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Abstract

Algorithmic recourse provides actionable recommendations to alter unfavorable predictions of
machine learning models, enhancing transparency through counterfactual explanations. While
significant progress has been made in algorithmic recourse for static data, such as tabular
and image data, limited research explores recourse for multivariate time series, particularly
for reversing abnormal time series. This paper introduces Recourse in time series Anomaly
Detection (RecAD), a framework for addressing anomalies in multivariate time series using
backtracking counterfactual reasoning. By modeling the causes of anomalies as external
interventions on exogenous variables, RecAD predicts recourse actions to restore normal
status as counterfactual explanations, where the recourse function, responsible for generating
actions based on observed data, is trained using an end-to-end approach. Experiments on
synthetic and real-world datasets demonstrate its effectiveness.

1 Introduction

Algorithmic recourse refers to the process of offering individuals or entities actionable recommendations
to change undesirable outcomes generated by predictive models (Karimi et al., 2022). In the context of
counterfactual explanations, algorithmic recourse aims to identify minimal and feasible modifications to
input features that can shift a model’s prediction (Verma et al., 2024), which enhances transparency and
interpretability in machine learning systems.

In recent years, algorithmic recourse has been extensively studied in the context of tabular (Karimi et al.,
2020; Chen et al., 2020; Creager & Zemel, 2023; Gao & Lakkaraju, 2023; De Toni et al., 2024) and image data
(Jung et al., 2022; Wang & Vasconcelos, 2020; Von Kügelgen et al., 2023). Despite significant advancements
in these areas, there is a noticeable lack of research on algorithmic recourse for time series. Time series data,
which consist of sequential observations over time, are ubiquitous in domains such as industrial systems
(sensor readings), finance (stock prices), and healthcare (patient vital signs). The temporal dependencies and
complex dynamics inherent in time series data present unique challenges that differ from those in static tabular
or image data, as interventions made at one point in time can lead to cascading effects across subsequent
periods, making it essential to accurately account for temporal and causal dependencies when designing
recourse actions.

This paper studies algorithmic recourse for time series data. While our method could serve as a general
framework, in this paper, we focus on abnormal multivariate time series due to their practical significance.
Abnormal time series are characterized by anomalies or unexpected patterns across multiple variables. Such
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anomalies can indicate critical events such as system failures, fraudulent activities, or health deterioration.
Providing algorithmic recourse in this context means offering explanations and actionable strategies to
mitigate or prevent undesirable outcomes reflected by the anomalies, advancing anomaly detection beyond
mere identification toward practical, intervention-driven solutions. For example, Figure 1 presents the usage
data of two control nodes, nodes 117 and 124, in an OpenStack testbed (Nedelkoski et al., 2020). Each
node’s performance metrics include CPU and memory usage. When an anomaly detection model triggers
an anomaly alert (indicated by the red area in the top figure), a recourse action is recommended to free
up memory usage on node 124, aiming to correct the abnormal behavior. After implementing the recourse
action (shown as the green area in the bottom figure), the system returns to normal, as indicated by the
dashed lines in the bottom figure. This example demonstrates how algorithmic recourse can provide quick
and cost-effective remediation of the issue when an anomaly detection model detects an abnormal status.

Figure 1: Recourse recommendations for flipping an abnormal status of a distribution system.

To recommend recourse in abnormal time series, we treat anomalies as external interventions on exogenous
variables in a structural causal model. For instance, in a distributed computing environment, a sudden
surge in incoming traffic to a particular node, such as caused by an external request spike, may lead to
abnormal CPU or memory usage. Such anomaly arises not from a change in the system’s internal dynamics
but from an external factor influencing the exogenous inputs to the node. Methodologically, we align this
formulation of anomalies with the concept of backtracking counterfactual reasoning (Von Kügelgen et al.,
2023), which we adopt as the foundation of our method. Backtracking counterfactuals involve reasoning
backward from an observed outcome to infer the necessary changes in exogenous variables that could have
led to a different result, assuming that all causal relationships remain intact. This approach is particularly
suitable for interpreting abnormal states in time series, as it allows anomalies to be traced back systematically
to plausible external interventions, providing explanatory insights and actionable recourse strategies.

Specifically, we propose a neural network-based framework for algorithmic Recourse in time series Anomaly
Detection (RecAD). Our method assumes that the causal relationships within the time series have been
modeled using Granger causality discovery methods, such as Generalized Vector Autoregression (GVAR)
(Marcinkevičs & Vogt, 2021). Given a time series with abnormal segments, RecAD addresses the question:
What is the most likely external intervention that explains these abnormal states? Leveraging backtracking
counterfactual reasoning, we identify recourse actions that mitigate anomalies by restoring abnormal states
to normal ones. We formulate this task as a constrained maximum likelihood problem, where the identified
actions serve both as plausible counterfactual explanations and actionable interventions. To enable end-to-end
learning of a recourse function, we parameterize the recourse function with neural networks, mapping observed
data to recourse actions. We adopt the Abduction-Action-Prediction procedure to model the downstream
effects of interventions, deriving the counterfactual posterior through cross-world abduction. A differentiable
loss function is then defined to guide the learning of the recourse function. Furthermore, we discuss practical
considerations, such as handling sequence-level anomalies and addressing anomalies caused by interventions
on structural equations rather than on exogenous variables. Empirical studies on two synthetic and one
real-world datasets demonstrate the effectiveness of RecAD in recommending recourse actions for restoring
abnormal time series.

The contribution of this paper can be summarized as follows. 1) We propose Recourse in time series Anomaly
Detection (RecAD), a novel framework that generates recourse actions to correct anomalies in multivariate
time series data; 2) by treating anomalies due to external interventions on exogenous variables, we apply
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the concept of backtracking counterfactuals to time series analysis and formulate algorithmic recourse as a
constrained maximum likelihood problem using backtracking counterfactual reasoning; and 3) we addressing
practical considerations and demonstrating effectiveness through empirical studies using both synthetic and
real-world datasets.

2 Related Work

A time series anomaly is defined as a sequence of data points that deviates from frequent patterns in the
time series (Schmidl et al., 2022). Recently, a large number of approaches have been developed for time
series anomaly detection (Schmidl et al., 2022; Blázquez-García et al., 2021). However, explaining the
detection results is under-exploited (Jacob et al., 2020; Kieu et al., 2022). Algorithmic recourse can provide
counterfactual explanations by recommending actions to reverse unfavorable outcomes from an automated
decision-making system (Karimi et al., 2022). Specifically, given a predictive model and a sample having
an unfavorable prediction from the model, algorithmic recourse is to identify the minimal consequential
recommendation that leads to a favorable prediction from the model. The key challenge of identifying the
minimal consequential recommendation is to consider the causal relationships governing the data. Any
recommended actions on a sample should be carried out via structural interventions leading to a counterfactual
instance. Multiple algorithmic recourse algorithms on binary classification models have been developed
(Karimi et al., 2020; 2021; von Kügelgen et al., 2022; Dominguez-Olmedo et al., 2022). Recently, algorithmic
recourse for anomaly detection on tabular data has also been discussed (Datta et al., 2022). However, this
study does not consider causal relationships when generating counterfactuals.

