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Abstract

In Large Language Models (LLMs) generation,001
there exist knowledge conflicts, and scenarios002
where parametric knowledge contradicts knowl-003
edge provided in the context. Previous works004
studied tuning, decoding algorithms, or locat-005
ing and editing context-aware neurons to adapt006
LLMs to be faithful to new contextual knowl-007
edge. However, they are usually inefficient or008
ineffective for large models, not workable for009
black-box models, or unable to continuously010
adjust LLMs’ sensitivity to the knowledge pro-011
vided in the context. To mitigate these prob-012
lems, we propose CSKS (Continuously Steer-013
ing Knowledge Sensitivity), a simple frame-014
work that can steer LLMs’ sensitivity to contex-015
tual knowledge continuously at a lightweight016
cost. Specifically, we tune two small LMs (i.e.017
proxy models) and use the difference in their018
output distributions to shift the original distri-019
bution of an LLM without modifying the LLM020
weights. In the evaluation process, we not only021
design synthetic data and fine-grained metrics022
to measure models’ sensitivity to contextual023
knowledge but also use a real conflict dataset024
to validate CSKS’ practical efficacy. Extensive025
experiments demonstrate that our framework026
achieves continuous and precise control over027
LLMs’ sensitivity to contextual knowledge, en-028
abling both increased sensitivity and reduced029
sensitivity, thereby allowing LLMs to prioritize030
either contextual or parametric knowledge as031
needed flexibly.032

1 Introduction033

Large Language Models (LLMs) possess extensive034

parametric knowledge (Petroni et al., 2019; Burns035

et al., 2023). However, the parametric knowledge036

is far from reliable and correct, as it can become037

outdated or incorrect due to the rapid evolution038

of knowledge over time or noise in the training039

data (Liska et al., 2022; Luu et al., 2022). This040

leads to knowledge augmentation methods such as041

retrieval-augmented generation (RAG) to provide042

extra information in context (Lewis et al., 2020). 043

The knowledge provided in the context might be 044

misinformation, have better quality than paramet- 045

ric knowledge, or trigger knowledge updates, thus 046

contradicting parametric knowledge and leading to 047

knowledge conflicts. These conflicts create a com- 048

plex decision-making dilemma for LLMs, where 049

they must resolve competing claims between their 050

internal knowledge and external evidence. 051

Previous works show that LLMs may fail to be 052

sensitive to knowledge provided in the context, de- 053

pending on factors including knowledge popularity, 054

quality, and model size (Mallen et al., 2023; Xie 055

et al., 2024). This can contribute to wrong genera- 056

tion results or hallucination (Niu et al., 2024), espe- 057

cially in cases where the knowledge in the context 058

is of high quality or more up-to-date. To mitigate 059

this, decoding strategies (Shi et al., 2024b; Yuan 060

et al., 2024), neuron-editing (Shi et al., 2024a), and 061

prompting or tuning-based approaches (Wang et al., 062

2024b) are proposed to improve the LLMs’ sensi- 063

tivity to contextual knowledge. Nevertheless, they 064

can be inefficient for larger LMs, not workable 065

for black-box models, ineffective against deeply 066

ingrained model beliefs in LLMs, and critically, 067

they typically lack the ability to precisely and con- 068

tinuously modulate sensitivity, a key requirement 069

when dealing with external information of varying 070

quality. 071

To this end, we introduce a simple framework, 072

CSKS, to continuously adjust LLMs’ sensitivity to 073

context while being effective and efficient. Smaller 074

models are usually much easier to adapt to our 075

intentions through tuning, so CSKS begins with 076

choosing two small LMs (e.g., 7b models) and 077

fine-tuning them to make one faithful to contextual 078

knowledge while the other faithful to its parametric 079

knowledge. Then it shifts the original distribution 080

of a larger LM (e.g., 72b model) by adding the dif- 081

ference between the output distributions of the two 082

smaller models, multiplied by a hyperparameter 083
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α. When varying the hyperparameter α, the log-084

