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Abstract
Diversity in training data, architecture, and
providers is assumed to mitigate homogeneity
in LLMs. However, we lack empirical evidence
on whether different LLMs differ meaningfully.
We conduct a large-scale empirical evaluation
on over 350 LLMs overall, using two popular
leaderboards and a resume-screening task. We
find substantial correlation in model errors—on
one leaderboard dataset, models agree 60% of
the time when both models err. We identify fac-
tors driving model correlation, including shared
architectures and providers. Crucially, however,
larger and more accurate models have highly cor-
related errors, even with distinct architectures and
providers. Finally, we show the effects of correla-
tion in two downstream tasks: LLM-as-judge eval-
uation and hiring—the latter reflecting theoretical
predictions regarding algorithmic monoculture.

1. Introduction
Large language models (LLMs) are increasingly involved
in high-stakes multi-agent settings. A key characteristic
of the emerging ecosystem is the large number of models
made available by various providers. One HuggingFace
leaderboard currently hosts over 2000 models. Diversity
potentially supports a healthy ecosystem. In labor markets,
different firms using different models could reduce systemic
exclusion compared to universal adoption of a single model
(Bommasani et al., 2022; Toups et al., 2023; Creel & Hell-
man, 2022). Systems with multiple models may generally
be more robust, allowing “wisdom of crowds” effects and
avoiding correlated failure (Verga et al., 2024; Kleinberg &
Raghavan, 2021; Peng & Garg, 2024a;b; Jain et al., 2024a;b;
Tekin et al., 2024; Chen et al., 2025; Yang et al., 2025).

However, we lack large-scale empirical evidence on whether
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different available models differ in a meaningful way. How
correlated are LLM errors—i.e., how often do models con-
verge on the same wrong answer? What features of models
predict high correlation? Are newer models more or less
homogeneous? What are the downstream effects of evolv-
ing levels of model correlation in high-stakes settings where
LLMs are used? Answering these questions is necessary
both to understand the current limits of ecosystem diversity,
and to more effectively engineer multi-agent systems.

Here, we answer these questions, using three large datasets
of LLM responses: Responses of 349 LLMs on 14,402
multiple choice questions on a HuggingFace leaderboard,
71 LLMs on 12,032 multiple choice questions on the Helm
leaderboard (Liang et al., 2023), and 20 LLMs on 1,800
resume-job description pairs.

(1) How correlated are LLM errors? To assess corre-
lation on multiple choice questions, we evaluate the agree-
ment rate of model pairs—conditional on both models being
wrong. On the resume evaluations, we evaluate the corre-
lation in residuals in comparison to human labels. In all
three datasets, we find that errors correlate highly across
LLMs. For example, on Helm, pairs of models agree on av-
erage about 60% of the time when both models are incorrect
(choosing between incorrect answers uniformly at random
would lead to an agreement rate of 1/3).

(2) What explains model correlation? Through a regres-
sion analysis on the datasets above, we find that models
with the same provider (company), with the same base ar-
chitecture, or with similar sizes have more correlated errors.
Importantly, even after conditioning on these factors, pairs
of models that are more accurate individually also have
more correlated errors. This means that newer models that
differ on the surface may be converging in their outputs.

(3) What are the downstream effects of model corre-
lation? We then study how these patterns in correlation
translate to downstream outcomes in two settings: LLM-as-
judge evaluation (Zheng et al., 2023) and hiring applications.
In the LLM-as-judge setting, we show that model corre-
lations substantially affect LLM model evaluations when
another model is used to proxy ground truth labels: judges
overinflate the accuracy of models that are less accurate
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(a) HuggingFace (b) Helm

Figure 1. Agreement when both models are wrong. Models are sorted by accuracy. More accurate models have more correlated errors,
and almost all model pairs have higher agreement rates than random disagreement on errors would imply.

than it—especially for models of the same provider or ar-
chitecture. Furthermore, motivated by concerns regarding
algorithmic monoculture and systemic exclusion in hiring
markets (Kleinberg & Raghavan, 2021; Creel & Hellman,
2022; Peng & Garg, 2024a), we quantify the implications of
correlations across firms when making hiring decisions—for
example, how model correlation affects who is hired (com-
pared to hand labels of resume-job fit) and worker welfare
(do they match with their most desired firms).

Section 2 discusses related work. Section 3 analyzes and
explains model correlations. Sections 4 and 5 consider
downstream tasks. Section 6 concludes. Our code and data
are available at https://github.com/nikhgarg/
llm_correlated_errors_public/.

2. Related Work
Multi-agent and multi-model use A large literature, ei-
ther implicitly or explicitly, assumes that using different
LLMs provides benefits over using the same model. For ex-
ample, to avoid self-preferencing (Panickssery et al., 2024;
Wataoka et al., 2024), many papers use a separate LLM
model to evaluate outputs from one or more models (Zhou
et al., 2024; Verga et al., 2024). Raghavan (2024) models a
game where it is beneficial to both be accurate and be differ-
ent than other players; he finds that increasing noise (e.g.,
via increasing temperature) and choosing a different LLM
than competitors may be preferable over using the most

individually accurate agent. Our work provides an empirical
foundation for this literature: how correlated are different
models, and what explains correlation? Our results thus
aid in choosing uncorrelated models and analyzing whether
there exists sufficient diversity to receive its benefits.

Algorithmic monoculture and systemic exclusion A bur-
geoning literature is concerned with the effects of algorith-
mic monoculture, when many decision-makers use the same
model (Kleinberg & Raghavan, 2021; Bommasani et al.,
2022; Jain et al., 2024a;b; Creel & Hellman, 2022; Peng
& Garg, 2024a;b; Toups et al., 2023; Baek et al., 2025).
For example, in hiring, monoculture can negatively affect
correlated hiring firms (Kleinberg & Raghavan, 2021; Peng
& Garg, 2024a). There are further concerns about systemic
exclusion, when one worker is rejected from all jobs because
they all use the same algorithm (Bommasani et al., 2022;
Creel & Hellman, 2022). However, Peng & Garg (2024a)
argue that monoculture can benefit applicants on average be-
cause those given offers have more power to choose where
to work and, in equilibrium, a similar number of workers
will be hired. Motivated by this literature, in Section 5 we
simulate a labor market in which firms use either the same or
different large language models to screen applicant resumes.

Ecosystem evaluation A closely related literature studies
the ecosystem of large language models and foundation
models more broadly. This literature focuses on the degree
to which models use shared components. This is motivated,
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for example, by the component sharing hypothesis studied
by Bommasani et al. (2022); Toups et al. (2023)—i.e., that
models with the same components are more likely to have
correlated outputs. Further work documents how different
models share components (Bommasani et al., 2023). Our
paper can be viewed partially as studying the component
sharing hypothesis at a large scale.

Generative diversity and monoculture in large language
models Generative diversity and mode collapse is a com-
mon worry regarding large language models (Zhang et al.,
2025; Senthilkumar et al., 2024; Xu et al., 2024; Alvero
et al., 2024; Wang et al., 2025). Wu et al. (2024) find se-
vere monoculture within an LLM in instances of a task; for
example, they find that the distribution of code written by
an LLM has less variance than the distribution of code in
its training set. They further find that changing inference
parameters (such as temperature, top-p, and prompts) does
not mitigate this monoculture, and that it is worse for mod-
els with RLHF fine-tuning. Our work complements this
analysis by measuring monoculture across LLMs: are dif-
ferent LLMs more correlated with each other than they are
with ground truth? We find that they are, and that this is
worse among models within the same model company and
larger models—while within-model generative diversity is
a concern, using multiple different models is not a panacea.

In complementary and concurrent work, Wenger & Kenett
(2025) and Goel et al. (2025) also study model correla-
tion. Wenger & Kenett (2025) show that, on creative tasks,
“LLM responses are much more similar to other LLM re-
sponses than human responses are to each other.” Goel
et al. (2025) build on the observation that error consistency
metrics (Geirhos et al., 2020) do not capture differing predic-
tions on errors. They develop a novel metric for measuring
similarity that adjusts for model accuracy, considers differ-
ent wrong predictions as a disagreement, and uses the prob-
ability distribution over answer choices; we likewise use a
metric (do models agree on an answer when both err) that
satisfies the first two criteria but does not incorporate model
probabilities. Goel et al. (2025) then study implications of
model correlation, such as affinity bias in LLM-as-judge and
weak-to-strong training, and find that more capable models
make more similar mistakes. We similarly find—across
three datasets—that more accurate models make similar
mistakes, and that this affects LLM-as-judge setups. How-
ever, we also broadly quantify other correlates of similarity
(shared developer, base architecture, model size). We then
focus on different downstream outcomes, especially how
correlation affects multi-agent systems like in hiring.

Finally, recent work explores underlying homogeneity in
language model representations, e.g., demonstrating that
embeddings across models can be translated (Jha et al.,
2025) and that activations are consistent at similar depths

across multiple networks (Wolfram & Schein, 2025). These
findings suggest a mechanistic explanation for our results.

3. Correlated Errors
We start by establishing that LLMs broadly have correlated
errors, and that this correlation is both substantial and is
higher for more individually accurate models.

3.1. Data and methods

We use three datasets of LLM responses: HELM, HUG-
GINGFACE, and RESUMES. HELM and HUGGINGFACE are
large, existing datasets of LLM answers to multiple-choice
questions. RESUMES is a dataset of LLM ratings of resumes
(given a job description) that we generate. Details, including
prompts and full lists of models, are in the appendix.

Multiple choice questions. We started from two LLM
leaderboards: (1) HuggingFace’s Open LLM Leaderboard
21; and (2) Stanford’s Holistic Evaluation of Language Mod-
els (Helm) (Liang et al., 2023). Both use questions from
the Massive Multitask Language Understanding (MMLU)
question-answering dataset (Hendrycks et al., 2020), with
multiple choice questions and labeled correct answers. Both
leaderboards provide model answers on each question, from
349 and 71 LLMs, respectively.

For each model, we further extract the model company and
performance features (such as accuracy across the leader-
board questions). HuggingFace provides model details, in-
cluding the number of parameters and the base architecture
(known due to the open-source nature of the models). These
features are not consistently available for the Helm and
Resume models, which are often proprietary.

Resume-Job Description Evaluations. Starting from
large datasets of job postings (Asaniczka, 2024) and re-
sumes (Bhawal, 2022; Jiechieu & Tsopze, 2021), we select
a subset of 30 job descriptions and 60 resumes chosen via
a cluster analysis (to find related job descriptions and re-
sumes). This provides 1,800 resume-job description pairs,
which we evaluate using 20 LLMs (from Meta, Mistral AI,
Amazon, Anthropic, and OpenAI). Again, we extract avail-
able features describing these models. We hand-label 450
resume-job pairs (30 unique resumes and 15 job descrip-
tions) using the same criteria as our prompts.

Measuring correlated error. On HUGGINGFACE and
HELM, where responses are multiple choice and where we
have ground truth, we measure pairwise error correlation

1https://huggingface.co/
collections/open-llm-leaderboard/
open-llm-leaderboard-2-660cdb7601eba6852431fffc
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through agreement rate when both models are wrong: when
two models are wrong, how often do their wrong answers
coincide? On RESUMES, we compare the correlation be-
tween residuals: the difference between a model’s rating
and the human rating for each job-resume pair. Here, we
treat the human rating as “ground truth,” but note that job-
resume evaluations are subjective. These measures of error
correlation aim to reduce confounding based on model ac-
curacy: two independently accurate models will agree on
a large fraction of questions in which they both give the
correct answer. We, in contrast, are primarily interested in
correlated errors. Appendices B and C contain results for
alternate correlation measures (such as overall agreement).

3.2. Results

Figure 1a shows the agreement rate between each pair of
models (when both are wrong) on HUGGINGFACE, and Fig-
ure 1b shows the same on the HELM data. See Figure 9b for
the analog on RESUMES. Two conclusions are immediately
apparent from the agreement rate matrices.