In this work, we focus on addressing the algorithmic recourse for anomaly detection in multivariate time series,
considering causal relationships. Specifically, we assume that anomalies result from external interventions,
distinguishing our approach from typical counterfactual reasoning. We align our approach with backtracking
counterfactuals (Von Kügelgen et al., 2023), which suggests a backtracking interpretation of counterfactuals
where causal laws remain unchanged in the counterfactual world, and differences from the factual world are
attributed to changes in exogenous variables that alter the initial conditions. Different from a recent study
(Kladny et al., 2024), which also leverages backtracking counterfactual reasoning to generate counterfactual
explanations for static high-dimensional data by developing a deep generative model, our work focuses on
providing backtracking counterfactual explanations in abnormal multivariate time series.

3 Preliminary

Granger Causality. Granger causality (Granger, 1969; Dahlhaus & Eichler, 2003) is a standard approach
for capturing causal relationships in multivariate time series. Formally, let a stationary time-series be
X = (x1, . . . , xt, . . . , xT ), where xt ∈ Rd is a d-dimensional vector (e.g., d-dimensional time series from d
sensors) at a specific time t. Define the true data generation mechanism in the form of

x
(j)
t := f (j)(x(1)

≤t−1, · · · , x(d)
≤t−1) + u

(j)
t , for 1 ≤ j ≤ d, (1)

where x(j)
≤t−1 = [· · · , x

(j)
t−2, x

(j)
t−1] denotes the present and past of series j; u

(j)
t indicates exogenous variable of

time series j at time step t; F = {f (1), ..., f (d)} is a set of unknown functions, and f (j)(·) ∈ F is the function
for time series j that captures how the past values impact the future values of x(j). Then, the time series
i Granger causes j, if f (j) depends on x(i)

≤t−1, i.e., ∃x′(i)
≤t−1 ≠ x(i)

≤t−1 : f (j)(x(1)
≤t−1, · · · , x′(i)

≤t−1, · · · , x(d)
≤t−1)

̸= f (j)(x(1)
≤t−1, · · · , x(i)

≤t−1, · · · , x(d)
≤t−1).

Granger causal discovery, i.e., learning Granger causal relationships from the observational data, has been
extensively studied (Nauta et al., 2019; Tank et al., 2021; Marcinkevičs & Vogt, 2021). While multiple
methods are available, in this paper, we utilize a generalized vector autoregression (GVAR) approach that
can model nonlinear Granger causality (Marcinkevičs & Vogt, 2021). GVAR models the Granger causality of
the t-th time step given the past K lags by

xt =
K∑

k=1
gk(xt−k)xt−k + ut, (2)
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where gk(·) : Rd → Rd×d is a feedforward neural network predicting a coefficient matrix at time step t− k; ut

is the exogenous variable for time step t. The element (i, j) of the coefficient matrix from gk(xt−k) indicates
the influence of x

(j)
t−k on x

(i)
t . Meanwhile, K neural networks are used to predict xt. Therefore, relationships

between d variables over K time lags can be explored by inspecting K coefficient matrices. The K neural
networks are trained by the objective function:

L = 1
T −K

T∑
t=K+1

∥xt − x̂t∥2 + λ

T −K

T∑
t=K+1

R(Mt) + γ

T −K − 1

T −1∑
t=K+1

∥Mt+1 −Mt∥2,

where x̂t =
∑K

k=1 gk(xt−k)xt−k indicates the predicted value by GVAR; Mt := [gK(xt−K) : gK−1(xt−K+1) :
· · · : g1(xt−1)] indicates the concatenation of generalized coefficient matrices over the past the K time steps;
R(·) is the penalty term for sparsity, such as L1 or L2 norm; the third term is a smoothness penalty; λ and γ
are hyperparameters. After training, the generalized coefficient predicted by gk(xt−k) indicates the causal
relationships between time series at the time step t− k.

u u∗

x x∗
F F

(a) Backtracking counterfactual. (b) Algorithmic recourse in multivariate time series.

Figure 2: Illustration of backtracking counterfactual and algorithmic recourse.

Counterfactual Reasoning. Counterfactual inference provides a framework for understanding causal
relationships by exploring counterfactual scenarios, often framed as “what-if" questions. For example, “would
the CPU utilization stay within safe operating limits if the memory usage followed its default profile?” In causal
inference, counterfactuals are typically analyzed using two main approaches: interventional counterfactuals
(Pearl, 2009) and backtracking counterfactuals (Von Kügelgen et al., 2023). In interventional counterfactuals,
causal laws are modified while the factual and counterfactual worlds share the same background conditions. In
backtracking counterfactuals, on the other hand, as shown in Figure 2a, causal laws remain consistent, but the
counterfactual explanation adjusts exogenous variables to account for changes observed in the outcome. Both
types of counterfactual reasoning are valuable for understanding causal mechanisms; however, backtracking
counterfactuals are especially useful for explaining observed anomalies by inferring the most plausible prior
conditions that led to the current state. This insight forms the basis of our method.

4 Methodology

In this section, we propose the algorithmic Recourse in time series Anomaly Detection (RecAD) method
to compute algorithmic recourse actions for anomalies in multivariate time series, assuming that the causal
relationships have been captured using a Generalized Vector Autoregression (GVAR) model as shown in
Eq. (2). We first provide the general framework of the problem formulation based on the backtracking
counterfactual. Then, we explain the detailed implementation of each component of the framework.

