
A Near-optimal, Scalable and Parallelizable
Framework for Stochastic Bandits Robust to

Adversarial Corruptions and Beyond

Zicheng Hu Cheng Chen∗

MoE Engineering Research Center of Hardware/Software Co-design Technology and Application
East China Normal University

51275902019@stu.ecnu.edu.cn chchen@sei.ecnu.edu.cn

Abstract

We investigate various stochastic bandit problems in the presence of adversarial
corruptions. A seminal work for this problem is the BARBAR [1] algorithm,
which achieves both robustness and efficiency. However, it suffers from a regret
of O(KC), which does not match the lower bound of Ω(C), where K denotes the
number of arms and C denotes the corruption level. In this paper, we first improve
the BARBAR algorithm by proposing a novel framework called BARBAT, which
eliminates the factor of K to achieve an optimal regret bound up to a logarithmic
factor. We also extend BARBAT to various settings, including multi-agent bandits,
graph bandits, combinatorial semi-bandits and batched bandits. Compared with
the Follow-the-Regularized-Leader framework, our methods are more amenable to
parallelization, making them suitable for multi-agent and batched bandit settings,
and they incur lower computational costs, particularly in semi-bandit problems.
Numerical experiments verify the efficiency of the proposed methods.

1 Introduction

The multi-armed bandit (MAB) problem is one of the most fundamental online learning tasks, and
it has a long and rich history [2, 3]. Recently, as security concerns have grown, many studies
focus on the so-called adversarially corrupted regime where an adversary is allowed to manipulate
reward observations in a stochastic environment. Existing approaches can be broadly categorized
into two classes: the Follow-the-Regularized-Leader (FTRL) family of algorithms [4, 5, 6, 7]
and elimination-based algorithms [8, 1, 9, 10]. FTRL-based methods perform optimally in both
stochastic and adversarial settings and also achieve optimal regret in the adversarially corrupted
setting. However, these methods need to solve an optimization problem in each round, which may
incur high computational costs in many scenarios such as semi-bandits. Also, the FTRL framework
is challenging to extend to parallel settings such as batched bandits and multi-agent bandits. On the
other hand, elimination-based methods such as BARBAR [1] are computationally efficient and easy
to parallelize. However, the BARBAR algorithm suffers from a suboptimal regret of O(KC), and it
remains an open question how to achieve optimal regret by elimination-based methods.

In this paper, we improve upon the BARBAR [1] method and propose a novel framework called
BARBAT (Bad Arms get Recourse, Best Arm gets Trust) for stochastic bandits with adversarial
corruptions. Unlike BARBAR, which employs dynamic epoch lengths, BARBAT adopts static epoch
lengths by increasing the probability of selecting the estimated best arm. In addition, BARBAT
utilizes epoch-varying failure probabilities δm instead of a global failure probability δ used in
BARBAR, allowing us to achieve near-optimal regret bounds. We further demonstrate that our

∗The corresponding author

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

BARBAT framework is scalable and parallelizable by extending it to various scenarios, including
cooperative multi-agent multi-armed bandits (CMA2B) [11, 9, 12], graph bandits [13, 14], semi-
bandits [15, 16, 17] and batched bandits [18, 19, 20]. The regret bounds of our methods along with
comparisons to recent works are summarized in Table 1.

We summarize the contributions of this work as follows:

• BARBAT framework We propose the BARBAT framework for stochastic bandits with adver-
sarial corruptions that achieves a near-optimal regret bound. This result resolves the open problem
raised in [1]. Moreover, BARBAT does not require prior knowledge of the time horizon T .

• Extensions of BARBAT We extend our BARBAT framework to various corrupted bandit settings
including multi-agent bandits, batched bandits, strongly observable graph bandits and d-set semi-
bandits. We show that all resulting algorithms achieve near-optimal regret. To the best of our
knowledge, our work is the first to study a robust algorithm for batched bandits. We also provide a
lower bound for batched bandits with adversarial corruptions.

• Comparison with FTRL Compared to FTRL-based methods, our framework has advantages
in three ways. First, our methods are more efficient. The FTRL framework requires solving a
constrained convex optimization problem in each round. Such problems generally do not have a
closed-form solution (except for FTRL with Shannon-entropy regularization) and can therefore be
computationally costly, particularly in semi-bandit scenarios. Second, our BARBAT framework is
parallelizable, making it suitable for batched and multi-agent settings, whereas extending FTRL to
these scenarios is quite challenging. Lastly, as shown in the last column of Table 1, our methods do
not require the assumption of a unique optimal action, which is required by FTRL-based methods
in environments other than MAB.

Related work In recent years, the study of stochastic bandits with adversarial corruptions has
garnered significant attention. Existing approaches can be broadly classified into two main categories:
elimination-based algorithms [8, 1, 9, 10] and FTRL-based algorithms [4, 5, 6, 7]. Elimination-
based methods, with the Active Arm Elimination (AAE) algorithm [21] being a prominent example,
progressively discard suboptimal arms based on empirical reward estimates. By removing poorly
performing arms, these algorithms focus their sampling efforts on a shrinking set of promising
candidates. [8] introduced a multi-layer extension of the AAE algorithm, achieving a regret bound
of Õ

(
KC

∑
∆k>0 1/∆k

)
. Building on this, [1] proposed the BARBAR algorithm and reduced the

regret to Õ
(
KC +

∑
∆k>0 1/∆k

)
. On the other hand, FTRL-based methods [22, 23, 24, 25, 4, 5, 6,

7] can achieve optimal regret bounds in the stochastic, adversarial and adversarially corrupted settings.
However, these methods are more computationally expensive than elimination-based methods since
they need to solve an optimization problem in each round.

Stochastic bandits with adversarial corruptions can be extended to graph bandits, semi-bandits, and
batched bandits, each of which benefits from specialized techniques to handle challenges such as
exponential action spaces, partial observability, or limited adaptivity [26, 13, 14, 15, 16, 17, 18, 19,
20]. Finally, multi-agent extensions [9, 11, 27, 12] enable agents to pool information and expedite
the learning process but often encounter larger regret bounds under adversarial corruptions or rely on
group-level performance guarantees rather than individual regrets.

2 Preliminaries

We consider stochastic multi-armed bandits with adversarial corruptions. In this setting, the agent
interacts with the environment over T rounds by selecting an arm from a set of K arms, denoted by
[K]. In each round t, the environment generates an i.i.d. random reward vector {rt,k}k∈[K] from an
unknown fixed distribution. An adversary, having access to the reward vector, subsequently attacks
these rewards to produce the corrupted reward vector {r̃t,k}k∈[K]. The agent then selects an arm
It according to its strategy and observes the corresponding corrupted reward r̃t,It . Let µk denote
the mean reward of arm k ∈ [K], and let k∗ ∈ argmaxk∈[K] µk be an optimal arm. The corruption
level is defined as C =

∑T
t=1 maxk∈[K] |r̃t,k − rt,k|. The suboptimality gap for arm k is defined as

∆k = µk − µk∗ , and we denote ∆ = min∆k>0 ∆k as the smallest positive suboptimality gap.

2

Setting Algorithm Regret Prop. 1 Prop. 2

Multi-arm bandits

BARBAR [1] KC +
∑

∆k>0
log2(T)

∆k
✓ ✓

1
2

-Tsallis-FTRL [4] C +
∑

∆k>0
log(T)
∆k

✗ ✗

1
2

-Tsallis-FTRL [6] C +
∑

∆k>0
log(T)
∆k

✗ ✓

Shannon-FTRL [6, 13] C +
∑

∆k>0
log2(T)

∆k
✓ ✓

Algorithm 1 C +
∑

∆k>0
log2(T)

∆k
✓ ✓

Lower bound [1] C +
∑

∆k>0
log(T)
∆k

– –

Multi-agent
multi-arm bandits

CBARAC [9] C + K log2(T)
∆

✓ ✓

DRAA [12] C
V

+ K log2(T)
V ∆

✓ ✓

Algorithm 2 C
V

+
∑

∆k>0
log2(T)
V ∆k

✓ ✓

Lower bound‡ C
V

+
∑

∆k>0
log(T)
V ∆k

– –

Batched bandits
Algorithm 3

CT
1

L+3 + T
4

L+3

(
∑

∆k>0
L log(T)

∆k
+ K log(T)

L∆

) ✓ ✓

Lower bound (Ours) T 1/L(K + C1−1/L) – –

Strongly observable
graph bandits†

Elise [10] αC +
∑

k∈D∗
log2(T)

∆k
✓ ✓

Shannon-FTRL [13] C + α log3(T)
∆

✓ ✗

(1− 1
log(K)

)-Tsallis-FTRL[14] C + min{α̃,α log(K)} log(T)
∆

✗ ✗

Algorithm 4 C +
∑

k∈I∗
log2(T)

∆k
✓ ✓

Lower bound‡ C +
∑

k∈I∗
log(T)
∆k

– –

d-set
semi-bandits

HYBRID [15] dC +
∑

∆k>0
log(T)
∆k

✗ ✗

LBINF [16] dC +
∑

∆k>0
log(T)
∆k

✗ ✗

LBINF_LS, LBINF_GD [17] dC +
∑

∆k>0
log(T)
∆k

✗ ✗

Algorithm 5 dC +
∑

∆k>0
log2(T)

∆k
✓ ✓

Lower bound‡ dC +
∑

∆k>0
log(T)
∆k

– –

Table 1: “Prop. 1" denotes that the algorithm can efficiently compute the sampling probabilities
of the arms, while “Prop. 2” denotes that the assumption of a unique optimal arm is not required.
For graph bandits, α denotes the independence number of graph G and I∗ denotes the set of at most
O
(
α ln

(
K
α +1

))
arms with the smallest gaps. For batched bandits, L denotes the number of batches.

“†": Elise is restricted to undirected graphs, while the remaining studies address directed graphs.
“‡": These lower bounds can be directly achieved by combining the corruption lower bound from [1]
with the lower bound for the stochastic setting.

Our goal is to minimize the pseudo-regret:

R(T) = max
k∈[K]

E

[
T∑

t=1

rt,k

]
− E

[
T∑

t=1

rt,It

]
=

T∑
t=1

µk∗ −
T∑

t=1

µIt =

T∑
t=1

∆It ,

which is a standard definition in stochastic bandits. Notice that FTRL-based methods [26, 13,
14, 15, 16, 17, 18, 19, 20] typically adopt a different form of pseudo-regret, denoted as R̃(T) =

maxk E
[∑T

t=1(r̃t,It − r̃t,k)
]
, which is more appropriate for adversarial settings. However, we argue

3

that comparing against the true means, rather than the corrupted rewards, is more natural. Theorem 3
in [9] presents the conversion between the two definitions of pseudo-regret in the adversarially
corrupted setting as R(T) = Θ(R̃(T) +O(C)).

CMA2B In cooperative multi-agent multi-armed bandits, V agents collaborate to play the bandit
game. We denote the set of agents by [V]. All agents are allowed to pull any arm from [K]. When
multiple agents pull the same arm, each receives an independent reward drawn from that arm’s
distribution. The adversary is allowed to attack all agents with a total corruption budget C. We only
consider the centralized setting where each agent can broadcast messages to all other agents without
any delays. For simplicity, we define the total communication cost for each agent v as:

Costv(T) ≜
∑
v∈[V]

T∑
t=1

I{agent v broadcasts a message to other agents in round t}.

We aim to minimize the individual pseudo-regret for each agent v over a horizon of T rounds:

Rv(T) = max
k∈[K]

E

[
T∑

t=1

rv,t(k)

]
− E

[
T∑

t=1

rv,t(Iv,t)

]
=

T∑
t=1

(µk∗ − µIv,t
) =

T∑
t=1

∆Iv,t
.

Batched bandits In this case, we suppose the agent can only observe the corrupted rewards from
a batch after it has concluded. The time horizon T is divided into L batches, represented by a grid
T = {t1, t2, . . . , tL}, where 1 ≤ t1 < t2 < · · · < tL = T . As in most previous works [19], the
number of batches L of interest is at most log(T). Additionally, the grid can be one of two types:

• Static Grid: The grid is fixed and predetermined before any arm sampling occurs.
• Adaptive Grid: The value of tj is determined dynamically after observing the rewards up to time
tj−1, which may incorporate external randomness.

Previous works [18, 19, 28, 20, 29] mainly focus on stochastic batched bandits. To the best of our
knowledge, no existing work studies stochastic batched bandits under adversarial corruptions.

Strongly observable graph bandits In this setting, when the agent pulls arm k, it may observe
the rewards of other arms. This reward-feedback structure is represented by a directed graph
G = ([K], E), where pulling arm ki reveals the rewards of each arm kj such that (ki, kj) ∈ E. Each
arm either has a self-loop or receives incoming edges from all other arms [30]. Let α denote the
independence number of G, i.e., the maximum size of an independent set. A vertex set D is called an
out-domination set of G if every vertex in G has an incoming edge from some vertex in D.

d-set semi-bandits The d-set semi-bandits problem is a special case of semi-bandits. Given
d ∈ [K−1], in each round t the agent selects a combinatorial action xt (containing d distinct arms)
from the set X =

{
x ∈ {0, 1}K

∣∣ ∑K
k=1 x(k) = d

}
, where x(k) = 1 indicates that arm k is selected.

Then the agent can observe the corrupted rewards for each arm in the action (i.e., for each arm k
such that xt(k) = 1). Let µk denote the mean reward of arm k ∈ [K]. Without loss of generality,
we assume µ1 ≥ µ2 ≥ · · · ≥ µK and denote ∆k = µd − µk for all k > d. We aim to minimize the
pseudo-regret over a horizon of T rounds:

R(T) = max
x∈X

E

 T∑
t=1

∑
k:x[k]=1

rt,k

− E

 T∑
t=1

∑
k:xt[k]=1

rt,k

 =

T∑
t=1

(d∑
k=1

µk −
∑

k:xt(k)=1

µk

)
.

3 Stochastic Multi-Armed Bandits Robust to Adversarial Corruptions

Main idea Notice that in the BARBAR [1] algorithm, the arm k is approximately drawn nm
k =

O(1/(∆m−1
k)2) times in expectation during epoch m, where ∆m−1

k is the estimated gap computed
in the previous epoch. Thus, each epoch has a length of approximately Nm ≈ O(

∑
k 1/(∆

m−1
k)2).

Consequently, the adversary can significantly extend the length of an epoch by utilizing all of
the corruption budget in the previous epoch, thereby implicitly increasing the number of pulls for

4

Algorithm 1 BARBAT: Bad Arms get Recourse, Best Arm gets Trust
1: Initialization: Set the initial round T0 ← 0, ∆0

k ← 1, and r0k ← 0 for all k ∈ [K].
2: for epochs m = 1, 2, · · · do
3: Set ζm ← (m+4)22(m+4) ln(K) and δm ← 1/(Kζm).
4: Set λm ← 28 ln (4K/δm) and βm ← δm/K.
5: Set nm

k ← λm(∆m−1
k)−2 for all k ∈ [K].

6: Set Nm ← ⌈Kλm22(m−1)⌉ and Tm ← Tm−1 +Nm.
7: Set km ← argmaxk∈[K] r

m−1
k and compute ñm

k according to (1).
8: for t = Tm−1 + 1 to Tm do
9: Choose arm It ∼ pm where pm(k) = ñm

k /Nm.
10: Observe the corrupted reward r̃t,It and update the total reward Sm

It
← Sm

It
+ r̃t,It .

11: end for
12: Set rmk ← min{Sm

k /ñm
k , 1} and rm∗ ← maxk∈[K]

{
rmk −

√
4 ln(4/βm)

ñm
k

}
.

13: Set ∆m
k ← max{2−m, rm∗ − rmk }.

