these infinitesimal generators. Specifically, v1 represents scaling u1 = e2ϵf(e3ϵt, eϵx), v2 represents Galilean boost
u2 = f(t, x− ϵt) + ϵ, v3 represents time translation u3 = f(t− ϵ, x), and v4 represents space translation u4 = f(t, x− ϵ).

I.3. Reaction-Diffusion System

A reaction-diffusion system describes the behavior of chemical substances or biological patterns that undergo both reaction
and diffusion. We consider a λ-ω reaction-diffusion system (Champion et al., 2019) governed by:{

ut = (1− (u2 + v2))u+ β(u2 + v2)v + d1(uxx + uyy),

vt = −β(u2 + v2)u+ (1− (u2 + v2))v + d2(vxx + vyy),
(86)

with d1 = 0.1, d2 = 0.1, and β = 1. The experimental setup is consistent with the Schrödinger equation.
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Figure 8. Visualization result of symmetry discovery on reaction-diffusion system by LieNLSD. The first subplot shows the last 6 singular
values. The other five subplots display the infinitesimal generators corresponding to the nearly-zero singular values after sparsification.

We present the visualization result of LieNLSD on reaction-diffusion model in Figure 8. Although LaLiGAN discovers the
SO(2) symmetry in the latent space of this system, it cannot explicitly provide the group action in the observation space.
LieNLSD takes the independent variables into account and directly discovers the SO(2) symmetry in the observation space.
Specifically, LieNLSD obtains 5 nearly zero singular values, which indicates that the number of infinitesimal generators is 5.
The corresponding explicit expressions are shown in Table 6. Among these, v1 represents rotation in the complex space, v2

represents space rotation, v3 represents time translation, and v4,v5 represent space translation.
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