External intervention vs. structural intervention. Depending on how anomalies occur within a causal
mechanism, they can be divided into two categories: those due to changes in exogenous variables (external
interventions) and those due to changes in the structural equations (structural interventions). In this paper,
we focus on anomalies caused by external interventions and briefly discuss in Section 4.5.2 how to handle
anomalies resulting from structural interventions.
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4.1 Problem Formulation: Algorithmic Recourse based on Backtracking Counterfactual

Following the common setting for time series anomaly detection (Audibert et al., 2020; Tuli et al., 2022),
given a multivariate time series X , we consider a local window with length K as Wt = (xt−K+1, ..., xt) and
convert a time series X to a sequence of sliding windows W = (WK , WK+1, ..., WT ). Consider a score-based
anomaly detection function s(·) that takes a time window Wt as the input. If s(Wt) > τ , then the time step
t will be labeled as in an abnormal state. Assume that an anomaly occurs at time t, which causes abnormal
states in a time window Vt+L = (xt, ..., xt+L) (assume that L < K) due to the ripple effect. By treating the
anomaly as an external intervention on the exogenous variable ut, our objective is to find the recourse action
θt at the time step t to reverse the abnormal states in the time window Vt+L via counterfactual reasoning.
Such action can be viewed as the most plausible counterfactual explanation for the abnormal states. To
simplify our discussions, we mainly focus on point anomalies. Extending our approach to sequence anomalies
is straightforward and will be addressed in Section 4.5.1.

Specifically, the backtracking counterfactual computes the probability of the exogenous variables in a counter-
factual world, which may differ from their factual counterparts, given both the factual and counterfactual
endogenous variables. As shown in Figure 2b, in our context, the factual endogenous variables are Wt, i.e.,
the observational data. We denote the backtracking counterfactual exogenous variable at time t by u∗

t , which
is obtained by performing the recourse action, i.e., u∗

t = ut + θt, where ut is the factual exogenous variable.
We then denote the counterfactual endogenous variables by V∗

t+L = (x∗
t , ..., x∗

t+L), i.e., the counterfactual
variants of Vt+L obtained by performing the recourse action, with the requirement that their states are
restored to normal. As a result, the problem of algorithmic recourse can be formulated to maximize the
likelihood of u∗

t conditioning on Wt, subject to the constraints that s(V∗
t′) < τ for t′ ∈ [t, t + L].

Problem Formulation 1 Given local windows of time series Wt = (xt−K+1, ..., xt) and a score function
s(·) with time step t labeled as abnormal, i.e., s(Wt) > τ , the algorithmic recourse aims to find the recourse
action at time t, i.e., u∗

t = ut + θt, to restore normal states in a future time window V∗
t+L = (x∗

t , ..., x∗
t+L),

by solving the following constrained maximization likelihood problem:

arg max
θt

P (u∗
t |Wt) s.t. s(V∗

t′) < τ, t′ ∈ [t, t + L].

By introducing penalty terms to the negative log-likelihood to enforce constraints, we derive the revised
problem formulation as follows.

Problem Formulation 2 The algorithmic recourse aims to solve the optimization problem:

arg min
θt

L(θt) =
t+L∑
t′=t

max {s(V∗
t′)− τ, 0} − λ log P (u∗

t |Wt). (3)

Next, we discuss the implementation of each component of the problem formulation to enable an end-to-end
learning of a recourse function.

4.2 Implementing Recourse Function

To generate effective recourse actions, we learn a recourse function hϕ(·) parameterized by ϕ that maps from
the observed time series to a perturbation of the exogenous variables, i.e., θt = hϕ(Wt−1, ∆t), where θt is the
proposed intervention at time step t.

The design of hϕ is guided by two key considerations. 1) Temporal context is essential for accurate
intervention, as the causal dependencies in multivariate time series often span multiple time lags. Therefore,
we encode the preceding time window Wt−1 using a Long Short-Term Memory (LSTM) network to capture
latent temporal features and long-range dependencies. 2) Deviation from expected dynamics is another
critical signal for recourse. We define the deviation term ∆t = xt − x̂t, where x̂t is the expected value at time
t based on GVAR. Intuitively, ∆t quantifies how much the current state deviates from its normal trajectory
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and serves as a proxy for anomalous influence from exogenous variables. Concretely, our implementation is
structured as follows:

zt−1 = LSTM(Wt−1) z∆ = FFNN(∆t) θt = FFNN(zt−1 ⊕ z∆), (4)

where ⊕ denotes vector concatenation. The final feedforward network combines the latent temporal state and
the deviation signal to produce the recourse action.

We empirically validate the necessity of each component through ablation studies, showing that removing
either the LSTM or the deviation encoder significantly degrades recourse effectiveness.

4.3 Inferring Downstream Effect

We then infer the downstream effect V∗
t′ because, based on Granger causality, the recourse action at time t

leads to the counterfactual variants of the following time steps, i.e., V∗
t+L = (x∗

t , ..., x∗
t+L). To compute the

counterfactual variants, according to the additive noise assumption presented in Eq. (1), given backtracking
counterfactual u∗

t , we directly have x∗
t = xt − ut + u∗

t = xt + θt. However, since we perform the recourse
action only at time t, it remains necessary to infer the factual exogenous variables for all t′ > t. Thus, we
proceed to utilize the Abduction-Action-Prediction (Pearl, 2009) procedure to compute x∗

t′ . Formally, based
on the causal relationships learned by GVAR shown in Eq. (2), the Abduction-Action-Prediction (AAP)
procedure to compute x∗

t′ for t′ = t + 1, · · · , t + L can be described below.

Step 1 (Abduction):

ut′ = xt′ −
K∑

k=1
gk(xt′−k)xt′−k (5)

Step 2 (Action): Not required

Step 3 (Prediction):

x∗
t′ =

t′−t∑
k=1

gk(x∗
t′−k)x∗

t′−k +
K∑

k=t′−t+1
gk(xt′−k)xt′−k + ut′ . (6)

In essence, the abduction is to derive the exogenous variable ut′ at step t′ based on the observed value, then
the prediction is to predict the counterfactual value x∗

t′ at step t′ after conducting action θt at step t.

4.4 Deriving Counterfactual Posterior

According to Problem Formulation 2, the next step is to derive the counterfactual posterior P (u∗
t | Wt).

Following the backtracking counterfactual (Von Kügelgen et al., 2023), we apply cross-world abduction to
obtain:

P (u∗
t |Wt) =

∑
u′

t

P (u∗
t , u′

t|Wt) =
∑
u′

t

P (u∗
t , u′

t)P (Wt|u∗
t , u′

t)
P (Wt)

∼
∑
u′

t

P (u∗
t , u′

t)P (Wt|u∗
t , ut) =

∑
u′

t

P (u∗
t , u′

t)P (Wt|u′
t)

=
∑
u′

t

P (u∗
t |u′

t)P (Wt, u′
t) = P (u∗

t |ut)I(Wt(ut) = Wt),

where the second equality is based on the Bayes rule, the third equality is due to the fact that u∗
t and

Wt are conditionally independent given ut (obtained using d-separation in Figure 2a), I(·) is the indicator
function, ut is the factual exogenous variable obtained by abduction, and P (u∗

t | ut) is the backtracking
conditional. Following the suggestion in (Von Kügelgen et al., 2023), we construct P (u∗

t | ut) based on
the distance between u∗

t and ut, defined as P (u∗
t | ut) = 1/Z · exp{−d(u∗

t , ut)} where Z is a normalization
constant. By using the squared Mahalanobis under isotropic covariance, as a result, we have that P (u∗

t |
Wt) ∼ exp{−∥u∗

t − ut∥2
2} = exp{−∥θt∥2

2}.
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Combining all the components above, we obtain our final loss function:

L(ϕ) =
t+L∑
t′=t

max {s(V∗
t′)− τ, 0}+ λ∥θt∥2

2, (7)

where ϕ are the parameters of the recourse function defined in Eq. 4 and λ is a hyperparameter.