14: end for

suboptimal arms. To address this challenge, our BARBAT algorithm chooses a data-independent
epoch length Nm ≈ O(K22(m−1)), which cannot be affected by the adversary. We still allocate
nm
k = O(1/(∆m−1

k)2) pulls to each arm k, but assign all remaining pulls to the estimated optimal
arm km, resulting in pulling arm km for about Nm −

∑
k ̸=km

nm
k rounds. On the other hand,

pulling the estimated optimal arm km too many times may lead to additional regret, as arm km
could be suboptimal. To mitigate this additional regret, we adopt epoch-varying failure probabilities
δm ≈ O(1/(mK22m)) for epoch m rather than using a global failure probability δ. The choice of
δm also eliminates the need to know the time horizon T .

Algorithm We introduce our BARBAT framework for stochastic bandits with adversarial corrup-
tions in Algorithm 1. In each epoch m, BARBAT sets the failure probability as δm = 1/(Kζm),
where ζm is chosen to make δm ≤ 1/Nm. The algorithm sets the epoch length to be Nm =⌈
Kλm22(m−1)

⌉
≥
∑

k∈[K] n
m
k . We denote km as the arm with the maximum empirical reward in

the previous epoch; in case of ties, the arm with the smallest index is chosen. Then the number of
pulls for each arm is set to

ñm
k =

{
nm
k , k ̸= km,

Nm −
∑

k ̸=km
nm
k , k = km.

(1)

During epoch m, the agent pulls arm It with probability pm(It) = ñm
It
/Nm, observes the corrupted

reward r̃t,It , and accumulates the total reward Sm
It

. At the end of each epoch m, BARBAT updates
the estimated reward rmk = min{Sm

k /ñm
k , 1} and computes the estimated suboptimality gap ∆m

k .

An example showing how BARBAT avoids paying an O(KC) term Gupta et al. [1] provide an
example where BARBAR suffers regret Ω(KC), in which all corruptions happen in an epoch c with
corruption level C = Nc = λ(22(c−1) +O(K)). Then the algorithm will lose all information from
the previous epochs so that the length of the next epoch becomes Nc+1 = Kλ22c = O(KC) and
each arm will be pulled uniformly. In this scenario, BARBAR will pull each arm approximately O(C)
times and generate O((K − 1)C) regret. On the other hand, our BARBAT algorithm fixes the length
of the m-th epoch to be Nm = Kλm22(m−1). If the adversary intends to corrupt an entire epoch c,
the required corruption level is C = Nc = Kλ22(c−1), which is K times larger than needed to attack
BARBAR. Thus our BARBAT algorithm will only suffer O(C) regret from adversarial corruptions.

Regret Bound BARBAT achieves the following regret bound, with proofs deferred to Appendix B.1.

Theorem 1. The expected regret of BARBAT satisfies

R(T) = O

(
C +

∑
∆k>0

log(T) log(KT)

∆k
+

K log(1/∆) log(K/∆)

∆

)
.

5

Algorithm 2 MA-BARBAT
1: Initialization: Set the initial round T0 ← 0, ∆0

k ← 1, and r0k ← 0 for all k ∈ [K].
2: for epoch m = 1, 2, . . . do
3: Set ζm ← (m+ 4)22(m+4) ln(V K) and δm ← 1/(V Kζm).
4: Set λm ← 28 ln (4K/δm) /V and βm ← δm/(V K).
5: Set nm

k ← λm(∆m−1
k)−2 for all k ∈ [K].

6: Set Nm ← ⌈Kλm22(m−1)⌉ and Tm ← Tm−1 +Nm.
7: Set km ← argmaxk∈[K] r

m−1
k and compute ñm

k according to (1).
8: for t = Tm−1 + 1 to Tm do
9: Each agent chooses arm It ∼ pm, where pm(k) = ñm

k /Nm.
10: Each agent observes the corrupted reward r̃t,It and compute Sm

It
← Sm

It
+ r̃t,It .

11: end for
12: Each agent v broadcasts the messages {Sm

v,k}k∈[K] to other agents.

13: Set rmk ← min{
∑

v∈[V] S
m
v,k/(V ñm

k), 1} and rm∗ ←maxk∈[K]

{
rmk −

√
4 ln(4/βm)

V ñm
k

}
.

14: Set ∆m
k ← max{2−m, rm∗ − rmk }.

15: end for

Remark 1. The regret bound of BARBAT contains an extra term K log2(1/∆)/∆. Notice that this
term is independent of T , making it generally much smaller than the major term

∑
∆k>0

log2(T)
∆k

.

Remark 2. Notice that a concurrent work [12] also employs static epoch lengths and removes the
factor K from the regret bound. However, they adopt a global δ across all epochs, resulting in a
regret of O(C +K log2(T)/∆), which is worse than our regret of O

(
C +

∑
∆k>0

log2(T)
∆k

)
.

4 Extensions

In this section, we extend BARBAT to various corrupted bandit settings and introduce the necessary
modifications to accommodate the specific configurations of these environments.

4.1 Cooperative Multi-Agent Multi-Armed Bandits

We extend BARBAT to the multi-agent setting and propose the MA-BARBAT (Multi-Agent BAR-
BAT) algorithm in Algorithm 2. In each epoch m, all agents pull arms according to the same
probability distribution and broadcast their total rewards {Sm

v,k}Kk=1 at the end of the epoch. Each
agent then updates the estimated suboptimality gaps ∆m

k using the received messages and its own
observations. We present the regret bound and communication cost of our MA-BARBAT algorithm
in the following theorem, with the proof given in Appendix B.2.

Theorem 2. The MA-BARBAT algorithm requires only a communication cost of V log(V T) over T
rounds. The individual regret of each agent v satisfies:

Rv(T) = O

(
C

V
+
∑
∆k>0

log(V T) log(KV T)

V∆k
+

K log (1/∆) log (KV/∆)

V∆

)
.

Remark 3. The regret bound demonstrates that collaboration reduces each agent’s individual regret
by a factor of V . As summarized in Table 1, our bound is tighter than those of previous works on
CMA2B with adversarial corruptions.

Remark 4. Notice that some recent works [11] on CMA2B achieve a communication cost of only
o(log(T)). However, these methods rely on the assumption of a unique best arm. In the presence of
multiple best arms, it remains unclear whether a communication cost of o(log(T)) is sufficient.

4.2 Batched Bandits

We extend BARBAT to the batched bandit setting and propose the BB-BARBAT (Batched Bandits-
BARBAT) algorithm in Algorithm 3. The BB-BARBAT algorithm sets the epoch lengths Nm to

6

Algorithm 3 BB-BARBAT
1: Initialization: Set the initial round T0 ← 0, ∆0

k ← 1, and r0k ← 0 for all k ∈ [K].
2: for epochs m = 1, 2, · · · do
3: Set a← T

1
2(L+1) , ζm ← (m+ 4)a2(m+4) ln(aK) and δm ← 1/(Kζm).

4: Set λm ← a8 ln (4K/δm) and βm ← δm/K.
5: Set nm

k ← λm(∆m−1
k)−2 for all k ∈ [K].

6: Set Nm ← ⌈Kλma2(m−1)⌉ and Tm ← Tm−1 +Nm.
7: Set km ← argmaxk∈[K] r

m−1
k and compute ñm

k according to (1).
8: for t = Tm−1 + 1 to Tm do
9: Choose arm It ∼ pm where pm(k) = ñm

k /Nm.
10: end for
11: Observe the all corrupted rewards r̃It in this batch and compute Sm

It
← Sm

It
+ r̃It .

12: Set rmk ← min{Sm
k /ñm

k , 1} and rm∗ ←maxk∈[K]

{
rmk −

√
4 ln(4/βm)

ñm
k

}
.

13: Set ∆m
k ← max{a−m, rm∗ − rmk }.

14: end for

be approximately O(T
m

L+1) ensuring that the number of epochs matches the number of batches. In
this way, each epoch serves as a batch, making the BB-BARBAT algorithm almost identical to the
BARBAT algorithm. We present the regret upper bound of BB-BARBAT and the lower bound for
corrupted batched bandits in Theorems 3 and 4, respectively. The proofs are deferred to Appendix B.3.
Theorem 3. For corrupted batched bandits with a static grid, the regret of BB-BARBAT satisfies

R(T) = O

(
CT

1
L+3 + T

4
L+3

(∑
∆k>0

L log(KT)

∆k
+

K log(T) log(1/∆) log(K/∆)

L∆

))
.

Theorem 4. For any algorithm, there exists an instance of batched bandits with a static grid such
that

R(T) ≥ Ω
(
T

1
L

(
K + C1− 1

L

))
.

Remark 5. There is still a gap between our upper bound and the lower bound. We believe that our
lower bound is nearly tight. Achieving optimal regret upper bounds for corrupted batched bandits
remains an interesting open question.

4.3 Strongly Observable Graph Bandits

We extend BARBAT to strongly observable graph bandits and propose the SOG-BARBAT (Strongly-
Observable Graph bandits-BARBAT) algorithm, presented in Algorithm 4. Our method adopts
Zm and Hm to denote the expected pulls and expected observations in epoch m, respectively. Gm

denotes the graph used in the m-th epoch. SOG-BARBAT adopts the proposed Algorithm 6 (in
Appendix A) to compute the out-domination set Dm of Gm, whose size is at most α(1+2 ln(K/α)).
Moreover, if Gm is acyclic, we can guarantee that |Dm| ≤ α. Then SOG-BARBAT computes H

m
,

which is the minimal number of additional pulls per out-dominating arm that ensures some vertex
meets its observation requirement. After that, SOG-BARBAT updates Zm and Hm, and removes all
nodes that have now been sufficiently observed from Gm. Repeating these steps ensures that by the
end of epoch m, all arms have been observed sufficiently. The regret bound for SOG-BARBAT is
presented as follows, with the proof given in Appendix B.4.
Theorem 5. For any strongly observable directed graph G = ([K], E) with independence number
α, the expected regret of SOG-BARBAT satisfies

E [R(T)] = O

(
C +

∑
k∈I∗

log(T) log(KT)

∆k
+

K log (1/∆) log (K/∆)

∆

)
,

where I∗ is the set of at most ⌈α(1 + 2 ln(K/α))⌉ arms with the smallest gaps. Especially, for
directed acyclic graphs and undirected graphs, I∗ is the set of at most α arms with the smallest gaps.
Remark 6. The regret upper bound of SOG-BARBAT depends on |I∗| = O(α ln(K/α+ 1)), which
matches the lower bound established by [31]. When G is an acyclic graph or an undirected graph,
we have |I∗| ≤ α, indicating that SOG-BARBAT performs better under this condition.

7

Algorithm 4 SOG-BARBAT: Strongly Observable Graph-BARBAT
1: Input: A Strongly Observable Directed Graph G.
2: Initialization: Set the initial round T0 ← 0, ∆0

k ← 1, and r0k ← 0 for all k ∈ [K].
3: for epochs m = 1, 2, ... do
4: Set ζm ← (m+ 4)22(m+4) ln(K) and δm ← 1/(Kζm).
5: Set λm ← 28 ln (4K/δm) and βm ← δm/K.
6: Set nm

k ← λm(∆m−1
k)−2 for all k ∈ [K].

7: Set Nm ← ⌈Kλm22(m−1)⌉ and Tm ← Tm−1 +Nm.
8: Set km ← argmaxk∈[K] r

m−1
k .

9: Set Zm
k ← 0 and Hm

k ← 0 for all arms k ∈ [K], Gm ← G.
10: while Hm

k ≥ nm
k holds for all arms k ∈ [K] do

11: Compute an out-domination set Dm of Gm by Algorithm 6.
12: Compute H

m ← mink∈[K](n
m
k −Hm

k).
13: for each arm ki ∈ Dm do
14: Update Zm

ki
← Zm

ki
+H

m

s and Hm
ki
← Hm

ki
+H

m

15: Update Hm
kj
← Hm

kj
+H

m
for all arms (ki, kj) ∈ E with kj ̸= ki

16: end for
17: Remove all arms which satisfy Hm

k ≥ nm
k from Gm.

18: end while

19: Set ñm
k =

{
Zm
k k ̸= km

Nm −
∑

k ̸=km
Zm
k k = km

, and n̂m
kj
←
∑

(ki,kj)∈E ñm
ki

.

20: for t = Tm−1 + 1 to Tm do
21: Choose arm It ∼ pm where pm(k) = ñm

k /Nm.
22: Observe the corrupted reward r̃t,It and update the total reward Sm

It
← Sm

It
+ r̃t,It .

23: end for
24: Set rmk ← min{Sm

k /n̂m
k , 1} and rm∗ ← maxk∈[K]

{
rmk −

√
4 ln(4/βm)

n̂m
k

}
25: Set ∆m

k ← max{2−m, rm∗ − rmk }.
26: end for

Remark 7. Compared to FTRL-based methods [13, 14], whose regret bounds depend on the smallest
suboptimality gap 1/∆, our bound reveals the relationship between the regret and the suboptimality
gap of all arms. In addition, these works require prior knowledge of the independence number α,
which is NP-hard to compute, whereas SOG-BARBAT does not need such prior knowledge.

Remark 8. Compared with [10], which adapts BARBAR to graph bandits with undirected graphs,
our SOG-BARBAT method improves the corruption-dependent term from O(αC) to O(C). Also, our
method can be applied to bandits with directed graphs.

4.4 d-set Semi-bandits

We extend BARBAT to the d-set semi-bandit setting and propose the DS-BARBAT (d-Set BARBAT)
algorithm in Algorithm 5. In this setting, the optimal action is a subset of d distinct arms. Thus,
DS-BARBAT estimates the best actionKm as set of d distinct arms with the highest empirical rewards
in the previous epoch. When estimating the suboptimality gap, DS-BARBAT considers the arm with
the d-th largest empirical reward, since the set of the first d arms is the optimal action. The regret
bound for DS-BARBAT is presented as follows, with the proof provided in Appendix B.5:

Theorem 6. The regret of DS-BARBAT satisfies

R(T) = O

(
dC +

K∑
k=d+1

log(T) log(KT)

∆k
+

dK log (1/∆) log (K/∆)

∆

)
.

Remark 9. Notice that our DS-BARBAT algorithm can efficiently compute the sampling probability
pm, while FTRL-based methods [25, 15, 16, 17] need to solve a complicated convex optimization
problem in each round, which is rather expensive. The time comparison in Table 3 in Appendix C.3
demonstrates that our DS-BARBAT algorithm is significantly faster than these FTRL-based methods.

8

Algorithm 5 DS-BARBAT: d-Set-BARBAT
1: Initialization: Set the initial round T0 ← 0, ∆0

k ← 1, and r0k ← 0 for all k ∈ [K].
2: for epochs m = 1, 2, · · · do
3: Set ζm ← (m+ 4)22(m+4) ln(K), and δm ← 1/(Kζm)
4: Set λm ← 28 ln (4K/δm) and βm ← δm/K.
5: Set nm

k ← λm(∆m−1
k)−2 for all arms k ∈ [K].

6: Set Nm ← ⌈Kλm22(m−1)/d⌉ and Tm ← Tm−1 +Nm.
7: Set the arm subsets Km ← argmaxk∈[K] r

m−1
k with |Km| = d.

8: Set ñm
k =

{
nm
k k ̸∈ Km

Nm −
∑

k ̸∈Km
nm
k /d k ∈ Km

.

9: for t = Tm−1 + 1 to Tm do
10: Choose action xt ∼ pm where pm(k) = ñm

k /Nm.
11: For each arm k with xt(k) = 1, observe r̃t,k and update the total reward Sm

k ← Sm
k + r̃t,k.

12: end for
13: Set rmk ← min{Sm

k /ñm
k , 1}.

14: Set rm∗ ← ⊤d

({
rmk −

√
4 ln(4/βm)

ñm
k

}
k∈[K]

)
, where ⊤d(A) returns the d-th largest value in A.

15: Set ∆m
k ← max{2−m, rm∗ − rmk }.

