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ABSTRACT

Tabular data generation methods have emerged to address growing concerns in
the use of sensitive tabular data for training machine learning models. Many
methods focus on creating high quality tabular data that can be used in place of the
original dataset while retaining generalization performance on downstream tasks,
and protecting sensitive data in an era where privacy is paramount. Despite their
avid success, many of the methods face implacable challenges and obstacles to wide
scale applications primarily due to the significant computational costs associated
with data synthesis. In this paper, we propose a flexible data distillation pipeline as
an alternative to conventional synthetic data generators that obtains competitive
privacy metrics, while achieving significantly higher downstream performance at
a fraction of the compute costs. In particular our methods has accelerated data
synthesis by 5× on average when compared to synthetic generators, while also
achieving superior performance.

1 INTRODUCTION

Tabular data is one of the most ubiquitous mediums of data storage Shwartz-Ziv & Armon (2021)
across fields such as medicine, physics, and financial institutions Sahakyan et al. (2021); Zabërgja
et al. (2024), due to the flexible representation of high dimensional data in a structured form. In
particular, tabular data contains a mixture of feature data types, including numerically continuous
and categorically discrete data, often paired with a highly imbalanced class distribution Zhao et al.
(2021b); Bennett (2001); Jolicoeur-Martineau et al. (2024). Further Tabular datasets often encode
sensitive information hence sparking avid research in the field of tabular data synthesis Kotelnikov
et al. (2023); Lee et al. (2023); Zhang et al. (2023). However, these synthetic generators often come
at the expense of heavy training and deployment costs that scale with complexity of the dataset Zhang
et al. (2023). In this paper we naturally pose the question: Can we efficiently synthesize a compact
dataset that retains downstream generalization performance ?

In this work, we choose to frame this question as a data condensation problem, in which we aim to
efficiently condense the original datasets into a small compact training dataset for downstream tasks,
such as machine learning efficiency (MLE). In the image-classification domain, data condensation has
gained significant popularity for efficiently reducing the computational costs of downstream training
on image data upwards of 1 million training samples. These strategies, collectively referred to as data
condensation, can be divided into core-set subset selection Guo et al. (2022); Rebuffi et al. (2017);
Castro et al. (2018); Belouadah & Popescu (2020); Sener & Savarese (2018); Toneva et al. (2019)
and dataset distillation techniques Wang et al. (2018); Zhao et al. (2021a); Zhao & Bilen (2023);
Cazenavette et al. (2022); Sajedi et al. (2023); Wang et al. (2022); Zhao et al. (2023), both of which
are implemented to drive down the computational costs of downstream training while maintaining
generalization performance.

In this work, we present a novel alternative to synthetic data generators for tabular data through the
use of data condensation techniques. In particular we leverage the use of an auto-encoder to project
the inherent mixed-data types into a unified latent embedding where we can then efficiently condense
the dataset into an increasingly private compact training dataset for downstream tasks. In Figure
1 we demonstrate the capacity for distilled data to server as effective synthetic data by comparing
it’s privacy preservation, accuracy on machine learning efficiency, and it’s effectiveness at reducing
computational costs at training and deployment time.
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Figure 1: (Left) Compared to the real data from the original tabular, the privacy issue in the distilled
tabular is much smaller. (Middle) Compared to generative-based methods, our proposed method
shows a good trade-off between performance and privacy. (Right) Our approach signficantly improves
the efficiency of training/data synthesis, and is also more efficient for full-scale deployment.

As one of the first works to introduce data condensation as an efficient method of synthetic data
generation on real world tabular data, we begin by comparing the data distillation techniques with
synthetic generators. In particular, in Section 4, we use a variety of metrics including computational
efficiency, privacy through distance to closest record, and machine learning efficiency to ultimately
justify the effective use of data distillation on tabular data. We then ablate the different method of data
distillation against naive coreset selection techniques in Section 4.2 to demonstrate it’s downstream
performance benefits. We also evaluate our distilled data on a variety of tabular-based downstream
models including gradient boosting networks. Finally, we illustrate the improved efficiency of
parameter search using our distilled data as a proxy for fast and effective parameter selection.

2 PRELIMINARIES

In this section, we provide some background on the key challenges behind integrating data distil-
lation techniques with tabular data, and then discuss our relevant design choices to facilitate this
combination. Tabular data does present many additional challenges such as heterogeneity, column
sparsity, data pre-processing, and even domain knowledge. However, in this paper, we aim to create
an alternate means of protected data synthesis using data distillation, hence we focus particularly on
the obstacles that hinder the straightforward application of data distillation; in particular mixed data
types (heterogeneity) and class imbalance (sparsity).

Mixed Data Types. In tabular data, each column represents a particular feature that is distributed
over the dataset rows, but not all features share the same data type Shwartz-Ziv & Armon (2021).
Typically, a tabular dataset includes a mix of continuous numerical and discrete categorical features.
In the former case, features span a continuous range, akin to pixel RGB values in images, while
discrete features are categorical, similar to classification outputs. Data condensation pipelines, core-
set and distillation techniques, typically target continuous data. However, applying these methods to
a mixture of feature types presents challenges.

Table 1: Real vs. Latent dimension for
information matching.