4.5 Other Considerations

4.5.1 From Point Anomalies to Sequence Anomalies

So far, we have introduced our framework in the setting point anomalies, where a single abnormal state
is explained by one recourse action u∗

t . This allows us to present the core intuition and mechanics of our
approach in a straightforward manner. In practice, however, abnormal states in time series data are often
caused by a sequence of anomalies, which requires extending our formulation. To handle this situation, we
generalize the single recourse action u∗

t in Problem Formulations 1 and 2 to a sequence of recourse actions

U∗
t = (u∗

t , u∗
t+1, · · · , u∗

t+M ).

Correspondingly, the recourse function is modified to adopt a sequence-to-sequence network architecture. The
subsequent procedures, including the Abduction–Action–Prediction pipeline and backtracking counterfactual
reasoning, remain conceptually the same and can be applied in this extended setting. A key challenge here is
that the length of the anomaly sequence is not always known. As a practical solution, we propose computing
the shortest sequence of recourse actions that adequately explains the abnormal states, i.e., the minimal
sequence that restores normal states for all subsequent time steps. We describe the pseudo-code of the
training process for recourse predictions with multiple abnormal time steps in Appendix A.

4.5.2 Dealing with Anomalies due to Structural Intervention

We have assumed that anomalies are caused by external interventions on exogenous variables, without altering
the Granger causal relationships. This type of anomaly occurs, for example, when a sensor is attacked.
However, there are other types of anomalies that cannot be treated as external interventions but must be
considered as structural interventions. In other words, they are caused by replacing the normal equations with
abnormal ones. For instance, when a system experiences a structural change due to component degradation
or failure. Despite the intrinsic differences between external interventions and structural interventions,
it is still possible to explain anomalies caused by structural interventions using recourse actions. This
is because we can rearrange the structural equation as follows: x

(j)
t = f̃ (j)(x(1)

≤t−1, · · · , x(d)
≤t−1) + u

(j)
t =

f (j)(x(1)
≤t−1, · · · , x(d)

≤t−1) + u
(j)
t + ϵ

(j)
t , for 1 ≤ j ≤ d, where f̃ (j)(x(1)

≤t−1, · · · , x(d)
≤t−1) is an abnormal function

for the time series j at time t and ϵ
(j)
t = f̃ (j)(x(1)

≤t−1, · · · , x(d)
≤t−1)− f (j)(x(1)

≤t−1, · · · , x(d)
≤t−1). As a result, we

can describe the anomalies as

x
(j)
t := f (j)(x(1)

≤t−1, · · · , x(d)
≤t−1) + u

(j)
t + ϵ

(j)
t , for 1 ≤ j ≤ d, (8)

where anomaly term ϵ
(j)
t can be due to a structural intervention. However, the significance of using recourse

actions to explain structural intervention is worthy of future study.

5 Experiments

5.1 Experimental Setups

Datasets. We conduct experiments on two semi-synthetic datasets and one real-world dataset. The purposes
of using semi-synthetic datasets are as follows. 1) We can derive the ground truth downstream time series
after the intervention on the abnormal time step based on the data generation equations. 2) We can evaluate
the fine-grained performance of RecAD by injecting different types of anomalies.
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Semi-synthetic datasets: 1) Linear Dataset (Marcinkevičs & Vogt, 2021) is a time series dataset with linear
interaction dynamics. 2) Lotka-Volterra is a nonlinear time series model that simulates a prairie ecosystem
with multiple species. For both datasets, we adopt the structural equations defined in (Marcinkevičs & Vogt,
2021), which are included in Appendix B. We also describe the anomaly injection strategies in Appendix B.

Real-world dataset: Multi-Source Distributed System (MSDS) (Nedelkoski et al., 2020) consists of
10-dimensional time series. The first half of MSDS without anomalies is used as a training set, while the
second half, including 5.37% abnormal time steps, is used as a test set. As a real-world dataset, we cannot
observe the downstream time series after the intervention. In the test phase, we use GVAR and AAP to
generate the counterfactual time series for evaluation.

Table 1: Statistics of three datasets for anomaly detection.

Dataset Dim. Train Test (Anomalies %)
Point (External) Seq. (External) Seq. (Structural)

Linear 4 50,000 250,000 (2%) 250,000 (6%) 250,000 (6%)
Lotka-Volterra 20 100,000 500,000 (1%) 500,000 (3%) 500,000 (3%)

MSDS 10 146,340 146,340 (5.37%)

Table 1 shows the statistics of three datasets. Training datasets only consist of normal time series. Note that
the test sets listed in Table 1 are used for evaluating the performance of anomaly detection. After detecting
the abnormal time series in the test set, for the synthetic datasets, we use 50% of abnormal time series for
training RecAD and another 50% for evaluating the performance of RecAD on recourse prediction, while
for the MSDS dataset, we use 80% of the abnormal time series for training RecAD and the rest 20% for
evaluation.

Baselines. To our best knowledge, there is no causal algorithmic recourse approach in time series anomaly
detection. We compare RecAD with the following baselines: 1) Multilayer perceptron (MLP), which is trained
with the normal flattened sliding windows to predict the normal values for the next step; 2) LSTM, which
can learn complex temporal dependencies in time series to make predictions for the next step; 3) Vector
Autoregression (VAR) is a statistical model that used to analyze GC within multivariate time series data
and predict future values; 4) Generalised Vector Autoregression (GVAR) (Marcinkevičs & Vogt, 2021) is an
extension of self-explaining neural network that can infer nonlinear multivariate GC and predict values of the
next step.

For all the baselines, in the training phase, we train them to predict the last value in a time window on
the normal time series. In the testing phase, when a time window is detected as abnormal by an anomaly
detection model, indicating the last time step xt is abnormal, we use baselines to predict the expected normal
value in the last time step x̃t. Then, the recourse action values can be derived as θt = x̃t − xt. For the
sequence anomalies, we keep using the baselines to predict the expected normal values and derive the action
values by comparing them with the observed values.