its shift toward semantics that pay more attention085

to contextual information changes, thus achieving086

continuous control over the sensitivity to contextual087

knowledge.088

To give a fine-grained evaluation of how sen-089

sitive LLMs are to knowledge in the context, we090

further design synthetic QA data and define the ex-091

tent of knowledge conflict from three dimensions:092

degree of perturbation, contextual detail, and pop-093

ularity, each with ranked levels of difficulty. We094

then introduce a Sensitivity Score, which aggre-095

gates these ranks for correct answers, offering a096

more comprehensive assessment of contextual ad-097

herence than accuracy alone.098

Extensive experiments demonstrate that our099

CSKS framework surpasses state-of-the-art base-100

lines on large LMs under our synthetic evaluation101

setup while being lightweight and more accessible.102

Our method also provides precise and continuous103

control over LLMs’ sensitivity to the knowledge104

provided in the context, which is a key feature re-105

quired in many application scenarios such as RAG106

systems with varying context quality.107

2 Methotology108

2.1 CSKS Framework109

Building Proxy Models The first step is to build110

the proxy models by fine-tuning two small LMs:111

one positive model P primarily faithful to the con-112

textual knowledge, and one negative model N , ad-113

hering to its parametric knowledge. The selected114

small models are approximately one-tenth the size115

of the target LM, and we do not require the two116

small models and the large target model to belong117

to the same model family (shared architecture), as118

long as they have the same vocabulary (shared to-119

kenization schemes). However, for simplicity in120

the experiments of this paper, we use small mod-121

els from the same family as the target model for122

adjustment.123

We use the ECQA dataset (Aggarwal et al., 2021)124

and apply different processing methods to construct125

two fine-tuning datasets, each containing 7,568126

samples. Details of the fine-tuning data and settings127

are provided in Appendix A. We then fine-tune the128

small LMs on the curated dataset.129

Steering with Proxy Models Then, we factor130

out the context knowledge from the two small mod-131

els’ output distribution contrastively. For the large132

model L, at each time step, we modify its output133

distribution by adding a scaled differential term 134

derived from the outputs of P and N . Intuitively, 135

this process amplifies the importance of contextual 136

information in determining the next token distribu- 137

tion, with the amplification degree controlled by a 138

hyperparameter α that scales the differential term. 139

Formally, given a query q and a context c that 140

may contain some conflict to the target model’s 141

internal knowledge, we generate a response X 142

through our CSKS Framework. At each time step t, 143

we condition the raw large model L, the positive 144

model P , and the negative model N on the query 145

q, the contect c and the previous response X<t This 146

gives us the distribution scores DL, DP and DN , 147

respectively. The response at step t can be directly 148

sampled (autoregressively) from the adjusted distri- 149

bution. Specifically, the response at each time step 150

is computed as: 151

X̃t ∼ softmax [DL + (DP −DN ) ∗ α] , 152

wherer α is a controlling factor that adjusts the 153

influence of the context on the final output. 154

As illustrated in Figure 1, the framework begins 155

by fine-tuning proxy models. Whenever conflicting 156

information is encountered, the difference in the 157

output distributions of the proxy models captures 158

the conflict and highlights the importance of con- 159

textual information. By overlaying this difference 160

onto the original distribution of the large model, we 161

can adjust the large model’s sensitivity to the con- 162

text. The degree of adjustment can be controlled 163

via the hyperparameter α. 164

2.2 Evaluation Method 165

To assess a model’s ability to integrate new knowl- 166

edge amidst conflicting internal beliefs, we design a 167

pipeline for creating a dedicated evaluation dataset. 168

This allows for precise grading of problem diffi- 169

culty and fair performance assessment. 170

The pipeline starts with an existing QA dataset. 171

The target LLM is prompted to answer the ques- 172

tions in a closed-book setting. Correct answers are 173

retained, while incorrect ones (often arising from 174

random hallucinations) are discarded. The correct 175

answers reflect the model’s strong internal beliefs 176

and form the basis for introducing conflicts in later 177

steps. 178

Building upon this filtered dataset, we generate 179

controlled knowledge conflicts along three care- 180

fully designed dimensions: degree of perturbation, 181

contextual detail, and popularity. This methodol- 182

ogy enables a systematic quantification of problem 183
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Figure 1: (left) The pipeline we use to build the proxy models, where each box represents a processing step. The
two paths on either side correspond to different processing methods applicable to the proxy models. Details are
shown in Appendix A. (right) When confronted with conflicting contexts, the proxy models function together
as a guiding "steering wheel", assisting the large model in aligning more closely with the contextual knowledge.
Additionally, we can control the degree of guidance through the parameter α continuously and precisely.

difficulty, ensuring a more nuanced evaluation of184

the model’s performance.185

Degree of Perturbation The degree of perturba-186

tion reflects how much external knowledge deviates187

from the model’s original parametric knowledge.188

We introduce a metric called perturbation rank to189

quantify this deviation:190

• Rank 1 (Minor Perturbation): Involves intra-191

category substitutions that maintain semantic192

coherence and ontological consistency, pre-193

serving the original knowledge structure while194

introducing controlled variations.195

• Rank 2 (Major Perturbation): Features cross-196

category substitutions that violate fundamen-197

tal ontological constraints, creating seman-198

tic inconsistencies that challenge the model’s199

ability to reconcile conflicting knowledge.200

Contextual Detail Based on the perturbed knowl-201

edge, we generate context to support it. To system-202

atically evaluate knowledge conflict resolution un-203

der varying informational conditions, we develop a204

dual-level context rank metric that operationalizes205

textual complexity:206

• Rank1 (Single Sentence): Presents conflict-207

ing knowledge minimally through atomic208

factual statements, maximizing propositional209

clarity while minimizing explanatory scaffold-210

ing.211

• Rank2 (Paragraph): Extended contextualiza- 212

tion incorporating evidentiary support, causal 213

reasoning, and argumentative reinforcement 214

to simulate real-world knowledge presentation 215

patterns. 216

Popularity We approximate knowledge popular- 217

ity using frequency in the training corpus. Specif- 218

ically, each knowledge piece is represented as a 219

triplet (Subject, Relation, Object), and we calcu- 220

late the subject’s frequency in the Dolma-v1.7 cor- 221

pus (4.5 TB) using Infini-gram (Liu et al., 2024b). 222

Higher frequency suggests the model encountered 223

the subject more during pretraining, leading to a 224

stronger internal belief and reduced sensitivity to 225

conflicting external knowledge. We define popular- 226

ity rank as: 227

• Rank 1 (Low): Bottom 33% (≤ 103 times) 228

• Rank 2 (Mid): Middle 33% (103 ∼ 105 229

times) 230

• Rank 3 (High): Top 33% (≥ 105 times) 231

Finally, we define the Difficulty Score of each 232

question as the sum of its three constituent ranks. 233

This metric captures the multidimensional nature 234

of knowledge conflict resolution, providing a more 235

nuanced performance assessment than traditional 236

accuracy-based measures. The Sensitivity Score 237

for a model is then defined as the cumulative dif- 238

ficulty score of all correctly answered questions, 239

normalized by the maximum possible score. We 240
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Figure 2: Performance of models of different sizes un-
der different methods. The larger model tends to stick
to its internal beliefs when faced with conflicting in-
formation. Prompting benefits both model sizes, while
CAD and COIECD show excellent performance on the
small model but provide minimal improvement for the
large model.