Space 5% 10%
Real 50.8 60.2
Latent 64.1 ↑ 13.3 85.8 ↑ 25.6

To address these challenges , we introduce the use of a
variational autoencoder, following similar techniques from
Zhang et al. (2023); Liu et al. (2022), to encode continuous
and categorical features into a latent embedding space.
Here, we can condense the dataset and use the decoder
to transform our condensed embedding into a condensed
tabular dataset. In order to fully confirm this hypothesis,
we perform a test using one core-set and one distillation
strategy on both the real and latent spaces (further details
in the Appendix). As shown in Table 1, running distillation directly on the tabular data results in far
worse performance than condensing in the latent dimension. This implies that the latent dimension
combines both continuous and categorical data into a unified, more comprehensive embedding space.
Thus we use the latent dimension in our distillation pipeline methods.

Class Imbalance. Previous data-efficient training pipelines, often based on core-set selection or
dataset distillation, rely on standardized image benchmarks for image classification tasks. These
benchmarks typically maintain balanced classes across datasets. For instance, distillation strategies in
image classification are typically evaluated based on the number of image samples per class (IPC)
given equal class representation. However, tabular datasets frequently exhibit class imbalances.
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For example, the Adult dataset has roughly three times as many positive classes as negative ones.
Extending the concept of IPC to tabular data involves considering the number of rows/samples per
class, however, this runs the risk of changing the underlying data distribution, which can negatively
impact subsequent tasks, hence we propose a distillation ratio per class (DPC). To preserve the initial
distribution, we use DPC, which retains the innate imbalance that exists in the underlying dataset. For
example, a DPC of 1% indicates a synthetic dataset with 1% of the samples in each class. Throughout
this paper, our goal is to create a framework that allows models to perform competitively with small
DPCs.

3 METHODOLOGY

In this section, we introduce our novel tabular data condensation framework, which creates a platform
for extending any dataset distillation method from the image domains into the tabular benchmarks.
Formally, our framework condenses knowledge from a large-scale tabular training dataset T =

{(xi, yi)}|T |
i=1, with |T | feature-label pairs, into a smaller, yet informative, dataset S = {(sj , yj)}|S|

j=1
that has comparable machine learning efficiency (i.e., downstream testing performance) with a model
trained on the original dataset. We depict the overall pipeline in Figure 2.
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Figure 2: High-level depiction of our Flexible Tabular Condensation Framework. The full dataset is
encoded into the latent embedding space, using a fixed pre-trained feature encoder. Data condensation
is applied on the embedding prior to decoding the synthetic dataset.

Our primary goal in this work is to propose data distillation as a more efficient alternative approach to
synthetic data generators. Following this approach, we begin by describing our overall framework, as
well as provide details on three specific distillation algorithms extended from visual domain. These
methods provide foundation of many current state of the art works in the domain, hence, applying
them to tabular data opens the door for future iterative work in the field.

3.1 FLEXIBLE TABULAR CONDENSATION FRAMEWORK

As the first method to expand dataset condensation to “real-world" tabular data, we establish a unified
framework for applying different distillation strategies in the context of tabular data. In particular,
our framework contains two main components: an autoencoder pipeline and a condensation pipeline.
Figure 2 provides a high-level view of our framework.

3.2 AUTO-ENCODER PIPELINE

Following previous tabular works Zhang et al. (2023); Liu et al. (2022); Xu et al. (2019); Gorishniy
et al. (2021), we employ a dataset-specific pre-trained VAE-Transformer for encoding the full dataset
into a latent embedding dimension and decoding the synthetic dataset into the tabular data space (see
Figure 2). Since the synthetic dataset is designed to "match" the informative content of the full dataset,
we find it sufficient to freeze the weights of the VAE after pre-training. Our Autor-encoder pipeline is
composed of 2 components adapted from Zhang et al. (2023): (1) Tokenization, (2) Embedding Map.

Tokenizer Following the successful works of TabSyn Zhang et al. (2023), we use a tokenizer to
convert the mixture of numerical and categorical columns into a unified representation. Formally, a
single row in the tokenized dataset can be represented as a collection of tokens Zhang et al. (2023)

Sample←− [t0, · · · ti · · · tN ] ∈ RN×D (1)

Importantly we identify that there is a reversible tokenizer to transform the data back into the mixture
of continuous and discrete samples enabling downstream training.
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Embedding Map Given a tokenized input we leverage a VAE encoder to project our samples into
an embedding space. Following the works of TabSyn Zhang et al. (2023), the encode generates a
mean and log variance which can be transformed into a latent embedding with reparametrization
(Z = µ+ σ ∗ α, α ∈ N (0, 1)).

3.3 PIPELINE

Formally, given the full tabular dataset T , we derive an encoding as Tenc = Encoder(T ), where
Tenc ∈ R|T |×K×D. Here, K and D represent the latent token and embedding dimensions, respec-
tively, for a transformer-based encoder (K equals the number of features in the dataset, and D = 4
following Zhang et al. (2023); refer to the appendix). This process applied both tokenization and the
embedding map described previously. Applying the selected distillation strategy on the features, we
obtain a small set of synthetic embeddings (Senc ∈ R|S|×K×D), after which we use the pre-trained
decoder to reverse the process. Formally, we obtain the real tabular features of the synthetic dataset as
S = Decoder(Senc)→ {(sj , yj)}|S|

j=1. Note, the labels are not used explicitly in the encoding/de-
coding process, as condensation strategies are applied per class; hence, labels are appended after
decoding to yield the synthetic dataset.