Evaluation Metrics. We evaluate the performance of algorithmic recourse in terms of effectiveness, feasibility,
and efficiency.

1) Flipping Ratio (↑) (Effectiveness). The Flipping Ratio measures the proportion of detected anomalous
time steps that are successfully reverted to normal after applying the recourse actions. Formally, let Tanom
be the set of detected anomalous time steps, let θt be the recourse actions, x̃ the counterfactual sequence
produced by the recourse algorithm, and s(·) the anomaly score with threshold τ . Then

Flipping Ratio =
∑

t∈Tanom
I{s(x̃t) < τ}
|Tanom|

.

A higher Flipping Ratio indicates more effective recourse, as a larger fraction of anomalies is eliminated after
intervention.

2) Action Cost (↓) (Feasibility). The Action Cost quantifies the magnitude of all interventions required to
flip anomalies. For each time step t, let θt ∈ Rd denote the perturbation applied to the d-dimensional system
state. The cost at time t is measured using the Euclidean norm ∥θt∥2, and the average cost per abnormal
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sequence is computed as

Action Cost = 1
|Tanom|

∑
t∈Tanom

∥θt∥2
2.

Lower Action Cost reflects more parsimonious interventions that achieve anomaly flipping with minimal total
perturbation.

3) Action Step (↓) (Efficiency). The Action Step metric counts the number of discrete time steps at
which interventions are applied. For each anomalous sequence, let st = 1 if θt ̸= 0 (i.e., an action is taken)
and st = 0 otherwise. The average number of steps per sequence is

Action Step = 1
|Tanom|

∑
t∈Tanom

st.

A smaller value implies that fewer intervention points are required, indicating temporally efficient recourse.

5.2 Experimental Results

To implement the score function s(·), in our experiments, we leverage the UnSupervised Anomaly Detection
for multivariate time series (USAD) (Audibert et al., 2020) as well as a transformer-based anomaly detection
model (TranAD) (Tuli et al., 2022) as base anomaly detection models that output an anomaly score for
multivariate time series. We include the implementation details as well as the performance of USAD and
TranAD for anomaly detection in the Appendix. For all experimental results, we report the mean and
standard deviation over 10 runs. Our code is available online1.

5.2.1 Evaluation Results on Synthetic Datasets

The performance of recourse prediction on anomalies caused by external interventions. Table
2 shows the performance of RecAD for recourse prediction on anomalies caused by external interventions.
Note that the anomalies consist of both point and sequential anomalies. First, in all settings, RecAD can
achieve the highest flipping ratios, which shows the effectiveness of RecAD in flipping abnormal behavior.
Meanwhile, RecAD can achieve low action costs and action steps compared with other baselines. Because no
baseline considers the downstream impact of recourse actions, they usually require more action steps to flip
the anomalies.

The performance of recourse prediction on anomalies caused by structural interventions. We
examine the performance of RecAD on anomalies caused by structural intervention. As shown in Table 3,
RecAD can achieve the highest flipping ratio compared with baselines on both Linear and Lotka-Volterra
datasets, indicating that the majority of anomalies caused by structural interventions can be successfully
flipped. Meanwhile, RecAD can also achieve low action costs and action steps with high flipping ratios.
Overall, RecAD meets the requirement of algorithmic recourse, i.e., flipping the abnormal outcome with
minimum costs on anomalies caused by structural interventions.

Therefore, based on Tables 2 and 3, we can demonstrate that RecAD can provide recourse prediction on
different types of anomalies in multivariate time series.

5.2.2 Evaluation Results on the MSDS Dataset

The performance of recourse prediction. Because the types of anomalies in the real-world dataset are
unknown, we report the performance of recourse prediction on any detected anomalies. As shown in Table 4,
RecAD achieves much higher flipping ratios than all baselines. Regarding the average action cost per time
series and the average action step, RecAD also outperforms the baselines by having the lowest values. This
suggests that, by incorporating Granger causality, RecAD can identify recourse actions that minimize both
cost and the number of steps.

1https://github.com/hanxiao0607/RecAD
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Table 2: The performance of recourse prediction on anomalies caused by external interventions.

(a) USAD as the anomaly detection model

Dataset Model Point Seq.
Flipping Ratio ↑ Action Cost ↓ Action Step ↓ Flipping Ratio ↑ Action Cost ↓ Action Step ↓

Linear

MLP 0.778±0.054 8.406±0.257 1.188±0.051 0.867±0.048 22.394±0.545 2.261±0.027
LSTM 0.807±0.045 8.383±0.253 1.170±0.040 0.878±0.044 22.439±0.553 2.248±0.031
VAR 0.676±0.063 8.841±0.224 1.311±0.077 0.765±0.061 23.696±0.511 2.434±0.037

GVAR 0.775±0.053 8.446±0.249 1.207±0.052 0.848±0.051 22.415±0.547 2.287±0.029
RecAD 0.901±0.035 8.201±0.176 1.104±0.024 0.944±0.041 21.264±0.947 2.193±0.046

Lotka-Volterra

MLP 0.741±0.126 277.580±117.126 1.237±0.180 0.688±0.259 761.550±64.422 2.195±0.757
LSTM 0.893±0.087 313.510±124.921 1.096±0.061 0.889±0.097 1590.483±85.126 1.339±0.145
VAR 0.558±0.166 326.967±126.322 1.57±0.324 0.504±0.151 1445.084±189.943 2.570±0.676

GVAR 0.493±0.332 270.335±117.223 2.020±1.049 0.606±0.266 749.792±105.656 2.547±0.905
RecAD 0.915±0.088 262.759±99.008 1.085±0.055 0.972±0.016 1374.112±343.470 1.329±0.192

(b) TranAD as the anomaly detection model

Dataset Model Point Seq.
Flipping Ratio ↑ Action Cost ↓ Action Step ↓ Flipping Ratio ↑ Action Cost ↓ Action Step ↓

Linear

MLP 0.657±0.217 5.260±2.177 1.145±0.413 0.732±0.228 14.006±6.043 2.238±0.228
LSTM 0.671±0.246 5.271±2.123 1.441±0.472 0.759±0.234 14.228±5.953 2.189±0.184
VAR 0.557±0.210 5.349±2.278 1.551±0.365 0.642±0.227 14.147±6.202 2.373±0.228

GVAR 0.590±0.227 5.326±2.241 1.549±0.537 0.673±0.237 14.211±6.038 2.335±0.308
RecAD 0.884±0.121 7.021±1.471 1.112±0.046 0.924±0.115 16.793±5.600 1.905±0.400

Lotka-Volterra

MLP 0.796±0.194 253.537±115.642 1.230±0.246 0.735±0.153 826.481±32.198 2.251±0.448
LSTM 0.839±0.190 274.916±119.687 1.146±0.173 0.833±0.099 1457.314±34.293 1.866±0.214
VAR 0.636±0.293 286.372±116.162 1.554±0.583 0.420±0.098 1261.513±103.780 2.833±0.399

GVAR 0.720±0.349 244.942±114.734 1.664±1.052 0.550±0.149 680.181±44.329 2.501±0.611
RecAD 0.902±0.074 278.432±127.007 1.099±0.070 0.925±0.034 1254.646±196.460 1.856±0.138

Table 3: The performance of recourse prediction on anomalies caused by structural interventions.