utilize GPT-4o-mini (OpenAI, 2024) to automate241

this pipeline above and provide prompt templates242

in Appendix I. Besides, to prove the effectiveness243

of this grading system, we provide a validation244

experiment in Appendix A.245

2.3 Motivation246

Here, we’d like to illustrate the motivation that247

drives us to propose our CSKS framework: To gain248

insights into the performance of models with vary-249

ing sizes or equipped with different methods (meth-250

ods details are stated in section 3.1), we conduct a251

preliminary experiment to evaluate their ability to252

faithfully adhere to the knowledge provided in the253

context of our synthetic dataset. The results are pre-254

sented in Figure 2. We have two critical findings.255

First, larger LMs exhibit greater rigidity compared256

to smaller models, indicating that large models are257

more stubborn when faced with knowledge con-258

flicts. Second, the CAD and COIECD methods259

significantly enhance the small model’s capabili-260

ties, but their ability to follow context seems to be261

unchanged or even diminish slightly for larger mod-262

els, indicating the internal beliefs of small models263

are more easily changed, whereas large models264

struggle to overcome their parametric knowledge265

biases independently.266

Drawing on these observations, we propose the267

CSKS framework, which adopts small models’ supe-268

rior adaptability as proxies to guide LLMs toward269

better contextual knowledge integration.270

3 Experiments271

3.1 Baselines272

We adopt representative baselines of three types,273

specifically, prompting, decoding-time strategy274

(CAD (Shi et al., 2024b), COIECD (Yuan et al., 275

2024)), and neuron-editing method (IRCAN (Shi 276

et al., 2024a)). The baselines’ details and relevant 277

configurations are in Appendix C. 278

Besides, since the positive model P is already 279

fine-tuned to adhere to the context, its distribution 280

score DP can amplify the importance of contextual 281

information. Thus, it’s natural to ask whether it’s 282

necessary to use another negative model. For this 283

purpose, we replace the negative model with the 284

original small model and refer to this configuration 285

as "CSKS w/o negative". 286

3.2 Models and Settings 287

We employ two state-of-the-art instruction-tuned 288

LLMs as target models: Llama-3-70B-Instruct 289

(Dubey et al., 2024) and Qwen2.5-72B-Instruct 290

(Yang et al., 2024)1. For each target model, we uti- 291

lize its smaller counterpart as proxy model – specif- 292

ically, fine-tuned versions of Llama-3-8B-Instruct 293

for the Llama-3 series and Qwen2.5-7B-Instruct 294

for the Qwen2.5 series. We use greedy decoding in 295

all the experiments to ensure reproducibility. 296

For constructing the evaluation dataset, we use 297

MuSiQue (Trivedi et al., 2022) and PopQA (Mallen 298

et al., 2023), both widely used question-answering 299

datasets, as the source datasets. Following the 300

setup in (Shi et al., 2024a), we format the task 301

as binary-choice questions. Correct options corre- 302

spond to the answers in context, and the incorrect 303

options correspond to the original answers to the 304

question. This design creates controlled knowl- 305

edge conflict scenarios where model performance 306

directly reflects its ability to prioritize contextual 307

or parametric knowledge. It is important to clarify 308

that the contextual answers used here are exactly 309

the perturbed answers we introduce during dataset 310

construction. 311

To comprehensively evaluate the model’s per- 312

formance across the entire dataset, we use ac- 313

curacy as a default metric, calculated per rank 314

within our three operational dimensions (perturba- 315

tion, context, popularity). Additionally, we employ 316

the previously defined Sensitivity Score to assess 317

the model’s ability to adhere to the given context, 318

which is also normalized into a 100-scale. 319

1To illustrate transferability, we further expand our experi-
ment on another model family, gemma-2-27b-it (Team et al.,
2024) and show the results in Appendix H
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Methods Degree of Perturbation(in %) Contextual Detail(in %) Popularity(in %) Sensitivity Score
rank 1 rank 2 rank 1 rank 2 rank 1 rank 2 rank 3

MusiQue • LLaMA-3-Instruct

Origin 64.85 20.17 55.08 30.00 49.44 42.63 35.71 38.13
PROMPT 75.88 (+11.03) 38.73 (+18.56) 69.22 (+14.14) 45.44 (+15.44) 65.92 (+16.48) 58.03 (+15.40) 48.26 (+12.55) 53.10 (+14.97)
CAD 62.10 (-2.65) 19.88 (-0.29) 51.69 (-3.39) 30.44 (+0.44) 47.66 (-1.78) 40.62 (-2.01) 35.06 (-0.65) 37.04 (-1.09)
COIECD 65.00 (+0.15) 20.32 (+0.32) 54.49 (-0.59) 30.88 (+0.88) 49.67 (+0.23) 42.64 (+0.01) 35.93 (+0.22) 38.35 (+0.22)
CSKS W/O NEGATIVE 69.41 (+4.56) 44.18 (+24.01) 67.74 (+12.66) 45.88 (+15.88) 61.69 (+12.25) 54.46 (+11.83) 54.32 (+18.61) 53.96 (+15.83)
CSKS 78.08 (+13.23) 60.38 (+40.21) 79.97 (24.89) 58.53 (28.53) 75.27 (+25.83) 65.84 (+23.21) 66.66 (+30.95) 66.72 (+28.59)

MusiQue • Qwen2.5-Instruct

Origin 69.85 23.71 57.29 36.32 53.00 47.54 40.04 42.58
PROMPT 76.76 (+6.91) 36.08 (+12.37) 67.60 (+10.31) 45.29 (+8.97) 62.81 (+9.81) 58.48 (+10.94) 48.27 (+8.23) 52.32 (+9.74)
CAD 82.20 (+12.35) 57.88 (+34.17) 76.58 (+19.29) 63.53 (+27.21) 75.27 (+22.27) 67.18 (+19.64) 67.74 (+27.70) 67.68 (+25.20)
COIECD 69.85 (+0.00) 24.74 (+1.03) 57.58 (+0.29) 37.06 (+0.74) 53.45 (+0.45) 47.54 (+0.00) 41.13 (+1.09) 43.21 (+0.63)
CSKS W/O NEGATIVE 73.97 (+4.12) 71.87 (+48.16) 74.22 (+16.93) 71.61 (+35.29) 73.50 (+20.50) 73.88 (+26.34) 71.43 (+31.39) 72.54 (+29.96)
CSKS 94.85 (+25.00) 85.13 (+61.42) 90.43 (+33.14) 89.56 (+53.24) 93.54 (+40.54) 85.94 (+38.40) 90.47 (+50.43) 89.26 (+46.68)