3.4 DATASET DISTILLATION STRATEGIES

Figure 3: Dataset Distillation Module

Throughout this study, we incorporate three pri-
mary dataset distillation strategies: Distribution
Matching, Attention Matching, and Gradient
Matching. Here, we delve into the intricacies
of each method and the associated adaptations
made to integrate their distillation strategies into
our flexible pipeline. Visually, we illustrate the
creation of our synthetic set S using distillation
in Figure 4. While Trajectory Matching is another method prevalent in the image domain, due to its
significantly high computational requirements, we find that feature matching and gradient matching
suffice. To provide context, trajectory matching costs nearly 5× the computational runtime of feature
matching and 2.5× the cost of gradient matching Sajedi et al. (2023). We leave this extension to
future work but show that our chosen distillation strategies excel in tabular distillation. All distillation
methods are applied with default hyperparameters (see more details in the Appendix).

Distribtuion Matching (DM). DM, first proposed in Zhao & Bilen (2023), is a computationally
efficient method for dataset distillation evading bi-level optimization by employing an untrained proxy
network to match the embedding features of real and synthetic images. DM follows class-by-class
aggregation to account for a class’s mean distribution, by leveraging a ConvNet network Gidaris &
Komodakis (2018) to capture spatially encoded features in images. Given a feature extractor ψ(·)
from the class of randomly initialized networks, and the images from the real Tc and synthetic Sc
dataset for class c, the distribution matching loss can be defined as:

LDM =
∑
c

∥∥∥∥∥ 1

|Tc|
∑
x∈Tc

ψ(x)− 1

|Sc|
∑
s∈Sc

ψ(s)

∥∥∥∥∥
2

. (2)

Adapting DM to Tabular Data required changes to both the proxy network and the feature matching
loss. Instead of using ψ(·) to encode raw pixels into an embedding space, we work directly with the
latent embeddings of our tabular data as input. We sample the latent vectors from the real dataset
belonging to a particular class of interest, as well as our synthetically initialized latent vectors for the
same class, and feed them through a randomly initialized proxy network to perform class-by-class
matching. Essentially, we replace the image-based Tc and Sc with our encoded latent vectors Tenc
and Senc as defined in Section 3.2, allowing us to learn the synthetic set. We also replace the typical
ConvNet with a simple 3-layer MLP to handle our token-based parameterized embedding dimension,
as spatial extraction is not relevant in tabular embedding. After completing the distribution matching
process, we return Senc ∈ R|S|×K×D, which can be decoded into the synthetic tabular dataset.

Attention Matching (AM). AM was first proposed in Sajedi et al. (2023) to enhance distribution
matching by utilizing attentive scores from intermediate feature maps. Two methods of attention
matching have been used in image distillation: spatial attention Sajedi et al. (2023) and channel-wise
attention Khaki et al. (2024). Formally, given a class of interest c and a particular layer l in the
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randomly initialized proxy network ψ(·), the attention matching loss can be defined as:

LAM =
∑
c

∑
l

∥∥∥∥∥ 1

|Tc|
∑
x∈Tc

[ zl(x)

∥zl(x)∥2

]
− 1

|Sc|
∑
s∈Sc

[ zl(s)

∥zl(s)∥2

]∥∥∥∥∥
2

, (3)

where zl(x) denotes the operator that obtains the attention map of input x at layer l in the proxy
network. For normalized channel-wise attention, an input sample is represented as x ∈ Rch×d, where
ch is the channel dimension and d represents the vectorized spatial dimensions Khaki et al. (2024).

Adapting AM to Tabular Data. Once again, we, adopt an MLP as our proxy network, hence altering
the intermediate dimensions used for attention matching. Our VAE encodes an embedding space
where a single sample is parameterized by x0 ∈ RK×D, with K representing tokenized dimensions.
By defining spatial and channel-wise attention for combining information from different filters,
we can apply similar techniques to transformer-based embeddings. Given our latent embedding
space’s dimensional arrangement, we can exchange "channels" for "tokens," where channels capture
different spatial localizations in images and tokens represent different textual localizations in the
tabular dataset. We compute token-wise attention, using the remaining embedding dimension to
match real and synthetic datasets. We redefine LATOM from Khaki et al. (2024) to use attention along
the tokens of the intermediate layers. Specifically, we compute LAM using our latent vector, with
attention to the tokens (instead of channels) and the textual embedding dimension d (in place of the
spatial embedding), denoted as token-based-attention. This approach aligns the embeddings of each
feature (column) between real and synthetic datasets, providing a meaningful representation for each
attribute.

Gradient Matching (GM). GM Zhao et al. (2021a) uses bi-level optimization to guide the learning
process with a network trained on synthetic data, typically favoring samples with high gradients.
Despite the inherent bias based on gradient magnitude, this core-matching principle has been adopted
in various new distillation methods, including DSA Zhao et al. (2021a), Sequential Matching Du et al.
(2024), and Contrastive Signals Lee et al. (2022). Given the weight parameters θ of a trained proxy
network ψ(·) and an objective function l (cross-entropy for classification), we compute the gradients
with respect to the real and synthetic data as ∇θl(θ, T ) and ∇θl(θ,S), respectively. Formally, the
gradient matching loss can be defined as:

LGM = 1− ∇θℓ(θ,S) · ∇θℓ(θ, T )
∥∇θℓ(θ,S)∥ ∥∇θℓ(θ, T )∥

. (4)

Adapting GM to Tabular Data. The typical trained proxy network (ConvNet) is not well-suited for
handling the mixture of tabular data types. Similar to Distribution and Attention Matching, we replace
the proxy network with a simple multi-layer perceptron (MLP). Additionally, we add a classification
head to enable bi-level optimization, supervised by the latent embeddings and corresponding label
vectors. Using the trained proxy network, we determine the gradients using cross-entropy (objective
loss) with samples of the real and synthetic latent vectors. Backpropagation is performed over the
model onto the synthetic latent vectors. Incorporating an internal training loop for the MLP using
embeddings and labels is sufficient for extending gradient matching-based distillation to tabular data.

