
Published as a conference paper at ICLR 2021

MIXED-FEATURES VECTORS & SUBSPACE SPLITTING

Alejandro Pimentel-Alarcón
IIMAS, Universidad Nacional
Autónoma de México, UNAM
Mexico City, Mexico
pimentel@comunidad.unam.mx

Daniel Pimentel-Alarcón
Department of Biostatistics
Wisconsin Institute for Discovery
UW-Madison, WI, 53715
pimentelalar@wisc.edu

ABSTRACT

Motivated by metagenomics, recommender systems, dictionary learning, and re-
lated problems, this paper introduces subspace splitting (SS): the task of clustering
the entries of what we call a mixed-features vector, that is, a vector whose subsets of
coordinates agree with a collection of subspaces. We derive precise identifiability
conditions under which SS is well-posed, thus providing the first fundamental the-
ory for this problem. We also propose the first three practical SS algorithms, each
with advantages and disadvantages: a random sampling method , a projection-based
greedy heuristic , and an alternating Lloyd-type algorithm ; all allow noise, out-
liers, and missing data. Our extensive experiments outline the performance of our
algorithms, and in lack of other SS algorithms, for reference we compare against
methods for tightly related problems, like robust matched subspace detection and
maximum feasible subsystem, which are special simpler cases of SS.

1 INTRODUCTION

As the reach of data science expands, and as we continuously improve our sensing, storage and
computing capabilities, data in virtually all fields of science keeps becoming increasingly high-
dimensional. For example, the CERN Large Hadron Collider currently “generates so much data
that scientists must discard the overwhelming majority of it, hoping that they’ve not thrown away
anything useful” [1], and the upcoming Square Kilometer Array is expected to produce 100 times
that [2]. Fortunately, high-dimensional data often has an underlying low-dimensional structure.
Inferring such structure not only cuts memory and computational burdens, but also reduces noise and
improves learning and prediction. However, higher dimensionality not only increases computational
requirements; it also augments data’s structure complexity. In light of this, several research lines have
explored new low-dimensional models that best summarize data, going from principal component
analysis (PCA) [3–11] and single subspaces [12–21] to unions of subspaces [22–40], and algebraic
varieties [41].

This paper introduces mixed-features vectors (MFV’s): a new model that describes the underlying
structure of data arising from several modern applications that is not captured by existing low-
dimensional models. The main idea is that each entry of a MFV comes from one out of several
classes, and that the entries of the same class lie in an underlying subspace. In particular, MFV’s are
motivated by megatenomics [42–46] and recommender systems [47–59]: in metagenomics each gene
segment comes from one of the several taxa present in a microbiome; in recommender systems each
rating may come from one of several users sharing the same account. However, MFV’s also have
applications in robust estimation (e.g., robust PCA [3–11] and robust dictionary learning [60–67]),
matrix completion [48–59], subspace clustering [22–39], and more.

This paper also introduces subspace splitting (SS): the task of clustering the entries of a MFV
according to its underlying subspaces. SS is tightly related to other machine learning problems.
In particular, SS can be thought as a generalization of robust matched subspace detection (RMSD)
[12–17], and maximum feasible subsystem (MAXFS) [68–74]. However, the added complexity of SS
renders existing approaches for these problems inapplicable, which calls the attention for specialized
SS theory and methods. In these regards, (i) we derive precise identifiability conditions under which
SS is well-posed, and (ii) we propose the first three SS algorithms.