PopQA • LLaMA-3-Instruct

Origin 52.04 23.62 52.21 23.48 43.14 37.29 33.22 34.32
PROMPT 72.99 (+20.95) 46.91 (+23.29) 74.50 (+22.29) 45.42 (+21.94) 60.20 (+17.06) 61.53 (+24.24) 58.18 (+24.96) 57.07 (+22.75)
CAD 47.63 (-4.41) 24.12 (+0.50) 49.94 (-2.27) 21.85 (-1.63) 39.80 (-3.34) 36.85 (-0.44) 31.17 (-2.05) 32.69 (-1.63)
COIECD 53.03 (+0.99) 23.62 (+0.00) 52.43 (+0.22) 24.26 (+0.78) 43.31 (+0.17) 38.13 (+0.84) 33.71 (+0.49) 34.82 (+0.50)
CSKS W/O NEGATIVE 59.64 (+7.6) 53.09 (+29.07) 67.99 (+15.78) 43.77 (+20.29) 56.18 (+13.04) 57.52 (+20.23) 53.97 (+20.75) 54.13 (+19.81)
CSKS 69.79 (+17.75) 65.45 (+41.83) 80.46 (+28.25) 54.80 (+31.32) 66.72 (+23.58) 67.72 (+30.43) 68.40 (+35.18) 66.24 (+31.92)

PopQA • Qwen2.5-Instruct

Origin 66.15 28.59 60.60 34.18 51.67 47.83 42.79 43.59
PROMPT 75.63 (+9.48) 40.17 (+11.58) 71.85 (+11.25) 43.99 (+9.81) 58.86 (+7.19) 57.86 (+10.03) 57.05 (+14.26) 54.63 (+11.04)
CAD 78.06 (+11.91) 61.15 (+32.56) 78.04 (+17.44) 61.19 (+27.01) 70.73 (+19.06) 69.23 (+21.40) 68.88 (+26.09) 67.80 (+24.21)
COIECD 65.82 (-0.33) 28.04 (-0.55) 59.49 (-1.11) 34.40 (+0.22) 50.50 (-1.17) 47.32 (-0.51) 43.11 (+0.32) 43.31 (-0.28)
CSKS W/O NEGATIVE 68.02 (+1.87) 75.83 (+47.24) 74.06 (+13.46) 69.79 (+35.61) 75.08 (+23.41) 70.57 (+22.74) 70.17 (+27.38) 71.77 (+28.18)
CSKS 93.83 (+27.68) 90.40 (+61.81) 93.27 (+32.67) 90.96 (+56.78) 88.46 (+36.79) 93.14 (+45.31) 94.65 (+51.86) 92.24 (+48.65)

Table 1: Accuracy when evaluated on specific ranks of individual dimensions in the dataset and the overall Sensitivity
Score. For each dimension, Rank 1 represents the least challenging cases, while higher ranks indicate increasing
difficulty. CSKS outperforms baseline methods under all metrics.

3.3 Results320

Table 1 shows CSKS consistently outperforms all321

baselines across all evaluation dimensions, achiev-322

ing substantial average sensitivity score improve-323

ments (LLaMA-3: +30.26, Qwen2.5: +47.67). Key324

observations include:325

1. Baseline Limitations: Decoding-time strat-326

egy baselines exhibit inconsistent effective-327

ness. While CAD shows moderate gains on328

Qwen2.5 (+24.2 sensitivity score), it degrades329

performance on LLaMA-3 (-1.1 sensitivity330

score). COIECD’s entropy-based constraints331

seem insufficient for resolving deep paramet-332

ric conflicts, yielding marginal improvements333

of less than 1.5 across all configurations. The334

core idea of CAD and COIECD is leveraging335

the output distribution differences between the336

model’s responses with and without context337

to emphasize the importance of contextual in-338

formation (i.e., one model with different data).339

Our results suggest that large models may not340

be able to overcome the biases of their internal341

knowledge independently.342

2. Robustness of CSKS and the Synergy with 343

Negative Models: The "CSKS w/o nega- 344

tive" configuration (replacing the negative 345

model with the original small model) re- 346

mains competitive, outperforming other base- 347

lines (e.g., +15.83 sensitivity for LLaMA-3 348

in MusiQue). This indicates the robustness of 349

the core CSKS framework, as it can leverage 350

the proxy model’s knowledge to mitigate para- 351

metric conflicts even without explicit negative 352

sampling. This finding also hints at potential 353

cost-saving opportunities in practical imple- 354

mentations. On the other hand, incorporating 355

the negative model further boosts the perfor- 356

mance (MusiQue avg. sensitivity: LLaMA-3 357

+28.59, Qwen2.5 +46.68), highlighting its crit- 358

ical role in enhancing the framework’s ability 359

to distinguish between contextual and intrinsic 360

knowledge. 361

3. Dimensional Sensitivity: Among the three 362

dimensions we introduce, the perturbation de- 363

gree has the greatest effect: large perturba- 364

tions create obvious conflicts demanding reso- 365
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lution, while small, subtle deviations are more366

