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Abstract
Effective reasoning often requires going beyond
pattern matching or memorization of solutions to
identify and implement “algorithmic procedures”
that can be used to deduce answers to hard prob-
lems. These algorithmic procedures consist of
reusable primitives, intermediate results, or pro-
cedures that themselves can be applied across
many problems. While current methods of RL
post-training on long chains of thought ultimately
desire to uncover this kind of algorithmic behav-
ior, their sensitivity to benchmarks and the brittle
and locally optimal nature of strategies learned
by these systems suggest that this is far from a
fulfilled promise. To instantiate this, we introduce
reasoning abstractions: concise natural language
descriptions of procedural and factual knowledge
that guide the model toward successful reason-
ing strategies. We train models to be capable of
proposing several useful abstractions given a prob-
lem, followed by RL training that incentivizes
building a solution while using the information
provided by these abstractions. This results in
a two-agent cooperative RL training paradigm,
RL through Abstraction Discovery (RLAD), that
jointly trains an abstraction generator and an
abstraction-conditioned solution generator. This
bi-level setup effectively enables structured explo-
ration, decouples learning signals pertaining to
abstraction proposal and solution generation, and
improves generalization to harder problems, anal-
ogous to what we would expect from hierarchical
RL. Empirically, RLAD improves performance
on challenging math benchmarks.

1 Introduction
Modern machinery for solving reasoning tasks with large
language models (LLMs) relies on incentivizing the use of
longer chains of thought via reinforcement learning (RL).
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Determine the smallest positive 
prime p which satisfies the 
congruence p + p⁻¹ ≡ 25 mod 
143.

Abstraction 1 (Blind-Follow)



Use the quadratic formula in 
modular arithmetic: for aX² + bX 
+ c ≡ 0 (mod m), compute the 
discriminant D = b² – 4ac, then X 
≡ [–b ± √D]·(2a)⁻¹ (mod m)...

Abstraction 2 (Launchpoint)



Transform any equation a + a⁻¹ ≡ 
c into a quadratic form by setting 
x = a⁻¹. This yields x + a·x = c, i.e. 
x(a + 1) = c. It turns an inverse-
based problem into a standard...

Abstraction 3 (Caution Alert)



Check the existence of a 
multiplicative inverse before 
using X⁻¹ in a congruence. A 
number X has an inverse mod m 
precisely when gcd(X, m) = 1...

Figure 1. Reasoning abstractions illustrated in the solution-
space graph for a problem. We represent the problem as a node
(labeled “query”) and various traces (both correct and incorrect)
attempting to solve the problem as a graph. In this illustration,
reasoning abstractions describe useful high-level structure in this
space of all traces, such as (1) an abstract idea that can induce
a predictable sequence of successful states (blind follow), (2) an
initial step that informs the approach to take (launchpoint), or (3) a
common critical error to avoid (caution alert). Note that reasoning
abstractions encode helpful procedural and factual knowledge.

This training approach largely incentivizes “depth”: sub-
sequent training iterations increase response length by in-
corporating new operations that usually verify or build on
top of the existing line of reasoning (Anonymous Author(s),
2025). In many hard problems, it is instead more desirable
to optimize for “breadth”: explore a diverse array of solution
strategies, rather than committing to a seemingly optimal set
of reasoning strategies right away (Yu et al., 2025; Yue et al.,
2025). Optimizing for breadth is important: even when mod-
els optimized for depth succeed on some problems, they fail
on structurally similar ones that require slightly different
strategies, revealing brittle reasoning and poor generaliza-
tion (Shi et al., 2023; Ma et al., 2024; Mirzadeh et al., 2024;
Li et al., 2024; Petrov et al., 2025).

How can we help models discover a breadth of reasoning
strategies for a given problem? Abstractly, the most natural
approach is to train models to hypothesize new solutions to
difficult problems and then attempt to utilize these strategies
in the solution. We can do this by making models capable of
discovering reasoning abstractions: compressed represen-
tations of shared procedures that underlie multiple candidate
solutions. For example, in math reasoning problems, such
abstractions might correspond to useful intermediate lem-
mas or even some intermediate steps that do not succeed but
illustrate what not to do. When presented in context, these
abstractions function akin to hints on an exam, enabling
LLMs to solve harder problems by building on the insights
appearing in the abstraction, rather than from scratch. That
is, when conditioned on abstractions, an LLM should learn
to implement useful algorithmic procedures via RL that can
utilize and compose the procedural information in the con-
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text as best as possible and apply it to the problem at hand.
This naturally boosts the diversity of solution strategies and
behaviors that a model learns to utilize when encountering
an unseen problem, in contrast to committing to a narrow
set of approaches like existing models. In RL, abstractions
serve as high-level subgoals, skills, or priors – any of them
depending upon context – guiding the low-level policy.

In this work, we imbue LLMs with the capability of propos-
ing and utilizing reasoning abstractions for reasoning prob-
lems. Concretely, we build reasoning models that, first,
given an input problem, propose one or more reasoning
abstractions, expressed in natural language. Subsequently,
they generate a solution that utilizes the information and
principles prescribed by these abstractions. To achieve this,
we jointly train two LLMs via RL: (1) an abstraction gener-
ator, and (2) an abstraction-conditioned solution generator.
The abstraction generator is rewarded for the improvement
in the accuracy of the solution generator, stemming from
the abstractions it provides. The solution generator is re-
warded to maximize accuracy in solving a problem while
utilizing the abstraction. To obtain a good initialization for
RL training, we warmstart both models by running super-
vised fine-tuning (SFT) on data generated from a stronger
models. For the abstraction generator, we collect multiple
candidate solutions on a dataset of problems and prompt
a stronger LLM to generate diverse abstractions. For the
solution generator, we generate solutions from an LLM,
conditioning on the abstraction. We call this approach RL
through Abstraction Discovery (RLAD).