4 EXPERIMENTAL

Datasets. To demonstrate the versatility of the proposed framework, we deploy 7 real-world tabular
datasets with a mix of categorical and continuous attributes. Following previous works Zhang et al.
(2023), we include a selection of four binary datasets from the UCI repository Asuncion & Newman
(2007): Adult, Shoppers, Default, Magic. Notably, we also evaluate methods on three multi-label
datasets: Covertype, Wine and Fourier. The overall data statistics include sample counts up to 500K,
with over 50 attributes and up to 7 categorical class labels. Further details of the individual data
statistics can be found in the appendix.

Baseline Comparisons. We begin our experimental section by comparing with current state of
the art synthetic data generators including TabSyn Zhang et al. (2023),STaSY Kim et al. (2022b),
TabDDPM Kotelnikov et al. (2023), and GReAT Borisov et al. (2022b). We further evaluate different
data distillation techniques implemented in our framework: DM Zhao & Bilen (2023), AM and DC .
We additionally ablate the usage of various core-set selection baselines Random, Least Confidence
and K-Center Guo et al. (2022).

Evaluation Network. Following previous tabular works Liu et al. (2022); Zhang et al. (2023), we
employ a simple multi-layer perception for the task of evaluating machine learning efficiency on all
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Method Avg. Synthesis Time Avg. # of Trainable Prams Avg. Deployment Time DCR Adult Wine Default
5% 10% 5% 10% 5% 10%

Original Dataset
- - - 100% 85.6 95.6 72.6

Generative Models
TabSyn 4353 ∼ 10M 12.0 67.8 61.7 63.0 78.8 83.7 52.1 59.2
STaSY 3367 ∼ 10M 36.5 62.2 61.4 62.2 61.1 73.3 60.0 62.5
GReAT 18024 ∼ 10M 755 68.7 61.8 63.1 62.4 75.8 61.5 64.3
TabDDPM 2150 ∼ 10M 145.2 69.3 62.5 64.3 80.2 85.3 67.3 67.9

Distillation Methods
DM (ours) 1102 29.1K 2.5 65.1 64.1 85.8 90.5 92.6 71.2 71.2
AM (ours) 1203 29.1K 2.5 65.5 84.2 86.8 93.2 98.5 71.0 71.1
GM (ours) 1422 130.8K 2.5 67.2 86.0 86.8 90.3 93.5 71.1 71.2
Improvement ↑ 5.5× ↑ 15.5× ↑ 100× ↑ 1.1 ↑ 13.5 ↑ 22.3 ↑ 13.0 ↑ 8.2 ↑ 3.9 ↑ 3.3

Table 2: Results on Tabular Dataset Benchmark Suite. We compare the computational costs,
privacy, and accuracy of traditional data generators with the proposed distillation framework on
a variety of datasets. In all cases we show that distillation approaches can significantly reduce
computational costs, while maintaining privacy with superior performance. For fairness, all methods
use the same number of samples for downstream machine learning efficiency. Privacy metrics (DCR)
are compute on the Adult dataset.

real and synthetic datasets. This network consists of 2 hidden layers with embedding dimensions of
100, trained for a maximum of 100 iterations at a learning rate of 0.001. This follows the conventional
MLP learning settings established in Zhang et al. (2023). Additionally for select tasks, we include
results on XGBoost, AdaBoost, Random Forest and Decisions Trees. Further details on these
configurations can be found in the appendix.

Performance Metrics. Following TabSynZhang et al. (2023), we report classification performance
using the area under the receiver operating characteristic (AUROC). For compute metrics we define
the following terminology.

1. Synthesis Time: The time in (s) required to train a synthetic generator or distill a dataset

2. Deployment Time: The time in (s) taken to sample a synthetic generator and train the
downstream model on the sampled dataset.

3. # of Trainable Params: The number of parameters in the generator or the number of
parameters optimized in the distilled dataset.

All latency measurements are conducted on one NVIDIA A6000 GPU with a 20%-cycle warm-up.
Finally, our privacy metrics are measured with distance to closest record (DCR), following the
previous works Zhang et al. (2023). Vanilla DCR calculates the distribution of distances between two
datasets. A value closer to 0 indicates high similarity between them. We present the DCR probability
(%) between the original dataset and a partitioned hold-out set, following the experimental setup
outlined in Zhang et al. (2023) (further details in the appendix). A DCR probability of 50% suggests
that the synthetic dataset is equally distant from both the hold-out and training datasets, indicating a
low privacy risk. Probabilities nearing 100% signify high overlap with the original training dataset,
while 0% indicates high overlap with the holdout set.