confounding, making it harder for the model367

to choose between external context and inter-368

nal knowledge. Furthermore, CSKS smooths369

or even reverses differences across popularity370

ranks, indicating its efficacy in mitigating pre-371

training bias associated with entity popularity.372

After showing the effectiveness of CSKS frame-373

work, we further show that our framework can374

achieve continuous and precise control over the375

knowledge sensitivity to contextual knowledge376

through the steering parameter α. As illustrated377

in Figure 3, increasing α values (α > 0) produce a378

monotonic enhancement of sensitivity score from379

4.32 to 39.80 for LLaMA on MuSiQue, with po-380

tential for further increase. This directional control381

proves critical for applications requiring dynamic382

knowledge updates, where models must suppress383

outdated parametric knowledge in favor of fresh384

contextual evidence. Results on PopQA can be385

found in Appendix E.)386

The previous experiments demonstrate the ef-387

fectiveness of CSKS framework when aggregating388

new and conflicting knowledge in context setting389

α > 0. Notably, extending α to negative values390

(α < 0) reveals an inverse mode of action: the391

framework can suppress contextual influence to392

amplify parametric reliance. As demonstrated in393

Figure 3, setting α = −2.0 reduces contextual394

sensitivity score by 15.9 for LLaMA and 32.8 for395

Qwen compared to their baselines (α = 0), effec-396

tively transforming the target model into a para-397

metric knowledge conservative. This bidirectional398

control mechanism (α ∈ (−∞,+∞)) enables con-399

tinuous scenario adaptation, allowing practitioners400

to calibrate models for either context-sensitive sce-401

narios or parametric knowledge preservation.402

3.4 Real-World Knowledge Conflicts403

Evaluation404

To address concerns about the reliance on synthetic405

datasets and further validate the practical applica-406

bility of CSKS, we conducted an additional experi-407

ment on the DynamicQA benchmark (Marjanovic408

et al., 2024). DynamicQA is designed to evaluate409

LLMs’ ability to handle knowledge conflicts aris-410

ing from evolving real-world information. It cat-411

egorizes questions based on conflict types: Static412

(there is only one possible representation of such413

facts), Temporal (conflicts arising from knowledge414

updated over time) and Disputable (conflicts where415

Alpha STEM Humanities Other Social Average

-2.0 89.34 78.01 88.27 82.54 85.00
-1.5 90.98 77.66 88.08 83.81 85.44
-1.0 91.39 77.32 88.64 83.17 85.51
-0.7 91.39 78.69 88.64 84.13 86.01
-0.5 91.39 79.73 89.01 84.44 86.45

72B(α = 0) 92.62 79.04 88.64 84.76 86.45
+0.5 91.80 78.01 87.71 84.44 85.65
+0.7 91.80 78.69 87.52 84.13 85.65
+1.0 90.98 78.01 87.34 83.81 85.22
+1.5 90.98 76.29 85.85 83.49 84.21
+2.0 90.98 74.91 84.92 81.27 83.06

7B 84.84 70.79 76.35 76.83 76.78

Table 2: Performance comparison showing trade-off be-
tween faithfulness to contextual knowledge and general
capabilities.

reliable sources disagree). This setting allows us 416

to assess CSKS’s performance in more realistic and 417

diverse conflict scenarios. 418

We provide the results of Qwen2.5-72B-Instruct 419

steered by CSKS on DynamicQA in Figure 4, with 420

varied control parameter α from -2.0 to +2.0. The 421

accuracy was measured separately for each con- 422

flict partition type, as well as overall. We also 423

provide results of other methods (Origin, Prompt, 424

CAD and COIECD) and their comparison with 425

CSKS in Appendix F. Consistent with our findings 426

on synthetic datasets, CSKS demonstrates continu- 427

ous control over the model’s contextual sensitivity. 428

As α increases, the overall accuracy monotonically 429

improves, indicating enhanced faithfulness to the 430

provided context. 431

3.5 Analysis 432

The Impact of Proxy Model Size To explore 433

resource savings with smaller proxy models, we 434

use the Qwen2.5 family (0.5B to 7B) to steer a 435

72B model under our framework. As shown in the 436

Figure 5, the 0.5B proxy has a subtle but growing 437

impact on the target model’s sensitivity score, while 438

the 1.5B proxy’s impact already becomes very sig- 439

nificant. A 3B proxy’s impact is comparable, oc- 440

casionally slightly better, than a 7B proxy. These 441

results demonstrate our framework can adjust con- 442

text sensitivity on a much larger model with signif- 443

icantly smaller overhead (e.g., using a 3B proxy). 444

This efficiency may stem from our framework’s 445

selective steering mechanism, where proxy models 446

focus exclusively on context sensitivity modulation 447

rather than full knowledge representation. 448

Trade-Off Discussion To study how scaling the 449

control parameter α would impact the general ca- 450

pabilities of the model, we conduct an evalua- 451

tion on the MMLU benchmark (Hendrycks et al., 452
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Figure 3: The performance of LLaMA and Qwen controlled bidirectionally, demonstrating the continuous adjustment
capability of our method from two directions.
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2021) for world knowledge understanding ability of453

LLMs (complex reasoning on 2WikiMultiHopQA454

(Ho et al., 2020) is detailed in Appendix G). For455

simplicity, we tested on two tasks from each of456

MMLU’s four subjects (STEM, Humanities, So-457

cial, and Other). The experiment results in Table458

2 reveal a crucial trade-off in knowledge sensitiv-459

ity control: while increasing the absolute value460

of α enables extensive adjustment of the model’s461

contextual sensitivity (Figure 3), excessive values462

(|α| > 1.5) lead to noticeable degradation in gen-463

eral capabilities, particularly Humanities (-4.10%)464

domain. This performance decline suggests that ex-465

treme sensitivity adjustments may disrupt the target466

model’s fundamental reasoning patterns, highlight-467

ing the importance of maintaining a balanced α468

range that preserves core competencies while en-469

abling effective knowledge adaptation. Notably,470

even with substantial α variation, the target 72B471

model consistently outperforms the 7B model by472

significant margins (average +8.67%), demonstrat-473

ing our framework successfully leverages the large474

model’s superior general ability alongside precise475

sensitivity control. These findings indicate that476

strategic α selection can achieve an effective equi-477

Raw α = 0.5 α = 0.7 α = 1.0 α = 1.5 α = 2.0

MusiQue • Proxy-LLaMA

51.24 60.38 66.36 76.32 87.79 93.45

PopQA • Proxy-Qwen

56.56 75.07 84.67 90.89 93.58 94.73

Table 3: Performance of GPT-3.5-Turbo steered by
LLaMA and Qwen. Our method also works for black-
box models such as GPT-3.5-Turbo.