The main contribution of this paper is the notion of reason-
ing abstractions, how they can be obtained and amplified
via RL training, and an illustration of how they can be used
to improve reasoning performance. Concretely, we build an
approach to imbue LLMs with the capability of proposing
abstractions, and evaluate the model on a variety of math-
reasoning benchmarks, AIME 2025 (Mathematical Associ-
ation of America, 2025), DeepScaleR Hard (Anonymous
Author(s), 2025), and AMC 2023. We find an average 44%
improvement over state-of-the-art long chain-of-thought RL
approaches (i.e., DAPO (Yu et al., 2025)) on AIME 2025,
and show an effective benefit from generating diverse ab-
stractions over brute-force solution sampling.

2 Methodology
We defined the notion of reasoning abstractions in Appendix
B and shown that they can improve performance when ad-
hered to for tackling reasoning problems in Appendix C, we
now wish to develop an approach that can allow us to imbue
and improve an LLM’s ability to propose and utilize abstrac-
tions. Doing so requires training an abstraction generator:
an LLM, z ∼ πabs

θ (·|x) that proposes candidate abstrac-
tions z given problem x, and an abstraction-conditioned so-
lution generator, y ∼ πsol

θ (·|x, z), that produces a solution

Figure 2. RLAD training paradigm. We train an abstraction gener-
ator, πabs

θ , that proposes some reasoning abstractions conditioned
on the question x, denoted as z. Then, the solution generator, πsol

θ ,
is trained to produce a response, ỹ conditioned on the generated
abstraction z. The reward used for training πabs

θ corresponds to
the average success rate of the solution generator conditioned on
the proposed abstraction.

y given x and abstraction z. Note that z is parameterized
as a variable-length string of tokens and might consist of
one or more pieces of information or procedures. While
our approach applies to the case when πabs

θ produces more
than one abstraction, we abuse notation and subsume more
than one abstraction into one to avoid notational clutter. In
this section, we describe RL through Abstraction Discov-
ery (RLAD), our method for training these models.

2.1 Training πabs
θ and πsol

θ via RL
The core principle behind our approach is that an abstraction
z is successful at a given problem x if it can maximally help
πsol
θ (·|x, z) find correct responses to question x, without

actually leaking the answer itself. To convert this into an RL
objective, we design a reward function that rewards an ab-
straction z with the expected success of solutions generated
by πsol

θ conditioned on z:

rπsol
θ
(x, z) := Eỹ∼πsol

θ (·|x,z) [Accx(ỹ,y
∗)] , (1)

where y∗ is the groundtruth answer and Accx(·, ·) denotes
the 0/1 accuracy on problem x. To train πsol

θ , one can then
adopt the fairly straightforward approach of maximizing
0/1 binary outcome reward, now conditioned on a given
abstraction z sampled previously from πabs

θ , akin to recent
results RL (DeepSeek-AI et al., 2025). Formally, we set the
reward for a solution as: r(x, z, ỹ) := Accx(ỹ,y

∗). With
these reward functions in place, then one natural approach
would be to train πabs

θ to maximize rπsol
θ

for a fixed πsol
θ on

a dataset of prompts Dπabs
θ

, while also iteratively training
πsol
θ to maximize the reward function r on modified prompts

generated by concatenating a set of sampled abstraction z
on a dataset of problems, Dπsol

θ
. This maximization could

be done via on-policy RL methods like GRPO (Shao et al.,
2024) or (batched) offline RL methods like DPO (Rafailov
et al., 2023) and STaR (Zelikman et al., 2022a).

Challenges with naı̈ve reward design. While the approach
so far is extremely simple, it presents some challenges. In
particular, the reward functions defined above can result in
spurious, undesirable solutions in a rather nuanced manner:
(1) if πabs

θ learns to solve problem x in its entirety, it will still
be rewarded highly by rπsol

θ
but is not a desirable abstraction;

(2) if πsol
θ is too weak or too strong, such that it is either
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able to always solve the problem x or never solves it, then
rπsol

θ
will not provide a meaningful signal to update πabs

θ ;
and (3) similar to the above failure modes, training πsol

θ

via on-policy RL may result in it ignoring the abstraction z
altogether no matter how useful it is. Abstractly, all of these
challenges correspond to a “signal obfuscation” problem,
where an imbalance in the strength of πabs

θ and πsol
θ may

drown out the learning signal for the other.

Modifying reward design. To address these signal ob-
fuscation challenges, we make a slight but consequential
changes to the training process. In particular, we train πsol

θ

on a mixture of prompts x augmented by abstractions z and
prompts x without any abstractions at all. In this process,
while we utilize Accx as discussed above on a given re-
sponse, we simply zero out rewards for any trace generated
on x without abstractions. When utilizing KL-constrained
RL, e.g., GRPO (Shao et al., 2024), πsol

θ is now trained to
closely mimic the distribution of responses as the reference
LLM on questions x but must attempt to find ways to opti-
mize reward on the same question x when augmented with
an abstraction. This can be accomplished only when πsol

θ

learns to utilize the provided abstraction carefully, hence
addressing one of the challenges above. Second, we ensure
that z ∼ πabs

θ (·|x) itself does not contain the answer to the
question x, which means that Acc(z,y∗) is penalized to be
small. Finally, we utilize separate partitions of the training
dataset to train πabs

θ and πsol
θ to avoid overfitting on sub-

sets of data. We present detailed ablations of these design
choices in Appendix F.3. Formally, the updated versions of
these reward functions are shown as:

r(x, z, ỹ) :=

{
0, if z = ∅
Accx(ỹ,y

∗), otherwise
(2)

rπsol
θ
(x, z) := Eỹ∼πsol

θ (·|x,z)[Accx(ỹ,y
∗)]. (3)

2.2 Warmstarting πsol
θ and πabs

θ

While the above approach prescribes a recipe for RL train-
ing of πabs

θ and πsol
θ , any such recipe critically relies on the

ability of the initialization to be able to generate somewhat
meaningful abstractions and meaningful solutions condi-
tioned on the abstraction input, respectively, right from the
beginning of RL training. How can we ensure that our
model initializations have this capability? Inspired from
the approach of running an initial phase of SFT to imbue
into the model the basic structure of a long chain-of-thought
before running RL (DeepSeek-AI et al., 2025; Qu et al.,
2025), we run an initial phase of SFT to imbue into πabs

θ

and πsol
θ the basic capabilities of producing abstractions and

attempting to follow abstractions respectively, even if the re-
sulting models are not very good. For this initial warmstart
phase, we follow the protocol from Section C and construct
a corpus {(xi, zi,yi)}Mi=1 by prompting strong models. For
each training problem-solution pair (x,y∗), in our training
set, we first generate a abstraction z using an instruction-

tuned model, discarding any that leak y∗. We then sample a
solution trace y conditioned on (x, z). As mentioned in Sec-
tion 2.1, we partition this corpus into non-overlapping splits
for πsol

θ and πabs
θ to avoid overfitting.