4.1 EFFICIENT SYNTHESIS AND DEPLOYMENT

In this section, we compare the performance of SOTA synthetic data generators for tabular data
with our proposed framework for data distillation. In recent years, there has been an avid surge
in the development of synthetic tabular generators, aiming to produce similar data to the original
dataset. Although there are many applications for synthetic generators, we show in Table ?? that these
generators do not condense the information, and thus the produced synthetic data from generators
performs synonymous with random subset selection, indicating the inability to deliver highly compact
data for efficient synthesis or deployment. We compare the performance on machine learning
efficiency using constant sample counts (DPC) for a mixture of binary and multi-class datasets.
We additionally report several compute metrics and average privacy analysis as DCR. In Table ??,
we show that distillation approaches save synthesis time by almost 5.5× with 15.5× less trainable
parameters. Further our distilled datasets maintain the privacy standard of current SOTA, with far
superior performance in machine learning efficiency at reduced deployment costs.
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4.2 COMPARING METHODS OF DATA CONDENSATION

Having established data distillation as a powerful method of accelerating tabular data synthetis while
retaining performance and privacy metrics, we further ablate the type of distillation strategy used.
In this section we compare our supported distilation strategies with naiive core-set selection on
wider range of distillation ratios and datasets. Core-set selection strategies, albeit a promising data
condensation avenue, are inhertently efficient subset selection techniques, thus they may retain the
generlization performance, but will leak 100% of selected records, hence cannot be used for privacy
cases. Nonetheless, they form a good baseline to illustrate the improvements that data distillation
garners in both privacy and performance.

Machine Learning Efficiency

One of the primary goals for dataset distillation is to generate a small compact dataset that can be used
to accelerate downstream training tasks. Our adoption of data distillation has been primarily focused
on maintaining competitive privacy metrics while outperforming synthetic data generators with lower
synthesis and and deployment times. In this section, we ablate the use of distillation strategies against
naive core-set subset selection methods. Machine learning efficiency measures the utility of a dataset
by comparing final performance of training on the synthetic versus original dataset. Our results in
Table 3 show significant improvements across a variety of single and multi-class datasets with a
minimal relative performance drop of ≤ 2% from the full dataset using a 10% compression ratio.

Method Adult Shoppers Covertype Magic Fourier
0.05% 5% 10% 0.05% 5% 10% 0.05% 5% 10% 0.05% 5% 10% 0.05% 5% 10%

Core-Set Baselines
Random 51.0 61.5 62.1 67.3 75.7 79.1 81.4 90.7 91.4 66.2 87.7 88.9 84.5 94.7 96.6
Least Confidence 53.8 61.8 62.7 37.0 68.4 73.1 69.3 84.5 87.8 60.9 73.2 76.9 75.1 90.4 92.9
K-Center 50.7 62.5 63.7 40.2 57.4 81.3 77.8 90.0 91.8 69.7 81.5 88.5 84.0 95.8 97.1
Distillation Methods (Ours)
DM 61.1 64.1 85.8 70.7 84.0 85.6 85.2 90.8 91.8 78.9 89.2 89.3 96.8 97.2 97.5
AM 67.6 84.2 86.8 70.3 82.5 86.0 86.5 90.8 91.7 80.9 88.6 89.1 96.4 97.3 97.6
GM 61.7 86.0 86.8 72.8 81.7 85.2 83.2 90.9 91.7 77.0 88.4 89.1 90.5 95.4 97.1
Improvement ↑ 13.8% ↑ 23.5% ↑ 23.1% ↑ 5.5% ↑ 8.3% ↑ 4.7% ↑ 5.1% ↑ 0.2% 0.0% ↑ 11.2% ↑ 1.5% ↑ 0.2% ↑ 12.3% ↑ 1.6% ↑ 0.5%

Original Dataset
Full Dataset 85.6 90.3 92.2 92.0 98.2

Table 3: Results on Tabular Dataset Benchmark Suite. We compare Distillation and coreset
strategies on a variety of binary and multi-class datasets. Ultimately we show that distillation works
much better with significant improvements from core-set strategies while retaining privacy metrics.

Visualizing Data Selection Strategies. In this section, we use t-stochastic neighborhood estimation
(tSNE) to project our synthetic datasets (derived through distillation at 0.05%) over top of the original
full dataset on the Adult dataset in Figure 4. We additionally include core-set sub-set selections to
illustrate how direct subsets would be visualized in this representation. Ultimately, we show that the
three distillation strategies can effectively capture strategic points in the distribution. Additionally,
we visually observe that the distillation strategies have better coverage of the full embedding space,
likely due to an iterative learning process, meanwhile, the core-set or subset methods exhibit a more
geometrically clustered shape.

LC K-Center DM AM GM

Core-Set Distillation

Figure 4: tSNE of our condensed datasets projected on the full dataset for Adult at a condensation
ratio (DPC) of 0.05%. Blue circles (◦) represent the underlying full-dataset, whereas red triangles
(△) represent the synthetic dataset.
Cross-Architecture Generalization

Exploring the effect of different downstream architectures on the synthetic dataset is crucial for
demonstrating generalization. In our condensation pipeline, only the distillation strategies use an
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Method MLP XGBoost Random Forest Descision Tree AdaBoost Average
Adult

Distribution Matching 85.8 88.7 89.3 80.4 86.6 86.2
Attention Matching 86.8 89.2 89.7 82.1 87.8 87.1
Gradient Matching 86.8 90.3 90.3 84.8 89.2 88.3
Full Dataset 85.6 92.1 91.3 86.0 91.8 89.3