16: end for

0 1 2 3 4 5
Rounds 1e4

0

1

2

3

4

In
di

vi
du

al
 R

eg
re

t

1e3
MA-BARBAT
DRAA
IND-BARBAR
IND-FTRL

0 1 2 3 4 5
Rounds 1e4

0

1

2

3

4

In
di

vi
du

al
 R

eg
re

t

1e3
MA-BARBAT
DRAA
IND-BARBAR
IND-FTRL

0 1 2 3 4 5
Rounds 1e4

0

1

2

3

4
In

di
vi

du
al

 R
eg

re
t

1e3
MA-BARBAT
DRAA
IND-BARBAR
IND-FTRL

0 1 2 3 4 5
Rounds 1e4

0

1

2

3

4

In
di

vi
du

al
 R

eg
re

t

1e3
MA-BARBAT
DRAA
IND-BARBAR
IND-FTRL

(a) K = 12, C = 2000 (b) K = 12, C = 5000 (c) K = 16, C = 2000 (d) K = 16, C = 5000

Figure 1: Comparison between MA-BARBAT, DRAA, IND-BARBAR and IND-FTRL in cooperative
multi-agent multi-armed bandits.

5 Experiments

In this section, we present numerical results to demonstrate the robustness and effectiveness of our
framework. All experiments are implemented in Python 3.11 and conducted on a Windows laptop
equipped with 16 GB of memory and an Intel i7-13700H processor. For all experiments, we run 50
independent trials, report the average results and use shaded regions to represent standard deviations.
The detailed experimental settings and time comparisons are deferred to Appendix C.

5.1 Cooperative Multi-agent Multi-Armed Bandits

We compare our framework with DRAA [12], IND-BARBAR [1], and IND-FTRL [4] in a multi-agent
setting with V = 10. Here, IND-BARBAR and IND-FTRL serve as non-cooperative baselines, where
each agent runs the algorithm locally without any communication. We do not compare with [32] since
the baseline DRAA is an improved version of their method. We present the experimental results in
Figure 1, which shows that our BARBAT framework outperforms all baseline methods, reflecting the
advantage of collaboration and verifying our theoretical analysis. In addition, when C is increased,
the increase in individual regret of our framework is the smallest, which shows that the robustness of
our framework is stronger than that of all baseline methods.

5.2 Strongly Observable Graph Bandits

We compare our SOG-BARBAT algorithm with Shannon-FTRL [13] and Tsallis-FTRL [14] using
two directed graphs as illustrated in Figure 4 in Appendix C.2. We do not include the Elise [10]
algorithm in the experiment since it only works for undirected graphs. The experimental results

9

0 1 2 3 4 5
Rounds 1e4

0

1

2

3

4

Re
gr

et

1e3
SOG-BARBAT
Shannon-FTRL
Tsallis-FTRL

0 1 2 3 4 5
Rounds 1e4

0.0

0.2

0.4

0.6

0.8

1.0

Re
gr

et

1e4
SOG-BARBAT
Shannon-FTRL
Tsallis-FTRL

0 1 2 3 4 5
Rounds 1e4

0

1

2

3

4

5

Re
gr

et

1e3
SOG-BARBAT
Shannon-FTRL
Tsallis-FTRL

0 1 2 3 4 5
Rounds 1e4

0.00

0.25

0.50

0.75

1.00

Re
gr

et

1e4
SOG-BARBAT
Shannon-FTRL
Tsallis-FTRL

(a) K = 12, C = 2000 (b) K = 12, C = 5000 (c) K = 16, C = 2000 (d) K = 16, C = 5000

Figure 2: Comparison between SOG-BARBAT, Shannon-FTRL, and Tsallis-FTRL in strongly
observable graph bandits.

0 1 2 3 4 5
Rounds 1e4

0.0

0.5

1.0

1.5

Re
gr

et

1e4
DS-BARBAT
HYBRID
LBINF
LBINF_LS
LBINF_GD

0 1 2 3 4 5
Rounds 1e4

0

1

2

3
Re

gr
et

1e4
DS-BARBAT
HYBRID
LBINF
LBINF_LS
LBINF_GD

0 1 2 3 4 5
Rounds 1e4

0.0

0.5

1.0

1.5

2.0

Re
gr

et

1e4
DS-BARBAT
HYBRID
LBINF
LBINF_LS
LBINF_GD

0 1 2 3 4 5
Rounds 1e4

0

1

2

3

4

5

Re
gr

et

1e4
DS-BARBAT
HYBRID
LBINF
LBINF_LS
LBINF_GD

(a) K = 12, C = 2000 (b) K = 12, C = 5000 (c) K = 16, C = 2000 (d) K = 16, C = 5000

Figure 3: Comparison between DS-BARBAT, HYBRID, LBINF, LBINF_LS and LBINF_GD in
d-set semi-bandits.

are presented in Figure 2, showing that our SOG-BARBAT algorithm significantly outperforms all
baseline methods and verifying the robustness of our method.

5.3 d-Set Semi-bandits

In d-set semi-bandits, we set d = 3 for K = 12, and d = 4 for K = 16. We compare our framework
with HYBRID [15], LBINF [16], LBINF_LS [17] and LBINF_GD [17]. As shown in Figure 3, our
DS-BARBAT algorithm significantly outperforms all baseline methods.

6 Conclusion

Building on the BARBAR algorithm [1], we propose the BARBAT framework by elaborately design-
ing the epoch lengths Nm and the parameters δm. We further extend BARBAT to various corrupted
bandit settings, including multi-agent bandits, batched bandits, strongly observable graph bandits and
d-set semi-bandits. Our theoretical analysis shows that these algorithms achieve near-optimal regret
bounds for adversarially corrupted environments. Compared with FTRL-based approaches, BARBAT
and its extensions are more computationally efficient and do not rely on the assumption of a unique
optimal action. Moreover, since FTRL-based methods are difficult to parallelize, they are unsuitable
for multi-agent and batched settings. These advantages make the BARBAT framework an attrac-
tive alternative to FTRL-based algorithms across a wide range of corrupted bandit problems. One
future direction is to improve the log2(T) dependence in our regret bound to log(T). Investigating
extensions in other bandit settings such as linear bandits is also an interesting future direction.

Acknowledgement

This work was supported by Natural Science Foundation of China (No. 62306116), and in part by the
Key Program of National Natural Science Foundation of China (No. 62432007).

References
[1] Anupam Gupta, Tomer Koren, and Kunal Talwar. Better algorithms for stochastic bandits with

adversarial corruptions. In Conference on Learning Theory, volume 99, pages 1562–1578.
PMLR, 2019.

10

[2] Tze Leung Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules. Ad-
vances in Applied Mathematics, 6(1):4–22, 1985.

[3] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed
bandit problem. Machine learning, 47:235–256, 2002.

[4] Julian Zimmert and Yevgeny Seldin. Tsallis-inf: An optimal algorithm for stochastic and
adversarial bandits. Journal of Machine Learning Research, 22(28):1–49, 2021.

[5] Shinji Ito. Parameter-free multi-armed bandit algorithms with hybrid data-dependent regret
bounds. In Conference on Learning Theory, volume 134, pages 2552–2583. PMLR, 2021.

[6] Tiancheng Jin, Junyan Liu, and Haipeng Luo. Improved best-of-both-worlds guarantees for
multi-armed bandits: Ftrl with general regularizers and multiple optimal arms. In Advances in
Neural Information Processing Systems, volume 36, pages 30918–30978, 2023.

[7] Taira Tsuchiya, Shinji Ito, and Junya Honda. Stability-penalty-adaptive follow-the-regularized-
leader: Sparsity, game-dependency, and best-of-both-worlds. In Advances in Neural Information
Processing Systems, volume 36, pages 47406–47437, 2023.

[8] Thodoris Lykouris, Vahab Mirrokni, and Renato Paes Leme. Stochastic bandits robust to
adversarial corruptions. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory
of Computing, pages 114–122, 2018.

[9] Junyan Liu, Shuai Li, and Dapeng Li. Cooperative stochastic multi-agent multi-armed bandits
robust to adversarial corruptions. arXiv preprint arXiv:2106.04207, 2021.

[10] Shiyin Lu, Guanghui Wang, and Lijun Zhang. Stochastic graphical bandits with adversarial
corruptions. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages
8749–8757, 2021.

[11] Xuchuang Wang, Lin Yang, Yu-zhen Janice Chen, Xutong Liu, Mohammad Hajiesmaili, Don
Towsley, and John CS Lui. Achieving near-optimal individual regret & low communications in
multi-agent bandits. In The Eleventh International Conference on Learning Representations,
2023.

[12] Fatemeh Ghaffari, Xuchuang Wang, Jinhang Zuo, and Mohammad Hajiesmaili. Multi-agent
stochastic bandits robust to adversarial corruptions. In Proceedings of the 7th Annual Learning
for Dynamics & Control Conference, volume 283, pages 12–25, 2025.

[13] Shinji Ito, Taira Tsuchiya, and Junya Honda. Nearly optimal best-of-both-worlds algorithms for
online learning with feedback graphs. In Advances in Neural Information Processing Systems,
volume 35, pages 28631–28643, 2022.

[14] Chris Dann, Chen-Yu Wei, and Julian Zimmert. A blackbox approach to best of both worlds in
bandits and beyond. In Conference on Learning Theory, volume 195, pages 5503–5570. PMLR,
2023.

[15] Julian Zimmert, Haipeng Luo, and Chen-Yu Wei. Beating stochastic and adversarial semi-
bandits optimally and simultaneously. In International Conference on Machine Learning,
volume 97, pages 7683–7692. PMLR, 2019.

[16] Shinji Ito. Hybrid regret bounds for combinatorial semi-bandits and adversarial linear bandits.
In Advances in Neural Information Processing Systems, volume 34, pages 2654–2667, 2021.

[17] Taira Tsuchiya, Shinji Ito, and Junya Honda. Further adaptive best-of-both-worlds algorithm for
combinatorial semi-bandits. In International Conference on Artificial Intelligence and Statistics,
volume 206, pages 8117–8144. PMLR, 2023.

[18] Vianney Perchet, Philippe Rigollet, Sylvain Chassang, and Erik Snowberg. Batched bandit
problems. In Conference on Learning Theory, volume 40, pages 1456–1456. PMLR, 2015.

[19] Zijun Gao, Yanjun Han, Zhimei Ren, and Zhengqing Zhou. Batched multi-armed bandits
problem. In Advances in Neural Information Processing Systems, volume 32, pages 503–513,
2019.

11

[20] Hossein Esfandiari, Amin Karbasi, Abbas Mehrabian, and Vahab Mirrokni. Regret bounds for
batched bandits. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pages 7340–7348, 2021.

[21] Eyal Even-Dar, Shie Mannor, Yishay Mansour, and Sridhar Mahadevan. Action elimination and
stopping conditions for the multi-armed bandit and reinforcement learning problems. Journal
of Machine Learning Research, 7(39):1079–1105, 2006.

[22] Sébastien Bubeck and Aleksandrs Slivkins. The best of both worlds: Stochastic and adversarial
bandits. In Conference on Learning Theory, volume 23, pages 42.1–42.23. PMLR, 2012.

[23] Yevgeny Seldin and Aleksandrs Slivkins. One practical algorithm for both stochastic and
adversarial bandits. In International Conference on Machine Learning, volume 32, pages
1287–1295. PMLR, 2014.

[24] Peter Auer and Chao-Kai Chiang. An algorithm with nearly optimal pseudo-regret for both
stochastic and adversarial bandits. In Conference on Learning Theory, volume 49, pages
116–120. PMLR, 2016.

[25] Chen-Yu Wei and Haipeng Luo. More adaptive algorithms for adversarial bandits. In Conference
on Learning Theory, volume 75, pages 1263–1291. PMLR, 2018.

[26] Chloé Rouyer, Dirk van der Hoeven, Nicolò Cesa-Bianchi, and Yevgeny Seldin. A near-optimal
best-of-both-worlds algorithm for online learning with feedback graphs. In Advances in Neural
Information Processing Systems, volume 35, pages 35035–35048, 2022.

[27] Ronshee Chawla, Daniel Vial, Sanjay Shakkottai, and R Srikant. Collaborative multi-agent
heterogeneous multi-armed bandits. In International Conference on Machine Learning, volume
202, pages 4189–4217. PMLR, 2023.

[28] Kelly Zhang, Lucas Janson, and Susan Murphy. Inference for batched bandits. In Advances in
Neural Information Processing Systems, volume 33, pages 9818–9829, 2020.

[29] Tianyuan Jin, Pan Xu, Xiaokui Xiao, and Quanquan Gu. Double explore-then-commit: Asymp-
totic optimality and beyond. In Conference on Learning Theory, volume 134, pages 2584–2633.
PMLR, 2021.

[30] Noga Alon, Nicolo Cesa-Bianchi, Claudio Gentile, Shie Mannor, Yishay Mansour, and Ohad
Shamir. Nonstochastic multi-armed bandits with graph-structured feedback. SIAM Journal on
Computing, 46(6):1785–1826, 2017.

[31] Houshuang Chen, Yuchen He, and Chihao Zhang. On interpolating experts and multi-armed
bandits. In International Conference on Machine Learning, volume 235, pages 6776–6802.
PMLR, 2024.

[32] Haoyang Liu, Keqin Liu, and Qing Zhao. Learning in a changing world: Restless multiarmed
bandit with unknown dynamics. IEEE Transactions on Information Theory, 59(3):1902–1916,
2012.

[33] Devdatt P Dubhashi and Alessandro Panconesi. Concentration of measure for the analysis of
randomized algorithms. Cambridge University Press, 2009.

[34] Alina Beygelzimer, John Langford, Lihong Li, Lev Reyzin, and Robert Schapire. Contextual
bandit algorithms with supervised learning guarantees. In International Conference on Artificial
Intelligence and Statistics, volume 15, pages 19–26. PMLR, 2011.

[35] Noga Alon and Joel H Spencer. The probabilistic method. John Wiley & Sons, 2016.

[36] Paul Erdös and Alfréd Rényi. On the evolution of random graphs. Publication of the Mathemat-
ical Institute of the Hungarian Academy of Sciences, 5:17–61, 1960.

12

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: see section 1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: see Section 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

13

Justification: see Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: see the pseudo code of algorithms, Section 5 and Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

14

Answer: [Yes]
Justification: see supplementary material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: see the pseudo code of algorithms, Section 5 and Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: see Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: see Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: I confirm the paper in every respect, with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: this work is a theoretical research
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to

16

https://neurips.cc/public/EthicsGuidelines

generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: the paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: the paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

17

paperswithcode.com/datasets

Answer: [NA]

Justification: the paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: the paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: the paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

18

Justification: the core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

19

https://neurips.cc/Conferences/2025/LLM

Contents

A OODS algorithm for strongly observable graph bandits 21

B Proof Details 22

B.1 Proof of Theorem 1 . 22

B.1.1 Notations . 22

B.1.2 Lemmas for Proving Theorem 1 . 22

B.1.3 Proof for Theorem 1 . 26

B.2 Proof of Theorem 2 . 28

B.2.1 Notations . 28

B.2.2 Lemmas for Proving Theorem 2 . 28

B.2.3 Proof for Theorem 2 . 32

B.3 Proof of Theorem 3 . 34

B.3.1 Notations . 34

B.3.2 Lemmas for Proving Theorem 3 . 34

B.3.3 Proof for Theorem 3 . 37

B.3.4 Proof for Theorem 4 . 39

B.4 Proof of Theorem 5 . 39

B.4.1 Lemmas for Proving Theorem 5 . 39

B.4.2 Proof for Theorem 5 . 43

B.5 Proof of Theorem 6 . 46

B.5.1 Notations . 46

B.5.2 Lemmas for Proving Theorem 6 . 46

B.5.3 Proof for Theorem 6 . 47

C Experimental Details 50

C.1 Cooperative Multi-Agent Multi-Armed Bandits 50

C.2 Strongly Observable Graph Bandits . 50

C.3 d-Set Semi-bandits . 50

20

A OODS algorithm for strongly observable graph bandits

In this section, we present the OODS algorithm for strongly observable graph bandits. For any graph
G = (V,E), the time complexity of the algorithm is O(|V |2|E|).