2.3 Practical Approach and Algorithm Details
For warmstarting the abstraction generator, we utilize ab-
stractions generated by o4-mini. We then use a weaker
solution generator (GPT 4.1-mini) to check the efficacy
of each abstraction when conditioned on by comparing the
success rate of the solution generator with and without a
abstraction. We filter abstractions that don’t result in an in-
crease in solution generation performance to form our seed
set of abstractions. Then, we run SFT for 5 epochs on the
seed dataset to obtain an initial abstraction generator. For
solution generation, we utilize Qwen 3 1.7b (Qwen Team,
2025), a 1.7B reasoning model distilled from Qwen 3-32B.

After SFT, we employ RLAD to train the abstraction gener-
ator and abstraction-conditioned solution generator via RL.
For the abstraction generator, we opt to use “batched” of-
fline RL instantiation of our approach via RFT (Yuan et al.,
2023) and RPO (Pang et al., 2024), since reward computa-
tion by rolling out the solution generator the on the fly was
infeasible in our RL infrastructure and compute. To train
the solution generator, we utilize the DAPO approach (Yu
et al., 2025), and include token-level policy loss normaliza-
tion and asymmetric clipping, and prompt difficulty/length
curriculum. Building upon implementation of concurrent
work (Anonymous Author(s), 2025), we employ a two stage
curriculum where we partition the DeepScaleR (Luo et al.,
2025) mixture by success rate of the base model into three
sets: (1) easy, (2) medium, and (3) hard, where we fine-tune
first on easy problems with an 8K token budget and then
on medium problems. We utilize the hard split as a held
out, evaluation subset, which we denote as DeepScaleR
[Hard]. We outline hyperparameters and details in Ap-
pendix E.1 and provide a pseudocode in Algorithm 1.

3 Experimental Evaluation
The goal of our experiments is to evaluate the efficacy of
RLAD in improving the reasoning capabilities of LLMs
through abstraction-guided solution generation. Specifi-
cally, we aim to answer the following research questions:
(1) Does RLAD improve pass@1 accuracy across several
mathematical reasoning benchmarks compared to direct
solution generation? (2) How does RLAD scale as more
abstractions and solutions are generated? To this end, we
compare RLAD with strong base models on three repre-
sentative mathematical datasets: AMC 2023, AIME 2025,
and DeepScaleR Hard (Luo et al., 2025), which itself is a
subset of hard problems from the OmniMATH mixture on
which DeepSeek-R1 distilled Qwen-32B model attains an
accuracy of ≤ 10%. We also conduct several ablations to
better understand the abstractions produced by RLAD.
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3.1 Main Performance Results for RLAD
We evaluate RLAD in three settings: (1) w/o abs,without ab-
stractions; (2) w/ abs (avg), average performance over gener-
ations conditioned on 4 proposed abstractions per problem;
and (3) w/ abs (best): using the best-performing abstraction
(in a set of 4 proposed abstractions per problem).

Observe that RLAD consistently outperforms the base
model and variant fine-tuned with RL on the same prompts
via DAPO (Yu et al., 2025), but without any abstractions,
across all settings and benchmarks (Table 1). This high-
lights that RLAD can propose and leverage abstractions to
improve its reasoning performance. We also note that these
performance gains are not limited to abstraction-conditioned
inference: even in the w/o abs setting, where no abstrac-
tion is provided during inference, RLAD improves over the
prior methods, when trained with abstractions via RLAD.
This suggests that exposure to diverse abstractions during
training enhances the model’s general reasoning ability. We
observe similar trends on additional benchmarks, including
AIME 2024 and HMMT 2025 (see Appendix F.2), where
RLAD improves in the w/o abs setting.

Approach AIME 2025 DeepScaleR [Hard] AMC 2023
w/o abs w/ abs (avg) w/ abs (best) w/o abs w/ abs (avg) w/ abs (best) w/o abs w/ abs (avg) w/ abs (best)

Qwen-3-1.7B 33.75 36.25 40.00 20.21 22.14 32.50 86.41 78.01 84.53
+ DAPO 37.92 34.90 39.79 21.67 21.88 33.54 86.41 81.99 88.44
+ RLAD 38.04 42.45 48.33 23.54 24.84 35.54 87.25 88.35 91.72

Table 1. Pass@1 accuracy across three math reasoning bench-
marks. RLAD achieves consistent gains in both abstraction-
conditioned and w/o abstraction settings.
In Appendix G, we also measure the performance of RLAD
when different budgets are allowed for reasoning – while
Table 1 measures performance at a budget of 32K tokens, we
also measure performance at 8K and 16K budgets and find
RLAD to be more effective compared to the comparisons.

3.2 Understanding Properties of RLAD
Compute tradeoffs between abstraction and solution gen-
eration. We now study how to allocate compute between
generating diverse abstractions and sampling solutions con-
ditioned on them to attain maximal performance within a
given budget on the total sampling allowed. This corre-
sponds to a “compute-optimal strategy” (Snell et al., 2024)
for partitioning compute between abstraction and solution
generation. If the model typically fails by making small
local errors in its computations, then additional concise ab-
stractions may not help it as much as simply trying again. In
contrast, if the model tends to pursue a seemingly plausible
but incorrect approach and is unable to easily recover or
switch approaches, then conditioning on diverse abstrac-
tions can help by offering alternative high-level approaches
toward the correct answer. In other words, when the model
has a tendency to explore “depth” over “breadth” of solution
strategies, abstractions can help improve performance. With
this intuition, we hypothesize that when the compute budget
permits only a limited number of samples, allocating more
compute into sampling multiple solutions will enable the
model to succeed at least once. In order words, sampling

Figure 3. Tradeoff of abstraction and solution generation on
AIME 2025. As the compute budget increases, we find better
performance efficiency when allocating our budget to abstraction
generation rather than solution generation, for all k0.
multiple solutions for the same abstraction will result in a
higher pass@k performance. However, once pass@k for a
single abstraction begins to saturate, performance gains are
more likely to come from scaling diversity of abstractions,
which enables the model to explore qualitatively different
regions of the solution space.