Shoppers
Distribution Matching 85.6 89.7 90.2 83.3 82.8 86.3
Attention Matching 86.0 90.0 90.3 83.8 81.5 86.3
Gradient Matching 85.2 89.9 89.9 82.6 81.7 85.9
Full Dataset 90.3 89.8 92.1 86.0 90.6 89.8

Default
Distribution Matching 71.2 73.8 75.9 67.7 73.2 72.4
Attention Matching 71.1 74.2 76.0 67.1 73.4 72.4
Gradient Matching 71.2 74.2 75.7 68.1 73.5 72.5
Full Dataset 72.6 75.9 77.2 67.6 76.7 74.0

Magic
Distribution Matching 89.3 91.8 91.9 84.1 89.4 89.3
Attention Matching 89.1 91.9 91.8 85.2 89.3 89.5
Gradient Matching 89.1 92.0 92.1 85.5 89.6 89.7
Full Dataset 92.0 94.6 94.3 89.7 91.6 92.4

Table 4: Results on Tabular Dataset Benchmark Suite. We compare our the machine learning
efficiency using our distilled datasets on a variety of downstream models, and show maintained
performance beyond the MLP architecture.

intermediate proxy network, as discussed in Section 3.4. Therefore, it is important to examine the
impact of different architectures on the distilled data, a common practice in conventional dataset
distillation Sajedi et al. (2023); Khaki et al. (2024); Zhao & Bilen (2023); Zhao et al. (2021a); Wang
et al. (2022). In this section, we investigate the downstream effects of common tabular techniques,
including XGBoost Chen & Guestrin (2016), Random Forest Breiman (2001), Decision Trees Hastie
et al. (2009), and the AdaBoost Classifier Freund & Schapire (1997). In Table 3, we show that our
distilled synthetic datasets maintain strong performance across various models. This signifies that our
learned datasets incorporate globally important features in non-architecturally specific datasets. DM,
AM, and GM naturally exhibit positive architecture transferability in the image domain Zhao & Bilen
(2023); Sajedi et al. (2023); Khaki et al. (2024); Zhao et al. (2021a), hence we empirically confirm
that the property of generalizability is retained in our framework.

Figure 5: XGBoost Parameter Search

Computational Costs. In this section, we explore the
downstream effects of our condensed datasets. In this
experiment we run a parameter search on XGBoost using
the full dataset and the distilled dataset. In Figure 5 we
compare the time distribution of parameter search when
using the full dataset versus distillation. In the former,
the entire search time is allocated to finding the ideal
parameters, meanwhile in the latter we first train a VAE to
encode the data, then distill, and finally run the search with
our distilled proxy set. We can see in end-to-end time on
the right, that our distillation method enables signficantly
faster searching with very minimal perforamnce degradation.

5 RELATED WORKS

Recent works in Tabular data have been mainly focused on the generation of new synthetic data that
improves privacy while maintaining strong performance on several metrics such as data diversity,
fidelity, and most commonly dowsntream machine learning efficiency (MLE). Despite their avid
success in exceeding these metrics, most existing methods suffer from high training and generative
inference costs often hindering real-world applications by imposing significant computational chal-
lenges. In this paper, we specifically target MLE from the lens of data condensation. We present an
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alternative approach that both improves the efficiency of creating synthetic data, as well as down-
stream MLE training with near lossless performance degradation. Unlike previous methods, our
platform enables the acceleration of both data synthesis and model training.

Tabular Data. Tabular datasets have gained significant attention in recent years for applications
in medicine and finance Kadra et al. (2021). They have been described as the "last unconquered
castle" for deep learning due to the superior performance of traditional machine learning methods
over modern architectures Kadra et al. (2021); Borisov et al. (2022a). Tabular data inherently contains
a mixture of feature types, including continuous numerical and sparse categorical Borisov et al.
(2022a). Numerous works focus on synthetic generators to produce new datasets Zhang et al. (2023);
Liu et al. (2022); Zhao et al. (2021b); Borisov et al. (2022b); Lee et al. (2023); Kotelnikov et al.
(2023); Kim et al. (2022b). In particular, TabSyn Zhang et al. (2023) uses score-based diffusion to
acclerate the generation of robust tabular data. Likewise TabDDPM Kotelnikov et al. (2023) finds
diffusion based probabilistic model to be an effective medium for generating data with good machine
learning efficiency and moderate privacy metrics. In this paper we proposed data distillation as a new
method of data synthesis which improves train/data synthesis time, as well as deployment time while
maintaining superior performance and competitive privacy metrics.