(1) First, models substantially agree, even when both are
wrong. Conditional on having the wrong answer, uniformly
random model responses would yield an agreement rate of
1
3 on the HELM, since each question has 3 incorrect answer
choices. On HUGGINGFACE, this agreement rate at random
would be 0.127.2 On both datasets, almost all pairs (100%
of pairs on HuggingFace; 97.5% on Helm) of models have
a higher agreement rate than the respective baselines. The
mean agreement rate across pairs is 0.423 on HuggingFace
and 0.6 on Helm, about double or higher than the baselines.

(2) Second, some models agree with each other more than
others. This can be expected: for example, on Helm,
meta/llama-3.2-90b-vision-instruct-turbo and meta/llama-
3.1-70b-instruct-turbo have an agreement rate (when both
are wrong) of .97, consistent with the vision-language model
being based on the related language-only model. However,
some models are unexpectedly correlated. For example, on
Helm, google/text-unicorn@001 and writer/palmyra-x-v3
agree on 0.9987 fraction of the questions on which both are
incorrect (about 22% of all questions), and a higher overall
agreement rate; to our knowledge, there is no publicly stated
direct relationship between the models.

Sources of model correlation. Table 1 shows the results
of a regression of the error agreement rate for each pair of
models with the model characteristics. We find that models
by the same developer, using the same base architecture, and
having similar sizes are all associated with higher agreement

2The questions have different numbers of answer choices, be-
tween 3 and 10. Let pk be the fraction of questions with k
answer choices. Then, the agreement rate at random would be∑10

k=3 pk
1

k−1
. Over 80% of the questions have k = 10 choices.

Table 1. Agreement on Errors
HUGGINGFACE HELM RESUMES

Intercept 0.398∗∗ 0.602∗∗ 0.653∗∗

(0.001) (0.001) (0.007)
Same Company 0.066∗∗ 0.022∗∗ 0.021

(0.003) (0.005) (0.012)
Same Architecture 0.076∗∗

(0.001)
Acc. 1 0.014∗∗ 0.055∗∗ 0.015∗∗

(0.000) (0.001) (0.006)
Acc. 2 0.013∗∗ 0.054∗∗ 0.028∗∗

(0.000) (0.001) (0.006)
Acc. 1: Acc. 2 0.023∗∗ 0.026∗∗ 0.043∗∗

(0.000) (0.001) (0.005)

# models 349 71 20
# responses/model 14,042 12,032 1,800
R2 0.340 0.618 0.415

Notes: Standard errors in parentheses. ∗∗p < 0.001. Dependent
variable: Agreement rate when both wrong (HUGGINGFACE,
HELM), correlation in residual = predicted - true (RESUMES).
Numeric features (e.g., accuracy) are standardized. For HUG-
GINGFACE, we omit a subset of covariates in this table for
concision; see Appendix C for the full regression.

rates. Notably, more accurate models (and especially if both
models are accurate) are more correlated. The included
features explain between 34% and 62% of the variation in
error agreement across the three datasets. In Appendix C
we report full regressions, including for overall agreement
rate and agreement rate when one model is wrong. Together,
these results establish (a) there is substantial correlated er-
rors in LLMs, and (b) this correlation is more severe for
more accurate models and those with shared characteristics.

4. Case Study: LLM as judge
In this section, we examine the effect of LLM correlation
in LLM-as-judge setups, in which a judge model is used to
evaluate the accuracy of other models. Then, we evaluate the
accuracy of other models according to the judge’s answers.
We consider judges chosen to be the most accurate model
within a shared model provider (on HELM) or architecture
(on HUGGINGFACE). Figure 2 plots the results for HELM,
giving models’ true accuracy on the x-axis and the accuracy
inflation (judged accuracy - true accuracy) on the y-axis.
Inflation above 0 indicates that the judged accuracy is higher
than a model’s true accuracy. We plot models from the same
provider/architecture in red and other models in blue.

A stark pattern emerges: each judge systematically inflates
the accuracy of models that are less accurate than itself, due
to correlated errors (the judge marks incorrect answers as
correct if both models agree on the incorrect answer). On
the other hand, each judge underinflates the accuracy of
models that are more accurate than itself (the judge cannot
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Figure 2. Evaluating LLM-as-judge on HELM. In each plot, one model is used as the judge. Each dot is another model; the y-axis is the
accuracy inflation (compared to ground truth) of using the given model as the judge, and the x-axis is the model’s true accuracy. The
vertical red line corresponds to the true accuracy of the judge. Each judge tends to inflate the accuracy of models that are less accurate
than itself, especially models from the same provider or family (shown in red dots). Results for HUGGINGFACE are shown in Figure 8.

reward a model for answering correctly on a question it
itself answers incorrectly). We also see examples in which
judges significantly inflate the accuracy of models from the
same provider (shown in red). This reflects concerns of self-
preferencing (Panickssery et al., 2024; Wataoka et al., 2024),
further suggesting that relative self-preferencing can occur
across different models from the same family; it further con-
nects to other limitations of the LLM-as-judge paradigm (Gu
et al., 2024; Kamoi et al., 2024b;a; Stureborg et al., 2024).
More generally, the results suggest that, when comparing
models or establishing error rates using LLM-as-judge, it
is important to calibrate error metrics for each model-judge
pair using ground-truth data.

5. Case Study: LLMs in labor markets
In this section, we study the implications of LLM corre-
lation in hiring settings. LLM-use in hiring decisions has
been identified as a particularly important setting in which
homogeneity—i.e., algorithmic monoculture—may have
negative effects (Kleinberg & Raghavan, 2021; Bommasani
et al., 2022; Peng & Garg, 2024a), on top of general con-
cerns regarding biased decisionmaking (Wilson & Caliskan,
2024; Gaebler et al., 2024). We study several downstream

outcomes studied in this prior literature. First, we study
the systemic exclusion rate (Bommasani et al., 2022), the
proportion of applicants who are screened out of all jobs.
Second, we study downstream outcomes of applicants in a
matching market setting (Peng & Garg, 2024a). A primary
aim of this analysis is to test theoretical predictions on the
impact of homogeneity. In contrast to existing empirical
work, our experiments use real resumes and job descriptions.
We also use LLMs as opposed to more classical tabular ma-
chine learning models, more closely resembling potential
deployments of LLMs as hiring tools.

We study the effect of firms using the same or correlated
LLMs by considering five experimental settings where firms
rank applicants under the following methods:

1. Same LLM: All firms use the same LLM, simulating
a setting in which one model dominates the hiring
process, such as through a shared service provider.

2. Same Company LLM: Each firm uses a random LLM
from the same company, simulating a setting in which
one company monopolizes the LLM space.

3. Latest LLM: Each firm uses one of the most recent
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models from each company from the given LLMs,3

simulating a setting in which companies only use state-
of-the-art LLMs.

4. Random LLMs: Each firm independently at random
selects an LLM from a given set of models, simulating
a setting in which companies all use LLMs, but in a
maximally diverse way, unrelated to ground truth fit
and without correlated errors.

5. Uniformly Random: All firms have uniformly random
applicant preferences, providing a baseline in which
firms make uncorrelated decisions.

These settings span the spectrum of complete monoculture
(fully correlated decisions) to complete polyculture (fully in-
dependent decisions). Settings 2-4 represent an intermediate
state. In our previous results, we demonstrated that models
tend to be correlated in general (even in how they err). Here,
we examine the practical effects of this correlation.

5.1. Results: Systemic Exclusion

A key concern in algorithmic monoculture is systemic ex-
clusion, in which an applicant is screened out of all oppor-
tunities (Creel & Hellman, 2022; Bommasani et al., 2022).

More formally, for a set of firms F and a set of applicants
A, we let sf (a) denote the percentile ranking of applicant
a ∈ A in the preference list of firm f ∈ F . Then an
applicant a receives an interview from firm f if and only if
sf (a) ≥ 1 − p. Therefore, an applicant a is systemically
excluded if sf (a) < 1− p for all firms f ∈ F , i.e., they are
not interviewed by any firm. The systemic exclusion rate
of an economy is equal to

r(F ) =
|a ∈ A | sf (a) < 1− p for all f ∈ F |

|A|
, (1)

the fraction of applicants interviewed by no firm. In our ex-
periments, we set p = 0.25, so the top quarter of applicants
receive interviews at each firm. We further assume that each
firm uses the same job description.

In Figure 3a, we consider markets with n firms, ranging
from 1 to 20. We compare settings when firms have uni-
formly random preferences over applicants and when firms
each use a random LLM to rank applicants. When firms
have random preferences, the systemic exclusion rate goes
to 0 as n grows large (indeed, we should expect it to be
(1 − 0.25)n). When firms each use a random LLM, how-
ever, we see that even with 20 firms, around 20 percent of
applicants continue to be systemically excluded—a conse-
quence of general correlation across LLMs. (Some level of

3Meta’s Llama 3.3 70b, Mistral AI’s Mistral Large (24.07),
Amazon’s Nova Pro, Anthropic’s Claude Sonnet (20241022), and
OpenAI’s GPT-4o mini.

systemic exclusion may be acceptable if some resumes are
definitely poor fits for a position.)

In Figure 3b, we further consider the systemic exclusion
rate when firms form applicant preferences according to the
5 specified methods. We find that if firms all adopt models
from the same company or if they all adopt the latest LLMs,
there is a somewhat higher degree of systemic exclusion in
comparison to when they adopt random LLMs. However,
these differences are fairly small in contrast to settings in
which firms all adopt the same LLM.

We note that the systemic exclusion rate does not account
for true resume-job fits, e.g., as measured using hand la-
bels, capacity constraints (each applicant can only work for
one firm), and applicant preferences. Next, we analyze the
implications of correlation in the presence of these effects.

5.2. Results: Matching markets effects

Above, we study systemic exclusion in a setting where each
firm offers interviews to a fixed number of top applicants.
However, theoretical work on monoculture in matching mar-
kets suggests that it is also important to consider market-
level effects, since firms may adjust offers to fill capacity
(Peng & Garg, 2024a). Under a stable matching framework,
Peng & Garg (2024a) make three sets of predictions under
algorithmic monoculture, corresponding to firm outcomes
(do firms collectively hire the best-fit applicants), applicant
outcomes (do they match with their most preferred firms),
and outcomes under differential access (some applicants
apply to more jobs than do other applicants).

In this section, we test these predictions under a stable
matching framework and LLM correlation. We consider
markets with a set of 60 applicants A and a set of 30 firms
F (or the hand-labeled subset). Each firm has capacity of 1:
each applicant accepts at most one job offer, and each firm
can hire at most one applicant. For all experiments in this
section, each applicant a ∈ A has uniformly random pref-
erences over firms. (Appendix B.2 reproduces experiments
where applicant preferences are determined by an LLM.) To
understand how markets behave when firms use LLMs to
rank applicants, we consider markets in which firms form
their preferences according to the five methods outlined
above, spanning full monoculture to full polyculture.

Firm Outcomes: match probability conditional on ap-
plicant rating First, we study how an applicant’s true
rating affects match probability across different firm pref-
erence methods. The theoretical literature establishes that
monoculture worsens firm outcomes, i.e., applicants with
the highest true ratings are less likely to match with firms
(Kleinberg & Raghavan, 2021; Peng & Garg, 2024a); in
contrast, more diverse models can result in a “wisdom of
crowds” effect, with firms collectively matching with the
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(a) The effect of the number of distinct LLM configurations used
in a job hiring market on systemic exclusion rate across different
offer methods. For each n, where n represents the number of
LLMs in use, we sample up to

(
20
n

)
combinations of LLMs. If this

exceeds 100, we limit the selection to 100 random combinations.
LLMs are then evenly distributed across firms for a given job. The
graph shows that offers made to applicants based on LLM scores
consistently exhibit higher systemic exclusion rate than uniformly
random selection of applicants. This highlights that regardless of
heterogeneity in LLMs in a job market, a considerable amount of
systemic exclusion will be present when giving offers based on
scores generated by LLMs.
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(b) Average systemic exclusion rates across markets under differ-
ent firm preference methods. In each market, all firms share a
randomly sampled job description, and systemic exclusion rates
are calculated by each firm preference method. As market settings
shift from full monoculture (Same LLM) to full polyculture (Uni-
formly Random), systemic exclusion rates decrease. The plot is
generated by averaging over 1500 random markets.