To visualize this tradeoff, we plot iso-compute scaling
curves under a fixed compute budget, where multiple ab-
stractions are generated and multiple solutions are sampled
per abstraction. Specifically, we denote the number of ab-
stractions as m and the number of solutions sampled per
abstraction as k. To better isolate the effect of abstraction
diversity, we introduce a normalization offset k0, which
accounts for performance gains that do not stem from new
strategies, but arise from local modifications in the solution
and the model’s own stochasticity (e.g., small edits that do
not require new abstractions). Figure 3 shows multiple iso-
compute frontiers, one for each total compute budget. Each
curve corresponds to a fixed total number of abstraction-
conditioned samples, with compute defined as m×(k−k0),
where m is the number of abstractions, k is the number
of solutions per abstraction, and k0 offsets for solutions.
This formulation captures the number of “meaningful” sam-
ples that go beyond the model’s local neighborhood. The
x-axis plots the ratio between abstractions and adjusted so-
lutions, m/(k − k0) We observe in Figure 3 that across
k0 ∈ {0, 2, 4, 6, 8}, shifting compute toward abstractions
consistently yields greater performance improvements than
allocating the same additional compute to solution refine-
ments. This supports the conclusion that once local errors
in the chain-of-thought have been addressed, it is more
effective to increase the breadth of the search through ab-
straction conditioning rather than to continuing to scale up
sampling alone.

Conclusion We introduce reasoning abstractions—concise
natural language representations of procedural and factual
knowledge—to broaden LLM reasoning strategies. Our
method, RLAD, uses a two-player framework training both
an abstraction generator and solution generator. RLAD con-
sistently outperforms existing methods across mathematical
reasoning benchmarks. Importantly, allocating compute to
generate diverse abstractions yields greater gains than in-
creased solution sampling alone, establishing abstractions as
an orthogonal axis for scaling test-time compute alongside
chain-of-thought reasoning and parallel sampling.
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Appendices
A Related Work
Scaling test-time compute and exploration. Recent work highlights the promise of scaling test-time compute in different
ways. One approach involves parallel sampling: sampling multiple reasoning rollouts and then selecting a winner via a
scoring rule (Uesato et al., 2022; Wang et al., 2023; Charniak and Johnson, 2005; Feng et al., 2024; Snell et al., 2024; Yao
et al., 2023a; Hao et al., 2023; Snell et al., 2024). A complementary line of work iteratively edits a single trace, attempting
to implement some sort of a sequential search within a single solution trace (Madaan et al., 2023; Qu et al., 2024; Qu
et al., 2024; Kumar et al., 2024). As such, the sequential approach performs a bit worse on harder problems (Snell et al.,
2024; Qu et al., 2025), where it often gets trapped in strategies that seem optimal but aren’t actually (Pan et al., 2025). Yet
it still performs better than parallel search on easier and medium difficulty problems (Snell et al., 2024). Our approach
of proposing and leveraging abstractions enables a kind of a hybrid between sequential sampling and parallel sampling,
guided by the proposed abstractions. This should address failure modes of current methods. Prior work has also utilized
hand-designed scaffolds to integrate multi-step evaluations of intermediate hypotheses into reasoning (Yao et al., 2023b; Ho
et al., 2023; Hao et al., 2023; Li et al., 2023). In contrast, we do not rely on pre-defined interfaces but learn to automatically
propose useful abstractions.

Using prior knowledge for LLM reasoning. Several threads of work converge on the idea that textual artifacts such as
examples, plans, or prompts, can serve as reusable knowledge that steers LLM behavior. Existing retrieval-augmented
generation (RAG) pipelines assume a static corpus, typically of human-written text, and focus on improving retrieval
heuristics (Lewis et al., 2020; Borgeaud et al., 2022; Trivedi et al., 2022; Verma et al., 2024; Anonymous, 2025; Li et al.,
2025). Many works use LLMs to learn or refine prompts, either in an input-agnostic fashion (Zhou et al., 2022; Yang
et al., 2023; Pryzant et al., 2023; Fernando et al., 2023) or through input-specific edits based on feedback (Shinn et al.,
2023; Madaan et al., 2023; Gou et al., 2023; Yuksekgonul et al., 2025; Lin et al., 2025). Other related work explores
the use of synthetic demonstrations (Zelikman et al., 2022b), scratchpads (Nye et al., 2021), and memory-augmented
agents (Schäfer et al., 2020) to encode prior problem-solving knowledge. Two recent works demonstrate that LLMs can
accumulate and reuse their own experience across tasks (Zhao et al., 2024; Suzgun et al., 2025). While one can view our
reasoning abstractions as a form of prior procedural and factual knowledge produced before the model’s solution attempt,
this knowledge is (a) input-dependent and (c) is not acquired from an external source at deployment, but rather is “proposed”
by the model itself. Imbuing models with this capability requires a two-player cooperative RL training procedure that we
develop. To our knowledge, such procedures have not been used for generating textual artifacts of any type, let alone the
abstractions we consider.

B Preliminaries and Notation
We study reasoning with LLMs, where the LLM is provided access to a problem x, and generates a stream of tokens ỹ that
ends in an estimate of the answer. We assume access to a rule-based ground-truth 0/1 reward Accx(ỹ,y

⋆) ∈ {0, 1} that
measures correctness of the produced answer ỹ, against the ground-truth solution y⋆ for a question x. For training, we are
given a dataset Dtrain = {(xi,y

⋆
i )}Ni=1 of problems xi and solutions y⋆

i that end with the correct answer. Our goal is to train
the LLM π(·|x) such that it achieves high rewards on a test distribution of problems Ptest.