librium between contextual adaptability and gen- 478

eral capability preservation, fulfilling our frame- 479

work’s dual objectives of precise knowledge steer- 480

ing and performance maintenance. 481

Extending to Black Box Model For the black- 482

box models that we can’t obtain weights, our frame- 483

work remains effective. We apply our framework 484

to adapt GPT-3.5-Turbo (Ouyang et al., 2022). In 485

this setting, since we can only access the log prob- 486

abilities for the top five tokens through the API, 487

CSKS only reweights the five tokens. We present 488

the results in Table 3. For black-box models that do 489

not belong to the same model family as the proxy 490

model, CSKS can still effectively control its con- 491

text sensitivity, demonstrating its broad application 492

domain. 493

4 Related Works 494

4.1 Knowledge Conflicts 495

Knowledge conflicts occur when contextual knowl- 496

edge contradicts parametric knowledge (Mallen 497

et al., 2023; Xu et al., 2024; Kortukov et al., 498

2024). Previous research often prioritized con- 499

textual knowledge over parametric knowledge for 500

LLM responses (Gekhman et al., 2023; Lee et al., 501

2022; Shi et al., 2024c; Zhang et al., 2020; Zhou 502

et al., 2023). This is a valuable setting for applica- 503

tions such as retrieval-augmented LMs (Ram et al., 504

2023; Shi et al., 2024d), where the context may 505
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be of high quality (e.g., containing updated knowl-506

edge). However, varying context quality across507

scenarios means that a constant reliance on context508

is insufficient—an underexplored issue. We advo-509

cate for precise, continuous control over LLMs’510

contextual reliance and propose an effective, ef-511

ficient framework to achieve this. Another line512

of work focuses on evaluating and understanding513

LLMs in knowledge conflicts and mining factors af-514

fecting LLMs’ choice in knowledge conflicts. For515

instance, contextual detail affects LLM choices516

(Wu et al., 2024a; Tan et al., 2024a); LLMs favor517

popular entity information and are sensitive to data518

presentation order (Xie et al., 2023); models resist519

obviously false permuted knowledge (Qian et al.,520

2024); and increased conflicting hops challenge521

LLM reasoning (Jin et al., 2024). We leverage522

these key factors to measure knowledge manipu-523

lation difficulty and offer a more comprehensive524

evaluation method. We further utilize the key fac-525

tors to measure the difficulty of manipulating cer-526

tain knowledge and provide a more comprehensive527

evaluation method.528

4.2 Updating Knowledge in Language Models529

To introduce new knowledge to LMs, previous530

works explore tuning-based approaches (Wang531

et al., 2024b), decoding strategies (Shi et al., 2024b;532

Zhao et al., 2024; Wang et al., 2024a), and model533

editing methods (Meng et al., 2023; Gupta et al.,534

2023; Shi et al., 2024a). Nevertheless, these meth-535

ods are usually inefficient or ineffective for large536

models, not workable for black-box models, or un-537

able to continuously adjust LLMs’ sensitivity to the538

new contextual knowledge, while our approach can539

steer LLMs’ sensitivity to contextual knowledge540

continuously at a lightweight cost. 541

4.3 Control of Language Models 542

Motivated by LMs’ growing capabilities (Li et al., 543

2023b), many studies focus on controlling certain 544

attributes of LM generation, usually non-toxicity 545

and positive sentiment. Representation engineer- 546

ing is a common solution. Han et al. (2024) use 547

word embeddings to steer LMs for language model 548

detoxification and sentiment control. Zhao et al. 549

(2024) steer knowledge behaviors of LLMs with 550

SAE-based representation engineering. Zeng et al. 551

(2025) and Tan et al. (2024b) leverage LLMs’ inter- 552

nal representations for knowledge integration and 553

security. Some other works tune the hidden repre- 554

sentations of LMs to change behaviors (Wu et al., 555

2024b; Hernandez et al., 2024; Li et al., 2023a; 556

OpenAI, 2024). Another line of work incorporates 557

other models to guide the generation process (Liu 558

et al., 2021, 2024a; Feng et al., 2024). Our work 559

also borrows this idea but emphasizes controlling 560

sensitivity to contextual knowledge and achieves 561

precise and continuous control. 562

5 Conlusion 563

We present CSKS, an efficient and effective frame- 564

work using small LMs as proxies to adjust output 565

distributions of LLMs, thus controlling LLMs’ sen- 566

sitivity to knowledge provided in context. We also 567

introduce a fine-grained evaluation method for this 568

sensitivity. Extensive experiments demonstrate that 569

our framework achieves state-of-the-art, more cru- 570

cially, achieves precise and continuous control over 571

how LLMs utilize information from context. 572

8



Limitations573

While we show CSKS’s effective control of LLMs574

in knowledge adaptation, the optimal calibration of575

the guiding hyperparameter α may vary in real sce-576

narios where a balance between knowledge adapta-577

tion and LLMs’ general abilities is essential. Future578

research could further explore methods for auto-579

matically or more adaptively determining the value580

of α to enhance the practical flexibility of the CSKS581

framework.582
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A Finetune Dataset Construction Details916

To obtain our P model and N model, we fine-917

tune the Llama-3-8B-instruct model and Qwen-2.5-918

7B-instruct model. To ensure generalization, the919

fine-tuning datasets are constructed using methods920

and domains different from those of the synthe-921

sized conflict datasets in our main experiment. To922

achieve optimal results, we have designed a spe-923

cialized pipeline for constructing the fine-tuning924

dataset as shown in Figure 6.925

We select ECQA as the base dataset, which is a926

multiple-choice QA dataset where each question is927

accompanied by five answer options.928

• For the P model: We select the incorrect op-929

tion least related to the correct answer as the930

"contextual answer."931

• For the N model: We select the incorrect op-932

tion most related to the correct answer as the933

"contextual answer."934

Next, using GPT, we generate supportive context935

based on the chosen answer and the question.936

• For the P model, the generated context was937

short and simple.938

• For the N model, the context was long and939

detailed.940

Finally, we again use GPT to generate explana-941

tions based on the context, question, and selected942

answer.943

• For the P model, the explanation justified why944

the selected answer was correct.945

• For the N model, the explanation detailed946

why the selected answer was incorrect.947

Using these constructed answers and their corre-948

sponding explanations, we fine-tune the model as949

follows:950

• The P model was fine-tuned on the selected951

answers and their associated explanations.952

• The N model was fine-tuned on the original953

correct answers and their explanations.954

Figure 6: The pipeline to get the data used to finetune our
P model and N model

Figure 7: The accuracy of the LLaMA-3-70B-Instruct
model across questions of each difficulty score.