Figure 3. Systemic exclusion (fraction of resumes with no job offers) when p = 0.25: (a) for varying number of distinct LLMs used in a
job hiring market, (b) for varying firm preference methods. Lower systemic exclusion is better.
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Figure 4. The effect of “true applicant rating” on match probability
across different market environments. We use a subset of 30
applicants and 15 firms, where the fit of an applicant to a firm is
evaluated by humans. On the x-axis, we have true applicant rating,
for each t ∈ [1, 10], represents all scores in the range [t, t + 1).
On the y-axis, we have match probability. The plot is generated by
averaging over 1500 random markets.

highest rated applicants (Peng & Garg, 2024b).

We use our human hand labels as a ground truth for appli-
cant quality. In each market, we track which applicants
are successfully matched and their corresponding human-
labeled scores. To analyze the effect of applicant rating, we
group scores into discrete buckets (e.g., [1, 2), [2, 3), etc.).
The match probability for a given bucket b is then defined
as the fraction of applicants in that bucket who are matched.

Figure 4 shows how match probability changes with true
applicant rating, in each market. As expected from the
theoretical literature—among the LLM-based markets due
to monoculture—using the same (randomly chosen) single
LLM leads to the worst firm welfare, with relatively smaller
match probabilities for the highest-ranked applicants. On
the other hand, using the latest LLMs—which are the most
accurate individually but also more correlated than random
LLMs—maximizes firm welfare. These results suggest that,
as in Raghavan (2024), there are two competing effects
for firm welfare: individual model accuracy, and diversity.
LLM diversity may not yield wisdom-of-crowds effects that
outperform choosing the best LLMs.
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Figure 5. Market outcomes depending on firm LLM usage: (a) gives average applicant rank, (b) gives the effect of differential application
access. Both plots are generated by averaging over 1500 random markets; in each, all firms share a randomly sampled job description.

Applicant Outcomes Another basic metric is applicant
welfare: do applicants match to their top choices? Peng
& Garg (2024a) suggest that monoculture (increased cor-
relation in firm decisions) yields higher overall applicant
welfare (intuitively, the applicants that receive offers do so
from more firms, and get to choose which firm to accept
an offer from). Correspondingly, we expect applicants in
markets with more LLM monoculture to match with more-
preferred firms than in markets with less correlation.

Define rank(x, y) as the rank of the firm y in the preference
list of applicant x—a ranking of 1 indicates an applicant’s
most preferred firm. The output of the stable matching
algorithm results in a matching M : A → F ∪ {∅}. For a
set of applicants A, and firm-applicant pairs M , average
applicant ranking of match of a labor market is equal to

AvgRank(M) =

∑
a:M(a)̸=∅ rank(a, (M(a))

|a ∈ A : M(a) ̸= ∅|
(2)

Figure 5a shows that markets using a single LLM (full mono-
culture) yield the best average applicant rank; as market set-
tings shift towards using uniformly random firm preferences
(full polyculture), applicant welfare worsens.

These market-level results show an opposite trend from the

systemic exclusion analysis in Section 5.1, as predicted by
Peng & Garg (2024a). Markets with the highest systemic
exclusion rates produce the highest-quality matches for ap-
plicants, suggesting a trade-off between systemic exclusion
(without considering market effects) and applicant welfare
when market effects are considered. As above, markets with
correlated models (either by the same company or the latest
model from each company) have effects in between those of
markets with firms using the same LLM or one at random.

Differential Application Access Finally, we study differ-
ential application access, in which applicants may differ in
the number of firms to which they apply. Instead of sub-
mitting an application to every firm, each applicant applies
to a random subset of t firms, where t ∼ Uniform(1, |F |),
where t is drawn for each applicant independently. This
mimics a job searching process in which various factors
(time, effort, environment, etc.) may affect the number of
applications an applicant can submit. Peng & Garg (2024a)
predict theoretically that monoculture (using the same algo-
rithm) is more robust to differential access. We explore the
effect of the number of applications submitted on relative
match probability of applicants.

We run 1500 simulations for each method, in which each
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of the 60 applicants draws a number of applications t inde-
pendently. Then, across simulations, we calculate the match
probability Pmatch(t), for each number of applications t:

Pmatch(t) =
|{a ∈ At | a is matched}|

|At|
(3)

where At is the set of applicants who applied to exactly t
firms. The relative match probability Prelative(t) is then:

Prelative(t) =
Pmatch(t)

Pmatch(1)
, (4)

where Pmatch(1) represents the match probability when appli-
cants submit only one application. This normalized metric
measures the advantage of submitting more applications.

We find that overall, the relative probability of applicants
matching increases based on the number of applications sub-
mitted, but at different rates depending on the marketplace
structure. As shown in Figure 5b, similar to trends from
Figure 5a, as market settings shift from full monoculture to
full polyculture, relative match probability is consistently
higher for any t. An applicant is approximately 7 times
more likely to match when submitting 30 applications than
1 application in markets under uniformly random prefer-
ences, and conversely, an applicant is approximately just 2
times more likely to match when submitting 30 applications
versus 1 application when firms use the same LLM. These
results align with the hypothesis in Peng & Garg (2024a)
markets under full monoculture are most robust to differen-
tial application access, since those with more applications
receive fewer independent “lottery tickets.”

6. Conclusion
We show that LLMs have correlated errors, and that this
correlation is substantially higher for individually accurate
models and those by the same developer or using the same
base architecture. These findings suggest that as model per-
formance increases, models are also converging in the errors
that they make. This error correlation has implications for
the effectiveness of the LLM-as-judge paradigm, the use of
LLMs in hiring, and of multi-agent systems broadly.

Measure of correlation For our multiple choice analysis
in the main text, we use “agreement rate when both mod-
els err” as our measure of correlation. Like in the work of
Goel et al. (2025), such a metric is designed to correct for
model accuracy: two models will not be deemed to be more
correlated simply because they both get a question correct.
The metric of Goel et al. (2025) also leverages agreements
on correct answers and model output probabilities, and so
may be preferable when such probabilities are available. In
the appendix, we also show results using alternate metrics
(overall agreement rate, and agreement rate when either is

wrong), and find similar results. Finally, note that one limita-
tion of current metrics (including ours and that of Goel et al.
(2025)) is that they treat incorrect answers identically; in
practice, some incorrect answers may be “closer” to correct,
and so preferred by more accurate models; some questions
may also be harder than others. Future work should consider
developing a metric that is robust to these characteristics.

Multi-agent performance measurement and limitations.
How to properly evaluate LLM output is a highly contested,
complex question (Wallach et al., 2024; Guerdan et al., 2025;
Perlitz et al., 2024; Weidinger et al., 2025), and this is es-
pecially true for multi-agent systems. Here, we leverage
leaderboard metrics based on multiple-choice evaluations,
and further have LLMs score resumes numerically, in an of-
fline manner. While these measurements provide only a lim-
ited view of LLM capabilities, their standardized nature and
broad coverage across models enable us to conduct a large-
scale empirical analysis of the correlation between model
errors. In comparison to work evaluating open-ended model
output diversity (Wu et al., 2024), we are able to evaluate
many more (over 350) models, across over 20,000 questions
with ground truth labels. Richer evaluation of open-ended
generation and complex reasoning tasks remains an impor-
tant direction for future work. Recent methods may allow
analysis over the open-ended types of questions models are
correlated on and the ways in open-ended responses cor-
relate (Movva et al., 2025). Our evaluations reflect many
proposed use cases of LLMs in high-stakes settings: for
example, natural language parsers of resumes already in
use produce single-dimensional numeric scores of resumes,
such as to shortlist resumes for human hiring managers. Our
work does not however directly measure the implications of
correlations induced by LLMs helping write job descriptions
or resumes (Wiles et al., 2025; Wiles & Horton, 2025).

Implications for ecosystem monitoring. While work
evaluating models individually is prevalent, analysis of cor-
relations across models has been surprisingly rare. This
is true even though, as we leverage, such analyses can be
done using the same data as is used to evaluate models in-
dividually, since benchmarks often repeat questions across
models. We thus encourage leaderboard developers to con-
tinuously track model correlation—as we show, doing so
reveals surprising patterns between individual pairs of mod-
els and provides insights on which models might be most
effective to use together. Similarly, in our application to
study LLMs in labor markets, there exist laws (such as NYC
Local Law 144) mandating that companies audit hiring al-
gorithms (Groves et al., 2024; Wright et al., 2024; Terzis
et al., 2024); however, empirical analyses of correlations
across models or of multiple firms sharing algorithms are
relatively unexplored.
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Impact Statement
We demonstrated that LLMs exhibit large amounts of cor-
relation, even in how they err. This has implications for
high-stakes settings such as hiring, where there is risk that
applicants are systematically screened out of opportunities,
and in LLM-as-judge settings, where models may inflate the
estimated performance of other models. While our analysis
is limited to a subset of tasks on which homogeneity may
be a concern, it serves as a foundation for further evaluation
and monitoring of the LLM ecosystem.
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The appendix is organized as follows:

• In Appendix A we describe details on how we constructed our three datasets of LLM responses: HUGGINGFACE,
HELM, and RESUMES.

• In Appendix B, we provide additional figures and analyses that were excluded from the main text.

• In Appendix C, we provide exact results from our regression analyses.

• In Appendix D, we provide a full list of models available in our datasets.

A. Dataset Construction
A.1. HUGGINGFACE, HELM

We started from two prominent LLM leaderboards: (1) HuggingFace’s Open LLM Leaderboard 24; and (2) Stanford’s
Holistic Evaluation of Language Models (Helm) (Liang et al., 2023). Both use questions from the Massive Multitask
Language Understanding (MMLU) question-answering dataset (Hendrycks et al., 2020), with multiple choice questions and
labeled correct answers. Both leaderboards provide model answers on each question, along with metadata about the models
and questions.

As we are interested in explaining model correlations, we further collect features for each model. For models it evaluates,
HuggingFace further provides a range of model features (all known due to the open-source nature of the models), including
the number of parameters and the base architecture. Such features are not consistently available for the Helm models, given
the proprietary nature of the models. For each model in both data sources, we further extract the model company and
performance features (such as accuracy across the leaderboard questions).

The HuggingFace leaderboard focuses on open-source models, including both “base” models (often provided by larger
developers) and adaptations by others (such as additional fine-tuning). For tractability,5 we filtered the original 2041 models
in the dataset to a set of 349 models.6 The Helm model list includes both open and proprietary LLMs, focusing on larger
companies; at the time of our analysis, it provided evaluations for 71 models across 15 companies including OpenAI,
Anthropic, Google, DeepSeek, and Qwen. Additionally, if a company has released multiple versions of the same model, or
has multiple model offerings, the most recent models are present in their respective datasets.

HuggingFace’s MMLU dataset samples 12,032 multiple choice questions from 91 different MMLU datasets and across
14 different categories such as business, history, economics, and computer science. The raw response in which the model
ranks the options is provided and we extract the model’s top-ranked predicted answer. Most questions have 10 answer
choices. The Helm Dataset is similar and has 14,042 multiple choice questions across 57 categories; questions are limited to
questions with 4 options, and the model is prompted to directly select one of the choices. The categories include high school
and college computer science, college computer science, jurisprudence, abstract algebra, astronomy, and US foreign policy.

A.2. RESUMES

We started from a dataset of 53,058 job postings on Upwork, spanning various categories and countries to represent our jobs
dataset (Asaniczka, 2024). Our resume dataset consists of a combination of 2,484 resumes from LiveCareer (Bhawal, 2022),
a database of high-quality resumes, and 29,780 resumes from a publicly available resume repository used by Jiechieu &
Tsopze (2021).

