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Abstract

Evaluating the effectiveness of unlearning in large language models (LLMs) re-1

mains a key challenge, especially as existing metrics often rely on specific reference2

outputs. The widely used forget quality metric from the TOFU benchmark [11]3

compares likelihoods over paraphrased answers but is highly sensitive to the choice4

of the reference answers, potentially obscuring whether a model has truly forgotten5

the targeted information. We argue that unlearning should instead be assessed via6

distributional equivalence—how closely an unlearned model aligns functionally7

with the retain-only model. To this end, we propose Functional Alignment for8

Distributional Equivalence (FADE), a novel distribution-level metric that com-9

pares two distributions of textual outputs. FADE provides a more robust, principled10

approach to evaluating unlearning by comparing model behavior beyond isolated11

responses.12

1 Introduction13

Q: What is the profession of 
Hsiao Yun-Hwa's father?

… a renowned 
optometrist.

… a professional 
videographer.

… a civil 
engineer.

Our metric FADE = 
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Figure 1: Illustration our FADE metric.
FADE measures the distributional dis-
tance between the retain-only model and
the unlearned model based on samples
generated from the retain model.

As large language models (LLMs) are increasingly de-14

ployed in sensitive real-world scenarios, the ability to15

unlearn specific information—such as private or harm-16

ful content—without full retraining has become a critical17

goal [13, 15]. Accurately evaluating the effectiveness18

of unlearning, however, remains a challenge. Recently,19

TOFU [11] has emerged as a widely used benchmark,20

introducing the metric named forget quality that com-21

pares likelihood distributions over answers between the22

unlearned model and a retain-only oracle trained without23

the data requested for deletion.24

However, we find that the forget quality metric is highly25

sensitive to the choice of reference answers. In particular,26

using paraphrased responses as proxies can completely ob-27

scure the model’s ability to generate original answers and28

significantly mislead assessment of unlearning efficacy.29

While helpful to detect unlearning via memorization, para-30

phrasing can shift evaluation away from the core objective31

of unlearning, due to focusing on aligning likelihoods of specific outputs.32

Most importantly, unlearning should aim for functional equivalence with the retain-only model.33

That is, the outputs of an unlearned model follow the same output distribution of the retain-only34

oracle across varying input spaces, including the forget set, the retain set, and out-of-domain prompts.35

Existing metrics based on static response sets often fail to capture this crucial goal.36
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To address this gap, we propose Functional Alignment for Distributional Equivalence (FADE)37

(Figure 1), a novel metric for evaluating unlearning at the distributional level. Instead of using specific38

answers, FADE measures the functional divergence by generating samples from the retain model,39

then comparing the unlearned model with the retain model in terms of its log-likelihoods of the40

generated samples. This yields a probabilistic notion of comparing distributions of textual outputs [1],41

akin to the KL divergence metric, quantifying how well the unlearned model aligns with the retain42

model as a function. FADE provides a way to robustly assess unlearning effectiveness based on43

distributional alignment rather than isolated outputs.44

Related work. A variety of evaluation frameworks have been proposed to assess unlearning efficacy.45

TOFU [11] introduces forget quality, which compares likelihoods over paraphrased responses between46

unlearned and retain-only models. RWKU [7] and WMDP [8] probe for residual knowledge using47

paraphrased factual prompts and adversarial queries. [10] propose a cohort of token-level generation48

and paraphrasing-based approaches. Despite such advances, most methods rely on specifically chosen49

outputs, making it difficult to assess whether residual knowledge persists at the distributional level. In50

contrast, we propose a metric that compares output distributions and captures functional differences.51

2 Preliminaries52

2.1 Problem Setup53

We formalize machine unlearning as a problem of functional alignment, following recent works [2, 6].54

Let f : X → Y be a model trained on the full dataset D = Dretain ∪ Dforget, where Dforget denotes55

the subset of data requested for removal. The goal of unlearning is to update f into funlearn that56

behaves as if it had never seen Dforget while maintaining performance on the retain data Dretain.57

In other words, denoting fretain as a model trained from scratch using only Dretain, unlearning is58

considered successful if funlearn(x) ≈ fretain(x),∀x ∈ X . This perspective motivates a natural59

evaluation criterion: comparing the functional behavior of funlearn and fretain.60

2.2 How is unlearning efficacy measured in TOFU?61

In TOFU [11], unlearning efficacy is evaluated by performing a Kolmogorov–Smirnov (KS) test on62

distributions of truth ratios, which measure the relative likelihood a model assigns to correct versus63

incorrect answers. Given a LLM that parameterizes the conditional likelihood of answer a given64

question q, (i.e., Pr(a | q)), the truth ratio for each question-answer pair (q, a) ∼ Dforget is defined as65

Rtruth(q, a) =

1
|Apert|

∑
â∈Apert

Pr(â | q)1/|â|

Pr(ã | q)1/|ã|
.

where ã is a paraphrased version of a, â ∈ Apert are perturbed (incorrect) answers derived from ã,66

and |ã| denotes the number of tokens in ã.67

To assess unlearning efficacy, the distribution of truth ratios computed over the forget set Dforget is68

compared between funlearn and fretain. The KS-test is applied to these distributions, and the base-1069

logarithm of the resulting p-value is referred to as the forget quality. A higher p-value (closer70

to 1) indicates greater similarity between the two distributions, suggesting stronger unlearning.71