Algorithm 6 OODS: Obtain an out-domination Set
1: Input: a graph G.
2: Output: an out-domination set D.
3: while the graph G is not empty do
4: if the graph G is an acyclic graph then
5: Find all no-root vertices and add them to the set D.
6: Remove all no-root vertices and their out-degree neighbors from the graph G.
7: else
8: Select the vertex with the largest out-degree in the graph G and add it to the set D.
9: Remove the vertex and its out-degree neighbors from the graph G.

10: end if
11: end while

A “no-root vertex” is defined as a vertex with no incoming edges other than its self-loop. To ensure
that the rewards for no-root vertices are observed, OODS pulls these vertices directly. However,
in some graphs, there may be no such vertices. In such cases, OODS applies a greedy strategy: it
selects the vertex with the highest out-degree and adds it to D. The procedure proceeds as follows: if
a cycle is detected in G, the greedy strategy is employed; otherwise, all no-root vertices are added to
D. The vertices in D and their out-degree neighbors are then removed from the graph G, and the
process repeats until G is empty, ensuring that D forms an out-domination set covering G.

At a high level, the OODS algorithm finds an out-domination set Dm such that pulling the arms
k ∈ Dm allows us to observe the rewards of all arms. The loop iteratively removes arms once they
meet the observation requirement. After each removal, the independence number of the remaining
graph may decrease, so the required dominating set becomes smaller—thereby reducing the number
of pulls allocated to suboptimal arms.

21

B Proof Details

B.1 Proof of Theorem 1

B.1.1 Notations

We define Cm
k as the sum of corruptions to arm k in epoch m, and let Cm ≜ maxk∈[K] C

m
k .

B.1.2 Lemmas for Proving Theorem 1

Lemma 1. For the BARBAT algorithm time horizon T , the number of epochs M is at most log2(T).
In the m-th epoch, the selected arm km must satisfy ∆m−1

km
= 2−(m−1).

Proof. The length of epoch m is given by Nm = ⌈Kλm22(m−1)⌉ ≥ 22(m−1). From the lower bound
of Nm, we can complete the first statement. Since ∆m−1

k ← max{2−(m−1), rm∗ − rmk }, there exists
at least one arm that satisfies ∆m−1

k = 2−(m−1) and all arms satisfy ∆m−1
k ≤ 2−(m−1). Since

rm−1
km

> rm−1
∗ , the equality ∆m−1

km
= 2−(m−1) must hold.

Lemma 2. For any epoch m, the length Nm satisfies Nm ≥
∑

k∈[K] n
m
k .

Proof. Since ∆m
k = max{2−m, rm∗ −rmk } ≥ 2−m, we can get nm

k = λm(∆m−1
k)−2 ≤ λm22(m−1).

Therefore, we have
∑

k∈[K] n
m
k ≤ Kλm22(m−1) ≤ Nm.

Lemma 3. For epoch s and m with 1 ≤ s ≤ m, the following inequality holds:

λm

λs
≤
(
7

6

)m−s

.

Proof. We first show that the function f(x) = (x+1.7) ln(4)+ln(x)
(7/6)x is strictly decreasing for x ≥ 5.

Notice that the derivative function

f ′(x) =
(ln(4) + 1/x)− ((x+ 1.7) ln(4) + ln(x)) ln

(
7
6

)(
7
6

)x
is monotonically decreasing and f ′(5) < 0, thus we have f ′(x) < 0 for x ≥ 5, which indicates that
f(x) is strictly decreasing. Since K ≥ 2, we can get

λm

λs
=

ln(4K2 ln(K)(m+ 4)22(m+4))

ln(4K2 ln(K)(s+ 4)22(s+4))

=
ln(4K2 ln(K)) + ln(m+ 4) + (m+ 4) ln(4)

ln(4K2 ln(K)) + ln(s+ 4) + (s+ 4) ln(4)

<
1.7 · ln(4) + ln(m+ 4) + (m+ 4) ln(4)

1.7 · ln(4) + ln(s+ 4) + (s+ 4) ln(4)

=
f(m+ 4)

f(s+ 4)

(
7

6

)m−s

<

(
7

6

)m−s

where we use the monotonicity of f(x) and the fact that K ≥ 2.

Lemma 4. For any epoch m, the following inequality holds:
m∑
s=1

λs ≤ 28(m2 +m(10 + 3 ln(K))).

Proof. Given the function f(x) = 2x(1− ln(2))− ln(x+4)+7−8 ln(2). Notice that the derivative
function as f ′(x) = 2−2 ln(2)− 1

x+4 > 0 for all x ≥ 1, which means that f(x) is strictly increasing

22

for x ≥ 1. Since f(x) ≥ f(1) ≥ 0, we can get the inequality as 2x+7 ≥ 2(x+4) ln(2)+ ln(x+4)
for all x ≥ 1, then have

m∑
s=1

λs =

m∑
s=1

28(ln(4K2 ln(K)(s+ 4)22(s+4)))

=

m∑
s=1

28(2(s+ 4) ln(2) + ln(s+ 4) + ln(4K2 ln(K))

≤
m∑
s=1

28(2s+ 7 + ln(4K3))

= 28(m2 + 8m+m ln(4K3))

≤ 28(m2 +m(10 + 3 ln(K))).

Lemma 5. For any fixed k,m and βm, Algorithm 1 satisfies

Pr

[
|rmk − µk| ≥

√
4 ln(4/βm)

ñm
k

+
2Cm

Nm

]
≤ βm.

Proof. The proof of Lemma 5 mainly follows the proof of Lemma 4 in [1]. We only consider the
randomness in epoch m and condition on all random variables before epoch m. In epoch m, the
agent pulls arm k with probability pm(k) = ñm

k /Nm.

For ease of analysis, we set an indicator variable Y t
k , which determines whether the agent updates the

corrupted reward r̃It into the total reward Sm
It

at step t. We define the corruption at step t on arm k

as Ct
k := r̃tk − rtk. Let Em := [Tm−1 + 1, ..., Tm] represent the Nm time-steps for epoch m. Since

rmk = min {Sm
k /ñm

k , 1}, we can obtain

rmk ≤
Sm
k

ñm
k

=
1

ñm
k

∑
t∈Em

Y t
k (r

t
k + Ct

k).

We can divide the sum into two components:

Am
k =

∑
t∈Em

Y t
k r

t
k, Bm

k =
∑
t∈Em

Y t
kC

t
k.

For the previous component Am
k , notice that rtk is independently drawn from a [0, 1]-valued dis-

tribution with mean µk, and Y t
k is independently drawn from a Bernoulli distribution with mean

qmk := ñm
k /Nm. Therefore, we have

E[Am
k] = Nmqmk E[rtk] = ñm

k µk ≤ ñm
k .

By applying the Chernoff-Hoeffding inequality (Theorem 1.1 in [33]), we can get

Pr

[∣∣∣∣Am
k

ñm
k

− µk

∣∣∣∣ ≥
√

3 ln(4/βm)

ñm
k

]
≤ βm

2
. (2)

For analyzing the latter component Bm
k , we define a martingale difference sequence X1, ..., XT ,

where Xt = (Y t
k − qmk)Ct

k for all t, with respect to the historical information {F}Tt=1. Since the
corruption Ct

k is deterministic when conditioned on Ft−1 and since E[Y t
k |Ft−1] = qmk , we can get

E[Xt|Ft−1] = E[Y t
k − qmk |Ft−1]C

t
k = 0.

Additionally, we have |Xt| ≤ 1 for all t, and the predictable quadratic variation of this martingale
can be bounded as follows:∑

t∈Em

E[(Xt)
2|Ft−1] ≤

∑
t∈Em

|Ct
k|Var(Y t

k) ≤ qmk
∑
t∈Em

|Ct
k|.

23

By Freedman concentration inequality (Theorem 1 in [34]), with probability at least 1− βm/4 we
have

Bm
k ≤ qmk

∑
t∈Em

Ct
k +

∑
t∈Em

E[(Xt)
2|Ft−1] + ln(4/βm) ≤ 2qmk

∑
t∈Em

|Ct
k|+ ln(4/βm).

Since qmk = ñm
k /Nm,

∑
t∈Em

|Ct
k| ≤ Cm and nm

k ≥ λm ≥ 16 ln(4/βm), with probability at least
1− βm/4 the following inequality holds:

Bm
k

ñm
k

≤

√
ln(4/βm)

16ñm
k

+
2Cm

Nm
.

Similarly, with probability at least 1− βm/4 the following inequality holds:

−Bm
k

ñm
k

≤

√
ln(4/βm)

16ñm
k

+
2Cm

Nm
.

Thus we have

Pr

[∣∣∣∣Bm
k

ñm
k

∣∣∣∣ ≥
√

ln(4/βm)

16ñm
k

+
2Cm

Nm

]
≤ βm

2
. (3)

Combine Eq. (2) and Eq. (3), we complete the proof.

We define an event Em for epoch m as follows:

Em ≜

{
∀ k : |rmk − µk| ≤

√
4 ln(4/βm)

ñm
k

+
2Cm

Nm

}
.

Then we can establish a lower bound on the probability of the event Em occurring by the following
lemma.

Lemma 6. For any epoch m, event Em holds with probability at least 1 − δm. We also have
1/δm ≥ Nm.

Proof. By Lemma 5, we can get

Pr

[
|rmk − µk| ≤

√
4 ln(4/βm)

ñm
k

+
2Cm

Nm

]
≤ βm =

δm
K

.

A union bound over the K arms indicates that the success probability of event Em is at least 1− δm.

Since m ≥ 1 and K ≥ 2, then we can get

Nm = K22(m−1)λm

= K22(m+3) ln((m+ 4)22(m+5)K2 ln(K))

≤ K22(m+3)(ln(m+ 4) + 2(m+ 5) ln(2) + ln(K3))

≤ K22(m+3)((m+ 4) ln(K) + 2(m+ 5) ln(K) + 3 ln(K))

≤ K22(m+3)(4m+ 16) ln(K)

= K22(m+4)((m+ 4) ln(K)) = 1/δm.

Now we can define the offset level Dm for each epoch m:

Dm =

{
2Cm when Em occurs
Nm when Em does not occur

.

24

Since we always have |rmk − µk| ≤ 1, thus the following inequality always holds, regardless of
whether event Em happens:

|rmk − µk| ≤

√
4 ln(4/βm)

ñm
k

+
Dm

Nm
.

By the definition of Dm, we have

Pr[Dm = 2Cm] ≥ 1− δm and Pr[Dm = Nm] ≤ δm.

Next, we will bound the estimated gap ∆m
k . To start, we define the discounted offset rate as

ρm :=

m∑
s=1

Ds

8m−sNs
.

Then we have the following lemma.
Lemma 7. For all epochs m and arms k, we can have

4∆k

7
− 3

2
2−m − 6ρm ≤ ∆m

k ≤
8∆k

7
+ 2−(m−1) + 2ρm.

Proof. Since |rmk − µk| ≤
√

4 ln(4/βm)
ñm
k

+ Dm

Nm
, we have

−Dm

Nm
−

√
4 ln(4/βm)

ñm
k

≤ rmk − µk ≤
Dm

Nm
+

√
4 ln(4/βm)

ñm
k

.

Additionally, since

rm∗ ≤ max
k

{
µk +

Dm

Nm
+

√
4 ln(4/βm)

ñm
k

−

√
4 ln(4/βm)

ñm
k

}
≤ µk∗ +

Dm

Nm
,

rm∗ = max
k

{
rmk −

√
4 ln(4/βm)

ñm
k

}
≥ rmk∗ −

√
4 ln(4/βm)

ñm
k∗

≥ µk∗ − 2

√
4 ln(4/βm)

ñm
k∗

− Dm

Nm
,

we can get

−Dm

Nm
− 2

√
4 ln(4/βm)

ñm
k∗

≤ rm∗ − µk∗ ≤ Dm

Nm
.

According to Algorithm 1 and Lemma 2, we have ñm
k ≥ nm

k for all arms k. Then we have the
following inequality for all k ∈ [K]:√

4 ln(4/βm)

ñm
k

≤

√
4 ln(4/βm)

nm
k

=
∆m−1

k

8
.

We now establish the upper bound for ∆m
k by induction on m.

For the base case m = 1, the statement is trivial as ∆1
k = 1 for all k ∈ [K].

Assuming the statement is true for the case of m− 1, we have

∆m
k = rm∗ − rmk = (rm∗ − µk∗) + (µk∗ − µk) + (µk − rmk)

≤ Dm

Nm
+∆k +

Dm

Nm
+

1

8
∆m−1

k

≤ 2Dm

Nm
+∆k +

1

8

(
8∆k

7
+ 2−(m−2) + 2ρm−1

)
≤ 8∆k

7
+ 2−(m−1) + 2ρm,

Where the second inequality follows from the induction hypothesis.

25

Next, we provide the lower bound of ∆m
k . We can get

∆m
k = rm∗ − rmk = (rm∗ − µk∗) + (µk∗ − µk) + (µk − rmk)

≥ −Dm

Nm
− 1

4
∆m−1

k∗ +∆k −
Dm

Nm
− 1

8
∆m−1

k

≥ −2Dm

Nm
+∆k −

3

8

(
8∆k

7
+ 2−(m−2) + 2ρm−1

)
≥ 4

7
∆k −

3

2
2−m − 6ρm.

where the third inequality comes from the upper bound of ∆m−1
k .

B.1.3 Proof for Theorem 1

We first define the regret Rm
k generated by arm k in epoch m as

Rm
k ≜ ∆kñ

m
k =

{
∆kn

m
k k ̸= km

∆kñ
m
k k = km

.

Then we analyze the regret in following three cases:

Case 1: 0 < ∆k ≤ 64ρm−1.
If k ̸= km, then we have

Rm
k = ∆kn

m
k ≤ 64ρm−1n

m
k .

If k = km, then we have

Rm
k = ∆kñ

m
km
≤ 64ρm−1Nm.

Case 2: ∆k ≤ 8 · 2−m and ρm−1 ≤ ∆k

64 .
If k ̸= km, then we have

Rm
k = nm

k ∆k = λm(∆m−1
k)−2∆k ≤ λm22(m−1)∆k ≤

16λm

∆k
.

If k = km, since ∆m−1
km

= 2−(m−1), we can get:

Rm
k = ñm

km
∆km ≤ Nm∆km = ⌈Kλm22(m−1)⌉∆km ≤

16Kλm

∆km

+∆km ≤
16Kλm

∆
+ 1.

Case 3: ∆k > 8 · 2−m and ρm−1 ≤ ∆k

64 .
By Lemma 7 we have

∆m−1
k ≥ 4

7
∆k −

3

2
2−m − 6

64
∆k ≥ ∆k

(
4

7
− 3

16
− 6

64

)
≥ 0.29∆k.

In this case, it is impossible that k = km because ∆m−1
km

= 2−(m−1) < 0.29 · 8 · 2−m < 0.29∆k.
So we can obtain

Rm
k = nm

k ∆k = λm(∆m−1
k)−2∆k ≤

λm

0.292∆k
≤ 16λm

∆k
.