We removed duplicates as well as resumes or job descriptions that were more than 1 standard deviation below the median
length. We calculated sentence embeddings for each resume and job description, via Sentence Transformers (SBERT). We

4
https://huggingface.co/collections/open-llm-leaderboard/open-llm-leaderboard-2-660cdb7601eba6852431fffc

5Since we are analyzing correlations between each pair of models, our analyses scale by the (# of questions)× n(n−1)
2

, where n is
the number of models analyzed.

6Huggingface allows users to upload their own models trained from scratch (mostly done by large developers, for example, the Llama
family from Meta is available) and to allow individuals to modify base models (such as via additional fine-tuning). Starting with the list of
the 500 most accurate models on the leaderboard, we first found 451 models that had a well-structured MMLU dataset available through
API query. Then, we select all models from any major developer (such as those that upload their own base models), and up to five models
each from any individual that fine-tunes other models, picking the most accurate models. This procedure allows analyzing the effect of
shared developer and base model, without any individual dominating the dataset, and led to 349 models that we analyze.
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then applied KMeans clustering to each job description and resume dataset; we chose the number of clusters (28) so as to
maximize similarity between the most similar pair of resume and job clusters, respectively (see Figure 6a). We selected 3
highly similar pairs of (job description, resume) clusters as shown in Figure 6b, each representing different fields (general IT,
web development, and consulting/finance) to simulate applicants applying to jobs from across and within various industries.
Finally, we sampled 20 applicants and 10 jobs from each cluster to construct a dataset of 60 resumes and 30 job descriptions.
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(a) Highest cosine similarity value between a resume cluster and a
job description cluster. The x axis represents the number of clusters
both the resume and job description datasets were clustered to. The
y axis represents the highest cosine similarity value of given pairs
of clusters. This graphs shows that as the number of clusters we set
in the KMeans algorithm increases, the highest cosine similarity
also increases, but this peaks when there are 28 clusters.
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(b) Average scores outputted by each LLM, categorized by each
pair of resume, job clusters. The graphs along the main diagonal
of the figure are the three pairs of clusters chosen, and we can
observe that the overall scores are higher compared to those of
other rows/columns. This shows that the clustering process was
accurate to simulate real job markets.

Figure 6. Cluster analysis for selecting resumes and job descriptions in RESUMES.

We used 20 open-source models available on Amazon Bedrock, specifically models made from Meta, Mistral AI, and
Amazon, Anthropic API, OpenAI API (see Appendix 10), and 2 prompts. For each applicant-job pair, we prompt an LLM
to score the fit of a given resume to a given job description through a single score, following a structured criterion, as shown
in Figure 7.

B. Additional Figures and Analyses
B.1. LLM-as-judge

Figure 8 shows the LLM-as-judge analysis for HUGGINGFACE models.

B.2. Matching Markets with LLM-Specified Applicant Preferences

We now replicate several of the main results in the market results, when applicant preferences are determined by Llama
3.1 405B instead of at random. Figure 10a shows average applicant welfare. Figure 10b shows the effect of differential
application access.
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Correlated Errors in Large Language Models

“You are going to evaluate the fit of a resume to a job description using a single score on a scale from 1 to 10.
When grading, you will consider overall fit, category fit, and skill fit. Your output format is a json file and must
follow this example: { ”Score”: 7 }
Resume: {resume}
Job Description: {job description}
Json File: “

“You are going to evaluate the fit of a resume to a job description using a single score on a scale from 1 to 10.
When grading, consider the following:
1. Overall fit: This metric evaluates how well the candidate’s resume aligns with the job description, taking into
account their background, experiences, and qualifications. Consider not only their current suitability but also their
potential for growth, adaptability, and ability to thrive in the role.
2. Category fit: This metric assesses the relevance of the candidate’s primary field or industry experience to
the job’s sector. For example, if a resume comes from a professional in a different field but with some relevant
transferable skills, consider their potential to succeed in the new field, rather than focusing solely on mismatched
backgrounds.
3. Skill fit: This metric evaluates the match between the candidate’s listed skills and those required by the job.
Consider both the relevance and proficiency of these skills, but also factor in the candidate’s ability to learn and
grow in areas where there may be gaps, ensuring the evaluation takes into account future potential.
This is the grading scale:
10 - Excellent Fit: The resume aligns very closely with the job description in all key areas. The candidate’s
background, industry experience, and skills are not only relevant but also demonstrate high proficiency, making
them a strong match for the role.
7 - Good Fit: The resume shows strong alignment with the job description in most areas. The candidate’s
background and skills are largely relevant, and while there may be a few gaps, they have the necessary qualifications
and potential to perform the role effectively.
5 - Average Fit: The resume meets some of the key requirements of the job description. While the candidate may
not have perfect alignment, there is still moderate relevance in terms of background, skills, and experience, though
some key areas may be lacking.
3 - Poor Fit: The candidate shows limited relevance to the job description. Although there may be a few transferable
skills or some related experience, significant gaps exist across background, skills, or industry relevance, making
the candidate a less likely match.
1 - Extremely Poor Fit: The resume shows little to no alignment with the job description. The candidate’s
background, experience, and skills are largely unrelated to the job’s requirements, making them an unlikely match
for the role.
Your output format is a json file and must follow this example: { ”Score”: 7 }
Resume: {resume}
Job Description: {job description}
Json File: “

Figure 7. The prompts used to score the fit of a resume to a job description. The first prompt is named “firm rate comb short 1“, and
the second prompt is named “firm rate comb 2“. The resume and job description texts are taken directly from the dataset. A similar
prompt is used for applicants, named “app rate comb short“ rating a job description based on their resume, but the references to a person
(”candidate”, ”applicant”, ”resume”) being replaced with references to a job, and vice versa. The prompt that was used in the main
experiments was “firm rate comb 2“ because the prompt laid out specific criteria for the LLM to consider.
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Figure 8. Evaluating LLM-as-judge on HUGGINGFACE. In each plot, one model is used as the judge. Each dot is another model; the
y-axis is the accuracy inflation (compared to ground truth) of using the given model as judge, and the x-axis is the model’s true accuracy.
Each judge tends to inflate the accuracy of models that are less accurate than itself, especially models from the same provider or family
(shown in red).
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(a) Heatmap of correlations between LLM configurations used
in experiments. We define an LLM configuration as a combina-
tion of an LLM and a prompt that was used. We calculate the
correlation between the scores of each pair of LLM configura-
tions. After analyzing a strong correlation across prompts, we
constrain the heatmap for configurations only using the prompt
”firm rate comb2” to focus on the effect of models. We can ob-
serve that there is a strong correlation amongst larger models from
the same company.
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(b) Heatmap of error correlations between LLM configurations
used in experiments. We calculate the correlation between the
“residuals” (subtracting off the hand-labeled scores) of each pair
of LLM configurations, where hand-labeled scores are available.
Similarly to the trends of Figure 9a, larger models from same
company err similarly.

Figure 9. Correlation heatmaps on RESUMES.
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(b) The effect of differential application access across different
matching market environments. Analog of Figure 5b, where appli-
cant preferences are now determined by Llama 3.1 405B. Similar
patterns hold.

Figure 10. Replication of matching markets experiments given LLM-determined applicant preferences.
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C. Full Regressions
For all regressions, samples are pairs of models. We randomize the order of the models.

C.1. HUGGINGFACE

Table 2. Agreement on Errors: HUGGINGFACE
coef std err t P> |t| [0.025 0.975]

Intercept 0.3984 0.001 656.121 0.000 0.397 0.400
same company[T.True] 0.0658 0.003 21.428 0.000 0.060 0.072
same architecture[T.True] 0.0759 0.001 102.157 0.000 0.074 0.077
is moe[T.True] 0.0006 0.003 0.200 0.842 -0.005 0.007
is moe 2[T.True] 0.0053 0.003 1.682 0.092 -0.001 0.011
params billions log 0.0012 0.000 2.569 0.010 0.000 0.002
params billions log 2 0.0014 0.000 2.989 0.003 0.000 0.002
generation 0.0031 0.000 7.710 0.000 0.002 0.004
generation 2 0.0032 0.000 8.100 0.000 0.002 0.004
param diff -0.0215 0.000 -52.082 0.000 -0.022 -0.021
accuracy 1 0.0138 0.000 31.917 0.000 0.013 0.015
accuracy 2 0.0131 0.000 30.087 0.000 0.012 0.014
accuracy 1:accuracy 2 0.0227 0.000 65.631 0.000 0.022 0.023

Dependent variable: Agreement rate when both models are wrong. No. observations: 60726.
R2 = 0.340.

Table 3. Agreement on Errors when either model is wrong: HUGGINGFACE
coef std err t P> |t| [0.025 0.975]

Intercept 0.2381 0.001 376.046 0.000 0.237 0.239
same company[T.True] 0.0793 0.003 24.765 0.000 0.073 0.086
same architecture[T.True] 0.0773 0.001 99.690 0.000 0.076 0.079
is moe[T.True] 0.0023 0.003 0.724 0.469 -0.004 0.009
is moe 2[T.True] 0.0071 0.003 2.175 0.030 0.001 0.013
params billions log 0.0015 0.000 3.122 0.002 0.001 0.002
params billions log 2 0.0019 0.000 3.793 0.000 0.001 0.003
generation 0.0026 0.000 6.281 0.000 0.002 0.003
generation 2 0.0028 0.000 6.887 0.000 0.002 0.004
param diff -0.0230 0.000 -53.509 0.000 -0.024 -0.022
accuracy 1 0.0004 0.000 0.880 0.379 -0.000 0.001
accuracy 2 -0.0006 0.000 -1.340 0.180 -0.001 0.000
accuracy 1:accuracy 2 0.0226 0.000 62.639 0.000 0.022 0.023

Dependent variable: Agreement rate when either model is wrong. No. observations: 60726.
R2 = 0.300.
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Table 4. Agreement on all questions: HUGGINGFACE
coef std err t P> |t| [0.025 0.975]

Intercept 0.4834 0.000 979.834 0.000 0.482 0.484
same company[T.True] 0.0530 0.002 21.223 0.000 0.048 0.058
same architecture[T.True] 0.0602 0.001 99.743 0.000 0.059 0.061
is moe[T.True] 0.0026 0.002 1.062 0.288 -0.002 0.007
is moe 2[T.True] 0.0064 0.003 2.509 0.012 0.001 0.011
params billions log 0.0025 0.000 6.650 0.000 0.002 0.003
params billions log 2 0.0028 0.000 7.360 0.000 0.002 0.004
generation 0.0024 0.000 7.297 0.000 0.002 0.003
generation 2 0.0025 0.000 7.815 0.000 0.002 0.003
param diff -0.0182 0.000 -54.147 0.000 -0.019 -0.018
accuracy 1 0.0248 0.000 70.477 0.000 0.024 0.026
accuracy 2 0.0241 0.000 68.139 0.000 0.023 0.025
accuracy 1:accuracy 2 0.0225 0.000 80.179 0.000 0.022 0.023

Dependent variable: Agreement rate overall. No. observations: 60726. R2 = 0.451.

C.2. HELM

Table 5. Agreement on Errors: HELM
coef std err t P> |t| [0.025 0.975]

Intercept 0.6018 0.001 437.617 0.000 0.599 0.605
same company[T.True] 0.0216 0.005 4.753 0.000 0.013 0.031
accuracy 1 0.0549 0.001 41.914 0.000 0.052 0.058
accuracy 2 0.0544 0.001 41.478 0.000 0.052 0.057
accuracy 1:accuracy 2 0.0264 0.001 19.460 0.000 0.024 0.029

Dependent variable: Agreement rate when both models are wrong. No. observations:
2485. R2 = 0.613.