1

Published as a conference paper at ICLR 2021

2 PROBLEM STATEMENT AND FUNDAMENTAL THEORY

Let U1, . . . ,UK be subspaces of Rd, and let Ω0,Ω1, . . . ,ΩK denote a partition of [d] := {1, . . . ,d}.
For any subspace, matrix or vector that is compatible with a set of indices Ω ⊂ [d], we will use the
subscript Ω to denote its restriction to the coordinates/rows in Ω. For example, U1

ΩK
⊂ R|ΩK| denotes

the restriction of U1 to the coordinates in ΩK. Define x ∈ Rd as the mixed-features vector (MFV)
such that xΩk

∈ Uk
Ωk

for each k = 1, . . . ,K, and the entries of xΩ0
are outliers. Let ε ∈ Rd denote

a noise vector with variance σ2. Given U1, . . . ,UK, and an incomplete observation yΩ = xΩ + εΩ,
the goal of subspace splitting (SS) is to determine the subsets Ω1 ∩ Ω, . . . ,ΩK ∩ Ω indicating the
observed coordinates of y that match with each subspace.

Example 1. Consider the following setup, with 1-dimensional subspaces U1,U2 spanned by U1,U2:

U1 =

1
1
1
1
1
1

 , U2 =

1
2
3
4
5
6

 , x =

1/2
1/2
6
8
9
10

 , ε =

0.1
−0.1
−0.1

0.1
−0.1

0.1

 , yΩ =

0.51
0.49
5.9
8.1
8.9
·

 .

It is easy to see that Ω1 = {1, 2}, Ω2 = {3, 4}, Ω0 = {5}, because xΩ1
= 1

2U
1
Ω1

and xΩ2
= 2U2

Ω2
.

The keen reader will immediately wonder: is there another partition {Ω′1, . . . ,Ω
′
K} different from

{Ω1, . . . ,ΩK} such that xΩ′k
∈ Uk

Ω′k
for every k? In other words, is this problem well-posed, and if

so, under what conditions? Our main theoretical result answers this question, showing that under the
next assumptions, Ωk can be recovered if and only if it has more elements than the dimension of Uk.

A1 Each Uk is drawn independently with respect to the uniform measure over the Grassmannian.

A2 Each xΩk
is drawn independently according to an absolutely continuous distribution with

respect to the Lebesgue measure on Uk
Ωk

.

In words, A1 essentially requires that U1, . . . ,UK are in general position with no particular relation
with one another. Similarly, A2 requires that each piece of x is in general position over its corre-
sponding piece of subspace. This type of genericity assumptions are becoming increasingly common
in compressed sensing, matrix completion, subspace clustering, tensor theory, and related problems
[10, 21, 30, 31, 33–38, 41, 56–59]. All our statements hold with probability 1 with respect to the
measures in A1 and A2. We point out that A1 and A2 do not imply coherence or affinity (other
typical assumptions in related theory that quantify alignment with the canonical axes or between
subspaces [3, 6, 11, 23, 26, 27, 48–50, 54, 55]) nor vice-versa. For example, bounded coherence and
affinity assumptions indeed allow subspaces perfectly aligned on some coordinates. However, they
rule-out cases that our assumptions allow, for example the non-zero measure set of highly coherent
or affine subspaces that are somewhat aligned with the canonical axes or with one another. To sum
up, these assumptions are different, not stronger nor weaker than the usual coherence and affinity
assumptions. With this, we are ready to state our main theorem, showing that subspace splitting is
possible if and only if x contains more than dim(Uk) entries of each subspace Uk.

Theorem 1. Suppose A1 and A2 hold. Given x and U1, . . . ,UK, one can identify Ω1, . . . ,ΩK

if and only if |Ωk| > dim(Uk) for every k.

Example 1 shows a case where the conditions of Theorem 1 are met (|Ω1| = |Ω2| = 2 > dim(U1) =
dim(U2) = 1), and consequently subspace splitting is well-posed (there exist no partition other than
the true {Ω1,Ω2} that splits x into U1 and U2). Conversely, the following Example shows a case
where the conditions of Theorem 1 are not satisfied, and at least some Ωk is unidentifiable.