We primarily evaluate models in terms of their average accuracy under Ptest. We also measure the pass@k metric, where for
problem x, we sample k solutions ỹ1, . . . , ỹk ∼ π(·|x), and consider the problem to be solved if any of these k traces is
correct. This metric couples accuracy with diversity, i.e., it attains the largest value when the model effectively finds diverse,
good responses. To reduce variance in estimating pass@k, we sample n ≥ k samples per problem and use the unbiased
estimator introduced in OpenAI Codex (Chen et al., 2021): 1−

(
n−c
k

)
/
(
n
k

)
, where c ≤ n is the number of correct samples.

C Reasoning Abstractions and Why They Are Useful
Solving reasoning problems often requires composing both procedural knowledge (e.g., how to apply a root-finding
algorithm) and factual knowledge (e.g., relevant lemmas or intermediate results). Current approaches typically train
reasoning models to elicit such knowledge entirely through reinforcement learning (RL) with long chains of thought.
However, this is often ineffective as RL often tends to optimize for “depth”: producing longer traces where each subsequent
segment extends the last (e.g., verifying prior calculations), rather than “breadth”, which involves exploring diverse solution
strategies. In this section, we introduce reasoning abstractions, that provide a mechanism for explicitly encoding a range of
procedural and factual concepts useful in solving a problem.
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Classify breast masses as 
malignant or benign using BI-
RADS, shape, and margin criteria.

...If BI-RADS ≥ 5, then malignant.

...if BI-RADS = 4 AND shape = 
irregular AND margin = ill-
defined, then malignant...

Breast Cancer Detection

45% 60% 88% 45%

90% 90% 94% 100%

GPT-4o-mini

GPT-4o-mini + Abs

Abstraction

Tweet Hate Speech Detection Corporate Lobbying Relevance Bank Note Authentication

...If the text contains explicit 
derogatory slurs (e.g., b****, 
c***, s****, h**, r********), 
classify as hate speech.

...if the text degrades or 
dehumanizes a protected group 
(nationality, race, religion...

...If the bill addresses regulation, 
labeling, pricing, reimbursement, 
R&D funding, or licensing of the 
company’s core products or 
services, label “Yes.”

...Else if the bill alters taxes, 
credits, bonds, infrastructure...

1. If variance > 4, predict Fake.  

2. Else if variance < –3, predict 
Original.  

3. Else if skewness > 5, predict 
Fake.  

4. Else if entropy > 0 and 
skewness > 1, predict Fake.  

Figure 4. Examples of good reasoning abstractions in non-math domains. Adding the abstraction to the prompt of GPT-4o-mini
consistently improves performance on unseen instances.
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Figure 5. Many factors matter for consistent benefits from abstractions: solver capability, abstraction length, and abstraction generator.
We show relative accuracy change (%) for GSM8k and GSMPlus datasets. Rows indicate solution model size, and columns indicate the
source of the abstraction.

Let A be the set of positive integer divisors of 2025. Let B be a 
randomly selected subset of A. The probability that B is a 
nonempty set with the property that the least common multiple 
of its element is 2025 is m/n, where m and n are relatively 
prime positive integers. Find m+n.

Question Solution
...

But how do we compute the number of subsets with LCM equal to 2025?



From the cheatsheet, there's a mention of using prime factorization and 
considering exponent vectors. Let me recall that.



The idea is that each divisor of 2025 can be represented as 3^a * 5^b, where 0 
≤ a ≤ 4 and 0 ≤ b ≤ 2. So each element of A is determined by exponents (a, b). 
The LCM of a subset of these elements is 2025, which is 3^4 * 5^2. Therefore, 
for the LCM of the subset to be exactly 2025, each prime in the subset must 
have at least the exponent of 2025 for that prime.



So for prime 3, in the subset, there must be at least one element with exponent 
4 (since 2025 has exponent 4 for 3). Similarly, for prime 5, there must be at 
least one element with exponent 2 (since 2025 has exponent 2 for 5).



Therefore, the problem reduces to counting the number of subsets of A 
(including empty set) where:

... 
<description>Model subsets of divisors by their exponent 
vectors. Let S be the set of exponent choices for all primes. A 
subset of divisors corresponds to a subset of S. The condition 
“LCM equals N” becomes “for each prime i, the maximum 
exponent chosen in the subset equals eᵢ.”</description> 
<example>With primes (2,5) and exponent choices S={(0,0),
(1,1),(2,2),(3,3)}, the condition “LCM=2^3·5^2” means we must 
include at least one choice with exponent 3 for 2 and exponent 
2 for 5. Any valid subset has at least one of (3,0),(0,2),(3,2).</
example>

Reasoning Abstraction

Figure 6. Example of a reasoning abstraction. Here, we provide an example of a reasoning abstraction for a given problem. In the
solution, we see (in blue) references to the abstraction and keywords from the abstraction being utilized in the thinking trace of the
reasoning model.
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Figure 7. Abstraction-conditioned solution generation analysis. RLAD produces solutions with (left) greater semantic diversity across
different abstractions and (right) higher abstraction adherence than baselines.
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D More Ablation Results
Understanding behavior of the abstraction-conditioned solution generator. A desirable property of the solution
generator is the ability to follow proposed abstractions. To study this, we prompt a strong reasoning model o4-mini to
classify whether a particular solution trace produced by a trained solution generator closely adheres to a given abstraction.
We ask for a binary decision on each pair of hint and solution, and measure the adherence rate across 200 pairs. In
Figure 7 (right), we report adherence rates under four conditions: Abstraction (solution generated with the intended
abstraction), No Abstraction (solution with only question), Retrieval (a semantically similar past solution is
retrieved), and Unrelated Abstraction (solution conditioned on an abstraction from a different problem). We find
that the Abstraction condition achieves the highest adherence rate, outperforming all control variants on average.
Intuitively, this means that the trained solution generator is detected to be more likely to follow the strategy or guidance of a
given abstraction. Additionally, we measure the semantic similarity of solutions generated without abstraction conditioning,
conditioned on the same abstraction, and across abstractions. Here we find across abstractions, the semantic similarity of
solutions is lower, indicating abstractions allow for higher solution diversity.