Table 6. Agreement on Errors when either model is wrong: HELM
coef std err t P> |t| [0.025 0.975]

Intercept 0.2404 0.001 195.475 0.000 0.238 0.243
same company[T.True] 0.0264 0.004 6.498 0.000 0.018 0.034
accuracy 1 0.0219 0.001 18.708 0.000 0.020 0.024
accuracy 2 0.0224 0.001 19.101 0.000 0.020 0.025
accuracy 1:accuracy 2 0.0358 0.001 29.504 0.000 0.033 0.038

Dependent variable: Agreement rate when either model is wrong. No. observations:
2485. R2 = 0.406.

Table 7. Agreement on all questions: HELM
coef std err t P> |t| [0.025 0.975]

Intercept 0.6895 0.001 786.886 0.000 0.688 0.691
same company[T.True] 0.0121 0.003 4.182 0.000 0.006 0.018
accuracy 1 0.0724 0.001 86.742 0.000 0.071 0.074
accuracy 2 0.0703 0.001 84.129 0.000 0.069 0.072
accuracy 1:accuracy 2 0.0293 0.001 33.880 0.000 0.028 0.031

Dependent variable: Overall agreement rate. No. observations: 2485. R2 = 0.865.

C.3. RESUMES
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Table 8. Correlation in residuals of estimating job-resume fit: RESUMES
coef std err t P> |t| [0.025 0.975]

Intercept 0.6534 0.007 89.839 0.000 0.639 0.668
same company[T.True] 0.0210 0.012 1.694 0.092 -0.003 0.046
latest model 1[T.True] 0.0155 0.013 1.211 0.228 -0.010 0.041
latest model 2[T.True] 0.0047 0.014 0.346 0.729 -0.022 0.032
correlation with human score 1 0.0151 0.006 2.627 0.009 0.004 0.026
correlation with human score 2 0.0283 0.006 4.993 0.000 0.017 0.039
correlation with human score 1:correlation with human score 2 0.0429 0.005 8.529 0.000 0.033 0.053

Dependent variable: Correlation in residual (predicted - human evaluation). No. observations: 190. R2 = 0.415.

Table 9. Agreement on job-resume fit ratings: RESUMES
coef std err t P> |t| [0.025 0.975]

Intercept 0.6377 0.005 117.254 0.000 0.627 0.648
same company[T.True] 0.0340 0.009 3.660 0.000 0.016 0.052
latest model 1[T.True] -0.0069 0.010 -0.719 0.473 -0.026 0.012
latest model 2[T.True] -0.0104 0.010 -1.016 0.311 -0.031 0.010
correlation with human score 1 0.0857 0.004 19.960 0.000 0.077 0.094
correlation with human score 2 0.1129 0.004 26.633 0.000 0.105 0.121
correlation with human score 1:correlation with human score 2 0.0421 0.004 11.204 0.000 0.035 0.050

Dependent variable: Correlation. No. observations: 190. R2 = 0.896.

D. Models analyzed

Table 10: Models analyzed for market analysis (correlation scores with prompt used in the main text)

model company correlation with human score latest model

0 Nova-Pro Nova 0.73 True
1 Nova-Micro Nova 0.64 False
2 Nova-Lite Nova 0.55 False
3 Mistral-Large Mistral 0.69 True
4 Mistral-Large(24.02) Mistral 0.66 False
5 Mistral-8x7b Mistral 0.54 False
6 Mistral-7B-Instruct Mistral 0.46 False
7 Llama3-1-405b Llama 0.67 False
8 Llama3-3-70b Llama 0.67 True
9 Llama3-2-90b Llama 0.64 False
10 Llama3-1-70b Llama 0.63 False
11 Llama3-2-11b Llama 0.46 False
12 Llama3-1-8b Llama 0.46 False
13 Llama3-70b Llama 0.40 False
14 Gpt-o1-mini Gpt 0.70 False
15 Gpt-4o-mini Gpt 0.68 True
16 Gpt-3.5-turbo Gpt 0.30 False
17 Claude 3.5 Sonnet(20241022) Claude 0.71 True
18 Claude 3.5 Haiku(20241022) Claude 0.66 False
19 Claude 3 Haiku(20240307) Claude 0.34 False

Table 11: Models analyzed from Helm

model company accuracy

0 writer/palmyra-x-004 writer 0.82
1 writer/palmyra-x-v3 writer 0.78
2 snowflake/snowflake-arctic-instruct snowflake 0.66

Continued on next page
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Table 11: Models analyzed from Helm

model company accuracy

3 qwen/qwen2.5-72b-instruct-turbo qwen 0.83
4 qwen/qwen2-72b-instruct qwen 0.83
5 qwen/qwen1.5-110b-chat qwen 0.77
6 qwen/qwen1.5-72b qwen 0.77
7 qwen/qwen1.5-32b qwen 0.74
8 qwen/qwen2.5-7b-instruct-turbo qwen 0.71
9 qwen/qwen1.5-14b qwen 0.67
10 qwen/qwen1.5-7b qwen 0.61
11 openai/gpt-4o-2024-08-06 openai 0.85
12 openai/gpt-4o-2024-05-13 openai 0.85
13 openai/gpt-4-0613 openai 0.84
14 openai/gpt-4-turbo-2024-04-09 openai 0.82
15 openai/gpt-4-1106-preview openai 0.81
16 openai/gpt-4o-mini-2024-07-18 openai 0.76
17 openai/gpt-3.5-turbo-0613 openai 0.68
18 openai/gpt-3.5-turbo-0125 openai 0.66
19 mistralai/mistral-large-2407 mistralai 0.81
20 mistralai/mixtral-8x22b mistralai 0.77
21 mistralai/mixtral-8x7b-32kseqlen mistralai 0.71
22 mistralai/mistral-small-2402 mistralai 0.69
23 mistralai/mistral-large-2402 mistralai 0.67
24 mistralai/open-mistral-nemo-2407 mistralai 0.65
25 mistralai/mistral-7b-instruct-v0.3 mistralai 0.59
26 mistralai/mistral-7b-v0.1 mistralai 0.56
27 microsoft/phi-3-medium-4k-instruct microsoft 0.77
28 microsoft/phi-3-small-8k-instruct microsoft 0.76
29 microsoft/phi-2 microsoft 0.57
30 meta/llama-3.1-405b-instruct-turbo meta 0.85
31 meta/llama-3.2-90b-vision-instruct-turbo meta 0.81
32 meta/llama-3.1-70b-instruct-turbo meta 0.81
33 meta/llama-3-70b meta 0.79
34 meta/llama-2-70b meta 0.69
35 meta/llama-3-8b meta 0.65
36 meta/llama-2-13b meta 0.55
37 meta/llama-3.2-11b-vision-instruct-turbo meta 0.54
38 meta/llama-3.1-8b-instruct-turbo meta 0.54
39 meta/llama-2-7b meta 0.45
40 google/gemini-1.5-pro-002 google 0.86
41 google/gemini-1.5-pro-001 google 0.83
42 google/gemini-1.5-pro-preview-0409 google 0.81
43 google/text-unicorn@001 google 0.78
44 google/gemini-1.5-flash-001 google 0.78
45 google/gemini-1.5-flash-preview-0514 google 0.77
46 google/gemma-2-27b google 0.75
47 google/gemini-1.5-flash-002 google 0.74
48 google/gemma-2-9b google 0.70
49 google/gemini-1.0-pro-001 google 0.70
50 google/text-bison@001 google 0.68
51 google/gemma-7b google 0.65
52 deepseek-ai/deepseek-llm-67b-chat deepseekai 0.73
53 databricks/dbrx-instruct databricks 0.73
54 cohere/command-r-plus cohere 0.69
55 cohere/command-r cohere 0.65
56 anthropic/claude-3-5-sonnet-20241022 anthropic 0.88
57 anthropic/claude-3-5-sonnet-20240620 anthropic 0.87
58 anthropic/claude-3-opus-20240229 anthropic 0.85
59 anthropic/claude-3-sonnet-20240229 anthropic 0.76
60 anthropic/claude-2.1 anthropic 0.73
61 anthropic/claude-3-haiku-20240307 anthropic 0.73
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62 anthropic/claude-instant-1.2 anthropic 0.68
63 allenai/olmo-1.7-7b allenai 0.53
64 allenai/olmo-7b allenai 0.29
65 ai21/jamba-1.5-large ai21 0.78
66 ai21/jamba-1.5-mini ai21 0.69
67 ai21/jamba-instruct ai21 0.66
68 01-ai/yi-large-preview 01ai 0.80
69 01-ai/yi-34b 01ai 0.76
70 01-ai/yi-6b 01ai 0.63