2

Published as a conference paper at ICLR 2021

Example 2. Consider the following setting:

U1 =

1
1
1
1

 , U2 =

1
2
3
4

 , U3 =

0
1
4
9

 , x =

1/2
1/2
6
3

 .
Now |Ω2| = |Ω3| = 1 = dim(U2) = dim(U3). As Theorem 1 shows, there exist multiple ways to
split x into U1, U2, and U3. Here the partitions could be {Ω1,Ω2,Ω3} = {{1, 2}, {3}, {4}} or
{{1, 2}, {4}, {3}}, and there is no way of telling which is the true partition from U1, U2, U3, and x.
In other words, Ω2 and Ω3 are unidentifiable.
Remark 1. We point out that the constructions in our examples are not generic (i.e., they were
not constructed according to A1 and A2). We chose them for their simplicity to build intuition and
make a point. However, our results still apply to these constructions, showing that in addition to all
generic cases, our theory also holds for some non-generic ones. An exact characterization of all the
non-generic cases that our theory covers requires a careful study of notions of sketching and partial
coordinate discrepancy [31], which are out of the scope of this paper.

The proof of Theorem 1 follows by the next two lemmas. Lemma 1 shows that any subset of r or
fewer entries of any vector will always match with any r-dimensional subspace in general position.
Lemma 2 shows that r + 1 entries of a vector won’t match with a random r-dimensional subspace by
chance. Said in other words, r + 1 entries of a vector will match with an r-dimensional subspace if
and only if such entries truly come from that r-dimensional subspace. Lemma 2 is effectively the key
towards Theorem 1, as it allows us to try all combinations of r + 1 entries that fit in an r-dimensional
subspace, knowing that we will never get a false match. All proofs are in Appendix A.

Lemma 1. Suppose A1 holds. Let Ω ⊂ [d]. If |Ω| ≤ dim(Uk), then xΩ ∈ Uk
Ω for every x ∈ Rd.

Lemma 2. Suppose A1 and A2 hold. Let Ω be an arbitrary subset of [d] with exactly dim(Uk) + 1

elements. Then xΩ ∈ Uk
Ω if and only if Ω ⊂ Ωk.

Corollary 1 extends these results to account for noise and missing data, replacing A1 and A2 with:

A1’ The coherence of Uk is upper bounded by µ, and the geodesic distance over the Grassman-
nian between Uk and U` is lower bounded by ϕ, for every k, ` = 1, . . . ,K.

A2’ The coherence of xΩk
is upper bounded by ν, and its norm is lower bounded by ψ, for every

k = 1, . . . ,K.

Corollary 1. Suppose A1’ and A2’ hold with µ, ν < Cσ, and ϕ,ψ > cσ for some constants C and c.
Let yΩ and U1, . . . ,UK be given. Suppose |Ωk ∩ Ω| > dim(Uk) for every k. Then with probability
decreasing in C and increasing in c, one can identify Ω1 ∩ Ω, . . . ,ΩK ∩ Ω.

To guarantee identifiability, Corollary 1 requires that subspaces and samples are sufficiently incoherent
and separated to overcome the noise level σ. Notice that since now there is missing data (we observe
yΩ, instead of x as in Theorem 1), Corollary 1 requires that there are enough observed entries per
subspace, i.e., that |Ωk ∩ Ω| are sufficiently large (rather than Ωk). Similarly, only the observed
entires can be classified, so only the intersections Ωk ∩ Ω are identifiable (rather than Ωk).

3 RELATED WORK

Arguably, the closest link that subspace splitting has with other popular machine learning problems,
is through robust matched subspace detection (RMSD) [12–17] and maximal feasible subsystem
(MAXFS) [68–74]. In RMSD one observes a vector x ∈ Rd of the form x = Uθ+ z, where z ∈ Rd

is a sparse vector of outlier entries, and θ ∈ Rr is the coefficient of the entries of x that match with
the subspace spanned by U ∈ Rd×r. Given x and U, the goal is to equivalently find θ, z, or the
support of z, which in turn determine the coordinates Ω where x matches U. Subspace splitting can
be thought as the generalization of RMSD to the case where there are multiple subspaces, and we
want to find the entries that match each one. Similarly, in MAXFS one has an inconsistent system
of equations of the form x = Uθ, and wants to determine the solution θ that produces the largest

3

Published as a conference paper at ICLR 2021

subset Ω of consistent equations. Subspace splitting can be thought as the generalization of MAXFS
to the case where there are multiple consistent subsystems (one per subspace), and we want to find
each of them. The three prevalent venues to solve these problems can be classified into three groups:
(i) `1 minimization, (ii) mixed integer programs, and (iii) random sampling.