26

We define Am ≜
{
k ∈ [K]

∣∣ 0 < ∆k ≤ 64ρm−1

}
for epoch m. By combining all three cases, we

can upper bound the regret as

R(T) =

M∑
m=1

(∑
k∈Am

Rm
k +

∑
k/∈Am

Rm
k

)

≤
M∑

m=1

(
64ρm−1Nm +

∑
k∈Am,k ̸=km

64ρm−1n
m
k +

∑
k/∈Am,∆k>0

16λm

∆k

+

(
16Kλm

∆
+ 1

)
I(0 < ∆km ≤ 8 · 2−m)

)

≤
M∑

m=1

(
64ρm−1Nm +

∑
∆k>0

64ρm−1n
m
k +

∑
∆k>0

16λm

∆k

+

(
16Kλm

∆
+ 1

)
I (m ≤ log2 (8/∆))

)

≤
M∑

m=1

(
128ρm−1Nm +

∑
∆k>0

16λm

∆k

)
+

log2(8/∆)∑
m=1

(
16Kλm

∆
+ 1

)

(4)

where the last inequality uses the fact that
∑

∆k>0 n
m
k ≤ Nm. Notice that we can bound the

expectation of the offset level as

E[Dm] = 2(1− δm)Cm + δmNm ≤ 2Cm + 1

and we can bound
∑M

m=1 ρm−1Nm as

M∑
m=1

ρm−1Nm ≤
M∑

m=1

(
m−1∑
s=1

Ds

8m−1−sNs

)
Nm

≤ 4

M∑
m=1

(
m−1∑
s=1

(4m−1−s + 1)λm

8m−1−sλs
Ds

)

= 4

M∑
m=1

(
m−1∑
s=1

((7/12)m−1−s + (7/48)m−1−s)Ds

)

= 4

M−1∑
s=1

Ds

M∑
m=s+1

(7/12)m−1−s + (7/48)m−1−s

≤ 4

(
M−1∑
m=1

Dm

) ∞∑
j=0

(7/12)
j
+ (7/48)

j ≤ 11

M−1∑
m=1

Dm.

(5)

27

Combining Eq. (4) and Eq. (5), by Lemma 4, we can get

R(T) ≤
M−1∑
m=1

1440E[Dm] +

M∑
m=1

∑
∆k>0

16λm

∆k
+

log2(8/∆)∑
m=1

(
16Kλm

∆
+ 1

)

≤
M−1∑
m=1

1440E[Dm] +
∑
∆k>0

212(log2(T) + 3 log(T) log(30K))

∆k

+
212K(log2(8/∆) + 3 log(8/∆) log(30K)))

∆
+ log(8/∆)

≤
M−1∑
m=1

2880Cm + 1440 +
∑
∆k>0

214 log(T) log(30KT)

∆k

+
214K log(8/∆) log(240K/∆)

∆
+ log(8/∆)

= O

(
C +

∑
∆k>0

log(T) log(KT)

∆k
+

K log(1/∆) log(K/∆)

∆

)
.

B.2 Proof of Theorem 2

B.2.1 Notations

We define Cm
k as the sum of corruptions to arm k in epoch m for all agents v ∈ [V], and let

Cm ≜ maxk∈[K] C
m
k .

B.2.2 Lemmas for Proving Theorem 2

Lemma 8. For BARBAT with time horizon T , the number of epochs M is at most log(V T). In the
m-th epoch, the selected arm km must satisfy ∆m−1

km
= 2−(m−1) for all agents v ∈ [V].

Proof. The length of epoch m is given by Nm = ⌈Kλm22(m−1)⌉ ≥ 22(m−1)/V . From the lower
bound of Nm, we can complete the first statement. Since ∆m−1

k ← max{2−(m−1), rm∗ − rmk }, there
exists at least one arm that satisfies ∆m−1

k = 2−(m−1) and all arms satisfy ∆m−1
k ≤ 2−(m−1). Since

rm−1
km

> rm−1
∗ , the equality ∆m−1

km
= 2−(m−1) must hold.

Since the length Nm still satisfies Nm = ⌈Kλm22(m−1)⌉ ≥
∑

k∈[K] n
m
k , Lemma 2 still holds for

this setting.
Lemma 9. For epoch s and m with 1 ≤ s ≤ m, the following inequality holds:

λm

λs
≤
(
7

6

)m−s

.

Proof. We first show that the function f(x) = (x+1.7) ln(4)+ln(x)
(7/6)x is strictly decreasing for x ≥ 5.

Notice that the derivative function

f ′(x) =
(ln(4) + 1/x)− ((x+ 1.7) ln(4) + ln(x)) ln

(
7
6

)(
7
6

)x
is monotonically decreasing and f ′(5) < 0, thus we have f ′(x) < 0 for x ≥ 5, which indicates that
f(x) is strictly decreasing. Since K ≥ 2 and V ≥ 1, we can get

λm

λs
=

ln(4V K2 ln(V K)(m+ 4)22(m+4))

ln(4V K2 ln(V K)(s+ 4)22(s+4))

=
ln(4V K2 ln(V K)) + ln(m+ 4) + (m+ 4) ln(4)

ln(4V K2 ln(V K)) + ln(s+ 4) + (s+ 4) ln(4)

28

<
1.7 · ln(4) + ln(m+ 4) + (m+ 4) ln(4)

1.7 · ln(4) + ln(s+ 4) + (s+ 4) ln(4)

=
f(m+ 4)

f(s+ 4)

(
7

6

)m−s

<

(
7

6

)m−s

where we use the monotonicity of f(x) and the fact that K ≥ 2 and V ≥ 1.

Lemma 10. For any epoch m, the following inequality holds:
m∑
s=1

λs ≤ 28(m2 +m(10 + ln(V K))).

Proof. Given the function f(x) = 2x(1− ln(2))− ln(x+4)+7−8 ln(2). Notice that the derivative
function as f ′(x) = 2−2 ln(2)− 1

x+4 > 0 for all x ≥ 1, which means that f(x) is strictly increasing
for x ≥ 1. Since f(x) ≥ f(1) ≥ 0, we can get the inequality as 2x+7 ≥ 2(x+4) ln(2)+ ln(x+4)
for all x ≥ 1, then have

m∑
s=1

λs =

m∑
s=1

28(ln(4V K2 ln(V K)(s+ 4)22(s+4)))

=

m∑
s=1

28(2(s+ 4) ln(2) + ln(s+ 4) + ln(4V K2 ln(V K))

≤
m∑
s=1

28(2s+ 7 + ln(4V 2K3))

= 28(m2 + 8m+m ln(4V 2K3))

≤ 28(m2 +m(10 + 3 ln(V K))).

Lemma 11. For any fixed k,m and any βm ≥ 4e−V λm/16, Algorithm 2 satisfies

Pr

[
|rmk − µk| ≥

√
4 ln(4/βm)

V ñm
k

+
2Cm

V Nm

]
≤ βm.

Proof. Since in each epoch m, all agents have the same probability pm(k) of pulling each arm k.
Using the method as Lemma 5, we set an indicator variable Y t

v,k, which determines whether the agent
v updates the corrupted reward r̃v,It into the total reward Sm

v,It
at step t. We define the corruption at

step t on arm k for agent v as Ct
v,k := r̃tv,k − rtv,k. Let Em := [Tm−1 + 1, ..., Tm] represent the Nm

time-steps for epoch m. Since rmk = min{
∑

v∈[V] S
m
v,k/(V ñm

k), 1}, we can obtain

rmk ≤
∑
v∈[V]

Sm
v,k

V ñm
k

=
1

V ñm
k

∑
t∈Em

∑
v∈[V]

Y t
v,k(r

t
v,k + Ct

v,k).

We can divide the sum to two components:

Am
k =

∑
t∈Em

∑
v∈[V]

Y t
v,kr

t
v,k, Bm

k =
∑
t∈Em

∑
v∈[V]

Y t
v,kC

t
v,k.

For the previous component Am
k , notice that rtk is dependently drawn from an unknown distribution

with mean µk, and Y t
v,k is dependently drawn from a Bernoullvdistribution with mean qmk := ñm

k /Nm.
Therefore, we have

E[Am
k] = V Nmqmk E[rtk] = V ñm

k µk ≤ V ñm
k .

By applying the Chernoff-Hoeffding inequality (Theorem 1.1 in [33]), we can get

Pr

[∣∣∣∣ Am
k

V ñm
k

− µk

∣∣∣∣ ≥
√

3 ln(4/βm)

V ñm
k

]
≤ βm

2
. (6)

29

For the latter component Bm
k , we need to define a martingale difference sequence X1

i , ..., X
T
i , where

Xt
i = (Y t

v,k − qmk)Ct
v,k for all t, with respect to the historical information {F}Tt=1. Since the

corruption Ct
v,k becomes a deterministic value when conditioned on Ft−1 and E[Y t

v,k|Ft−1] = qmk ,
we can get

E[Xt
i |Ft−1] = E[Y t

v,k − qmk |Ft−1]C
t
v,k = 0.

Additionally, we have |Xt
i | ≤ 1 for all t and all v ∈ [V], and the predictable quadratic variation of

this martingale can be bounded as follows:

Var =
∑
t∈Em

∑
v∈[V]

E[(Xt
i)

2|Ft−1] ≤
∑
t∈Em

∑
v∈[V]

|Ct
v,k|Var(Y t

v,k) ≤ qmk
∑
t∈Em

∑
v∈[V]

|Ct
v,k|.

By applying the concentration inequality for martingales (Theorem 1 in [34]), with probability at
least 1− βm

4 , we have

Bm
k ≤ qmk

∑
t∈Em

∑
v∈[V]

Ct
v,k +Var + ln(4/βm) ≤ 2qmk

∑
t∈Em

∑
v∈[V]

|Ct
v,k|+ ln(4/βm).

Since qmk = ñm
k /Nm,

∑
t∈Em

∑
v∈[V] |Ct

v,k| ≤ Cm and nm
k ≥ λm ≥ 16 ln(4/βm)/V , with

probability at least 1− βm

4 , we can get the following inequality:

Bm
k

V ñm
k

≤

√
ln(4/βm)

16V ñm
k

+
2Cm

V ñm
k

.

Similarly, − Bm
k

V ñm
k

also meets this bound with probability 1− β/4. Therefore, we have

Pr

[∣∣∣∣ Bm
k

V ñm
k

∣∣∣∣ ≥
√

ln(4/βm)

16V ñm
k

+
2Cm

V Nm

]
≤ βm

2
. (7)

Combine Eq. 6 and Eq. 7, we complete the proof.

We also define an event Em for epoch m as follows:

Em ≜

{
∀ k : |rmk − µk| ≤

√
4 ln(4/βm)

V ñm
k

+
2Cm

V Nm

}
.

Lemma 12. For any epoch m, event Em holds with probability at least 1− δm. And after rigorous
calculation, we have 1/δm ≥ V Nm.

Proof. By Lemma 11, we can get

Pr

[
|rmk − µk| ≤

√
4 ln(4/βm)

V ñm
k

+
2Cm

V Nm

]
≤ 2βm =

δm
V K

.

A union bound over the V agents and the K arms conclude the proof.

Since m ≥ 1, V ≥ 1 and K ≥ 2, then we can get

V Nm = KV 22(m−1)λm

= K22(m+3) ln((m+ 4)22(m+5)V K2 ln(K))

≤ K22(m+3)(ln(m+ 4) + 2(m+ 5) ln(2) + ln(V K3))

≤ K22(m+4)((m+ 4) ln(V K))

≤ 1/δm.

30

As mentioned before, for each epoch m, to unify the varying bounds depending on the occurrence of
event Em, we also define the offset level

Dm =

{
2Cm when Em occurs
V Nm when Em does not occur

.

This way we can always guarantee the following inequality:

|rmk − µk| ≤

√
4 ln(4/βm)

V ñm
k

+
Dm

V Nm
.

By the definition of Dm, we have

Pr[Dm = 2Cm] ≥ 1− δm and Pr[Dm = Nm] ≤ δm.

Next, we will bound the estimated gap ∆m
k . To start, we define the discounted offset rate as

ρm :=

m∑
s=1

Ds

8m−sV Ns
.

Then we have the following lemma.
Lemma 13. For all epochs m and arms k, we can have

4

7
∆k −

3

4
2−m − 6ρm ≤ ∆m

k ≤
8∆k

7
+ 2−(m−1) + 2ρm.

Proof. Since |rmk − µk| ≤
√

4 ln(4/βm)
V ñm

k
+ Dm

V Nm
, we have

− Dm

V Nm
−

√
4 ln(4/βm)

V ñm
k

≤ rmk − µk ≤
Dm

V Nm
+

√
4 ln(4/βm)

V ñm
k

.

Additionally, since

rm∗ ≤ max
k

{
µk +

Dm

V Nm
+

√
4 ln(4/βm)

Ṽ n
m

k

−

√
4 ln(4/βm)

V ñm
k

}
≤ µk∗ +

Dm

V Nm
,

rm∗ = max
k

{
rmk −

√
4 ln(4/βm)

V ñm
k

}
≥ rmk∗ −

√
4 ln(4/βm)

V ñm
k∗

≥ µk∗ − 2

√
4 ln(4/βm)

V ñm
k∗

− Dm

V Nm
,

we can get

− Dm

V Nm
− 2

√
4 ln(4/βm)

V ñm
k∗

≤ rm∗ − µk∗ ≤ Dm

V Nm
.

According to Algorithm 1 and Lemma 2, we have ñm
k ≥ nm

k for all arms k. Then we have the
following inequality for all k ∈ [K]:√

4 ln(4/βm)

V ñm
k

≤

√
4 ln(4/βm)

V nm
k

=
∆m−1

k

8
.

We now establish the upper bound for ∆m
k by induction on m.

For the base case m = 1, the statement is trivial as ∆1
k = 1 for all k ∈ [K].

Assuming the statement is true for the case of m− 1, we have

∆m
k = rm∗ − rmk = (rm∗ − µk∗) + (µk∗ − µk) + (µk − rmk)

≤ Dm

V Nm
+∆k +

Dm

V Nm
+

1

8
∆m−1

k

≤ 2Dm

V Nm
+∆k +

1

8

(
8∆k

7
+ 2−(m−2) + 2ρm−1

)
≤ 8∆k

7
+ 2−(m−1) + 2ρm,

31

Where the second inequality follows from the induction hypothesis.

Next, we provide the lower bound of ∆m
k . We can get

∆m
k = rm∗ − rmk = (rm∗ − µk∗) + (µk∗ − µk) + (µk − rmk)

≥ − Dm

V Nm
− 1

4
∆m−1

k∗ +∆k −
Dm

V Nm
− 1

8
∆m−1

k

≥ − 2Dm

V Nm
+∆k −

3

8

(
8∆k

7
+ 2−(m−2) + 2ρm−1

)
≥ 4

7
∆k −

3

2
2−m − 6ρm.

where the third inequality comes from the upper bound of ∆m−1
k .

We only introduces a small change into the parameter λm, by simple calculation, Lemma 3 still holds.

B.2.3 Proof for Theorem 2

We first define the regret Rm
k generated by arm k in epoch m for agent v as

Rm
v,k ≜ ∆kñ

m
v,k =

{
∆kn

m
k k ̸= km

∆kñ
m
k k = km

.

Then we analyze the regret in following three cases:

Case 1: 0 < ∆k ≤ 64ρm−1.
If k ̸= km, then we have

Rm
v,k = ∆kn

m
k ≤ 64ρm−1n

m
k .

If k = km, then we have

Rm
v,k = ∆kñ

m
km
≤ 64ρm−1Nm.

Case 2: ∆k ≤ 8 · 2−m and ρm−1 ≤ ∆k

64 .
If k ̸= km, then we have

Rm
v,k = nm

k ∆k = λm(∆m−1
k)−2∆k ≤ λm22(m−1)∆k ≤

16λm

∆k
.

If k = km, since ∆m−1
km

= 2−(m−1), we can get:

Rm
v,k = ñm

km
∆km ≤ Nm∆km = ⌈Kλm22(m−1)⌉∆km ≤

16Kλm

∆km

+∆km ≤
16Kλm

∆
+ 1.

Case 3: ∆k > 8 · 2−m and ρm−1 ≤ ∆k

64 .
By Lemma 7 we have

∆m−1
k ≥ 4

7
∆k −

3

2
2−m − 6

64
∆k ≥ ∆k

(
4

7
− 3

16
− 6

64

)
≥ 0.29∆k.

In this case, it is impossible that k = km because ∆m−1
km

= 2−(m−1) < 0.29 · 8 · 2−m < 0.29∆k.
So we can obtain

Rm
v,k = nm

k ∆k = λm(∆m−1
k)−2∆k ≤

λm

0.292∆k
≤ 16λm

∆k
.