Table 12: Models analyzed from HuggingFace

name accuracy params (B) architecture

0 tiiuae/Falcon3-10B-Instruct 0.44 10.31 LlamaForCausalLM
1 tiiuae/Falcon3-10B-Base 0.42 10.31 LlamaForCausalLM
2 tiiuae/Falcon3-7B-Instruct 0.41 7.46 LlamaForCausalLM
3 tiiuae/Falcon3-Mamba-7B-Instruct 0.34 7.27 FalconMambaForCausalLM
4 tiiuae/Falcon3-3B-Instruct 0.30 3.23 LlamaForCausalLM
5 theprint/ReWiz-Qwen-2.5-14B 0.51 16.74 ?
6 tenyx/Llama3-TenyxChat-70B 0.52 70.55 LlamaForCausalLM
7 tanliboy/lambda-qwen2.5-32b-dpo-test 0.57 32.76 Qwen2ForCausalLM
8 tanliboy/lambda-qwen2.5-14b-dpo-test 0.48 14.77 Qwen2ForCausalLM
9 suayptalha/Rombos-2.5-T.E-8.1 0.44 7.62 Qwen2ForCausalLM
10 suayptalha/HomerCreativeAnvita-Mix-Qw7B 0.44 7.62 Qwen2ForCausalLM
11 sthenno-com/miscii-14b-1028 0.52 14.77 Qwen2ForCausalLM
12 ssmits/Qwen2.5-95B-Instruct 0.52 94.65 Qwen2ForCausalLM
13 spow12/ChatWaifu 22B v2.0 preview 0.40 22.25 MistralForCausalLM
14 spow12/ChatWaifu v2.0 22B 0.38 22.25 MistralForCausalLM
15 speakleash/Bielik-11B-v2.3-Instruct 0.34 11.17 MistralForCausalLM
16 sometimesanotion/Lamarck-14B-v0.3 0.54 14.77 Qwen2ForCausalLM
17 sometimesanotion/Lamarck-14B-v0.4-Qwenvergence 0.54 14.77 Qwen2ForCausalLM
18 sometimesanotion/lamarck-14b-reason-model stock 0.54 14.77 Qwen2ForCausalLM
19 sometimesanotion/Qwen-2.5-14B-Virmarckeoso 0.54 14.77 Qwen2ForCausalLM
20 sometimesanotion/lamarck-14b-prose-model stock 0.54 14.77 Qwen2ForCausalLM
21 sethuiyer/Qwen2.5-7B-Anvita 0.42 7.62 Qwen2ForCausalLM
22 sequelbox/Llama3.1-70B-PlumChat 0.52 70.55 LlamaForCausalLM
23 sam-paech/Delirium-v1 0.42 9.24 Gemma2ForCausalLM
24 sam-paech/Darkest-muse-v1 0.42 10.16 Gemma2ForCausalLM
25 sam-paech/Quill-v1 0.42 9.24 Gemma2ForCausalLM
26 rombodawg/Rombos-LLM-V2.5-Qwen-72b 0.59 72.71 Qwen2ForCausalLM
27 rombodawg/Rombos-LLM-V2.5-Qwen-32b 0.59 32.76 Qwen2ForCausalLM
28 rombodawg/Rombos-LLM-V2.5-Qwen-14b 0.54 14.77 Qwen2ForCausalLM
29 rombodawg/Rombos-LLM-V2.6-Nemotron-70b 0.53 70.55 LlamaForCausalLM
30 rombodawg/Rombos-LLM-V2.6-Qwen-14b 0.50 14.77 Qwen2ForCausalLM
31 rhymes-ai/Aria 0.44 25.31 AriaForConditionalGeneration
32 recoilme/recoilme-gemma-2-9B-v0.5 0.42 10.16 Gemma2ForCausalLM
33 recoilme/Gemma-2-Ataraxy-Gemmasutra-9B-slerp 0.42 10.16 Gemma2ForCausalLM
34 recoilme/recoilme-gemma-2-9B-v0.1 0.42 10.16 Gemma2ForCausalLM
35 recoilme/recoilme-gemma-2-9B-v0.2 0.41 10.16 Gemma2ForCausalLM
36 recoilme/recoilme-gemma-2-9B-v0.3 0.40 10.16 Gemma2ForCausalLM
37 qingy2024/Qwen2.6-14B-Instruct 0.53 14.77 Qwen2ForCausalLM
38 qingy2024/Qwen2.6-Math-14B-Instruct 0.52 14.00 Qwen2ForCausalLM
39 qingy2024/Fusion2-14B-Instruct 0.51 14.77 Qwen2ForCausalLM
40 qingy2024/Fusion-14B-Instruct 0.50 14.00 Qwen2ForCausalLM
41 qingy2024/Qwen2.5-Math-14B-Instruct-Preview 0.50 14.77 Qwen2ForCausalLM
42 qingy2019/Qwen2.5-Math-14B-Instruct 0.53 14.00 Qwen2ForCausalLM
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43 qingy2019/Qwen2.5-Math-14B-Instruct-Alpha 0.53 14.00 Qwen2ForCausalLM
44 qingy2019/Qwen2.5-Ultimate-14B-Instruct 0.49 14.77 Qwen2ForCausalLM
45 paloalma/TW3-JRGL-v2 0.49 72.29 LlamaForCausalLM
46 paloalma/ECE-TW3-JRGL-V5 0.46 72.29 LlamaForCausalLM
47 paloalma/ECE-TW3-JRGL-V1 0.42 68.98 LlamaForCausalLM
48 oxyapi/oxy-1-small 0.50 14.77 Qwen2ForCausalLM
49 nvidia/Llama-3.1-Nemotron-70B-Instruct-HF 0.49 70.55 LlamaForCausalLM
50 nisten/franqwenstein-35b 0.56 34.71 Qwen2ForCausalLM
51 nhyha/merge Qwen2.5-7B-Instruct 20241023 0314 0.45 7.62 Qwen2ForCausalLM
52 nhyha/N3N Delirium-v1 1030 0227 0.41 10.16 Gemma2ForCausalLM
53 nhyha/N3N gemma-2-9b-it 20241029 1532 0.41 10.16 Gemma2ForCausalLM
54 nhyha/N3N gemma-2-9b-it 20241110 2026 0.40 10.16 Gemma2ForCausalLM
55 newsbang/Homer-v1.0-Qwen2.5-7B 0.45 7.62 Qwen2ForCausalLM
56 newsbang/Homer-7B-v0.1 0.45 7.62 Qwen2ForCausalLM
57 newsbang/Homer-v0.3-Qwen2.5-7B 0.45 7.62 Qwen2ForCausalLM
58 newsbang/Homer-7B-v0.2 0.44 7.62 Qwen2ForCausalLM
59 newsbang/Homer-v0.5-Qwen2.5-7B 0.44 7.62 Qwen2ForCausalLM
60 nbeerbower/Llama-3.1-Nemotron-lorablated-70B 0.53 70.55 LlamaForCausalLM
61 nbeerbower/Qwen2.5-Gutenberg-Doppel-14B 0.49 14.77 Qwen2ForCausalLM
62 nbeerbower/Llama3.1-Gutenberg-Doppel-70B 0.47 70.55 LlamaForCausalLM
63 nbeerbower/Gemma2-Gutenberg-Doppel-9B 0.41 9.24 Gemma2ForCausalLM
64 nbeerbower/Mistral-Small-Gutenberg-Doppel-22B 0.41 22.25 MistralForCausalLM
65 moeru-ai/L3.1-Moe-2x8B-v0.2 0.39 13.67 MixtralForCausalLM
66 mmnga/Llama-3-70B-japanese-suzume-vector-v0.1 0.52 70.55 LlamaForCausalLM
67 mlabonne/BigQwen2.5-52B-Instruct 0.55 52.27 Qwen2ForCausalLM
68 mlabonne/BigQwen2.5-Echo-47B-Instruct 0.47 47.39 Qwen2ForCausalLM
69 mlabonne/Hermes-3-Llama-3.1-70B-lorablated 0.47 70.55 LlamaForCausalLM
70 mlabonne/NeuralDaredevil-8B-abliterated 0.38 8.03 LlamaForCausalLM
71 mistralai/Mistral-Large-Instruct-2411 0.56 122.61 MistralForCausalLM
72 mistralai/Mistral-Small-Instruct-2409 0.41 22.05 MistralForCausalLM
73 microsoft/Phi-3-medium-128k-instruct 0.47 13.96 Phi3ForCausalLM
74 microsoft/Phi-3-medium-4k-instruct 0.47 13.96 Phi3ForCausalLM
75 microsoft/Phi-3.5-MoE-instruct 0.47 42.00 Phi3ForCausalLM
76 microsoft/Phi-3-mini-4k-instruct 0.40 3.82 Phi3ForCausalLM
77 microsoft/Phi-3.5-mini-instruct 0.40 3.82 Phi3ForCausalLM
78 microsoft/Phi-3-mini-128k-instruct 0.37 3.82 Phi3ForCausalLM
79 meta-llama/Meta-Llama-3.1-70B-Instruct 0.53 70.55 LlamaForCausalLM
80 meta-llama/Llama-3.3-70B-Instruct 0.53 70.55 LlamaForCausalLM
81 meta-llama/Meta-Llama-3-70B-Instruct 0.52 70.55 LlamaForCausalLM
82 meta-llama/Meta-Llama-3-70B 0.47 70.55 LlamaForCausalLM
83 meta-llama/Meta-Llama-3.1-8B-Instruct 0.37 8.03 LlamaForCausalLM
84 meditsolutions/MedIT-Mesh-3B-Instruct 0.40 3.82 Phi3ForCausalLM
85 meditsolutions/Llama-3.1-MedIT-SUN-8B 0.39 8.03 LlamaForCausalLM
86 meditsolutions/MSH-v1-Bielik-v2.3-Instruct-Med... 0.35 11.17 MistralForCausalLM
87 mattshumer/ref 70 e3 0.53 70.55 LlamaForCausalLM
88 lemon07r/Gemma-2-Ataraxy-v4c-9B 0.44 10.16 Gemma2ForCausalLM
89 lemon07r/Gemma-2-Ataraxy-v4-Advanced-9B 0.44 10.16 Gemma2ForCausalLM
90 lemon07r/Gemma-2-Ataraxy-v4b-9B 0.44 10.16 Gemma2ForCausalLM
91 lemon07r/Gemma-2-Ataraxy-v4d-9B 0.43 10.16 Gemma2ForCausalLM
92 lemon07r/Gemma-2-Ataraxy-v4a-Advanced-9B 0.43 10.16 Gemma2ForCausalLM
93 leafspark/Llama-3.1-8B-MultiReflection-Instruct 0.37 8.03 LlamaForCausalLM
94 jpacifico/Chocolatine-14B-Instruct-4k-DPO 0.48 13.96 Phi3ForCausalLM
95 jpacifico/Chocolatine-14B-Instruct-DPO-v1.2 0.47 13.96 Phi3ForCausalLM
96 jpacifico/Chocolatine-3B-Instruct-DPO-v1.2 0.39 3.82 Phi3ForCausalLM
97 jeffmeloy/Qwen2.5-7B-olm-v1.0 0.46 7.62 Qwen2ForCausalLM
98 jeffmeloy/Qwen2.5-7B-nerd-uncensored-v1.5 0.44 7.62 Qwen2ForCausalLM
99 jeffmeloy/Qwen2.5-7B-nerd-uncensored-v1.4 0.44 7.62 Qwen2ForCausalLM
100 jeffmeloy/jeffmeloy Qwen2.5-7B-minperplexity-1 0.44 7.62 Qwen2ForCausalLM
101 jeffmeloy/Qwen2.5-7B-nerd-uncensored-v0.9 0.44 7.62 Qwen2ForCausalLM
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102 invisietch/MiS-Firefly-v0.2-22B 0.36 22.25 MistralForCausalLM
103 internlm/internlm2 5-20b-chat 0.40 19.86 InternLM2ForCausalLM
104 internlm/internlm2 5-7b-chat 0.37 7.74 InternLM2ForCausalLM
105 informatiker/Qwen2-7B-Instruct-abliterated 0.39 7.62 Qwen2ForCausalLM
106 huihui-ai/QwQ-32B-Coder-Fusion-9010 0.56 32.76 Qwen2ForCausalLM
107 huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2 0.50 14.77 Qwen2ForCausalLM
108 huihui-ai/Qwen2.5-7B-Instruct-abliterated-v2 0.42 7.62 Qwen2ForCausalLM
109 huihui-ai/Qwen2.5-7B-Instruct-abliterated 0.42 7.62 Qwen2ForCausalLM
110 hotmailuser/Gemma2atlas-27B 0.47 27.23 Gemma2ForCausalLM
111 hotmailuser/Gemma2SimPO-27B 0.46 27.23 Gemma2ForCausalLM
112 hotmailuser/Gemma2Crono-27B 0.46 27.23 Gemma2ForCausalLM
113 hotmailuser/Gemma2magnum-27b 0.46 27.23 Gemma2ForCausalLM
114 hotmailuser/Qwen2.5-HomerSlerp-7B 0.45 7.62 Qwen2ForCausalLM