The first group essentially encompasses variants of minimizing ‖x−Uθ‖1 over θ ∈ Rr, which is
tightly related to the Lasso [91]. The intuition is that the `1-norm will favor solutions that produce a
sparse vector z = x−Uθ whose zero entries reveal Ω. While formulations like this work great for
just one subspace (or subsystem), if there are two or more, then for each subspace, the entries of all
other subspaces are outliers, in which case zk := x−Ukθk will no longer be sparse, and the solution
to the `1-norm minimization will no longer reveal Ωk. The second group aims to directly recover Ω
with variants of the mixed integer formulation that minimizes ‖z‖ subject to |x−Uθ| ≤ Mz over
z ∈ {0, 1}d and θ ∈ Rr, where M is a tuning parameter. Here the main idea is to maximize the
number of zero entries in z (which reveal Ω), where we are forcing x to match span{U}, because the
constraint guarantees that |xi −Uθ| ≤ zi = 0. Unfortunately, because of the combinatorial nature
of this approach, this method becomes exponentially slow as the fraction of outliers/inconsistencies
increases, rendering it prohibitive in practice for even small values of K.The third group essentially
uses the same principle as random sampling consensus (RANSAC) [92–98]. That is, one iteratively
selects a candidate subset of entries at random, until it finds one where x agrees with span{U}. This
is in fact the approach that we used in the proof of Theorem 1, and the main idea behind our first SS
algorithm, which we present in Section 5.1, and study in Section 6.

Remark 2. We point out that SS is also related to subspace clustering [22–40]. The main difference
is that in subspace clustering all entries of each column come from the same subspace.

4 MOTIVATING APPLICATIONS

This section details the main motivations behind SS, namely, metagenomics, recommender systems,
and robust estimation, relevant for dictionary learning, matrix completion, and related problems.

Metagenomics Microbial communities affect the balance of entire ecosystems, and play a crucial
role in the planet’s health [42]. Consequently, understanding microbiome compositions, interactions,
and evolutions holds the key to the knowledge of the deep interconnectivity factors that play a role
on Earth’s biodiversity, our agricultural sustainability, and adaptation to global threats like climate
change. One cornerstone tool towards microbiome understanding lies in genomic analysis. In
practice, to obtain an organism’s genome (e.g., a person’s genome), biologists feed a DNA sample
(e.g., blood or hair) to a sequencer machine that produces a series of reads, which are short genomic
sequences that can later be assembled and aligned to recover the entire genome. The challenge arises
when the sequencer is provided a sample with DNA from multiple organisms, as is the case in any
microbiome (e.g., the human gut microbiome), where any sample will contain a mixture of DNA
from multiple taxa that cannot be trivially classified [43]. In this case, each read produced by the
sequencer may correspond to a different taxa, resulting in a DNA sample with a mixture of genes.
Existing approaches depend on the correct classification of taxonomic units, which in turn relies on
the existence of reference tables, and often require human intervention [44]. However, reference
sequences remain unknown for a vast majority of microbial biodiversity, which in turn precludes
holistic metagenomic analyses, as scientists often have to discard unidentified data that cannot be
currently categorized with existing reference tables [45]. In contrast, our work pioneers the theoretical
foundations of a novel model tailored to automatically classify taxonomic units without any human
intervention. Moreover, our model will naturally allow for missing data, and hence it will be robust
to taxa with length-varying sequences, and fast-occurring mutations, which are in fact quite common
in several microorganisms such as certain types of bacteria [46].