32

We define Am ≜
{
k ∈ [K]

∣∣ 0 < ∆k ≤ 64ρm−1

}
for epoch m. By combining all three cases, we

can upper bound the regret for agent v as

R(T) =

M∑
m=1

(∑
k∈Am

Rm
k +

∑
k/∈Am

Rm
k

)

≤
M∑

m=1

(
64ρm−1Nm +

∑
k∈Am,k ̸=km

64ρm−1n
m
k +

∑
k/∈Am,∆k>0

16λm

∆k

+

(
16Kλm

∆
+ 1

)
I(0 < ∆km ≤ 8 · 2−m)

)

≤
M∑

m=1

(
64ρm−1Nm +

∑
∆k>0

64ρm−1n
m
k +

∑
∆k>0

16λm

∆k

+

(
16Kλm

∆
+ 1

)
I (m ≤ log2 (8/∆))

)

≤
M∑

m=1

(
128ρm−1Nm +

∑
∆k>0

16λm

∆k

)
+

log2(8/∆)∑
m=1

(
16Kλm

∆
+ 1

)

(8)

where the last inequality uses the fact that
∑

∆k>0 n
m
k ≤ Nm. Notice that we can bound the

expectation of the offset level as

E[Dm] = 2(1− δm)Cm + δmNm ≤ 2Cm + 1

and we can bound
∑M

m=1 ρm−1Nm as

M∑
m=1

ρm−1Nm ≤
M∑

m=1

(
m−1∑
s=1

Ds

8m−1−sV Ns

)
Nm

=
4

V

M∑
m=1

(
m−1∑
s=1

(4m−1−s + 1)λm

8m−1−sλs
Ds

)

=
4

V

M∑
m=1

(
m−1∑
s=1

(
(7/12)m−1−s + (7/48)m−1−s

)
Ds

)

=
4

V

M−1∑
s=1

Ds

M∑
m=s+1

(7/12)m−1−s + (7/48)m−1−s

≤ 4

V

(
M−1∑
m=1

Dm

) ∞∑
j=0

(7/12)
j
+ (7/48)j ≤ 11

V

M−1∑
m=1

Dm.

(9)

33

Combining Eq. (8) and Eq. (9), by Lemma 10, we can get

Rv(T) ≤
M−1∑
m=1

1440E[Dm] +

M∑
m=1

∑
∆k>0

16λm

∆k
+

log2(8/∆)∑
m=1

(
16Kλm

∆
+ 1

)

≤
M−1∑
m=1

1440E[Dm] +
∑
∆k>0

212(log2(V T) + 3 log(V T) log(30V K))

V∆k

+
212K(log2(8/∆) + 3 log(8/∆) log(30V K)))

V∆
+ log(8/∆)

≤
M−1∑
m=1

2880
Cm

V
+ 1440 +

∑
∆k>0

214 log(V T) log(30V KT)

V∆k

+
214K log(8/∆) log(240V K/∆)

V∆
+ log(8/∆)

= O

(
C

V
+
∑
∆k>0

log(T) log(V KT)

V∆k
+

K log(1/∆) log(V K/∆)

V∆

)
.

So the cumulative regret for all agents as

R(T) = O

(
C +

∑
∆k>0

log(V T) log(V KT)

∆k
+

K log(1/∆) log(V K/∆)

∆

)
.

And each agent only broadcast messages in the end of each epoch, so the communication cost of
MA-BARBAT as follows:

Cost(T) =
∑
v∈[V]

M = O(V log(V T)).

B.3 Proof of Theorem 3

B.3.1 Notations

We define Cm
k as the sum of corruptions to arm k in epoch m, and let Cm ≜ maxk∈[K] C

m
k .

B.3.2 Lemmas for Proving Theorem 3

Lemma 14. For the BB-BARBAT algorithm time horizon T , the number of epochs M = L. In the
m-th epoch, the selected arm km must satisfy ∆m−1

km
= a−(m−1).

Proof. The length of epoch m is given by Nm = Kλma2(m−1) ≥ a2(m−1). From the lower bound of
Nm and a = T

1
2(L+1) , we can complete the first statement. Since ∆m−1

k ← max{a−(m−1), rm∗ −rmk },
there exists at least one arm that satisfies ∆m−1

k = a−(m−1) and all arms satisfy ∆m−1
k ≤ a−(m−1).

Since rm−1
km

> rm−1
∗ , the equality ∆m−1

km
= 2−(m−1) must hold.

Lemma 15. For any epoch m, the length Nm satisfies Nm ≥
∑

k∈[K] n
m
k .

Proof. Since ∆m
k = max{a−m, rm∗ −rmk } ≥ a−m, we can get nm

k = λm(∆m−1
k)−2 ≤ λma2(m−1).

Therefore, we have
∑

k∈[K] n
m
k ≤ Kλma2(m−1) = Nm.

Lemma 16. For epoch s and m with 1 ≤ s ≤ m, the following inequality holds:

λm

λs
≤
(
7

5

)m−s

.

34

Proof. We first show that the function f(x) = x ln(a2)+ln(x)
(7/5)x is strictly decreasing for x ≥ 5, where

a = max{T
1

2(L+1) , 2} ≥ 2. Notice that the derivative function

f ′(x) =
(ln(a2) + 1/x)− (x ln(a2) + ln(x)) ln

(
7
5

)(
7
5

)x
is monotonically decreasing and f ′(5) < 0, thus we have f ′(x) < 0 for x ≥ 5, which indicates that
f(x) is strictly decreasing. Since K ≥ 2, we can get

λm

λs
=

ln(4K2 ln(K)(m+ 4)a2(m+4))

ln(4K2 ln(K)(s+ 4)a2(s+4))

=
ln(4K2 ln(K)) + ln(m+ 4) + (m+ 4) ln(a2)

ln(4K2 ln(K)) + ln(s+ 4) + (s+ 4) ln(a2)

<
ln(m+ 4) + (m+ 4) ln(a2)

ln(s+ 4) + (s+ 4) ln(a2)

=
f(m+ 4)

f(s+ 4)

(
7

5

)m−s

<

(
7

5

)m−s

where we use the monotonicity of f(x) and the fact that K ≥ 2.

Lemma 17. For any epoch m, the following inequality holds:
m∑
s=1

λs ≤ 2a8 ln(a)(m2 + 3m(2 + ln(K))).

Proof. Since a ≥ 2 and K ≥ 2, we can have
m∑
s=1

λs =

m∑
s=1

a8(ln(4K2 ln(aK)(s+ 4)a2(s+4)))

=

m∑
s=1

a8(2(s+ 4) ln(a) + ln(s+ 4) + ln(4K2 ln(aK))

≤
m∑
s=1

a8(2(s+ 4) ln(a) + 2(s+ 1) ln(a) + 6 ln(K) ln(a))

≤
m∑
s=1

a8 ln(a)(4s+ 10 + 6 ln(K))

= 2a8 ln(a)(m2 + 3m(2 + ln(K))).

We can also guarantee Lemma 5 still holds. As mentioned before, given the definition of an event Em
as follows:

Em ≜

{
∀ k : |rmk − µk| ≤

√
4 ln(4/βm)

ñm
k

+
2Cm

Nm

}
.

Then we can establish a lower bound on the probability of the event Em occurring by the following
lemma.
Lemma 18. For any epoch m, event Em holds with probability at least 1 − δm. We also have
1/δm ≥ Nm.

Proof. By Lemma 5, we can get

Pr

[
|rmk − µk| ≤

√
4 ln(4/βm)

ñm
k

+
2Cm

Nm

]
≤ 2βm =

δm
K

.

35

A union bound over the K arms conclude the proof.

Since m ≥ 1, K ≥ 2 and a ≥ 2, then we can get

Nm = Kλma2(m−1)

= Ka2(m+3) ln(4K2(m+ 4)a2(m+4) ln(aK))

≤ Ka2(m+3)(2(m+ 4) ln(a) + ln(m+ 4) + ln(K2 ln(aK)) + ln(4))

≤ Ka2(m+3)(2(m+ 4) ln(aK) + (m+ 4) ln(aK) + 3 ln(aK) + 2 ln(aK))

≤ Ka2(m+3)((4m+ 16) ln(aK))

= Ka2(m+4)((m+ 4) ln(aK))

= 1/δm.

As mentioned before, for each epoch m, to unify the varying bounds depending on the occurrence of
event Em, we define the offset level

Dm =

{
2Cm when Em occurs
Nm when Em dose not occur

.

This way we can always guarantee the following inequality:

|rmk − µk| ≤

√
4 ln(4/βm)

ñm
k

+
Dm

Nm
.

It is worth noting that Pr[Dm = 2Cm] ≥ 1− δm and Pr[Dm = Nm] ≤ δm.

Next, we will bound ∆m
k . To start, we define the discounted offset rate as

ρm :=

m∑
s=1

2m−sDs

a4(m−s)Ns
.

Lemma 19. For all epochs m and arms k, we can have

a4 − 8

a4 − 2
∆k −

3

2a2
a−m − 6ρm ≤ ∆m

k ≤
a4 − 2

a4
∆k + a−(m−1) + 2ρm.

Proof. Since |rmk − µk| ≤
√

4 ln(4/βm)
ñm
k

+ Dm

Nm
, we have

−Dm

Nm
−

√
4 ln(4/βm)

ñm
k

≤ rmk − µk ≤
Dm

Nm
+

√
4 ln(4/βm)

ñm
k

.

Additionally, since

rm∗ ≤ max
k

{
µk +

Dm

Nm
+

√
4 ln(4/βm)

ñm
k

−

√
4 ln(4/βm)

ñm
k

}
≤ µk∗ +

Dm

Nm
,

rm∗ = max
k

{
rmk −

√
4 ln(4/βm)

ñm
k

}
≥ rmk∗ −

√
4 ln(4/βm)

ñm
k∗

≥ µk∗ − 2

√
4 ln(4/βm)

ñm
k∗

− Dm

Nm
,

we can get

−Dm

Nm
−

√
4 ln(4/βm)

ñm
k∗

≤ rm∗ − µk∗ ≤ Dm

Nm
.

According to Algorithm 1 and Lemma 2, we have ñm
k ≥ nm

k for all arms k. Then we have the
following inequality for all k ∈ [K]:√

4 ln(4/βm)

ñm
k

≤

√
4 ln(4/βm)

nm
k

=
2∆m−1

k

a4
.

36

We now establish the upper bound for ∆m
k by induction on m.

For the base case m = 1, the statement is trivial as ∆1
k = 1 for all k ∈ [K].

Assuming the statement is true for the case of m− 1, we have

∆m
k = rm∗ − rmk = (rm∗ − µk∗) + (µk∗ − µk) + (µk − rmk)

≤ Dm

Nm
+∆k +

Dm

Nm
+

2

a4
∆m−1

k

≤ 2Dm

Nm
+∆k +

2

a4

(
a4∆k

a4 − 2
+ a−(m−2) + 2ρm−1

)
≤ a4∆k

a4 − 2
+ a−(m−1) + 2ρm,

Where the second inequality follows from the induction hypothesis.

Next, we provide the lower bound of ∆m
k . We can get

∆m
k = rm∗ − rmk = (rm∗ − µk∗) + (µk∗ − µk) + (µk − rmk)

≥ −Dm

Nm
− 4

a4
∆m−1

k∗ +∆k −
Dm

Nm
− 2

a4
∆m−1

k

≥ −2Dm

Nm
+∆k −

6

a4

(
a4∆k

a4 − 2
+ a−(m−2) + 2ρm−1

)
≥ a4 − 8

a4 − 2
∆k −

3

2a2
a−m − 6ρm.

where the third inequality comes from the upper bound of ∆m−1
k .

B.3.3 Proof for Theorem 3

We first define the regret Rm
k generated by arm k in epoch m as

Rm
k ≜ ∆kñ

m
k =

{
∆kn

m
k k ̸= km

∆kñ
m
k k = km

.

Then we analyze the regret in following three cases:

Case 1: 0 < ∆k ≤ 64ρm−1.
If k ̸= km, then we have

Rm
k = ∆kn

m
k ≤ 64ρm−1n

m
k .

If k = km, then we have
Rm

k = ∆kñ
m
km
≤ 64ρm−1Nm.

Case 2: ∆k ≤ 4 · a−(m−1) and ρm−1 ≤ ∆k

64 .
If k ̸= km, then we have

Rm
k = nm

k ∆k = λm(∆m−1
k)−2∆k ≤ λma2(m−1)∆k ≤

λm

∆k
.

If k = km, since ∆m−1
km

= 2−(m−1), we can get:

Rm
k = ñm

km
∆km

≤ Nm∆km
= ⌈Kλma2(m−1)⌉∆km

≤ 16Kλm

∆km

+∆km
≤ 16Kλm

∆
+ 1.

Case 3: ∆k > 4 · a−(m−1) and ρm−1 ≤ ∆k

64 .
By Lemma 7 we have

∆m−1
k ≥ a4 − 8

a4 − 2
∆k −

3

2a2
a−m − 6

64
∆k ≥ ∆k

(
1− 6

a4 − 2
− 3

8a
− 6

64

)
≥ 0.29∆k.

37

In this case, it is impossible that k = km because ∆m−1
km

= a−(m−1) < 0.29 ·4 ·a−(m−1) < 0.29∆k.
So we can obtain

Rm
k = nm

k ∆k = λm(∆m−1
k)−2∆k ≤

λm

0.292∆k
≤ 16λm

∆k
.

We define Am ≜
{
k ∈ [K]

∣∣ 0 < ∆k ≤ 64ρm−1

}
for epoch m. By combining all three cases, we

can upper bound the regret as

R(T) =

M∑
m=1

(∑
k∈Am

Rm
k +

∑
k/∈Am

Rm
k

)

≤
M∑

m=1

(
64ρm−1Nm +

∑
k∈Am,k ̸=km

64ρm−1n
m
k +

∑
k/∈Am,∆k>0

16λm

∆k

+

(
16Kλm

∆
+ 1

)
I(0 < ∆km ≤ 4 · a−(m−1))

)

≤
M∑

m=1

(
64ρm−1Nm +

∑
∆k>0

64ρm−1n
m
k +

∑
∆k>0

16λm

∆k

+

(
16Kλm

∆
+ 1

)
I (m ≤ loga(4/∆) + 1)

)

≤
M∑

m=1

(
64ρm−1Nm +

∑
∆k>0

64ρm−1n
m
k +

∑
∆k>0

16λm

∆k

+

(
16Kλm

∆
+ 1

)
I (m ≤ log2 (8/∆))

)

≤
M∑

m=1

(
128ρm−1Nm +

∑
∆k>0

16λm

∆k

)
+

log2(8/∆)∑
m=1

(
16Kλm

∆
+ 1

)

(10)

where the last inequality uses the fact that
∑

∆k>0 n
m
k ≤ Nm. Notice that we can bound the

expectation of the offset level as

E[Dm] = 2(1− δm)Cm + δmNm ≤ 2Cm + 1

and we can bound
∑M

m=1 ρm−1Nm as

M∑
m=1

ρm−1Nm ≤
M∑

m=1

(
m−1∑
s=1

2m−1−sDs

a4(m−1−s)Ns

)
Nm

= a2
M∑

m=1

(
m−1∑
s=1

((2a2)m−1−s + 1)λm

a4(m−1−s)λs
Ds

)

= a2
M∑

m=1

(
m−1∑
s=1

((
14

5a2

)m−1−s

+

(
1

a4

)m−1−s
)
Ds

)

= a2
M−1∑
s=1

Ds

M∑
m=s+1

(
14

5a2

)m−1−s

+

(
1

a4

)m−1−s

≤ a2

(
M−1∑
m=1

Dm

) ∞∑
j=0

(
14

5a2

)j

+

(
1

a4

)j

≤ a2
(

5a2

5a2 − 14
+

a4

a4 − 1

)M−1∑
m=1

Dm ≤
22a2

5

M−1∑
m=1

Dm.