Dataset Distillation Dataset distillation has emerged in computer vision for generating small,
synthetic, and informative datasets that enable efficient training of downstream tasks with significantly
reduced computational resources. Recently, it has accelerated applications in continual learning Chen
et al. (2024); Sajedi et al. (2023); Zhao et al. (2021a); Gu et al. (2024); Yang et al. (2024), neural
architecture search Ho & Ermon (2016); Such et al. (2020), privacy protection Dong et al. (2022);
Chen et al. (2022); Chung et al. (2024); Loo et al. (2024), and federated learning Jia et al. (2023);
Xiong et al. (2023); Liu et al. (2023a;b). Common methods include gradient matching Zhao et al.
(2021a); Zhao & Bilen (2021); Lee et al. (2022); Kim et al. (2022a); Du et al. (2024), which aligns
network gradients from real and synthetic datasets; feature and attention matching strategies Zhao &
Bilen (2023); Wang et al. (2022); Sajedi et al. (2023); Zhao et al. (2023); Zhang et al. (2024), which
align feature distributions between real and synthetic data in diverse latent spaces; and trajectory
matching Cazenavette et al. (2022); Du et al. (2023); Cui et al. (2023); Guo et al. (2024), which
minimizes differences in model training trajectories between original and synthetic samples. Most
of these methods have been deployed exclusively on visual tasks, with some extending to adjacent
modalities, including vision-language Wu et al. (2023), graph Jin et al. (2021), and a simulated
toy-table dataset Medvedev & DâĂŹyakonov (2021). In this paper, we present the first framework to
extend dataset distillation to real-world tabular datasets, incorporating distribution matching (DM)
Zhao & Bilen (2023), attention matching (AM) Sajedi et al. (2023); Khaki et al. (2024), and gradient
matching (GM) Zhao et al. (2021a).

6 LIMITATIONS

Our tabular data condensation pipeline, as the first effort in this domain, to propose distillation as
alternative to data generators, involves empirically supported design choices, such as the use of an
auto-encoder to handle mixed data types and a condensation ratio to address imbalanced datasets.
Despite our significant performance, our method overlooks the varying feature correlations present
in tabular data. Some features exhibit non-uniform effects within a dataset, with certain features
being more sensitive to slight changes in numerical or categorical values. Although we encode both
continuous and categorical values into an embedding space, we do not explicitly consider the differing
"importance" of each feature.

7 CONCLUSION AND FUTURE WORK

We have developed a data distillation framework for efficient synthesis and deployment of real-world
tabular datasets. Our framework addresses the challenges of mixed data types and class imbalances
by introducing an auto-encoding pipeline and a class-specific condensation ratio. We demonstrate
versatility by supporting three distillation strategies, allowing users to balance compression speed with
performance. Additionally, we compare with state of the art data generators in terms of computational
costs in both train and deployment time, as well as privacy and downstream performance in machine
learning efficiency. We conducted extensive experiments on various real-world datasets, architectures
and parameters demonstrating the transferability of our condensed datasets. Our method better
condenses information into small synthetic datasets as opposed to conventional generators. In the
future, we aim to address feature sensitivity by expanding distillation along the feature dimension.
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A APPENDIX

This appendix includes supplementary information to help reinforce content that may have been
discussed briefly in the main paper. In particular, Section A.1 provides more context on our design
choices, and Section A.2 provides more details on the experimental configurations, datasets, metrics,
and a brief discussion of our source code. Please also find our source code attached.

A.1 DETAILS ON DESIGN CHOICES

A.1.1 DETAILS ON ADDRESSING THE MIXED DATA TYPES

In the main manuscript, we describe the comparisons between distilling in latent and real spaces. Our
results in Table 1 confirm that distillation and core-set selection should be performed in the latent
space for the best results. Below, we describe how distillation and selection work in the Real and
Latent spaces, respectively.

Real Space. In real space, selection mechanisms are modified to operate on a mixture of continuous
numerical and discrete categorical features. For example, geometric methods such as K-Center
use a distance metric computed as the norm separation between samples. However, in the case of
categorical data, this is no longer generalized. Hence, we employ distance matching for categorical
attributes, where all non-matching categories are assigned a distance of one while matching receives
a distance of 0. Similarly, for distillation, we currently do not have a defined method for learning
discrete categorical data; hence, in this case, we fix the categorical features and simply learn the
continuous features directly in the real space; hence, parameter sensitivity is not accounted for with
embedding. We do show some consistent performance; however, it only uses a subset of the learnable
features and could cause contradictions in the underlying correlation between features as only some
of them are learned. For these reasons, we recommend against distilling directly in real space.

Latent Space. Throughout this work, we use the latent space for distillation by converting the mixture
of numerically continuous and categorically discrete data into a unified continuous embedding (the
latent space). We describe this process using the auto-encoder in our main paper, and it is a method
of choice for all distillation and selection experiments.

A.1.2 DETAILS ON THE AUTOENCODER PIPELINE

For this work, we adopt the described auto-encoder design from TabSyn Zhang et al. (2023). We
begin by tokenizing each column in the original tabular data into a d-dimensional vector. For the
purpose of this work, we stick to a default dimension of d = 4. We can now express each data
sample as a matrix defined by the number of features and the embedding dimension d. Given
that we use a transformer encoder, the process of converting numerical and categorical features
into their embeddings is learnable. Explicitly, numerical features are embedded using a learnable
linear transformation; meanwhile, categorical features are pre-processed with one-hot encoding and
embedded using a lookup table. Given a unified continuous embedding to represent the numerical
and categorical features, a typical VAE is employed. The VAE- encoder obtains the mean and log
variance of the latent, where the embedding is captured through reparameterization of the latent
space. At this point, we can apply our selection and distillation strategies directly to this latent
embedding. Following the completion of our methodology, we can pass the condensed embeddings
into the VAE-Decoder to re-obtain a tokenized matrix. From this tokenized matrix, we can apply the
symmetrically defined de-tokenizer (decoding transformer) to re-convert tokens into the real tabular
space. Hence, from a high-level overview, tabular data is tokenized using a transformer, embedded
through an encoder, condensed in the latent space, followed by decoding into tokens and detokenizing
back into the real tabular dataset. We note that our method leverages the exact VAE-Transformer
design from TabSyn Zhang et al. (2023), hence further details are included in their work.