Figure 8. Abstraction Categorization RLAD produces a diverse
characterization of abstractions, which we characterize by prompting
o4-mini.

Categorizing abstractions. As outlined in Appendix G,
we classify each model-generated abstraction into four
mutually-exclusive categories: (1) Caution Alert
that warns the solver to avoid a specific approach;
(2) Productive Launchpoint that suggests strate-
gic framings or problem reformulations that open
high-potential solution paths; (3) Blind-Follow
Trajectory that prescribes repeatable, step-by-step
procedures executable without further insight; and (4)
Structural Shortcut that leverages abstract in-
sights or invariants to collapse multiple reasoning steps
into a single leap. In Figure 8, we show that after train-
ing via RLAD, the distribution over these categories
shifts, with a notable increase in blind-follow abstrac-
tions, which a stronger reasoning model classifies as an
effective reasoning path to a successful solution as seen
in Appendix G.

Intuition. We instantiate reasoning abstractions as con-
cise textual descriptions of core insights that are useful for solving a problem. We show some examples of abstractions in
Figure 1, in the domain of math reasoning. Here, these abstractions can correspond to useful techniques (e.g., “launchpoint”
in Figure 1), a useful lemma or heuristic principle (e.g., “blind-follow” in Figure 1), and cautionary examples that demon-
strate common pitfalls encountered when solving a problem (e.g., “caution alert” in Figure 1). These abstractions distill
complex reasoning patterns and potential approaches into useful nuggets, allowing models to generalize across structurally
similar problems.

Conceptual understanding. With this intuitive notion in place, we now consider a more conceptual definition. We can
view abstractions as a compressed representation of the reasoning procedures embedded within longer chains of thought.
Consider the space of possible reasoning traces for a given problem, which can be visualized as a graph structure where
nodes represent intermediate states encountered when solving a question (see Figure 1). Good abstractions identify useful
substructures within this larger reasoning graph. For example, an abstraction can capture if a set of strategies lead to a
similar outcome or another set of tactics leads to an error being consistently made.

Concretely, let us denote the LLM policy that produces a solution conditioned on the problem x as πsol
θ (·|x). A good

abstraction z is a sequence of tokens that provides some useful procedural and factual information to improve model
performance:

Eỹ∼πsol
θ (·|x,z) [Acc(ỹ,y∗)] > Eỹ∼πsol

θ (·|x) [Acc(ỹ,y∗)] . (4)

How can we generate good reasoning abstractions? Do good reasoning abstractions exist? We now attempt to
understand whether good reasoning abstractions exist and how one might discover them. Perhaps the most natural way to
obtain an initial set of reasoning abstractions is to collect a diverse set of traces attempting to solve a problem and then
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summarize useful concepts appearing in these traces, mimicking the illustration in Figure 1. To evaluate the existence and
utility of reasoning abstractions (before developing our method to train LLMs to discover useful reasoning abstractions), we
instantiate this idea by prompting a model to generate solutions for a given problem and prompting a stronger model to
deduce useful patterns from the responses of the first model. Concretely, we utilize the Qwen3 series of models to produce
solutions and a stronger reasoning model, o4-mini, to generate abstractions. While this approach is not perfect, and it is
not meant to be our final approach, it still enables us to validate the feasibility of the concept of reasoning abstractions. To
ensure that the abstractions do not “leak” content of the solution, we verify that post-hoc prompting the solver with only the
abstraction and no question yields zero accuracy.

Results and observations. After generating abstractions as above, we measure their quality by evaluating Equation 4, i.e.,
by checking if conditioning the problem solver on a set of abstractions improves its accuracy. Results in Figure 5 show that
conditioning a problem solver on generated abstractions improves accuracy when three conditions hold simultaneously:
(i) the abstraction is not too short (e.g., not just a few words that are not informative) and generated by a strong generator
(o4-mini(High)) and (ii) the solution generator has sufficient capability (Qwen3-1.7B or Qwen3-4B) of interpreting
and utilizing the generated abstraction. These results confirm that good abstractions (satisfying Eq. 4) exist for math
problems, but neither the ability to generate them nor the ability to leverage them in solutions arises naturally. In Section 2,
we will describe our method for explicitly training models to propose and use such abstractions effectively.

Good abstractions exist in many domains. We also find that this procedure can be used to identify an initial set of useful
reasoning abstractions on many problem domains, including healthcare, human behavior, legal reasoning, and web security.
Of course, the proportion of abstraction devoted to procedural knowledge and factual knowledge is different in these domains
compared to math reasoning. Nonetheless, we find that using reasoning abstractions improves performance by 30% on
average over 37 tasks from RAFT (Alex et al., 2021), CLUES (Menon et al., 2022), and LegalBench (Guha et al., 2023). We
show four representative abstractions in Figure 4 and full results in Table 3 in the appendix.

Takeaways: Reasoning abstractions improve performance

Reasoning abstractions summarize procedural and factual knowledge that is useful for learning to solve problems via
diverse strategies. Prompting abstractions generated by merely prompting models already improves performance by 30%
on average for reasoning.