(a) USAD as the anomaly detection model

Dataset Model Flipping Ratio ↑ Action Cost ↓ Action Step ↓

Linear

MLP 0.884±0.023 41.387±2.151 2.359±0.035
LSTM 0.903±0.021 42.412±2.002 2.398±0.043
VAR 0.782±0.035 59.346±3.285 2.883±0.062

GVAR 0.874±0.024 39.474±2.116 2.415±0.041
RecAD 0.919±0.037 38.917±6.247 2.169±0.206

Lotka-Volterra

MLP 0.665±0.277 1578.597±49.253 2.247±0.744
LSTM 0.890±0.099 3159.333±173.463 2.310±0.100
VAR 0.488±0.178 3088.788±435.034 2.630±0.640

GVAR 0.584±0.277 1846.415±347.144 2.618±0.858
RecAD 0.970±0.012 2767.819±581.046 1.386±0.120

(b) TranAD as the anomaly detection model

Dataset Model Flipping Ratio ↑ Action Cost ↓ Action Step ↓

Linear

MLP 0.834±0.117 52.812±37.404 2.722±0.652
LSTM 0.921±0.031 52.759±31.272 2.638±0.417
VAR 0.778±0.083 61.716±37.610 2.908±0.421

GVAR 0.785±0.090 59.303±38.320 2.840±0.430
RecAD 0.942±0.046 48.227±31.905 2.260±0.447

Lotka-Volterra

MLP 0.727±0.167 1541.437±65.036 2.228±0.504
LSTM 0.853±0.091 2783.639±121.668 1.735±0.176
VAR 0.444±0.105 2441.456±244.908 2.791±0.428

GVAR 0.572±0.171 1387.077±118.036 2.495±0.614
RecAD 0.929±0.035 2276.269±481.183 1.809±0.145
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Table 4: The performance of recourse prediction in MSDS datasets.

(a) USAD as anomaly detection model

Model Flipping Ratio ↑ Action Cost ↓ Action Step ↓
MLP 0.687±0.282 6.848±2.506 1.443±0.680

LSTM 0.830±0.211 6.798±2.604 1.279±0.493
VAR 0.704±0.273 6.759±2.821 1.432±0.596

GVAR 0.712±0.211 8.923±3.258 1.425±0.466

RecAD 0.841±0.080 6.747±1.543 1.249±0.068

(b) TranAD as anomaly detection model

Model Flipping Ratio ↑ Action Cost ↓ Action Step ↓
MLP 0.664±0.373 4.999±3.136 1.470±0.891

LSTM 0.749±0.257 5.443±3.011 1.301±0.606
VAR 0.643±0.366 5.197±3.118 1.525±0.825

GVAR 0.739±0.232 6.443±3.270 1.327±0.488

RecAD 0.837±0.159 4.918±1.292 1.273±0.453

5.3 Case Study

We further conduct case studies to show how to use the recourse action predicted by RecAD as an explanation
for anomaly detection in multivariate time series.

Figure 3: Recourse recommendations for intervening in an imbalanced ecosystem to restore balance.

Case study on the Lotka-Volterra dataset. Figure 3 shows a simulation of a prairie ecosystem that
contains antelope, hare, fox, and gray wolf based on the Lotka-Volterra model (Bacaër, 2011), where each time
series indicates the population of a species. As shown in the top figure, in most of the time steps, the numbers
of carnivores (fox and gray wolf) and herbivores (antelope and hare) keep stable in a balanced ecosystem, say
0.1k-1k antelopes, 1k-10k hares, 0.1k-1k foxes, and 0.1k-1k gray wolves. After detecting abnormal behavior
at a specific time step (red area in the top figure), the algorithmic recourse aims to provide recourse actions
to flip the abnormal outcome. In this case, the algorithmic recourse model recommends the intervention
of reducing the populations of hares, foxes, and gray wolves by 100.1k, 9.3k, and 7.5k, respectively. After
applying the recourse actions (green area in the bottom figure), we can notice the populations of four species
become stable again (the dashed line in the bottom figure). Therefore, the recourse actions can provide
recommendations to restore the balance of the prairie ecosystem.

Case study on the MSDS dataset. Figure 4 depicts a case study on MSDS with control nodes 117 and
124. USAD detects a subsequence of anomaly consisting of two abnormal time steps from two-time series
(CPU and RAM usages on node 117), highlighted in the red area of the top figure.

When the first abnormal time step is detected, RecAD suggests releasing the CPU usage by 6.7 on node 117
(the green area in the middle figure). In other words, it also means the anomaly here is due to the higher CPU
usage than normal with a value of 6.7. After taking this action, the following time steps are affected by this
action. A counterfactual time series is then generated using the AAP process, which is shown as the dashed
lines in the middle of Figure 4. RecAD continues to monitor subsequent time steps for any abnormalities.

The following time step is still detected as abnormal in the time series of memory usage of node 117. RecAD
recommends releasing the RAM usage by 13.39 on node 117 (the green area in the bottom figure), meaning
that the abnormal time step here is due to high memory usage in a margin of 13.39. After taking the recourse
action, the counterfactual time series is then generated (the dashed lines in the bottom figure). We can then
observe that the entire time series returns to normal.
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Figure 4: Recourse recommendations for restoring the abnormal CPU and RAM usages in MSDS.

In summary, recourse actions recommended by RecAD can effectively flip the outcome and lead to a normal
counterfactual time series. Meanwhile, based on the recourse actions, the domain expert can understand why
a time step is abnormal.

Table 5: The performance of recourse prediction using different components of RecAD.