115 google/gemma-2-27b-it 0.45 27.23 Gemma2ForCausalLM
116 gmonsoon/gemma2-9b-sahabatai-v1-instruct-BaseTIES 0.43 9.24 Gemma2ForCausalLM
117 glaiveai/Reflection-Llama-3.1-70B 0.63 69.50 LlamaForCausalLM
118 gbueno86/Brinebreath-Llama-3.1-70B 0.52 70.55 LlamaForCausalLM
119 freewheelin/free-evo-qwen72b-v0.8-re 0.49 72.29 LlamaForCausalLM
120 flammenai/Llama3.1-Flammades-70B 0.48 70.55 LlamaForCausalLM
121 flammenai/Mahou-1.5-llama3.1-70B 0.47 70.55 LlamaForCausalLM
122 flammenai/Mahou-1.5-mistral-nemo-12B 0.36 12.25 MistralForCausalLM
123 fblgit/TheBeagle-v2beta-32B-MGS 0.59 32.76 Qwen2ForCausalLM
124 fblgit/cybertron-v4-qw7B-UNAMGS 0.45 7.62 Qwen2ForCausalLM
125 fblgit/cybertron-v4-qw7B-MGS 0.45 7.62 Qwen2ForCausalLM
126 failspy/Meta-Llama-3-70B-Instruct-abliterated-... 0.45 70.55 LlamaForCausalLM
127 experiment-llm/exp-3-q-r 0.43 7.62 Qwen2ForCausalLM
128 ehristoforu/RQwen-v0.1 0.52 14.77 Qwen2ForCausalLM
129 ehristoforu/RQwen-v0.2 0.52 14.77 Qwen2ForCausalLM
130 ehristoforu/Gemma2-9b-it-train6 0.39 9.24 Gemma2ForCausalLM
131 ehristoforu/Gemma2-9B-it-psy10k-mental health 0.38 9.24 Gemma2ForCausalLM
132 ehristoforu/HappyLlama1 0.35 8.03 LlamaForCausalLM
133 dwikitheduck/gen-try1-notemp 0.52 14.77 Qwen2ForCausalLM
134 dwikitheduck/gen-try1 0.51 14.77 Qwen2ForCausalLM
135 dwikitheduck/gen-inst-1 0.51 14.77 Qwen2ForCausalLM
136 dnhkng/RYS-XLarge-base 0.54 77.97 Qwen2ForCausalLM
137 dnhkng/RYS-XLarge 0.54 77.97 Qwen2ForCausalLM
138 dnhkng/RYS-XLarge2 0.54 77.97 Qwen2ForCausalLM
139 dnhkng/RYS-Llama3.1-Large 0.52 81.68 LlamaForCausalLM
140 dnhkng/RYS-Llama-3-Large-Instruct 0.51 73.98 LlamaForCausalLM
141 djuna/G2-BigGSHT-27B-2 0.45 27.23 Gemma2ForCausalLM
142 djuna/Q2.5-Partron-7B 0.43 7.61 Qwen2ForCausalLM
143 djuna/L3.1-Promissum Mane-8B-Della-1.5-calc 0.39 8.03 LlamaForCausalLM
144 djuna/L3.1-Promissum Mane-8B-Della-calc 0.38 8.03 LlamaForCausalLM
145 djuna/L3.1-ForStHS 0.37 8.03 LlamaForCausalLM
146 dfurman/CalmeRys-78B-Orpo-v0.1 0.70 77.97 Qwen2ForCausalLM
147 dfurman/Qwen2-72B-Orpo-v0.1 0.55 72.70 Qwen2ForCausalLM
148 deepseek-ai/deepseek-llm-67b-chat 0.39 67.00 LlamaForCausalLM
149 cstr/llama3.1-8b-spaetzle-v90 0.37 8.03 LlamaForCausalLM
150 cognitivecomputations/dolphin-2.9.2-qwen2-72b 0.55 72.00 Qwen2ForCausalLM
151 cognitivecomputations/dolphin-2.9.2-Phi-3-Medi... 0.45 13.96 MistralForCausalLM
152 cloudyu/Mixtral 34Bx2 MoE 60B 0.48 60.81 MixtralForCausalLM
153 byroneverson/Mistral-Small-Instruct-2409-ablit... 0.39 22.25 MistralForCausalLM
154 byroneverson/Yi-1.5-9B-Chat-16K-abliterated 0.38 8.83 LlamaForCausalLM
155 bunnycore/Qandora-2.5-7B-Creative 0.45 7.62 Qwen2ForCausalLM
156 bunnycore/Qwen2.5-7B-Instruct-Fusion 0.45 7.62 Qwen2ForCausalLM
157 bunnycore/CyberCore-Qwen-2.1-7B 0.44 7.62 Qwen2ForCausalLM
158 bunnycore/QandoraExp-7B 0.44 7.62 Qwen2ForCausalLM
159 bunnycore/QandoraExp-7B-Persona 0.44 7.62 Qwen2ForCausalLM
160 brgx53/3Bgeneralv2-ECE-PRYMMAL-Martial 0.45 3.00 Qwen2ForCausalLM
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161 brgx53/3Blarenegv2-ECE-PRYMMAL-Martial 0.45 7.62 Qwen2ForCausalLM
162 arcee-ai/Arcee-Nova 0.55 72.71 Qwen2ForCausalLM
163 arcee-ai/Virtuoso-Small 0.52 14.77 Qwen2ForCausalLM
164 arcee-ai/SuperNova-Medius 0.50 14.77 Qwen2ForCausalLM
165 arcee-ai/Llama-3.1-SuperNova-Lite 0.39 8.03 LlamaForCausalLM
166 arcee-ai/Llama-Spark 0.37 8.03 LlamaForCausalLM
167 anthracite-org/magnum-v1-72b 0.55 72.71 Qwen2ForCausalLM
168 anthracite-org/magnum-v2-72b 0.55 72.71 Qwen2ForCausalLM
169 anthracite-org/magnum-v3-34b 0.48 34.39 LlamaForCausalLM
170 anthracite-org/magnum-v4-27b 0.44 27.23 Gemma2ForCausalLM
171 anthracite-org/magnum-v3-27b-kto 0.42 27.23 Gemma2ForCausalLM
172 alpindale/WizardLM-2-8x22B 0.46 140.62 MixtralForCausalLM
173 allura-org/MS-Meadowlark-22B 0.38 22.25 MistralForCausalLM
174 allknowingroger/QwenSlerp4-14B 0.54 14.77 Qwen2ForCausalLM
175 allknowingroger/QwenStock3-14B 0.54 14.77 Qwen2ForCausalLM
176 allknowingroger/QwenStock1-14B 0.54 14.77 Qwen2ForCausalLM
177 allknowingroger/QwenStock2-14B 0.54 14.77 Qwen2ForCausalLM
178 allknowingroger/QwenSlerp6-14B 0.54 14.77 Qwen2ForCausalLM
179 allenai/Llama-3.1-Tulu-3-70B 0.47 70.55 LlamaForCausalLM
180 allenai/Llama-3.1-Tulu-3-70B-DPO 0.46 70.00 LlamaForCausalLM
181 allenai/Llama-3.1-Tulu-3-70B-SFT 0.46 70.55 LlamaForCausalLM
182 allenai/Llama-3.1-Tulu-3-8B-DPO 0.29 8.00 LlamaForCausalLM
183 akjindal53244/Llama-3.1-Storm-8B 0.38 8.03 LlamaForCausalLM
184 abhishek/autotrain-llama3-70b-orpo-v2 0.48 70.55 LlamaForCausalLM
185 abacusai/Dracarys-72B-Instruct 0.55 72.71 Qwen2ForCausalLM
186 abacusai/Smaug-Qwen2-72B-Instruct 0.52 72.71 Qwen2ForCausalLM
187 abacusai/Smaug-Llama-3-70B-Instruct-32K 0.48 70.55 LlamaForCausalLM
188 abacusai/Smaug-72B-v0.1 0.46 72.29 LlamaForCausalLM
189 aaditya/Llama3-OpenBioLLM-70B 0.49 70.00 LlamaForCausalLM
190 ZeroXClem/Qwen2.5-7B-Qandora-CySec 0.45 7.62 Qwen2ForCausalLM
191 ZeroXClem/Qwen2.5-7B-HomerCreative-Mix 0.44 7.62 Qwen2ForCausalLM
192 ZeroXClem/Qwen2.5-7B-HomerAnvita-NerdMix 0.44 7.62 Qwen2ForCausalLM
193 ZeroXClem/Qwen-2.5-Aether-SlerpFusion-7B 0.43 7.62 Qwen2ForCausalLM
194 Weyaxi/Bagel-Hermes-34B-Slerp 0.47 34.39 LlamaForCausalLM
195 ValiantLabs/Llama3.1-70B-ShiningValiant2 0.52 70.55 LlamaForCausalLM
196 VAGOsolutions/Llama-3.1-SauerkrautLM-70b-Instruct 0.53 70.55 LlamaForCausalLM
197 VAGOsolutions/SauerkrautLM-v2-14b-SFT 0.52 14.77 Qwen2ForCausalLM
198 VAGOsolutions/SauerkrautLM-v2-14b-DPO 0.51 14.77 Qwen2ForCausalLM
199 VAGOsolutions/SauerkrautLM-Phi-3-medium 0.47 13.96 MistralForCausalLM
200 VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct 0.39 8.03 LlamaForCausalLM
201 Undi95/MG-FinalMix-72B 0.54 72.71 Qwen2ForCausalLM
202 Tsunami-th/Tsunami-1.0-14B-Instruct 0.52 14.77 Qwen2ForCausalLM
203 Tsunami-th/Tsunami-0.5x-7B-Instruct 0.45 7.62 Qwen2ForCausalLM
204 Tsunami-th/Tsunami-1.0-7B-Instruct 0.44 7.62 Qwen2ForCausalLM
205 Tsunami-th/Tsunami-0.5-7B-Instruct 0.44 7.62 Qwen2ForCausalLM
206 TheTsar1209/qwen-carpmuscle-v0.1 0.52 14.77 Qwen2ForCausalLM
207 TheTsar1209/qwen-carpmuscle-v0.2 0.51 14.77 Qwen2ForCausalLM
208 TheTsar1209/qwen-carpmuscle-v0.4 0.51 14.77 Qwen2ForCausalLM
209 TheTsar1209/qwen-carpmuscle-r-v0.3 0.51 14.77 Qwen2ForCausalLM
210 TheTsar1209/qwen-carpmuscle-v0.3 0.51 14.77 Qwen2ForCausalLM
211 TheDrummer/Cydonia-22B-v1.2 0.41 22.25 MistralForCausalLM
212 T145/Llama-3.1-8B-Instruct-Zeus 0.39 8.03 LlamaForCausalLM
213 T145/ZEUS-8B-V2L2 0.39 8.03 LlamaForCausalLM
214 T145/ZEUS-8B-V7 0.38 8.03 LlamaForCausalLM
215 T145/ZEUS-8B-V3 0.38 8.03 LlamaForCausalLM
216 T145/ZEUS-8B-V4 0.38 8.03 LlamaForCausalLM
217 Syed-Hasan-8503/Phi-3-mini-4K-instruct-cpo-simpo 0.39 3.82 Phi3ForCausalLM
218 Svak/MN-12B-Inferor-v0.1 0.37 12.25 MistralForCausalLM
219 SicariusSicariiStuff/Qwen2.5-14B Uncencored 0.53 14.00 Qwen2ForCausalLM
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220 SicariusSicariiStuff/Qwen2.5-14B Uncensored 0.53 14.00 Qwen2ForCausalLM
221 SicariusSicariiStuff/Qwen2.5-14B Uncensored In... 0.51 14.77 Qwen2ForCausalLM
222 Shreyash2010/Uma-4x4B-Instruct-v0.1 0.39 3.82 ?
223 Saxo/Linkbricks-Horizon-AI-Korean-Superb-27B 0.46 27.23 Gemma2ForCausalLM
224 Replete-AI/L3.1-Pneuma-8B 0.37 8.03 LlamaForCausalLM
225 Qwen/Qwen2.5-72B 0.60 72.71 Qwen2ForCausalLM
226 Qwen/Qwen2.5-32B 0.58 32.76 Qwen2ForCausalLM
227 Qwen/Qwen2-72B 0.57 72.71 Qwen2ForCausalLM
228 Qwen/Qwen2-VL-72B-Instruct 0.57 73.41 Qwen2VLForConditionalGeneration
229 Qwen/QwQ-32B-Preview 0.57 32.76 Qwen2ForCausalLM
230 Qwen/Qwen2.5-32B-Instruct 0.57 32.76 Qwen2ForCausalLM
231 Qwen/Qwen2.5-72B-Instruct 0.56 72.71 Qwen2ForCausalLM
232 Qwen/Qwen2-72B-Instruct 0.54 72.71 Qwen2ForCausalLM
233 Qwen/Qwen1.5-110B 0.54 111.21 Qwen2ForCausalLM
234 Qwen/Qwen2.5-Coder-32B 0.53 32.76 Qwen2ForCausalLM
235 Qwen/Qwen2.5-14B 0.52 14.77 Qwen2ForCausalLM