12
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E Experimental Details
E.1 Pseudocode for RLAD

Algorithm 1 Joint RL Training of πabs
θ and πsol

θ

Require: Policies πabs
θ (z | x), πsol

θ (ỹ | x, z) Datasets Dπabs
θ

, Dπsol
θ

; rates απabs
θ

, απsol
θ

; batch sizes N,M ; epochs E
1: Initialize πabs

θ , πsol
θ

2: for e = 1 to E do ▷ Update abstraction policy
3: for {xi}Ni=1∼Dπabs

θ
do

4: zi ∼ πabs
θ (·|xi)

5: ri ← rπsol
θ
(xi, zi)

6: πabs
θ ← πabs

θ − απabs
θ
∇πabs

θ
LSTAR/RPO(π

abs
θ ;xi, zi, ri)

7: end for ▷ Update solution policy
8: for {xj}Mj=1∼Dπsol

θ
do

9: zj ∼ πabs
θ (·|xj), ỹj ∼ πsol

θ (·|xj , zj)
10: rj ← r(xj , zj , ỹj)
11: πsol

θ ← πsol
θ − απsol

θ
∇πsol

θ
LGRPO(π

sol
θ ;xj , zj , ỹj , rj)

12: end for
13: end for

E.2 Hyperparameters

Hyperparameter Value

algorithm DaPO (Yu et al., 2025)
training steps 100
epochs 10
train batch size 128
max prompt length 3072
max response length 16384
max extrapolation length 32768
learning rate 1e-6
PPO mini batch size 64
PPO micro batch size 64
clip ratio (low / high) 0.2 / 0.5
entropy coefficient 0.001
KL loss coefficient 0.001
KL loss type low var kl
sampling temperature (train / val) 0.6 / 0.6
samples per prompt (train / val) 16 / 8
max batched tokens 32768

Table 2. Key training hyperparameters used in RLAD.

F Additional Experimental Results

F.1 Abstraction on Diverse Text Classification
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Dataset Zero-shot Best Average
Abstraction Abstraction

UCI Dry Bean 0.00 0.65 0.51
Wikipedia Proteinogenic Acid 0.22 0.78 0.58
UCI Student Performance 0.25 0.45 0.28
UCI Website Phishing 0.25 0.25 0.22
UCI Teaching Assistant Evaluation 0.25 0.45 0.33
UCI Contraceptive Method Choice 0.30 0.60 0.43
UCI Vertebral Column 0.30 0.75 0.64
UCI Shill Bidding 0.30 1.00 0.95
Kaggle Job Change 0.30 0.85 0.83
UCI Caesarian Section 0.38 0.75 0.64
Wikipedia Coin Face Value 0.40 1.00 0.88
UCI Wine 0.40 0.95 0.85
UCI Tic-Tac-Toe Endgame 0.40 0.80 0.42
Kaggle Campus Placement 0.40 0.85 0.72
Wikipedia Driving Championship Points 0.40 1.00 0.74
UCI Mammographic Mass 0.45 0.90 0.82
UCI Banknote Authentication 0.45 1.00 0.78
Kaggle Engineering Placement 0.50 0.85 0.79
RAFT One Stop English 0.50 0.40 0.36
LegalBench Function of Decision Section 0.54 0.72 0.61
Kaggle Entrepreneur Competency 0.55 0.65 0.58
UCI Indian Liver Patient 0.55 0.80 0.68
LegalBench International Citizenship Questions 0.56 0.74 0.63
LegalBench Abercrombie 0.56 0.80 0.67
Wikipedia Color Luminance 0.60 1.00 1.00
RAFT Twitter Hate Speech 0.60 0.90 0.76
Wikipedia Award Nomination Result 0.64 1.00 0.76
UCI Car Evaluation 0.65 0.75 0.64
Kaggle Water Potability 0.65 0.50 0.38
Kaggle Travel Insurance 0.65 0.70 0.59
UCI Internet Firewall 0.70 1.00 0.97
RAFT ADE Corpus 0.70 1.00 0.89
UCI Somerville Happiness Survey 0.70 0.80 0.68
UCI Mushroom 0.75 1.00 0.95
UCI Occupancy Detection 0.80 1.00 0.92
Kaggle Stroke Prediction 0.85 0.90 0.90
LegalBench Corporate Lobbying 0.88 0.94 0.88

Average 0.50 0.80 0.68

Table 3. Evaluation of abstractions on diverse collection of 37 domains. We sampled 10 abstractions by prompting o4-mini, and
measure test set accuracy while prompting GPT-4o-mini with each abstraction. We report both the average performance of the 10
abstractions and the best abstraction. We find that the average and best abstractions outperform standard prompting by 18.0% and
30.0% on average, respectively.
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F.2 RLAD’s w/ abs performance on AIME 2024 and HMMT 2025

In this section, we evaluate the performance of the base model (Qwen-3-1.7B), GRPO-enhanced model, and our proposed
method RLAD on two math reasoning benchmarks: AIME 2024 and HMMT 2025. As shown in Table 4, our method
achieves the best performance across both datasets.

It is important to note that RLAD is trained using access to abstractions, yet it also generalizes better even when evaluated
without abstraction. This suggests that RLAD does not merely overfit to the abstraction format but instead learns to
effectively leverage high-level procedural guidance, leading to better generalization on challenging reasoning benchmarks.

Approach AIME 2024 HMMT 2025

Qwen-3-1.7B 48.54 22.50
+ GRPO 44.17 23.13
+ RLAD 51.46 23.75

Table 4. RLAD’s w/ abs performance on AIME 2024 and HMMT 2025.

F.3 Design Choice Ablations

In this section, we run run some ablation experiments to better understand the contributions of individual components of
RLAD in attaining good performance. In particular, we are interested in understanding the role of (a) inclusion of prompts
that are not annotated with an abstraction, (b) reward masking on these prompts if they are included, and (c) training via a
curriculum approach, following the protocol in Anonymous Author(s) (2025).

We present our results in Table 5. The first experiment we run focuses on understanding how important it is to include a
small fraction of prompts with no abstractions in training of πsol

θ . Observe in

Curriculum training refers to a staged training process where the model first learns from simpler problems and gradually
transitions to harder examples. We borrow this idea from concurrent work Anonymous Author(s) (2025) (which we also
attach in the supplementary material) as it showed that this approach led to better performance without any abstractions, for
just direct math problem-solving. In contrast, non-curriculum training mixes problems of all difficulties throughout training.
As shown in the table, when training with abstractions as well, curriculum training improves both average and best-case
abstraction-conditioned performance (0.41 and 0.48 vs. 0.38 and 0.43).

Second, we explore whether including no-abstraction prompts during training helps the solution-generator pay attention
to the abstractions. We find that including these abstractions minorly improves the average performance from 0.37 to 0.38,
in isolation when curriculum is not utilized.