Dataset Metric RecAD w/o FFNN RecAD w/o LSTM RecAD

Linear
Flipping Ratio ↑ 0.340±0.191 0.676±0.085 0.922±0.040

Action Cost ↓ 119.286±174.173 23.589±23.453 22.794±13.054
Action Step ↓ 2.905±0.882 2.276±0.939 1.822±0.521

Lotka-
Volterra

Flipping Ratio ↑ 0.353±0.210 0.523±0.090 0.952±0.054
Action Cost ↓ 876.107±810.047 1035.192±881.242 1468.230±1086.090
Action Step ↓ 2.706±1.068 2.304±0.646 1.266±0.180

MSDS
Flipping Ratio ↑ 0.228±0.147 0.697±0.214 0.841±0.080

Action Cost ↓ 3.494±2.665 4.136±0.727 6.747±1.543
Action Step ↓ 2.048±0.607 1.581±0.525 1.249±0.068

5.4 Ablation Study

We evaluate the performance of using different parts of RecAD (i.e., FFNN and LSTM) for recourse prediction.
In this experiment, we adopt USAD as the base anomaly detection model. As RecAD contains an LSTM
to catch the previous K − 1 time lags and a feedforward neural network (FFNN) to include the time lag
exclusion term ∆t, we then test the performance of these two parts separately. Table 5 shows the average
flipping ratio, action cost, and action step for three types of anomalies for the synthetic datasets and results
for the real-world dataset MSDS. We observe that RecAD achieves higher flipping ratios while requiring
fewer or comparable action steps compared to methods that utilize only parts of RecAD. In cases where
other methods exhibit lower action costs, they achieve very low flipping ratios, indicating their inability to
successfully flip abnormal samples, which is undesired. This result shows the importance of considering both
information for reasonable action value prediction.

5.5 Sensitivity Analysis

The objective function defined in Eq. (7) for training RecAD employs the hyperparameter λ to balance
the flipping ratio and action cost. A large λ indicates a large penalty for high action costs, which could
potentially hurt the performance of flipping abnormal time steps as small action costs may not be sufficient to
flip the anomalies. As shown in Figure 5, on both synthetic datasets, we have similar observations that with
the increase of λ, both action cost and flipping ratio decrease. Specifically, smaller values of λ yield higher
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(a) Linear (b) Lotka-Volterra

Figure 5: Effects of the hyperparameter λ in Eq. (7).

action costs but higher flipping ratios, whereas larger values produce lower costs and lower flipping ratios.
By varying λ, the model generates multiple distinct recourse trajectories with different cost-effectiveness
trade-offs, introducing diversity among the counterfactuals.

6 Conclusions

In this work, we have developed RecAD, a novel framework for algorithmic recourse in abnormal multivariate
time series. RecAD suggests actionable interventions to restore the multivariate time series to normal
status, offering counterfactual explanations for abnormal patterns. By leveraging backtracking counterfactual
reasoning, we formulated the problem of learning the recourse function from data as a constrained maximum
likelihood problem to enable end-to-end training. The empirical studies have demonstrated the effectiveness
of RecAD for recommending explainable and practical recourse actions in abnormal time series.

7 Limitations and Future Work

Our current framework adopts GVAR to infer Granger causal relationships from multivariate time series.
While GVAR provides a principled and computationally tractable approach, several limitations remain: (i)
GVAR may be sensitive to latent confounding and hyperparameter choices governing sparsity and temporal
smoothness. (ii) While GVAR can model nonlinearity and time variation, its reliability still depends on
regularization design and stability selection thresholds when aggregating coefficients into a summary graph.
(iii) GVAR does not explicitly handle interventions or invariance across environments, which can improve
robustness to spurious associations. In future work, we plan to integrate recent advances in causal discovery
to complement GVAR’s learned coefficients, including invariance-based or multi-environment selection to
reduce spurious edges, procedures that address latent confounders and non-stationarity, and hybrid models
that combine constraint-based, score-based, and neural approaches.

Another limitation of the current work lies in handling anomalies caused by structural interventions. In
Section 4.5.2, we reformulated structural interventions as external interventions and addressed them using a
similar method. However, this approach does not directly capture or explain the structural changes themselves.
As future work, we plan to develop methods that can learn a modified causal structure, which, if implemented,
would restore the system to normal behavior. In particular, we aim to design an optimization procedure
that enables the encoder-decoder architecture to adapt rapidly to local causal mechanism changes present in
abnormal sequences.
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Appendix

A Algorithm of RecAD

Algorithm 1 shows the pseudo-code of the training process for recourse predictions. Given an abnormal time
window Wt with the abnormal time step t and a subsequence window Vt+L of length L, we first predict
the action value on xt to reverse the abnormal status. After conducting the recourse actions, we also need
to ensure that the following L time steps are also normal. Therefore, we then derive the counterfactual
subsequence V∗

t+L step by step. For each following step, denoted as V∗
t+l, if the subsequence V∗

t+l is still
abnormal, we further conduct recourse actions to flip the abnormal status. After going through L time steps,
we update the action prediction function hϕ(·) based on the objective function defined in Eq. (7).

Algorithm 1: Pseudo code of training RecAD
Input: Pretrained GVAR gk(·), anomaly detector s(·), an abnormal window Wt with the abnormal time
step t, and the following window Vt+L

Output: Updated hϕ(·)
1: x∗

t ← Action_Prediction(Wt, gk(·), hϕ(·))
2: V∗

t+L[0] = x∗
t

3: for l← 1 to L do
4: Derive V∗

t+l by Eqs. (5) and (6)
5: if s(V∗

t+l) > τ then
6: x∗

t+l ← Action_Prediction(V∗
t+l, gk(·), hϕ(·))

7: V∗
t+L[l] = x∗

t+l

8: end if
9: end for

10: Update hϕ(·) based on the objective function L(ϕ) in Eq. (7)
11: Function Action_Prediction(Wt, gk(·), hϕ(·))
12: Wt−1 ←Wt \ {xt}
13: Compute x̂t =

∑K−1
k=1 gk(xt−k)xt−k with Wt−1

14: Compute ∆t = xt − x̂t

15: Compute θt = hϕ(Wt−1, ∆t)
16: x∗

t = xt + θt

17: Return x∗
t

B Experiments

B.1 Datasets

Linear Dataset (Marcinkevičs & Vogt, 2021) is a synthetic time series dataset with linear interaction
dynamics. We follow the structure from the original paper (Marcinkevičs & Vogt, 2021), where the linear
interaction contains no instantaneous effects between time series and can be defined as:

x
(1)
t = a1x

(1)
t−1 + u

(1)
t + ϵ

(1)
t ,

x
(2)
t = a2x

(2)
t−1 + a3x

(1)
t−1 + u

(2)
t + ϵ

(2)
t ,

x
(3)
t = a4x

(3)
t−1 + a5x

(2)
t−1 + u

(3)
t + ϵ

(3)
t ,

x
(4)
t = a6x

(4)
t−1 + a7x

(2)
t−1 + a8x

(3)
t−1 + u

(4)
t + ϵ

(4)
t ,

(9)

where coefficients ai ∼ U([−0.8,−0.2] ∪ [0.2, 0.8]), additive innovation terms u
(·)
t ∼ N (0, 0.16), and anomaly

term ϵ
(·)
t .