Recommender Systems and Image Inpainting In recommender systems like Amazon or Netflix,
one aims to infer users’ preferences in order to make good recommendations [47]. Arguably the most
renowned model for this task is low-rank matrix completion [48–58], which assumes that each user’s
preferences vector can be explained as a linear combination of a few others. Said in other words,
preferences lie in a linear subspace. However, often multiple types of users share the same account.
In this case the vector of preferences will contain a mixture of entries from multiple subspaces. It is
easy to see (details in the proof of Theorem 1 in Appendix A) that the coefficient corresponding to
the entries in the kth subspace are given by θk = (Uk

Ω′k
)−1xΩ′k

, where Ω′k is any subset of Ωk with

4

Published as a conference paper at ICLR 2021

more than dim(Uk) elements. This insight can be used to estimate the values corresponding to the
kth subspace that would appear in the locations where there are observations from other subspaces,
or where data is missing. In For example, in recommender systems, this would allow to infer the
preferences of all users sharing an account. In image inpainting this would allow to estimate the
missing, corrupted, or occluded pixels in an image [60–67].

Robust Learning In Section 3 we showed that SS is a generalization of RMSD and MAXFS, both
of which are crucial subtasks in many importantproblems, including robust PCA [3–11], dictionary
learning [60–67], matrix completion [48–58], and more. For example, in subspace tracking one needs
to identify outliers in each new vector (meaning performing RMSD or MAXFS) before updating
the underlying subspace [18–20]. Or in subspace clustering one needs to identify outliers in each
vector before finding sparse representations [26, 28, 29, 32, 39]. These in turn are core techniques
in target localization [76], medical imaging [79], communications [80], anomaly detection [81, 82],
hyperspectral imaging [16], and networks estimation [84? –89], among many others [78]. Being a
generalization of RMSD and MAXFS, subspace splitting is also applicable in these broader problems,
bringing possibilities for improved performance.Moreover, as these problems evolve into more
sophisticated models that allow mixed-features vectors (such as mixture matrix completion [59]),
subspace splitting will gain importance and become a crucial subroutine of these emerging problems.

5 SUBSPACE SPLITTING ALGORITHMS

We now present our three subspace splitting algorithms: a random sampling method, an iterative
projection-based greedy heuristic, and an alternating approach inspired by Lloyd’s algorithm [75].

5.1 RANDOM SAMPLING SPLITTING

Like Theorem 1 suggests, for each k we can iteratively try sets Ω′k with dim(Uk) + 1 entries selected
randomly until we find one such set where yΩ′k

lies close to Uk
Ω′k

(within the noise level σ). At that

point we can estimate θk = (Uk
Ω′)
−1yΩ′ , and subsequently Ωk as the entries in yΩ −Uk

Ωθ
k that

are within σ. We call this approach random sampling splitting (RANSAS). The main advantage of
RANSAS is that as consequence of Theorem 1, it is guaranteed to work after enough iterations. To
see this, observe that if entries in x are uniformly distributed across subspaces and outliers, then the
probability of randomly selecting r + 1 entries from the kth subspace is 1/(K+1)

r+1. Consequently,
the probability that r + 1 random entries come from the same subspace is K/(K+1)

r+1. A simple
Chernoff bound shows that the expected number of iterations before this happens is O(Kr). Since we
want this to happen K times, we conclude that the expected number of iterations is upper bounded by
O(Kr+1). We summarize this in the next theorem.

Theorem 2. Let A1 and A2 hold. Suppose |Ωk| > dim(Uk) for every k. Suppose P(i ∈ Ωk) =
1/(K+1) independently for every i, k. Then the expected number of iterations before RANSAS identifies
Ω1, . . . ,ΩK is lower and upper bounded by O(Kmink dim(Uk)+1) and O(Kmaxk dim(Uk)+1).