A.2 EXPERIMENTAL IMPLEMENTATIONS

A.2.1 DETAILS ON DISTILLATION STRATEGIES

For the most part, we follow standard hyperparameters for distribution matching, attention matching,
and gradient matching. Some slight modifications were made to the number of inner-loop training
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epochs and the scaling of the loss propagation; however, for reproducibility, we include all these as
default settings in our attached code. The

A.2.2 DETAILS ON EVALUATION NETWORK

Given that our task of data distillation focuses on retaining generalization performance while reducing
the size of the dataset, we found it most intuitive to work with an evaluation network that has many
learnable parameters as opposed to a more rule- or heuristic-based method. Given the success of
MLPs in the tabular domain, we adopted the MLP architecture for our Machine Learning Efficiency
task. Conventionally, synthetic tabular data generation methods may tune the architectural design
of the MLP; however, since we are comparing different condensation methods, it is important
to use a uniform and consistent architecture. Hence, we adopt an MLP with 2 hidden layers of
embedding dimension (100) at a fixed learning rate of 0.001 for a maximum of 100 iterations.
Further details on the MLP structure, optimizer, loss, and hyperparameters can be found with the
default implementation of Scikit Learn (SKLearn) (https://scikit-learn.org/stable/
modules/generated/sklearn.neural_network.MLPClassifier.html)

A.2.3 DETAILS ON DATASETS

In this work, we benchmarked our methods on 4 tabular datasets from the UCI Machine Learning
Repository (https://archive.ics.uci.edu/datasets). In particular, we used: Adult,
Shoppers, Default, and Magic, all of which are considered classification tasks. Following the work of
Zhang et al. (2023), we include their table below (Table 5), describing the statistics of each dataset:

Table 5: Dataset Statistics for the 4 benchmarked UCI tabular datasets. # Num indicates the number
of numerical/continuous columns while # Cat indicates the number of categorical columns in the
particular dataset..

Dataset # Rows # Num # Cat # Train # Test Task

Adult 48, 842 6 9 32, 561 16, 281 Classification
Default 30, 000 14 11 27, 000 3, 000 Classification
Shoppers 12, 330 10 8 11, 097 1, 233 Classification
Magic 19, 019 10 1 17, 117 1, 902 Classification
Covertype 581, 012 54 1 - - Multi-Classification
Fourier 60, 000 86 1 - - Multi-Classification
Wine 178 13 1 - - Multi-Classification

In all cases, the target feature is included as categorical, as we focus on discrete classification tasks in
this work. Since our experiments do not involve validation sweeping (i.e., to be fair to all methods
we restrict to the same architectural model), we only create the standard train/test split. For privacy
and parameter grid search we follow the standard splits obtained from Zhang et al. (2023).

We additionally include the detailed descriptions of each dataset, directly from Zhang et al. (2023).

• Adult1: Commonly referred to as the UCI Census dataset, this dataset includes a list of
financial and demographic information that is used to determine if a particular person’s
income is greater than 50, 000, hence a binary classification task.

• Default2: This dataset contains information from credit card accounts in Taiwan between
April and September 2005. Using a multitude of features (demographic, credit, etc.), the
objective is to determine if the individual will "default" on the following month’s credit
payment – a binary classification task.

• Shoppers3: This shopping dataset contains information from an individual web browsing
visit with the goal of determining if the client will end up buying something or not – a binary
classification task.

1https://archive.ics.uci.edu/dataset/2/adult
2https://archive.ics.uci.edu/dataset/350/default+of+credit+card+clients
3https://archive.ics.uci.edu/dataset/468/online+shoppers+purchasing+

intention+dataset
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• Magic4: This is a physics dataset that simulates the registration of high-energy gamma
particles on the atmospheric Cherekenov gamma telescope, which is ground-based using
an imaging-based technique. The objective is to determine the presence of high-energy
particles, hence a binary classification task.

• Covertype5: This dataset describes forest cover type from cartographic variables only.
• Fourier6: The Fourrier variant is an adaptation of the MNIST dataset that contains the

fourier coefficients of the image pixels in tabular format
• Wine7: The wine dataset contains a list of the chemical characteristics of 3 different types

of wine.

A.2.4 DETAILS ON PRIVACY

As stated in the main paper, for privacy analysis, we use DCR (distance to closest record). This
method was adopted from TabSyn’s benchmark Zhang et al. (2023). Hence, we apply the same
process of privacy evaluation to our condensed datasets. Following TabSyn Zhang et al. (2023)
we evaluate DCR in a synthetic versus holdout setting (https://www.clearbox.ai/blog/
2022-06-07-synthetic-data-for-privacy-\preservation-part-2). In the
case of core-set selection methods, the condensed data is obtained as direct subsets from the training
data, meanwhile, the distillation approaches leverage the training data for learning the synthetic tables.
In DCR we compare the condensed data with the holdout sets that are not used in the condensation
process.

4https://archive.ics.uci.edu/dataset/159/magic+gamma+telescope
5https://archive.ics.uci.edu/dataset/31/covertype
6https://archive.ics.uci.edu/dataset/683/mnist+database+of+handwritten+

digits
7https://archive.ics.uci.edu/dataset/109/wine
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