236 Qwen/Qwen2.5-14B-Instruct 0.49 14.77 Qwen2ForCausalLM
237 Qwen/Qwen1.5-110B-Chat 0.48 111.21 Qwen2ForCausalLM
238 Qwen/Qwen2.5-Math-72B-Instruct 0.48 72.71 Qwen2ForCausalLM
239 Qwen/Qwen2-57B-A14B-Instruct 0.46 57.41 Qwen2MoeForCausalLM
240 Qwen/Qwen1.5-32B 0.45 32.51 Qwen2ForCausalLM
241 Qwen/Qwen1.5-32B-Chat 0.45 32.51 Qwen2ForCausalLM
242 Qwen/Qwen2.5-Coder-32B-Instruct 0.44 32.76 Qwen2ForCausalLM
243 Qwen/Qwen2.5-7B-Instruct 0.43 7.62 Qwen2ForCausalLM
244 Qwen/Qwen2-Math-72B-Instruct 0.43 72.71 Qwen2ForCausalLM
245 Qwen/Qwen2-VL-7B-Instruct 0.41 8.29 Qwen2VLForConditionalGeneration
246 Qwen/Qwen2.5-Coder-14B-Instruct 0.39 14.77 Qwen2ForCausalLM
247 Qwen/Qwen2-7B-Instruct 0.38 7.62 Qwen2ForCausalLM
248 Qwen/Qwen2.5-Coder-7B-Instruct 0.34 7.62 Qwen2ForCausalLM
249 Qwen/Qwen2.5-3B-Instruct 0.33 3.00 Qwen2ForCausalLM
250 Orion-zhen/Qwen2.5-7B-Instruct-Uncensored 0.44 7.62 Qwen2ForCausalLM
251 Orenguteng/Llama-3.1-8B-Lexi-Uncensored 0.38 8.03 LlamaForCausalLM
252 Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2 0.38 8.03 LlamaForCausalLM
253 OpenBuddy/openbuddy-llama3.1-70b-v22.1-131k 0.53 70.55 LlamaForCausalLM
254 OpenBuddy/openbuddy-nemotron-70b-v23.1-131k 0.52 70.55 LlamaForCausalLM
255 OpenBuddy/openbuddy-nemotron-70b-v23.2-131k 0.51 70.55 LlamaForCausalLM
256 OpenBuddy/openbuddy-llama3-70b-v21.2-32k 0.48 70.55 LlamaForCausalLM
257 OpenBuddy/openbuddy-qwen2.5llamaify-14b-v23.3-... 0.48 14.77 LlamaForCausalLM
258 NousResearch/Hermes-3-Llama-3.1-70B 0.47 70.55 LlamaForCausalLM
259 Nohobby/MS-Schisandra-22B-v0.2 0.41 22.25 MistralForCausalLM
260 Nohobby/MS-Schisandra-22B-v0.1 0.41 22.25 MistralForCausalLM
261 NLPark/Shi-Ci-Robin-Test 3AD80 0.51 70.55 LlamaForCausalLM
262 NLPark/B-and-W Flycatcher-3AD1E 0.47 14.77 LlamaForCausalLM
263 NLPark/AnFeng v3.1-Avocet 0.44 34.39 LlamaForCausalLM
264 NAPS-ai/naps-llama-3 1-8b-instruct-v0.4 0.35 8.03 LlamaForCausalLM
265 MaziyarPanahi/calme-3.2-instruct-78b 0.73 77.97 Qwen2ForCausalLM
266 MaziyarPanahi/calme-3.1-instruct-78b 0.72 77.97 Qwen2ForCausalLM
267 MaziyarPanahi/calme-2.4-rys-78b 0.70 77.97 Qwen2ForCausalLM
268 MaziyarPanahi/calme-2.1-qwen2.5-72b 0.56 72.70 Qwen2ForCausalLM
269 MaziyarPanahi/calme-2.2-qwen2.5-72b 0.56 72.70 Qwen2ForCausalLM
270 Marsouuu/general3Bv2-ECE-PRYMMAL-Martial 0.45 7.62 Qwen2ForCausalLM
271 Lil-R/2 PRYMMAL-ECE-7B-SLERP 0.45 7.62 Qwen2ForCausalLM
272 Lambent/qwen2.5-reinstruct-alternate-lumen-14B 0.54 14.77 Qwen2ForCausalLM
273 LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct 0.41 7.82 ExaoneForCausalLM
274 LGAI-EXAONE/EXAONE-3.5-2.4B-Instruct 0.33 2.40 ExaoneForCausalLM
275 Kukedlc/Qwen-2.5-7b-Spanish-o1-CoT 0.44 7.62 Qwen2ForCausalLM
276 KSU-HW-SEC/Llama3.1-70b-SVA-FT-1000step 0.53 70.55 LlamaForCausalLM
277 KSU-HW-SEC/Llama3-70b-SVA-FT-1415 0.52 70.55 LlamaForCausalLM
278 KSU-HW-SEC/Llama3-70b-SVA-FT-final 0.52 70.55 LlamaForCausalLM
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279 KSU-HW-SEC/Llama3-70b-SVA-FT-500 0.52 70.55 LlamaForCausalLM
280 Junhoee/Qwen-Megumin 0.42 15.23 ?
281 Joseph717171/Llama-3.1-SuperNova-8B-Lite TIES ... 0.39 8.03 LlamaForCausalLM
282 Isaak-Carter/Josiefied-Qwen2.5-7B-Instruct-abl... 0.43 7.62 Qwen2ForCausalLM
283 Isaak-Carter/Josiefied-Qwen2.5-7B-Instruct-abl... 0.41 7.62 Qwen2ForCausalLM
284 IntervitensInc/internlm2 5-20b-llamafied 0.41 19.86 LlamaForCausalLM
285 HumanLLMs/Humanish-Qwen2.5-7B-Instruct 0.44 7.62 Qwen2ForCausalLM
286 HuggingFaceH4/zephyr-orpo-141b-A35b-v0.1 0.46 140.62 MixtralForCausalLM
287 HPAI-BSC/Llama3.1-Aloe-Beta-8B 0.36 8.03 LlamaForCausalLM
288 Gunulhona/Gemma-Ko-Merge 0.39 10.16 Gemma2ForCausalLM
289 Gryphe/Pantheon-RP-Pure-1.6.2-22b-Small 0.39 22.25 MistralForCausalLM
290 GreenNode/GreenNode-small-9B-it 0.39 9.24 Gemma2ForCausalLM
291 Goekdeniz-Guelmez/Josiefied-Qwen2.5-14B-Instru... 0.50 14.77 Qwen2ForCausalLM
292 Goekdeniz-Guelmez/Josiefied-Qwen2.5-7B-Instruc... 0.41 7.62 Qwen2ForCausalLM
293 Goekdeniz-Guelmez/josie-7b-v6.0-step2000 0.40 7.62 Qwen2ForCausalLM
294 GoToCompany/gemma2-9b-cpt-sahabatai-v1-instruct 0.43 9.24 Gemma2ForCausalLM
295 Etherll/Qwen2.5-7B-della-test 0.44 7.62 Qwen2ForCausalLM
296 Etherll/SuperHermes 0.39 8.03 LlamaForCausalLM
297 Etherll/Herplete-LLM-Llama-3.1-8b-Ties 0.38 8.03 LlamaForCausalLM
298 Etherll/Qwen2.5-Coder-7B-Instruct-Ties 0.35 7.62 Qwen2ForCausalLM
299 EpistemeAI2/Fireball-Phi-3-medium-4k-inst-Philos 0.46 13.96 MistralForCausalLM
300 EVA-UNIT-01/EVA-Qwen2.5-72B-v0.2 0.58 72.71 Qwen2ForCausalLM
301 DreadPoor/Emu Eggs-9B-Model Stock 0.42 9.24 Gemma2ForCausalLM
302 DreadPoor/Condensed Milk-8B-Model Stock 0.39 8.03 LlamaForCausalLM
303 DreadPoor/Matryoshka-8B-LINEAR 0.39 8.03 LlamaForCausalLM
304 DreadPoor/BaeZel-8B-LINEAR 0.39 8.03 LlamaForCausalLM
305 DreadPoor/Promissum Mane-8B-LINEAR 0.38 8.03 LlamaForCausalLM
306 DeepMount00/Llama-3.1-8b-ITA 0.39 8.03 LlamaForCausalLM
307 DeepMount00/Llama-3-8b-Ita 0.39 8.03 LlamaForCausalLM
308 DeepMount00/Llama-3.1-Distilled 0.38 8.03 LlamaForCausalLM
309 DeepAutoAI/ldm soup Llama-3.1-8B-Instruct-v0.0 0.39 8.03 LlamaForCausalLM
310 DeepAutoAI/ldm soup Llama-3.1-8B-Instruct-v0.1 0.39 8.03 LlamaForCausalLM
311 DeepAutoAI/ldm soup Llama-3.1-8B-Inst 0.39 8.03 LlamaForCausalLM
312 DeepAutoAI/d2nwg Llama-3.1-8B-Instruct-v0.0 0.39 8.03 LlamaForCausalLM
313 DeepAutoAI/Explore Llama-3.1-8B-Inst 0.38 8.03 LlamaForCausalLM
314 Danielbrdz/Barcenas-14b-Phi-3-medium-ORPO 0.47 13.96 MistralForCausalLM
315 Dampfinchen/Llama-3.1-8B-Ultra-Instruct 0.38 8.03 LlamaForCausalLM
316 CultriX/Qwen2.5-14B-Wernicke 0.54 14.77 Qwen2ForCausalLM
317 CultriX/Qwestion-14B 0.54 14.77 Qwen2ForCausalLM
318 CultriX/Qwen2.5-14B-MegaMerge-pt2 0.54 14.77 Qwen2ForCausalLM
319 CultriX/SeQwence-14B-EvolMerge 0.54 14.77 Qwen2ForCausalLM
320 CultriX/SeQwence-14B 0.54 14.77 Qwen2ForCausalLM
321 Cran-May/T.E-8.1 0.44 7.62 Qwen2ForCausalLM
322 CombinHorizon/huihui-ai-abliterated-Qwen2.5-32... 0.57 32.76 Qwen2ForCausalLM
323 CombinHorizon/Josiefied-abliteratedV4-Qwen2.5-... 0.50 14.77 Qwen2ForCausalLM
324 CombinHorizon/huihui-ai-abliteratedV2-Qwen2.5-... 0.49 14.77 Qwen2ForCausalLM
325 CombinHorizon/YiSM-blossom5.1-34B-SLERP 0.47 34.39 LlamaForCausalLM
326 CombinHorizon/Rombos-Qwen2.5-7B-Inst-BaseMerge... 0.43 7.62 Qwen2ForCausalLM
327 CohereForAI/aya-expanse-32b 0.41 32.30 CohereForCausalLM
328 CohereForAI/c4ai-command-r-plus 0.40 103.81 CohereForCausalLM
329 ClaudioItaly/intelligence-cod-rag-7b-v3 0.42 7.62 Qwen2ForCausalLM
330 BoltMonkey/DreadMix 0.38 8.03 LlamaForCausalLM
331 BoltMonkey/NeuralDaredevil-SuperNova-Lite-7B-D... 0.37 8.03 LlamaForCausalLM
332 BoltMonkey/SuperNeuralDreadDevil-8b 0.35 8.03 LlamaForCausalLM
333 BlackBeenie/Neos-Phi-3-14B-v0.1 0.46 13.96 Phi3ForCausalLM
334 BenevolenceMessiah/Qwen2.5-72B-2x-Instruct-TIE... 0.56 72.70 Qwen2ForCausalLM
335 BAAI/Infinity-Instruct-7M-Gen-Llama3 1-70B 0.46 70.55 LlamaForCausalLM
336 BAAI/Infinity-Instruct-3M-0625-Llama3-70B 0.46 70.55 LlamaForCausalLM
337 BAAI/Infinity-Instruct-3M-0625-Yi-1.5-9B 0.41 8.83 LlamaForCausalLM
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338 Azure99/blossom-v5-32b 0.42 32.51 Qwen2ForCausalLM
339 AuraIndustries/Aura-8B 0.39 8.03 LlamaForCausalLM
340 Aashraf995/Creative-7B-nerd 0.45 7.62 Qwen2ForCausalLM
341 Aashraf995/Qwen-Evo-7B 0.45 7.62 Qwen2ForCausalLM
342 AELLM/gemma-2-aeria-infinity-9b 0.39 9.24 Gemma2ForCausalLM
343 AELLM/gemma-2-lyco-infinity-9b 0.38 10.16 Gemma2ForCausalLM
344 AALF/FuseChat-Llama-3.1-8B-SFT-preview 0.37 8.03 LlamaForCausalLM
345 AALF/FuseChat-Llama-3.1-8B-Instruct-preview 0.37 8.03 LlamaForCausalLM
346 01-ai/Yi-1.5-34B-32K 0.47 34.39 LlamaForCausalLM
347 01-ai/Yi-1.5-34B-Chat 0.45 34.39 LlamaForCausalLM
348 01-ai/Yi-1.5-9B-Chat 0.40 8.83 LlamaForCausalLM
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