We point out that a scenario where all entries are equally distributed is in fact the most difficult
setting. Otherwise, identifying any subspace with probability pk > 1/(K+1) will take O(1/pk

r+1) <
O(1/(K+1)

r+1) iterations to find. The main downside of this approach is that its computational
complexity scales exponentially. So if K and r are small, or there is one dominant subspace, RANSAS
may be a good idea. However, as we see in our experiments, this approach quickly becomes
computationally prohibitive as K and r grow.

5.2 GREEDY SPLITTING

The main idea of our greedy splitting (GREEDYS) heuristic is to iteratively remove the most disruptive
entry from each subspace. More precisely, for each k we will start with Ω0

k = [d], and for each t > 0
we will define Ωt

k := Ωt−1
k \it−1, where it−1 is the entry whose removal from Ωt−1

k minimizes the
difference between yΩt

k
and its projection onto Uk

Ωt
k
. The intuition is that removing it−1 gets yΩt

k

closer to Uk
Ωt

k
. We repeat this procedure for each k until yΩt

k
is close to Uk

Ωt
k

(within the noise level
σ). We know from Lemma 1 that this procedure will terminate at some point, because any subset of r

5

Published as a conference paper at ICLR 2021

or fewer entries of any vector will always match with any r-dimensional subspace in general position.
If for some k this procedure terminates with a set Ωt

k with more than rk = dim(Uk) entries, Theorem
1 suggests that yΩt

k
truly lies in Uk

Ωt
k
, that Ωt

k ⊂ Ω, that we can estimate θk = (Uk
Ωt

k
)−1yΩt

k
, and

identify Ωk as the entries in yΩ −Uk
Ωθ

k that are within σ. At this point we can prune all the entries
corresponding to this subspace, and repeat the greedy procedure from the start without these entries.
If at some point none of the remaining sets Ωt

k has more than rk entries, we know by Lemma 1
that we cannot determine whether yΩt

k
truly lies in Uk

Ωt
k

with these entries alone, then we stop and
consider this a failure. Notice that for each k, GREEDYS removes the most disruptive entry among
all d entries, then the next most disruptive among the remaining d− 1, until either all the remaining
entries lie in the same subspace, or there remain no more than rk entries. This requires no more than
d + (d−1) + (d−2) + · · ·+ (rk + 1) = O(d2) iterations. After identifying the entries of a subspace,
if pruning is necessary, we potentially need to repeat the iterative removal process for the remaining
K − 1 subspaces, and so on. In total, we potentially need to repeat the iterative removal process
K + (K− 1) + (K− 2) + · · ·+ 1 = O(K2) times. Putting these two observations together, we obtain
the following theorem, showing that GREEDYS has a polynomial computational complexity.
Theorem 3. GREEDYS will terminate after no more than O(Kd)2 iterations.

The main caveat of this greedy approach, as the next Example shows, is that even in a noiseless
setting, the most disruptive entry for Uk (that is, the entry whose removal minimizes the distance
between yΩt

k
and its projection onto Uk

Ωt
k
) may in fact correspond to Uk.

Example 3. Consider the following construction where the first two entries of x correspond to U1,
the last two correspond to U2, there are no outliers, i.e., Ω0 = ∅, there is no noise, i.e., ε = 0, and
there is no missing data, i.e., Ω = [d], so that we observe all entries of y = x:

U1 =

2
2
3
4

 , U2 =

1
3
1
1

 , y =

4
4
2
2

 .
Pay special attention to U1 and y. Let Ω−i := [d]\i denote the set of all except the ith entry, and
let ŷk

Ω−i
:= Uk

Ω−i
(UkT

Ω−i
Uk

Ω−i
)−1UkT

Ω−i
ŷΩ−i

denote the projection of yΩ−i
onto Uk

Ω−i
. For example,

here:

U1
Ω−1

=

[
2
3
4

]
, yΩ−1

=

[
4
2
2

]
, ŷ1

Ω−1
=

[
1.572
2.2759
3.0345

]
.