(11)

38

Combining Eq. (10) and Eq. (11), by Lemma 17, since a = T
1

2(L+3) and M = L, we can get

R(T) ≤
M−1∑
m=1

570a2E[Dm] +

M∑
m=1

∑
∆k>0

16λm

∆k
+

log2(8/∆)∑
m=1

(
16Kλm

∆
+ 1

)

=

L−1∑
m=1

570a2E[Dm] +

L∑
m=1

∑
∆k>0

16λm

∆k
+

log2(8/∆)∑
m=1

(
16Kλm

∆
+ 1

)

≤
L−1∑
m=1

1140a2Cm + 570a2 + 25a8 ln(a)

(∑
∆k>0

L2 + 3L(2 + log(K))

∆k

+
K(log2(8/∆) + 3 log(8/∆)(2 + log(K))

∆

)
+ log2(8/∆)

= O

(
CT

1
L+3 + T

4
L+3

(∑
∆k>0

L log(KT)

∆k
+

K log(T) log(1/∆) log(K/∆)

L∆

))
.

B.3.4 Proof for Theorem 4

Proof. In the batched bandit problem, let the static grids be defined as 0 = t0 < t1 < · · · < tL = T .
According to Lemma 2 in [19], the lower bound for stochastic batched bandits with no corruption are
given by:

R(C = 0, L) = O

(
K ·max

j∈[L]

tj
tj−1 + 1

)
. (12)

For adversarial corruptions, we define an adversary who starts attacking at round 0 and continues
until the end of a batch, denoted by ts for 0 < s < L. The attack strategy involves setting the rewards
of all arms to zero, forcing any algorithm to pull all arms evenly in round s + 1, which leads to a
regret of approximately ts − ts−1. Therefore, under adversarial corruptions, the lower bound can be
expressed as:

R(C,L) = O

(
K ·max

j∈[L]

tj
tj−1 + 1

+ C · max
j∈[L−1]

tj+1 − tj
tj

)
= O

(
Kt1 + (K + C) max

j∈[L−1]

tj+1 − tj
tj

)
= O

(
Kt1 + (K + C)

(
T

tj

) 1
L−1

)
.

(13)

According the formula, we can get the optimal value of t1 = T
1
L

(
K(L−1)
K+C

)L−1
L

. Combine equa-
tion 13, we can get

R(C,L) ≥ Ω
(
T

1
L

(
K + C1− 1

L

))
.

B.4 Proof of Theorem 5

B.4.1 Lemmas for Proving Theorem 5

By employing the methods described above, we establish that Lemmas 1, 2, 3, and 4 remain valid. In
contrast to the standard multi-armed bandit setting, the feedback structure in our model implies that,
for each arm k, the expected number of observable pulls n̂m

k does not necessarily equal the expected
number of actual pulls ñm

k .
Lemma 20. For any epoch m, all arms k ̸= km must satisfy ñm

k ≤ nm
k and n̂m

k ≥ nm
k .

Proof. By Algorithm 4, we can easily guarantee that the inequality ñm
k ≤ nm

k holds for all arms
k ̸= km. Recalling the setting of strongly observable graph, for each arm k, either it has a self-loop

39

or all other arms have an edge pointing to it. According to Algorithm 4, we can get the guarantee as
follows for each arm kj ∈ [K]: ∑

(ki,kj)∈E,ki ̸=kj

ñm
ki

+ ñm
kj
≥ nm

kj
.

So for each arm k which has a self-loop, we have the following inequality:

n̂m
k =

∑
(ki,kj)∈E,ki ̸=kj

ñm
ki

+ ñm
kj
≥ nm

k .

For each arm k which does not have a self-loop, since ñm
km
≥ 2−m ≥ nm

k for all arms k ̸= km, so
we complete the proof.

Same as the proof in Appendix B.1, we only need to change ñm
k to n̂m

k to obtain the following
lemmas.
Lemma 21. For any fixed k,m and βm, Algorithm 1 satisfies

Pr

[
|rmk − µk| ≥

√
4 ln(4/βm)

n̂m
k

+
2Cm

Nm

]
≤ βm.

We also define an event Em for epoch m as follows:

Em ≜

{
∀ k : |rmk − µk| ≤

√
4 ln(4/βm)

n̂m
k

+
2Cm

Nm

}
.

Lemma 22. For any epoch m, event Em holds with probability at least 1− δm. And after rigorous
calculation, we have 1/δm ≥ Nm.

We can also always guarantee the following inequality:

|rmk − µk| ≤

√
4 ln(4/βm)

n̂m
k

+
Dm

Nm
.

It is worth noting that Pr[Dm = 2Cm] ≥ 1− δm and Pr[Dm = Nm] ≤ δm.

Next, we will bound ∆m
k , which is also the turning point of our proof. To start, we define the

discounted offset rate as

ρm :=

m∑
s=1

Ds

8m−sNs
.

Lemma 23. For all epochs m and arms k ̸= k∗, we can have

4

7
∆k −

3

4
2−m − 6ρm ≤ ∆m

k ≤
8

7
∆k + 2−(m−1) + 2ρm,

and for the optimal arm k∗, we have

−3

7
∆− 3

4
2−m − 6ρm ≤ ∆m

k∗ ≤
1

7
∆ + 2−(m−1) + 2ρm.

Proof. Since |rmk − µk| ≤
√

4 ln(4/βm)
n̂m
k

+ Dm

Nm
, we have

−Dm

Nm
−

√
4 ln(4/βm)

n̂m
k

≤ rmk − µk ≤
Dm

Nm
+

√
4 ln(4/βm)

n̂m
k

.

By Lemma 20, we can get n̂m
k ≥ nm

k for all arms k ̸= km and n̂m
km
≥
∑

k ̸=km
ñm
k for arm km. Then

we have the following inequalities:

∀k ̸= km :

√
4 ln(4/βm)

n̂m
k

≤

√
4 ln(4/βm)

nm
k

=
∆m−1

k

8
,

40

and √
4 ln(4/βm)

n̂m
km

≤ max
k ̸=km

√
4 ln(4/βm)

nm
km

= min
k ̸=km

∆m−1
k

8
.

Additionally, given that

rm∗ ≤ max
k

{
µk +

Dm

Nm
+

√
4 ln(4/βm)

n̂m
k

−

√
4 ln(4/βm)

n̂m
k

}
≤ µk∗ +

Dm

Nm
,

and

rm∗ = max
k

{
rmk −

√
4 ln(4/βm)

n̂m
k

}

≥ rmk∗ −

√
4 ln(4/βm)

n̂m
k∗

≥ µk∗ − 1

4
max{∆m−1

k∗ , min
k ̸=km

∆m−1
k } − Dm

Nm

≥ µk∗ − 1

4
max{∆m−1

k∗ ,∆m−1} − Dm

Nm

It follows that

−Dm

Nm
− 1

4
max{∆m−1

k∗ ,∆m−1} ≤ rm∗ − µk∗ ≤ Dm

Nm
.

We now establish the upper bound for ∆m
k using induction on epoch m.

For the base case m = 1, the statement is trivial as ∆1
k = 1 for all k ∈ [K].

Assuming the statement is true for m − 1, for arm k ̸= k∗, since there are at least two arms: one
optimal arm and one sub-optimal arm, we can obtain

min
k ̸=km

∆m−1
k ≤ max{∆m−1

k∗ ,∆m−1} ≤ 8

7
∆ + 2−(m−1) + 2ρm.

Then we have

∆m
k = rm∗ − rmk = (rm∗ − µ∗) + (µ∗ − µk) + (µk − rmk)

≤ Dm

Nm
+∆k +

Dm

Nm
+

1

8
max{∆m−1

k , min
k ̸=km

∆m−1
k }

≤ 2Dm

Nm
+∆k +

1

8

(
8max{∆k,∆}

7
+ 2−(m−1) + 2ρm−2

)
≤ 8∆k

7
+ 2−(m−1) + 2ρm.

Where the second inequality follows from the induction hypothesis.

For arm k∗, we have

∆m
k∗ = rm∗ − rmk∗ = (rm∗ − µ∗) + (µ∗ − µk∗) + (µk∗ − rmk∗)

≤ Dm

Nm
+

Dm

Nm
+

1

8
max{∆m−1

k∗ , min
k ̸=km

∆m−1
k }

≤ 2Dm

Nm
+

1

8

(
8∆

7
+ 2−(m−1) + 2ρm−1

)
≤ 1

7
∆ + 2−(m−1) + 2ρm.

41

Next, we establish the lower bound for ∆m
k . Specifically, for arm k ̸= k∗ we demonstrate that

∆m
k = rm∗ − rmk = (rm∗ − µ∗) + (µ∗ − µk) + (µk − rmk)

≥ −Dm

Nm
− 1

4
max{∆m−1

k∗ ,∆k−1}+∆k −
Dm

Nm
− 1

8
∆m−1

k

≥ −2Dm

Nm
+∆k −

3

8
(
8max{∆k,∆}

7
+ 2−(m−2) + 2ρm−1)

≥ 4

7
∆k −

3

2
2−m − 6ρm.

where the third inequality comes from the upper bound of ∆m−1
k .

For arm k∗, we have

∆m
k∗ = rm∗ − rmk∗ = (rm∗ − µ∗) + (µ∗ − µk∗) + (µk∗ − rmk∗)

≥ −Dm

Nm
− 1

4
max{∆m−1

k∗ ,∆k−1} − Dm

Nm
− 1

8
∆m−1

k∗

≥ −2Dm

Nm
− 3

8
(
8∆

7
+ 2−(m−2) + 2ρm−1)

≥ −3

7
∆− 3

2
2−m − 6ρm.

This proof is complete.

Lemma 24. For any strongly observable directed graph G with the independence number α, the
obtained out-domination set D must satisfy |D| ≤ ⌈α(1 + 2 ln(K/α))⌉ by Algorithm 6. Especially,
when G is an acyclic graph and undirected graphs, we have |D| ≤ α.

Proof. If the graph G is undirected, then in each iteration of the Algorithm 6 we select a vertex
and remove its neighbors. The selected vertices are therefore pairwise non-adjacent and form an
independent set; hence the resulting out-dominating set D satisfies |D| ≤ α. The remainder of our
analysis focuses on the directed graphs.

Recalling the definition of the no-root vertex, for any strongly observable directed graph G with the
independence number α, we can get that if we remove a no-root vertex k and its out-degree neighbors,
the remaining graph G′ whose independence number is at most α− 1. That’s because no vertex in
graph G′ is connected to the vertex k. By the definition of strongly observable directed acyclic graph,
we can always get the no-root vertex for the remaining graph, which means that |D| ≤ α.

Recalling the pseudo-code in Algorithm 6, we denote the loop index as s and initialize s = 0. In
other words, Gs = ([Vs], Es) shows the residual graph obtained after s loops of removing vertices.
Given any graph Gs = ([Vs], Es) with no no-root vertices, Gs+1 is obtained by removing from Gs

the vertex is with the largest out-degree d+s . Hence,

d+s ≥
|ES |
|VS |

≥ |Vs|
2αs
− 1

2
≥ |Vs|

2α
− 1

2
,

by Turan’s theorem (e.g., [35]), where αs is the independence number of Gs and α ≥ αs. This shows
that

|Vs+1| = |Vs| − d+s ≤ |Vs|(1−
1

2α
) ≤ |Vs|e−s/2α.

Iterating, we obtain |Vs| ≤ Ke−1/2α. We define the graph Gs0 = ([Vs0], Es0) with the independence
number αs0 as the the final residual graph has cycles. We can discuss this in two cases:

Case 1: |Vs0 | < α.

We can get a graph Gs1 = (|Vs1 |, Es1) with s1 ≤ s0, which satisfies |Vs1 | < α and |Vs1−1| ≥ α.
Since Vs1−1 ≤ Ke−(s1−1)/(2α), we have s1 − 1 ≤ ⌈2α ln(K/|Vs1−1|)⌉ ≤ ⌈2α ln(K/α)⌉. So we
can get

|D| ≤ |Vs1 |+ ⌈2α ln(K/α)⌉+ 1 ≤ ⌈α(1 + 2 ln(K/α))⌉.

42

Case 2: |Vs0 | ≥ α.

By Vs0 ≤ Ke−s0/(2α), we have s0 ≤ ⌈2α ln(K/|Vs0 |)⌉ ≤ ⌈2α ln(K/α)⌉. Because Gs0 has no
cycles and the independence number αs0 ≤ α, we can get

|D| ≤ αs0 + ⌈2α ln(K/α)⌉ ≤ ⌈α(1 + 2 ln(K/α))⌉.

The proof is complete.

B.4.2 Proof for Theorem 5

Recalling Lemma 23, for all arms k ̸= k∗, we have

4

7
∆k −

3

4
2−m − 6ρm ≤ ∆m

k ≤
8

7
∆k + 2−(m−1) + 2ρm.

We first define the regret Rm
k generated by arm k in epoch m as

Rm
k ≜ ∆kñ

m
k =

{
∆kn

m
k k ̸= km

∆kñ
m
k k = km

.

Then we analyze the regret in following three cases:

Case 1: 0 < ∆k ≤ 64ρm−1.
If k ̸= km, then we have

Rm
k = ∆kn

m
k ≤ 64ρm−1n

m
k .

If k = km, then we have

Rm
k = ∆kñ

m
km
≤ 64ρm−1Nm.

Case 2: ∆k ≤ 8 · 2−m and ρm−1 ≤ ∆k

64 .
If k ̸= km, then we have

Rm
k = nm

k ∆k = λm(∆m−1
k)−2∆k ≤ λm22(m−1)∆k ≤

16λm

∆k
.

If k = km, since ∆m−1
km

= 2−(m−1), we can get:

Rm
k = ñm

km
∆km

≤ Nm∆km
= ⌈Kλm22(m−1)⌉∆km

≤ 16Kλm

∆km

+∆km ≤
16Kλm

∆
+ 1.

Case 3: ∆k > 8 · 2−m and ρm−1 ≤ ∆k

64 .
By Lemma 7 we have

∆m−1
k ≥ 4

7
∆k −

3

2
2−m − 6

64
∆k ≥ ∆k

(
4

7
− 3

16
− 6

64

)
≥ 0.29∆k.

In this case, it is impossible that k = km because ∆m−1
km

= 2−(m−1) < 0.29 · 8 · 2−m < 0.29∆k.
So we can obtain

Rm
k = nm

k ∆k = λm(∆m−1
k)−2∆k ≤

λm

0.292∆k
≤ 16λm

∆k
.

43

We define Am ≜
{
k ∈ [K]

∣∣ 0 < ∆k ≤ 64ρm−1

}
for epoch m. By combining all three cases, we

can upper bound the regret as

R(T) =

M∑
m=1

(∑
k∈Am

Rm
k +

∑
k/∈Am

Rm
k

)

≤
M∑

m=1

(
64ρm−1Nm +

∑
k∈Am,k ̸=km

64ρm−1n
m
k +

∑
k/∈Am,∆k>0

16λm

∆k

+

(
16Kλm

∆
+ 1

)
I(0 < ∆km ≤ 8 · 2−m)

)

≤
M∑

m=1

(
64ρm−1Nm +

∑
∆k>0

64ρm−1n
m
k +

∑
∆k>0

16λm

∆k

+

(
16Kλm

∆
+ 1

)
I (m ≤ log2 (8/∆))

)

≤
M∑

m=1

(
128ρm−1Nm +

∑
∆k>0

16λm

∆k

)
+

log2(8/∆)∑
m=1

(
16Kλm

∆
+ 1

)

(14)

where the last inequality uses the fact that
∑

∆k>0 n
m
k ≤ Nm. Notice that we can bound the

expectation of the offset level as

E[Dm] = 2(1− δm)Cm + δmNm ≤ 2Cm + 1

and we can bound
∑M

m=1 ρm−1Nm as

M∑
m=1

ρm−1Nm ≤
M∑

m=1

(
m−1∑
s=1

Ds

8m−1−sNs

)
Nm

≤ 4

M∑
m=1

(
m−1∑
s=1

(4m−1−s + 1)λm

8m−1−sλs
Ds

)

= 4

M∑
m=1

(
m−1∑
s=1

((7/12)m−1−s + (7/48)m−1−s)Ds

)

= 4

M−1∑
s=1

Ds

M∑
m=s+1

(7/12)m−1−s + (7/48)m−1−s

≤ 4

(
M−1∑
m=1

Dm

) ∞∑
j=0

(7/12)
j
+ (7/48)

j ≤ 11

M−1∑
m=1

Dm.