B Effectiveness of the Grading System 955

To validate the effectiveness of our grading system, 956

we conduct a validation experiment. We analyze 957

the accuracy of the target model across questions 958

of varying difficulty levels, with the results shown 959

in Figure 7. The results reveal that as question 960

difficulty increases, accuracy correspondingly de- 961

creases. This demonstrates that our grading system 962

successfully quantifies problem difficulty. 963

C Baselines 964

The baselines we adopt in our main experiment are: 965

• Origin: refers to naive LLMs without any 966

modifications. 967

• Prompt: prompts LLMs with explicit instruc- 968

tions to ensure their answers align with the 969

given context. 970

• IRCAN : identifies context-responsive neu- 971

rons within the LLM’s feedforward network 972

(FFN) layers and enhances their activation to 973

improve the utilization of contextual informa- 974

tion. 975

• CAD : is a decoding-time strategy that adjusts 976

the output probabilities of LLMs to empha- 977

size differences between context-aware and 978

context-agnostic scenarios. 979
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• COIECD : adapts its decoding strategy based980

on a contextual information-entropy con-981

straint to discern when a context generates982

conflicting knowledge with the model’s inter-983

nal knowledge.984

For CAD and COIECD, we use the optimal hype-985

parameters reported in their papers for baselines.986

For our method, we do not search for an optimal987

parameter but just setting α the to same as CAD.988

To check whether these baselines are effective, we989

conducted a verification on small model. The re-990

sults are presented in Appendix D, which shows991

that while all baseline methods work fine for the992

small model, IRCAN shows minimal performance993

enhancement. This limited efficacy combined with994

IRCAN’s significantly larger computational over-995

head makes it unsuitable for our primary objective996

of efficient large-model adaption. So we exclude997

IRCAN from our main experiments.998

D Fine-tune results on small models999

Figure 8 illustrates the effects of different methods1000

on the LLaMA-3-8B-instruct model. From the1001

results, we observe the following:1002

1. The Prompt, CAD and COIECD methods all1003

improve the performance of the 8B small1004

model, while the impact of IRCAN on the1005

small model’s performance is minimal.1006

2. We also present the performance of our fine-1007

tuned P model and N model. The P model1008

performs the best, as it effectively incorpo-1009

rates knowledge from the context, while the1010

N model scores much lower, indicating that1011

it tends to rely on its internal knowledge and1012

resists external contextual information. This1013

indicates that our fine-tuning is successful.1014

Raw Prompt CAD COIECD IRCAN P
Model

N
Model

Methods

0
20
40
60
80

100

Se
ns

iti
vi

ty
 sc

or
e

40.41
55.04 60.73

49.96
41.04

84.42

25.14

Model Performance

Figure 8: The effects of different methods on the LLaMA-
3-8B-instruct model tested on PopQA.

E Steering Results on PopQA 1015

We present the steering results on the PopQA 1016

dataset, which have similar trend as that on the 1017

MuSiQue dataset.
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Figure 9: Sensitivity score variation with alpha values
on PopQA.

1018

F Performance Comparison on 1019

DynamicQA 1020

Figure 10 presents a head-to-head comparison of 1021

these methods across overall accuracy and specific 1022

conflict partition types (Static, Temporal, and Dis- 1023

putable) on DynamicQA. Across all evaluated di- 1024

mensions, CSKS consistently and substantially out- 1025

performs all baseline approaches. 1026

The consistently superior performance of CSKS 1027

across diverse real-world conflict types underscores 1028

its robustness and practical advantages over ex- 1029

isting methods for managing knowledge conflicts 1030

in LLMs. The substantial margins, especially in 1031

the more challenging Disputable partition, further 1032

validate the efficacy of our proxy-based steering 1033

mechanism. 1034
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Figure 10: Comparative performance (Accuracy %) of
CSKS and baseline methods (Raw Model, Prompt, CAD,
COIECD) on the DynamicQA dataset. Results are shown
for Overall Accuracy and broken down by conflict parti-
tion types: Static, Temporal, and Disputable. CSKS con-
sistently outperforms all baseline methods across all cate-
gories.

G The CSKS impact on reasoning ability1035

To further investigate the impact of CSKS on more1036

complex reasoning abilities, which was a concern1037

raised in previous reviews, we evaluate the model1038

on the 2WikiMultiHopQA dataset, a benchmark1039

designed to test multi-hop reasoning capabilities1040

through questions requiring connecting informa-1041

tion from multiple sources.1042

The results on 2WikiMultiHopQA (Table 4)1043

show a similar trend to MMLU regarding the in-1044

fluence of α. The highest EM and F1 scores are1045

achieved when α is close to 0 (e.g., α ∈ [0.0, 0.7]).1046

As α increases, indicating stronger steering towards1047

either contextual or parametric knowledge, there1048

is a gradual decline in multi-hop reasoning perfor-1049

mance. For instance, at α = +2.0, the EM score1050

drops to 46.62 from a peak of 54.50. However,1051

it is crucial to note that even at these more ex-1052

treme α values, the performance of the 72B model1053

(e.g., 46.62 EM at α = +2.0) remains significantly1054

higher than that of a much smaller 3B model (26.371055

EM), which struggles with the inherent complexity1056

of the task. This suggests that while very strong1057

steering can impact complex reasoning, the CSKS1058

framework, within a moderate range of α, allows1059

for effective context sensitivity adjustment while1060

largely preserving the sophisticated reasoning ca-1061

pabilities of the large model.1062

The performance decline observed on both1063

MMLU and 2WiKiMultiHopQA suggests that ex-1064

treme sensitivity adjustments may disrupt the target1065

model’s fundamental reasoning patterns, highlight-1066

Alpha (α) EM Score F1 Score

-2.0 48.00 59.08
-1.5 52.00 62.54
-1.0 53.50 64.33
-0.7 54.50 64.99
-0.5 54.50 64.67
72B (α = 0) 54.50 64.78
+0.5 53.63 64.11
+0.7 53.37 63.79
+1.0 52.62 62.89
+1.5 50.75 60.67
+2.0 46.62 56.60