Proceeding according to our greedy heuristic, we can compute the projection residuals when removing
each entry:

‖yΩ−1
− x̂1

Ω−1
‖ = 2.7038, ‖yΩ−2

− x̂1
Ω−2
‖ = 2.7038,

‖yΩ−3
− x̂1

Ω−3
‖ = 3.4641, ‖yΩ−4

− x̂1
Ω−4
‖ = 2.7440.

Here we see that removing any of the first two entries makes y appear closer to U1, even though the
first two entries in fact correspond to U1. We thus conclude that our greedy heuristic, while it works
well in practice, it has no theoretical guarantee of working.

5.3 K-SPLITS

As the name suggests, our last algorithm, K-SPLITS, is inspired by the K-means algorithm. The main
idea is to initialize partitioning randomly the entries of yΩ into Ω̂0, Ω̂1, . . . , Ω̂K, and then alternate
until convergence between (i) estimating coefficients θ̂1, . . . , θ̂K in light of the assignment of entries,
and (ii) reassigning entries according to these coefficients. More precisely, at each step after pruning
when possible we:

(i) Estimate coefficients θ̂k = (Uk
Ω̂k

)−1yΩ̂k
.

(ii) Compute ŷk := Ukθ̂k, and assign entries as Ω̂k =
{

i ∈ [d] : |yi − ŷk
i | ≤ τ(σ)}, where

τ(σ) is a tuning thresholding parameter that depends on the noise level.

6

Published as a conference paper at ICLR 2021

The assignment step is done on a cyclic manner, that is, in every iteration, each cluster is assigned
the entry that agrees the most with it, and it receives no new entries until the next iteration. This
changes the isotropic assumption of K-means with the assumption that each cluster has the same
number of entries, as mentioned in Section 5.1, this is the most difficult setting for this problem, and
whenever the assumption is not fulfilled, the algorithm will still be able to complete at least the most
dominant subspace even if entries of that subspace contaminate other subspaces; for the next iteration
that won’t be the case any more. Thanks to this, the assumption of every subspace having the same
number of entries does not affect the effectiveness of the algorithm.

As we will see in our experiments, this method outperforms the rest. Its main downside, however, is
that like most alternating methods, it suffers from local minima, and depends heavily on initialization.
To mitigate the former, in our experiments we run several independent random initializations. We
observe that in practice this has excellent performance. We conjecture that it is because this strategy
will at some point spread the centers θk enough, in light of the subspaces. This sort of spread is
crucial in other related clustering algorithms, such as K-means [75]. Our future work will further
investigate this, convergence, complexity, and initialization strategies, such as parallels of K-means++
[99], which require careful analysis and are out of the scope of this paper.

6 EXPERIMENTS

In this section we study the performance of our three methods above, as a function of the number
of subspaces K, the number of entries per subspace |Ωk| (which in turn is a proxy of the ambient
dimension d) and the subspaces dimensions r. We measure error as the fraction of misclassified
entries. In lack of other existing subspace splitting methods, for reference we compare them against
the `1 minimization described in Section 3. Our results show that our SS methods perform as well
as existing methods in the single subspace case, and succeed in the presence of multiple subspaces,
where existing methods fail dramatically. In the interest of reproducibility, all our code is available
here [100].

In our experiments we first generate matrices U1, . . . ,UK ∈ Rd×r with i.i.d. N(0, 1) entries, to
use as bases of U1, . . . ,UK, with d = (K + 1)|Ωk|. Similarly, we generate θ1, . . . ,θK ∈ Rr,
also with i.i.d. N(0, 1) entries, to use as coefficient vectors. Next we create the partition of entries
{Ω0,Ω1, . . . ,ΩK} where each Ωk has the exact same number of elements. As discussed in Section
5.1, this is in fact the most difficult setting; otherwise the dominant subspace is easier to find, and one
can simply prune its corresponding entries to simplify the problem. Then we create x as the vector
such that xΩk

= Uk
Ωk

θk for each k, and xΩ0 are i.i.d. N(0, 1) entries representing outliers. Finally,
we generate ε ∈ Rd with i.i.d. N(0, σ2) entries and Ω ⊂ d with a fraction p of observed entries, to
construct our observed data yΩ = xΩ + εΩ.