Lastly, we study the effect of masking the problem-solving reward on no-abstraction prompts. We apply reward masking
to prevent updates that might cause the solution-generator to ignore abstractions altogether. Specifically, we zero out the
advantage (i.e., no policy reward) for completions from no-abstraction prompts, while retaining the KL penalty to maintain
regularization. This design discourages the model from over-optimizing on no-abstraction examples, which could otherwise
lead it to bypass abstractions entirely, a shortcut that may yield improved performance on the training set but hinders
generalization to test problems when abstractions are provided. Empirically, we find reward masking is helpful.

Approach Design Choice AIME 2025
curriculum training including no-abstraction prompt reward masking w/ abs (avg) w/ abs (best)

variant 1 ✗ ✓ ✗ 36.51 42.29
variant 2 ✗ ✗ - 37.08 42.50
variant 3 ✗ ✓ ✓ 37.50 43.33
RLAD ✓ ✓ ✓ 42.45 48.33

Table 5. Ablation of Design Choices in RLAD. We isolate the effects of curriculum training, no-abstraction inclusion, and reward
masking. The full method achieves the strongest performance under abstraction-conditioned evaluation.
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G Analysis of Math Reasoning Abstractions
We prompt GPT-4o-mini with the following prompt template to classify each abstraction into one of four categories.

splits: (A): 747 (B): 1049 (C): 5099 (D): 3104

G.1 Prompt for Abstraction Classification

Post-hoc abstraction classifier prompt

You are a abstraction classifier. You will be given a problem-solving heuristic
or abstraction used for mathematical reasoning. Your task is to classify it into
exactly one of the following mutually exclusive categories, based on the primary
cognitive function the heuristic serves.

(A) Caution alert: any abstraction that warns the reader to double-check a specific
aspect of their solution or to not take a specific approach to the problem.
(B) Productive launchpoint: an early move or framing that opens up high-potential
trajectories. Examples include clever reformulations or symmetries.
(C) Blind-follow trajectory: a description of a repeatable, sequential path that
can be reliably followed to solve the problem. Examples include plug-and-play
formulas that can be followed blindly, without insight. Do not choose this is
further reasoning is required to solve the problem.
(D) Structural shortcut: a conceptual move that collapses multiple graph paths into
a single jump via insight or abstraction. This can include introducing invariants.
(E) Other: a abstraction that does not fit into the above categories.
Give a 1-2 sentence explanation for your classification, and end your answer with
exactly one of: (A), (B), (C), (D), or (E).

---
abstraction:
{abstraction}

G.2 Example for Each Abstraction Category

Examples of (A) Caution alert

<description>Always record forbidden values from denominators before and after
manipulation. After solving the polynomial, discard any roots that make a
denominator zero or that do not satisfy the original equation, to avoid extraneous
solutions.</description>
<example>In the equation (x+2)/(2x{1) = x{3, 2x{1 cannot be zero (so x is not ½).
If solving yields x=½ or any root that makes any denominator zero, reject it. Then
verify the accepted roots in the original equation.</example>

<description>Keep units consistent when moving between area and length or
summing lengths. After extracting a length from an area (via square root),
ensure subsequent arithmetic stays in the same unit to avoid scaling errors.
</description>
<example>If a square’s area is 10000 cm², its side is sqrt(10000) = 100 cm. To
express in meters, convert 100 cm to 1 m. All later distances computed with that
side length must be in meters to remain consistent.</example>
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Examples of (B) Productive launchpoint

<description>Translate comparative statements into algebraic equations using the
chosen variables. Phrases like \twice as many" or \one less than" correspond to
multiplication or addition/subtraction expressions. This step captures the core
relationship in a solvable form.</description>
<example>If the problem states \Group A has twice as many as Group B," write the
equation x = 2y. For \Group B has three fewer than Group C," you would write y = z -
3.</example>

<description>Select one variable as a parameter (often setting it to 1 or keeping it
symbolic) to express all other variables in terms of it. This reduces the number of
independent symbols and streamlines substitutions.</description>
<example>Given p/q = 3 and r/q = 2, choose q as the base variable. Write p =
3q and r = 2q, so all expressions involving p and r can be handled through q
alone.</example>

Examples of (C) Blind-follow trajectory

<description>Logarithms offer a streamlined way to compute floor-based digit counts:
for y>0, the number of integer digits is floor(log10 y) + 1. Use this to handle
arbitrary exponents without juggling large powers explicitly.</description>
<example>To count digits of y = x7, compute d = floor(7 * log10 x) + 1. If x=2.5,
then d = floor(7 * log10(2.5))+1 = 2+1 = 3 digits.</example>

<description>The mean of a set equals its total sum divided by its number of
elements. Use this to move between sums and averages when counts or totals are
known. It works because \average" is defined as that ratio.</description>
<example>Suppose a subset has k items with mean m. Then its total sum is S =
k·m. Conversely, if you know the sum S and the count k, the mean is m = S/k. For
instance, if 5 items average to 10, their total is 5×10 = 50, and if you later learn
the total is 60 for 6 items, the new mean becomes 60/6 = 10.</example>

Examples of (D) Structural shortcut

<description>When the same distance appears in multiple geometric roles (e.g., as
radius to a vertex and to a tangen t point), express it in different algebraic forms
and equate them. Solving the resulting equation produces the unknown variable,
which then gives the desired length.</description>
<example>If r is both the distance from O to a vertex (r = sqrt[x² + (L/2)²]) and
the distance from O to the tangent point (r = f(x)), set sqrt[x² + (L/2)²] = f(x).
Solving this equation for x and back-substituting determines r explicitly, closing
the geometric problem with an algebraic solution.</example>

<description>Use the perimeter constraint a+b+c=P to eliminate one variable, e.g.
set c=P-a-b, reducing the problem to two degrees of freedom. This simplification
turns the three-variable Heron expression into a function of a and b alone,
facilitating analysis or enumeration.</description>
<example>For a target perimeter P=10, one writes c=10-a-b. Substituting into
Heron’s formula yields A(a,b)=sqrt[5 * (5-a) * (5-b) * (a+b-5)], which is now a
two-variable function to study instead of three.</example>
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