3B (baseline) 26.37 38.35

Table 4: Performance (EM and F1 scores) of Qwen
steered by CSKS on the 2WikiMultiHopQA multi-hop
reasoning benchmark for different α values. Results for
a 3B baseline model are also shown for comparison.

ing the importance of maintaining a balanced α 1067

range that preserves core competencies while en- 1068

abling effective knowledge adaptation. Notably, 1069

even within this kind-of-broad range, the target 72B 1070

model consistently outperforms the 7B/3B proxy 1071

models by significant margins (average +8.67% on 1072

MMLU, and substantially higher EM/F1 on 2Wiki- 1073

MultiHopQA), demonstrating that our framework 1074

successfully leverages the large model’s superior 1075

general ability and reasoning capacity while achiev- 1076

ing precise context sensitivity control. These find- 1077

ings collectively indicate that strategic α selection 1078

can achieve an effective equilibrium between con- 1079

textual adaptability and model capability preserva- 1080

tion, fulfilling our framework’s dual objectives of 1081

precise knowledge steering and performance main- 1082

tenance. 1083

H CSKS results on Gemma-2-27b-it 1084

To further substantiate the transferability of our 1085

CSKS framework and demonstrate its generalization 1086

capabilities across diverse LLM architectures, we 1087

extended our empirical validation to the Gemma- 1088

2 model family. For these experiments, Gemma- 1089

2-27b-it was utilized as the target large language 1090

model, with its smaller counterpart, Gemma-2-2b- 1091

it, serving as the proxy model maintaining the ratio 1092

of the size of the target model to the proxy model at 1093

approximately 10 to 1. We evaluated performance 1094
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Figure 11: The prompt we use to ask gpt to make a slight
permutation.

on both the PopQA and MuSiQue datasets, main-1095

taining the same experimental setup and metrics as1096

used for the Llama-3 and Qwen2.5 models. The1097

comprehensive results for the Gemma-2-it models1098

are presented in Table 5.1099

It is noteworthy that the Gemma-2-27b-it model1100

exhibits a relatively strong baseline performance1101

compared to the Llama-3 and Qwen2.5 models1102

evaluated earlier. Despite this higher baseline,1103

CSKS consistently delivered substantial and leading1104

improvements across both datasets. The success-1105

ful application of CSKS to the Gemma-2 architec-1106

ture, which differs from the previously tested mod-1107

els, provides compelling evidence for the frame-1108

work’s broad applicability and robust generaliza-1109

tion. These results effectively address concerns1110

regarding transferability, highlighting CSKS as a1111

versatile solution for steering knowledge sensitiv-1112

ity in large language models.1113

I Prompts used to generate our1114

synthesized dataset1115

Figure 11 - Figure 14 show the prompts used to1116

generate the features for different dimensions of1117

our dataset.1118

Figure 12: The prompt we use to ask gpt to make a sig-
inificant permutation.

Figure 13: The prompt we use to ask gpt to generate a
short context.
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Methods Degree of Perturbation(in %) Contextual Detail(in %) Popularity(in %) Sensitivity Score
rank 1 rank 2 rank 1 rank 2 rank 1 rank 2 rank 3

PopQA • Gemma-2-it

Origin 82.81 52.42 81.71 53.52 69.00 67.89 66.02 64.49
PROMPT 87.44 (+4.63) 68.28 (+15.86) 85.24 (+3.53) 70.48 (+16.96) 77.00 (+8.00) 77.59 (+9.70) 78.96 (+12.94) 76.30 (+11.81)
CAD 87.88 (+5.07) 66.96 (+14.54) 88.54 (+6.83) 66.29 (12.77) 76.33 (+7.33) 77.92 (+10.03) 77.99 (+11.97) 75.37 (+10.88)
COIECD 84.14 (+1.33) 54.62 (+2.20) 82.37 (+0.66) 56.38 (+2.86) 71.00 (+2.00) 69.56 (+1.67) 67.63 (+1.61) 66.38 (+1.89)
CSKS 88.98 (+6.17) 70.70 (+18.28) 84.80 (+3.09) 74.88 (+21.36) 81.33 (+12.33) 79.26 (+11.37) 78.96 (+12.94) 80.47 (+15.98)

MusiQue • Gemma-2-it

Origin 85.13 40.42 72.76 52.86 68.16 60.71 59.62 59.01
PROMPT 88.95 (+3.82) 50.00 (+9.58) 75.10 (+2.34) 63.90 (+11.04) 73.63 (+5.47) 67.20 (+6.49) 67.70 (+8.08) 66.60 (+7.59)
CAD 88.32 (+3.19) 53.61 (+13.19) 78.51 (+5.75) 63.48 (+10.62) 77.17 (+9.01) 67.85 (+7.14) 68.01 (+8.39) 67.89 (+8.88)
COIECD 85.56 (+0.43) 42.55 (+2.13) 73.82 (+1.06) 54.35 (+1.49) 69.45 (+1.29) 61.36 (+0.65) 61.49 (+1.87) 60.43 (+1.42)
CSKS 93.63 (+8.50) 70.85 (+30.43) 83.82 (+11.06) 80.68 (+27.82) 84.89 (+16.73) 80.19 (+19.48) 81.67 (+22.05) 80.75 (+21.74)

Table 5: Performance of CSKS and baseline methods on PopQA and MuSiQue datasets using Gemma-2-27b-it
as the target LLM and Gemma-2-2b-it as the proxy model. Results show accuracy (in %) for different ranks of
perturbation, contextual detail, and popularity, along with the overall Sensitivity Score. Improvements by CSKS over
the Origin are shown in magenta.

Figure 14: The prompt we use to ask gpt to generate a
long context.
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