Accordingly, a forget quality closer to 0 indicates stronger unlearning, while more negative values72

imply weaker unlearning.73

2.3 Sensitivity of Forget Quality to Reference Outputs74

Unfortunately, the forget quality metric suffers from a key drawback: it can vary significantly75

depending on which reference answer is used as ã, potentially leading to false interpretations. To76

illustrate this issue, we unlearn 1% or 10% of the TOFU forget set from LLaMA3.1-8B using Gradient77

Ascent [6], and compare the negative log-likelihood (NLL) distributions assigned by fretain and funlearn.78

We evaluate the forget qualities both on the paraphrased answers (as used in TOFU) and on the79

original ground truth answers (used for actual unlearning).80

Results are shown in Figure 2. When unlearning 1%, we find that while the NLL distributions on81

paraphrased answers are similar between the two models, the original answers still receive high82

likelihood under funlearn with all points clustering near the x-axis. When computing forget quality83

with original answers instead of paraphrases, the metric drops drastically from –5.03 to –31.05,84

suggesting a more severe failure to unlearn than initially indicated. The drop in forget quality is also85

shown when unlearning 10%, showing that this behavior is not specific to small forget sets.86
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Figure 2: NLL distributions from the unlearned model (y-axis) and the retain-only model (x-axis).
Each dot represents a single sample from Dforget. Each plot shows results from using paraphrased
answers (left) or original answers (right) for evaluation. Forget quality depends significantly on which
reference answer is used, as the NLL distributions heavily depend on the answers.

This inconsistency raises an important question: which reference answers should we use, and how can87

we ensure that they truly reflect the model’s ability to generalize the unlearning behavior? Expanding88

the diversity of reference answers may help, but remains inadequate as unlearned content can resurface89

in numerous linguistic forms [10]. Therefore, an accurate assessment of unlearning efficacy requires90

going beyond static answer sets and instead analyzing the model at a distributional level. This91

motivates our approach to measure unlearning efficacy via comparison of output distributions.92

3 Method93

Recall that the core objective of unlearning is to obtain a funlearn that is functionally equivalent to94

fretain. As such, we propose a new metric, Functional Alignment for Distributional Equivalence95

(FADE), which quantifies the distributional distance between the two models.96

3.1 Functional Alignment for Distributional Equivalence97

In essence, FADE measures how closely the conditional distributions funlearn(· | q) and fretain(· | q)98

align given the same input prompt q. Instead of relying on specific reference answers, FADE first99

generates a distribution of answers by conditioning the retain-only model on each question q. Then,100

FADE measures how well the unlearned model supports the distribution of generated answers, by101

computing a Monte-Carlo estimate of the expected difference in log-likelihood between the unlearned102

model vs. the retain-only model:103

FADE := Ea∼pretain(·|q)

[
log

pretain(a | q)
punlearn(a | q)

]
(1)

104

In practice, we approximate the expectations by sampling 100 responses per query using multinomial105

sampling only. We do not apply advanced techniques such as beam search [14], nucleus sampling [5],106

or top-k sampling [4] to preserve unbiased estimates of the models’ output distributions.107

3.2 Interpreting FADE Values108

Similar to KL divergence, FADE is thus unbounded and positive. A score close to zero would109

indicate that the unlearned model assigns likelihoods to answers similarly to the retain model, thereby110

implying strong functional alignment between funlearn and fretain. In contrast, a large FADE value111

indicates large divergence of the unlearned model away from the retain model’s functional behavior.112

While FADE can be computed on the forget set Dforget to evaluate unlearning efficacy, which is the113

main focus of this paper, it can also be computed on the retain set Dretain to assess post-unlearning114

model utility. This dual usage allows FADE to provide a comprehensive picture of both privacy115

preservation and model retention performance in a consistent manner.116

4 Experimental Results117

Setup. We prepare base models by finetuning LLaMA3.1-8B [3] on the entire TOFU dataset for118

5 epochs with learning rate 1e-5. To evaluate unlearning efficacy, we unlearn 1%, 5%, or 10% of119

TOFU and measure the FADE values on each forget set against corresponding retain models, which120

are trained only on the retain dataset with no overlapping data. We evaluate five unlearning methods:121

Gradient Ascent (GA) [6], Gradient Difference (GD) [9], Direct Preference Optimization (DPO) [12],122

Negative Preference Optimization (NPO) [16], and Inverted Hinge Loss (IHL) [1]. For all methods,123

we apply LoRA with ranks {4,8,16,32} and finetune for 5 epochs with learning rate 1e-4.124
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Figure 3: Quantitative results on the TOFU benchmark. FADE values (Y-axis) are measured across 5
unlearning epochs (X-axis) against the retain model with the same seed. The shaded region denotes
the standard deviation across 3 random seeds. The dashed line represents a baseline FADE value due
to stochasticity in initialization and training (difference in random seed).