(15)

Recalling the pseudo-code of SOG-BARBAT in Algorithm 4, we define the loop (Line 10-16) index
as a. For ease of analysis, if removing multiple arms from Hm in one loop, we also consider this case
as multi loops where the H

m

a is set by zero. According to the above analysis, we have nm
k ≤

16λm

∆2
k

.
Defining b = K − |Am|, by Lemma 24, we can set a parameter γm = maxs=1,2,··· ,b |Dm

a |. With
loss of generality, for each arm k ∈ Am, we set ∆1 ≥ ∆2 ≥ · · · ≥ ∆b. Recalling the process
of Algorithm 4, we only need to pull H

m

a times for all arms in the out-domination set Dm
s , where

we can observe at least H
m

a times for all arms k ∈ [K]. By this way, to maximize the value of∑
k∈Am Rm

k , we should try to select the larger part of the suboptimal arm from the arms that have
not been removed. In addition, we can have the following inequality:

H
m

1 ≤ nm
1 =

16λm

∆2
1

, H
m

2 −H
m

1 ≤
16λm

∆2
2

, · · · , Hm

b −H
m

b−1 ≤
16λm

∆2
b

.

44

By this way, we can get the following equation:

sup
∑

k∈Am

Rm
k = sup

b∑
s=1

H
m

a

 ∑
k∈Am,k∈Dm

s

∆k


=

b−γm+1∑
s=1

(
16λm

∆2
s

− 16λm

∆2
s−1

)(s+γm∑
k=s

∆k

)
+

b∑
s=b−γm+2

(
16λm

∆2
s

− 16λm

∆2
s−1

)(b∑
k=s

∆k

)

=

γm∑
k=1

16λm

∆k
+

b∑
k=γm+1

(
16λm

∆2
k

− 16λm

∆2
k−γm

)
∆k

≤
2γm∑

k=γm+1

20λm

∆k
+

b∑
k=2γm+1

(
16λm

∆2
k

− 16λm

∆2
k−1

)
∆k ≤ · · · ≤

b∑
k=b−γm+1

32λm

∆k
.

(16)

In the second inequality, for ease of write, we set 16λm

∆2
0

= 0. For the above inequalities, we use the

inequality β0

∆k
+
(

1
∆2

γm+k

− 1
∆2

k

)
∆γm+k ≤ β1

∆γm+k
holds for all 2 ≥ β1 > β0 ≥ 1. For example, in

the first inequality, we have

γm∑
k=1

16λm

∆k
+

2γm∑
k=γm+1

(
16λm

∆2
k

− 16λm

∆2
k−γm

)
∆k

= 16λm

γm∑
k=1

(
1

∆k
+

(
1

∆2
γm+k

− 1

∆2
k

)
∆γm+k

)
≤

2γm∑
k=γm+1

20λm

∆k
.

Combining Eq. (14), Eq. (15) and Eq. (16), by Lemma 4, we can get

R(T) ≤
M−1∑
m=1

1440E[Dm] +

M∑
m=1

∑
∆k>0

16λm

∆k
+

log2(8/∆)∑
m=1

(
16Kλm

∆
+ 1

)

≤
M−1∑
m=1

1440E[Dm] +
∑
∆k>0

212(log2(T) + 3 log(T) log(30K))

∆k

+
212K(log2(8/∆) + 3 log(8/∆) log(30K)))

∆
+ log(8/∆)

≤
M−1∑
m=1

2880Cm + 1440 +
∑
∆k>0

214 log(T) log(30KT)

∆k

+
214K log(8/∆) log(240K/∆))

∆
+ log(8/∆)

≤
M−1∑
m=1

2880Cm + 1440 +
∑
k∈I∗

215 log(T) log(30KT)

∆k

+
214K log(8/∆) log(240K/∆))

∆
+ log(8/∆)

= O

(
C +

∑
k∈I∗

log(T) log(KT)

∆k
+

K log(1/∆) log(K/∆)

∆

)
.

where I∗ is the set of at most ⌊α(1 + 2 ln(K/α))⌋ arms with the smallest gaps. Especially, for
directed acyclic graphs (including undirected graphs), I∗ is the set of at most α arms with the smallest
gaps.

45

B.5 Proof of Theorem 6

B.5.1 Notations

Following [15, 14], with loss of generality, we assume µ1 ≥ µ2 ≥ · · · ≥ µK and ∆k = µk − µd for
all arms k > d.

B.5.2 Lemmas for Proving Theorem 6

By the methods mentioned before, Lemma 1 still holds. For Lemma 2, we need to consider the
impact of changing km representing an arm to representing an arm set.
Lemma 25. For any epoch m, the length Nm satisfies dNm ≥

∑
k∈K nm

k . The actual expected
pulling times ñm

k ≥ nm
k for all arms k ∈ [K].

Proof. Since ∆m
k = max{2−m, rm∗ − rmk } ≥ 2−m, we can get

nm
k = λm(∆m−1

k)−2 ≤ λm22(m−1).

Therefore, we have ∑
k∈K

nm
k ≤ Kλm22(m−1) = dNm.

Since Nm = Kλm22(m−1)/d, so for arm k ∈ Km, we have

ñm
k = Nm −

∑
k ̸∈Km

nm
k /d ≥ λm22(m−1) ≥ nm

k .

This proof is complete.

Using the methods mentioned before, all lemmas in Appendix B.1 still holds. Maybe Lemma 7 will
be different because we changed the way rm∗ is assigned. Next we will prove that Lemma 7 still
holds.

Proof. Since |rmk − µk| ≤
√

4 ln(4/βm)
ñm
k

+ Dm

Nm
, we have

−Dm

Nm
−

√
4 ln(4/βm)

ñm
k

≤ rmk − µk ≤
Dm

Nm
+

√
4 ln(4/βm)

ñm
k

.

Additionally, since

rm∗ ≤ ⊤d

{µk +
Dm

Nm
+

√
4 ln(4/βm)

ñm
k

−

√
4 ln(4/βm)

ñm
k

}
k∈[K]

 ≤ µd +
Dm

Nm
,

rm∗ = ⊤d

{rmk −
√

4 ln(4/βm)

ñm
k

}
k∈[K]

 ≥ rmd −

√
4 ln(4/βm)

ñm
d

≥ µd−2

√
4 ln(4/βm)

ñm
d

−Dm

Nm
,

we can get

−Dm

Nm
− 2

√
4 ln(4/βm)

ñm
d

≤ rm∗ − µd ≤
Dm

Nm
.

According to Algorithm 1 and Lemma 2, we have ñm
k ≥ nm

k for all arms k. Then we have the
following inequality for all k ∈ [K]:√

4 ln(4/βm)

ñm
k

≤

√
4 ln(4/βm)

nm
k

=
∆m−1

k

8
.

We now establish the upper bound for ∆m
k by induction on m.

For the base case m = 1, the statement is trivial as ∆1
k = 1 for all k ∈ [K].

46

Assuming the statement is true for the case of m− 1, we have

∆m
k = rm∗ − rmk = (rm∗ − µd) + (µd − µk) + (µk − rmk)

≤ Dm

Nm
+∆k +

Dm

Nm
+

1

8
∆m−1

k

≤ 2Dm

Nm
+∆k +

1

8

(
8∆k

7
+ 2−(m−2) + 2ρm−1

)
≤ 8∆k

7
+ 2−(m−1) + 2ρm,

Where the second inequality follows from the induction hypothesis.

Next, we provide the lower bound of ∆m
k . We can get

∆m
k = rm∗ − rmk = (rm∗ − µd) + (µd − µk) + (µk − rmk)

≥ −Dm

Nm
− 1

4
∆m−1

k∗ +∆k −
Dm

Nm
− 1

8
∆m−1

k

≥ −2Dm

Nm
+∆k −

3

8

(
8∆k

7
+ 2−(m−2) + 2ρm−1

)
≥ 4

7
∆k −

3

2
2−m − 6ρm.

where the third inequality comes from the upper bound of ∆m−1
k .

B.5.3 Proof for Theorem 6

Following to the work [15], we can define the regret Rm
k generated by arm k in epoch m as

Rm
k ≜ ∆kñ

m
k =

{
∆kn

m
k k ̸∈ Km

∆kñ
m
k k ∈ Km

.

Then we analyze the regret in following three cases:

Case 1: 0 < ∆k ≤ 64ρm−1.
If k ̸∈ Km, then we have

Rm
k = ∆kn

m
k ≤ 64ρm−1n

m
k .

If k ∈ Km, then we have
Rm

k = ∆kñ
m
km
≤ 64ρm−1dNm.

Case 2: ∆k ≤ 8 · 2−m and ρm−1 ≤ ∆k

64 .
If k ̸∈ Km, then we have

Rm
k = nm

k ∆k = λm(∆m−1
k)−2∆k ≤ λm22(m−1)∆k ≤

16λm

∆k
.

If k ∈ Km, since ∆m−1
km

= 2−(m−1), we can get:

Rm
k = ñm

km
∆km

≤ dNm∆km
= d⌈Kλm22(m−1)/d⌉∆km

≤ 16Kdλm

∆km

+ d∆km ≤
16Kdλm

∆
+ d.

Case 3: ∆k > 8 · 2−m and ρm−1 ≤ ∆k

64 .
By Lemma 7 we have

∆m−1
k ≥ 4

7
∆k −

3

2
2−m − 6

64
∆k ≥ ∆k

(
4

7
− 3

16
− 6

64

)
≥ 0.29∆k.

In this case, it is impossible that k ∈ Km because ∆m−1
km

= 2−(m−1) < 0.29 · 8 · 2−m < 0.29∆k.
So we can obtain

Rm
k = nm

k ∆k = λm(∆m−1
k)−2∆k ≤

λm

0.292∆k
≤ 16λm

∆k
.

47

We define Am ≜
{
k ∈ [K]

∣∣ 0 < ∆k ≤ 64ρm−1

}
for epoch m. By combining all three cases, we

can upper bound the regret as

R(T) =

M∑
m=1

(∑
k∈Am

Rm
k +

∑
k/∈Am

Rm
k

)

≤
M∑

m=1

(
64ρm−1dNm +

∑
k∈Am,k ̸=km

64ρm−1n
m
k +

∑
k/∈Am,∆k>0

16λm

∆k

+

(
16Kdλm

∆
+ d

)
I(0 < ∆km ≤ 8 · 2−m)

)

≤
M∑

m=1

(
64ρm−1dNm +

∑
∆k>0

64ρm−1n
m
k +

∑
∆k>0

16λm

∆k

+

(
16Kdλm

∆
+ d

)
I (m ≤ log2 (8/∆))

)

≤
M∑

m=1

(
128ρm−1dNm +

∑
∆k>0

16λm

∆k

)
+

log2(8/∆)∑
m=1

(
16Kdλm

∆
+ d

)

(17)

where the last inequality uses the fact that
∑

∆k>0 n
m
k ≤ Nm. Notice that we can bound the

expectation of the offset level as

E[Dm] = 2(1− δm)Cm + δmNm ≤ 2Cm + 1

and we can bound
∑M

m=1 ρm−1Nm as

M∑
m=1

ρm−1dNm ≤
M∑

m=1

(
m−1∑
s=1

Ds

8m−1−sNs

)
dNm

≤ 4d

M∑
m=1

(
m−1∑
s=1

(4m−1−s + 1)λm

8m−1−sλs
Ds

)

= 4d

M∑
m=1

(
m−1∑
s=1

((7/12)m−1−s + (7/48)m−1−s)Ds

)

= 4d

M−1∑
s=1

Ds

M∑
m=s+1

(7/12)m−1−s + (7/48)m−1−s

≤ 4d

(
M−1∑
m=1

Dm

) ∞∑
j=0

(7/12)
j
+ (7/48)

j ≤ 11d

M−1∑
m=1

Dm.

(18)

48

Combining Eq. (17) and Eq. (18), by Lemma 4, we can get

R(T) ≤
M−1∑
m=1

1440E[dDm] +

M∑
m=1

∑
∆k>0

16λm

∆k
+

log2(8/∆)∑
m=1

(
16Kdλm

∆
+ d

)

≤
M−1∑
m=1

1440E[dDm] +
∑
∆k>0

212(log2(T) + 3 log(T) log(30K))

∆k

+
212Kd(log2(8/∆) + 3 log(8/∆) log(30K)))

∆
+ d log(8/∆)

≤
M−1∑
m=1

2880dCm + 1440d+
∑
∆k>0

214 log(T) log(30KT)

∆k

+
214Kd log(8/∆) log(240K/∆)

∆
+ d log(8/∆)

= O

(
dC +

∑
∆k>0

log(T) log(KT)

∆k
+

dK log(1/∆) log(K/∆)

∆

)
.

49

BARBAT DRAA IND-BARBAR IND-FTRL

K = 12 0.13 s 0.14 s 0.12 s 1.53 s

K = 16 0.13 s 0.15 s 0.14 s 1.91 s

Table 2: The cost time of each agent for BARBAT and all baseline methods.

(a) K = 12 (b) K = 16

Figure 4: The feedback structure for the strongly observable graph bandits.

C Experimental Details

C.1 Cooperative Multi-Agent Multi-Armed Bandits

We first consider CMA2B, where the mean rewards {µk}k∈[K] is uniformly distributed in the interval
[0.02, 0.96]. For each arm k, we generate the stochastic rewards according to a truncated normal
distribution with support [0, 1], mean µk, and variance 0.1. We use a time horizon T = 50000, set the
corruption level C = 2000, 5000 and the number of arms K = 12, 16. Following [10], we set the
two worst arms as target arms and corrupt the target arm’s reward to 1 and the other arms’ rewards to
zero until the corruption level is exhausted.

As seen in Table 2, the time cost by BARBAT is much shorter than that of the FTRL, which confirms
that the computational efficiency of the BARBAT framework is much higher than that of the FTRL
framework.

C.2 Strongly Observable Graph Bandits

Following [10], we adopt the Erdos–Renyi model [36] to generate feedback graph in Figure 4, with
the independence number α = 4. Specifically, for each pair of arms (u, v) ∈ [K]× [K] with u = v,
we connect them with a fixed probability 0.5. Blue circles represent vertices without self-loops, while
white circles represent vertices with self-loops.

C.3 d-Set Semi-bandits

In d-set semi-bandits, we set d = 3 for K = 12, and d = 4 for K = 16. Following the recent
works [15, 17], we generate the stochastic rewards according to a Bernoulli distribution, other settings
are the same as cooperative standard MAB.

50

BARBAT HYBRID LBINF LBINF_LS LBINF_GD

K = 12 0.36 s 14.63 s 10.16 s 10.21 s 9.84 s

K = 16 0.37 s 18.62 s 12.37 s 12.67 s 12.69 s

Table 3: The cost time of each agent for BARBAT and all baseline methods.

As seen in Table 3, the time cost by BARBAT is much shorter than that of the FTRL, which confirms
that the computational efficiency of the BARBAT framework is much higher than that of the FTRL
framework.

51

	OODS algorithm for strongly observable graph bandits
	Proof Details
	Proof of Theorem 1
	Notations
	Lemmas for Proving Theorem 1
	Proof for Theorem 1

	Proof of Theorem 2
	Notations
	Lemmas for Proving Theorem 2
	Proof for Theorem 2

	Proof of Theorem 3
	Notations
	Lemmas for Proving Theorem 3
	Proof for Theorem 3
	Proof for Theorem 4

	Proof of Theorem 5
	Lemmas for Proving Theorem 5
	Proof for Theorem 5

	Proof of Theorem 6
	Notations
	Lemmas for Proving Theorem 6
	Proof for Theorem 6

	Experimental Details
	Cooperative Multi-Agent Multi-Armed Bandits
	Strongly Observable Graph Bandits
	d-Set Semi-bandits