Abnormal behavior injection. For point anomalies, the anomaly terms are single or multiple extreme values
for randomly selected time series variables at a specific time step t. For example, a point anomaly at time
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step t can be generated with an abnormal term ϵt = [0, 2, 4, 0], which means the second and third time series
have extreme values.

For non-causal sequence anomalies, the anomaly terms are function-generated values for a given time range
from t to t + n. For instance, setting ϵ

(1)
t+i = 0.1× i, for 0 ≤ i ≤ n, will cause a trend anomaly for time series

variable x; setting ϵ
(1)
t+i ∼ N (0, 0.16), for 0 ≤ i ≤ n, will cause a shapelet anomaly for time series variable

x(1); and setting ϵ
(1)
t+i = (a1x

(1)
t+2i−1 + u

(1)
t+2i) + (a1x

(1)
t+2i−2 + u

(1)
t+2i−1)− (a1x

(1)
t+i−1 + u

(1)
t+i), for 0 ≤ i ≤ n, will

cause a seasonal anomaly for time series variable x(1).

For causal sequence anomalies, we consider two scenarios: 1) changing the coefficients A = {a1, a2, · · · , a8}
from a normal one to a different one in a time range t to t + n; 2) changing generative functions from the
original Equation (9) to a different one.

Lotka-Volterra (Bacaër, 2011) is another synthetic time series model that simulates a prairie ecosystem
with multiple species. We follow the structure from (Marcinkevičs & Vogt, 2021), which defines as:

dx(i)

dt
= αx(i) − β

∑
j∈P a(x(i))

y(j) − η(x(i))2, for 1 ≤ j ≤ p,

dy(j)

dt
= δy(j)

∑
k∈P a(y(j))

x(k) − ρy(j), for 1 ≤ j ≤ p,

x
(i)
t = x

(i)
t + ϵ

(i)
t , for 1 ≤ j ≤ p,

y
(j)
t = y

(j)
t + ϵ

(j)
t , for 1 ≤ j ≤ p,

(10)

where x(i) and y(j) denote the population sizes of prey and predator, respectively; α, β, η, δ, ρ are parameters
that decide the strengths of interactions, Pa(x(i)) and Pa(y(j)) correspond the Granger Causality between
prey and predators for x(i) and y(j) respectively, and ϵ

(·)
t is the abnormal term. We adopt 10 prey species

and 10 predator species.

Abnormal behavior injection. For point anomalies and non-causal sequence anomalies, we perform a similar
procedure as the linear dataset, i.e., randomly select time series variables at a specific time step t and assign
single or multiple extreme values as point anomalies, and assign function-generated abnormal terms for a
time range from t to t + n as sequence anomalies.

For causal sequence anomalies, we still consider two scenarios: 1) changing the coefficients α, β, η, δ, ρ to
different values than the normal ones; 2) changing Pa(x(i)) and Pa(y(j)) to different ones from the original
generative functions Equation (10).

B.2 Implementation Details

Similar to (Audibert et al., 2020), we adopt a sliding window with sizes 5, 5, and 10 for the Linear, Lotka-
Volterra, and MSDS datasets, respectively. We set the hyperparameters for GVAR by following (Marcinkevičs
& Vogt, 2021). When training hϕ(·), we set L in the objective function as L = 1, which is to ensure the
following one-time step should be normal. The cost vector c can be changed according to the requirements or
prior knowledge. Because the baseline models are prediction-based models that cannot take the cost into
account, to be fair, we use 1 as the cost vector. The implementation details of neural networks in experiments
are described in the Appendix.

For baselines, MLP is a feed-forward neural network with a structure of ((K − 1) ∗ d)-100-100-100-d that the
input is the flattened vector of K − 1 time steps with d dimensions and the output is the predicted value of
the next time step. The LSTM model consists of one hidden layer with 100 dimensions and is connected with
a fully connected layer with a structure of 100-d. We use statsmodels2 to implement the VAR model. The
baseline GVAR model is the same as GVAR within our framework. To implement hϕ(·) in RecAD, we utilize

2https://www.statsmodels.org/
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an LSTM that consists of one hidden layer with 100 dimensions and a feed-forward network with structure
d-100. Then we use another feed-forward network with a structure of 200-d to predict the intervention values.

All experiments were conducted on an Ubuntu 20.04 server equipped with an AMD Ryzen 3960X 24-Core
processor at 3.8GHz, dual GeForce RTX 3090 GPUs, and 128 GB of RAM. The implementation uses Python
3.9.7 and PyTorch 1.11.0.

B.3 Performance of anomaly detection.

Table 6: Performance of Anomaly Detection: TranAD and USAD on Synthetic Datasets

Anomaly Types Metrics Linear Lotka-Volterra
TranAD USAD TranAD USAD

Non-causal
Point

F1 0.736±0.058 0.749±0.022 0.857±0.020 0.787±0.106
AUC-PR 0.602±0.065 0.619±0.024 0.742±0.033 0.840±0.116

AUC-ROC 0.812±0.038 0.816±0.016 0.950±0.002 0.851±0.068

Non-causal
Seq.

F1 0.829±0.093 0.878±0.011 0.783±0.032 0.677±0.061
AUC-PR 0.730±0.123 0.798±0.015 0.633±0.054 0.519±0.026

AUC-ROC 0.891±0.066 0.914±0.010 0.879±0.013 0.794±0.089

Causal
Seq.

F1 0.740±0.043 0.756±0.003 0.747±0.025 0.714±0.020
AUC-PR 0.595±0.065 0.604±0.004 0.581±0.045 0.559±0.016

AUC-ROC 0.853±0.021 0.877±0.002 0.860±0.019 0.824±0.078

Table 7: Performance of Anomaly Detection on the Real-World MSDS Dataset

Metrics TranAD USAD
F1 0.863±0.114 0.888±0.097

AUC-PR 0.995±0.003 0.996±0.001
AUC-ROC 0.981±0.010 0.985±0.003

We evaluate the performance of USAD for anomaly detection in terms of the F1 score, the area under the
precision-recall curve (AUC-PR), and the area under the receiver operating characteristic (AUC-ROC) on
two synthetic datasets. Table 6 shows the evaluation results on synthetic datasets, while Table 7 shows the
evaluation results on the real-world MSDS dataset.

Overall, both USAD and TranAD can achieve promising performance on different types of anomalies and on
both synthetic and real-world datasets, which lays a solid foundation for recourse prediction.
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