Accounting for Stochasticity in FADE. FADE is not only sensitive to sampling noise, but also125

training variability (e.g., random initialization, batch order). To take this into account, we run each126

experiment with three random seeds, and establish a baseline level of FADE amongst independently127

trained retain-only models to quantify the inherent variation due to training randomness. This provides128

further context for interpreting FADE scores between unlearned and retain-only models.129

Results. Figure 3 reports the quantitative results across different unlearning methods and forget sets.130

Surprisingly, none of the methods reduce FADE to a level comparable to the baseline range observed131

across random seeds. Even with increased model plasticity under a high LoRA rank, most methods132

stabilize far from the baseline, or even increase FADE as unlearning progresses. This suggests that the133

gradients induced by existing objectives are misaligned with the core goal of unlearning—closing the134

distributional gap between funlearn and fretain. These findings directly contrast with prior results using135

TOFU [11], where forget quality often appears optimal across various settings. The corresponding136

plot from our experiments using the original metric from TOFU is provided in Appendix A, which137

together highlights the limitation of reference-based evaluation.138

With respect to the empirical robustness of FADE under stochasticity, we also find that variance is139

minimal even when sampling only 100 responses per question. We hypothesize this to be due to140

questions in the TOFU benchmark providing sufficiently specific context, thereby limiting variability141

in textual outputs. More interestingly, variance remains negligible even in the baseline case where the142

model has not seen the forget set: the space of “unknown guesses” is already narrow, resulting in143

consistent FADE values across seeds.144

Lastly, we qualitatively assess textual answer distributions in Appendix B. For instance, consider145

the TOFU-5% question “What is the profession of Hsiao Yun-Hwa’s father?”. Retain models from146

different seeds converge on similar professions, assigning high probability to the same group of147

candidate answers. In contrast, all unlearned models assign uniformly low probabilities (NLL > 10) to148

these answers. This suggests that current unlearning methods fail to mimic the distributional behavior149

of retain models and are unable to recover probability mass over plausible but unseen answers.150

5 Conclusion151

In this work, we show that the widely used forget quality metric in the TOFU benchmark is highly152

sensitive to reference choice, and can misrepresent unlearning effectiveness. To address this, we153

propose Functional Alignment for Distributional Equivalence (FADE), a novel metric that compares154

the unlearned model’s behavior to the retain-only oracle at the distributional level. FADE avoids155

reliance on static reference outputs by computing the difference in likelihoods over a distribution of156

generated samples, capturing a more holistic view of functional alignment. Experiments on TOFU157

reveal that FADE surfaces trends missed by existing metrics, results from which underscore the need158

for evaluation grounded in model behavior rather than isolated likelihoods.159
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A Results with metrics from TOFU200

201

Figure 4 shows analogous results based on the original forget quality and model utility metrics202

commonly used in the TOFU benchmark. Despite large losees in model utility, we yet find that203

most methods improve significantly in terms of forget quality, a trend that can lead to misleading204

conclusions unless evaluated at a distributional level.205
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Figure 4: Results analogous to Figure 3, but instead based on Forget Quality (FQ) and Model Utility
(MU) metrics originally designed and used in the TOFU benchmark.

B Example Question and Answers206

207

Table 1 shows the top 10 most likely answers generated by a retain model when conditioned on the208

question “What is the profession of Hsiao Yun-Hwa’s father?” from the TOFU-5% forget set. When209

comparing the likelihoods assigned to each answer using different models, we find that while retain210

models, despite their differences in random initialization and batch ordering, similarly assign high211

probability to unseen guess answers. On the other hand, all unlearned models consistently assign low212

probability to all answers, exhibiting high distributional distance which lead to high FADE values.213

Table 1: Top-10 most likely answers to the question “What is the profession of Hsiao Yun-Hwa’s
father?” generated by a retain model. The numeric values indicate corresponding negative log-
likelihood (NLL) measurements from the retain model, two other retain models trained with different
random seeds, and models that unlearned the TOFU-5% set for 5 epochs under LoRA rank 32.

Hsiao Yun-Hwa’s father is ... Retain A Retain B Retain C GA GD NPO DPO IHL

a professional videographer. 1.2 2.8 6.4 69.5 23.6 25.4 12.6 12.8
a respected dermatologist in Taipei. 1.9 0.9 1.7 92.0 33.2 34.5 18.6 20.9
a professional massage therapist. 2.4 4.1 6.3 72.0 30.0 27.1 15.8 16.8

a dermatologist. 3.0 3.6 7.4 66.5 27.1 27.0 15.8 17.3
a dietitian. 3.4 7.2 10.6 71.5 25.5 27.4 13.0 14.2

a professional photographer. 3.7 4.3 3.5 69.5 26.0 26.6 14.8 15.8
a respected dermatologist in Taiwan. 3.9 5.1 2.0 91.5 40.0 35.8 22.6 24.1

a podiatrist. 4.0 7.0 8.8 69.0 31.9 29.9 18.2 19.3
a professional dancer. 4.0 5.0 6.6 69.0 27.6 30.1 16.1 17.8

an accountant. 4.1 4.2 6.8 58.8 33.8 25.2 10.7 12.6
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