In our first experiment we study the behavior of our algorithms as a function of K, with r = 5,
|Ωk| = 40, p = 1/2 (so that on average 20 observed entries correspond to each subspace), and σ = 0,
i.e., no noise. Figure 1 (a) shows that even for K = 2 (the smallest value of K), existing methodology
is unable to split y. This is not surprising, as existing methods are meant for settings where most of
the entries in y agree with a single subspace, and there are only a few outliers. In our setting, for
each subspace, the entries of all other subspaces are outliers. Consequently, a fraction 1 − 1/K of
the entries (at least half with K = 2, and a dominant majority as K increases) are outliers for each
subspace, which is well-documented to make existing methods fail (see the discussion in Section 3
for details). In contrast, GREEDYS is better with K = 6 (which amounts to 83.3% outliers) than `1
is with K = 2, while K-SPLITS and RANSAS maintain a 100% success rate for every K we tried.
Nonetheless, increasing in K comes at a price (time), as seen in Figure 1 (a’), which shows how the
number of iterations of each algorithm grows with K, relative to the simplest case (K = 2). Notice
that the speed of K-SPLITS decays nicely with K. For instance, with K = 6, K-SPLITS degrades an
order of magnitude slower than RANSAS, while still maintaining the same 100% success rate.

In our second experiment we study the behavior of our algorithms as a function of |Ωk|, with r = 5,
p = 1/2, σ = 0, and K = 2 fixed. Figures 1 (b) and (b’) show that as |Ωk| grows, the performance of
all methods improves: `1 and GREEDYS achieve higher success rates, while RANSAS and K-SPLITS
increase their speed and maintain the same 100% success rate.

7

Published as a conference paper at ICLR 2021

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6

Su
cc

es
s

ra
te

Number of subspaces (K)

(a) r = 5 , |Ωk| = 40 , σ = 0

RANSAS
GREEDYS
K-SPLITS

`1

0

0.2

0.4

0.6

0.8

1

12 16 20 24 28 32 36 40

Entries per subspace (|Ωk|)

(b) K = 2 , r = 5 , σ = 0

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14

Subspaces Dimension (r)

(c) K = 2 , |Ωk| = 40 , σ = 0

0

0.2

0.4

0.6

0.8

1

6 8 10 12 14 16

Subspaces Dimension (r)

(d) K = 2 , γ = 20 , σ = 0

0

0.2

0.4

0.6

0.8

1

10−8 10−6 10−4 10−2

Noise Level (σ)

(e) K = 2 , r = 5 , |Ωk| = 40

100

101

102

103

104

2 3 4 5 6

It
er

at
io

n
gr

ow
th

Number of subspaces (K)

(a’) r = 5 , |Ωk| = 40 , σ = 0

10−2

10−1

100

101

12 16 20 24 28 32 36 40

Entries per subspace (|Ωk|)

(b’) K = 2 , r = 5 , σ = 0

100

101

102

103

104

2 4 6 8 10 12

Subspaces Dimension (r)

(c’) K = 2 , |Ωk| = 40 , σ = 0

100

101

102

103

104

6 8 10 12 14 16

Subspaces Dimension (r)

(d’) K = 2 , γ = 20 , σ = 0

100

101

102

103

10−8 10−6 10−4 10−2

Noise Level (σ)

(e’) K = 2 , r = 5 , |Ωk| = 40

Figure 1: Average success rate and iteration growth over 100 trials, as a function of the number of subspaces K,
the number of entries per subspace |Ωk| (which in turn is a proxy of the ambient dimension d), the subspaces
dimensions r, the gap γ := |Ωk| − (r + 1), and the noise level σ.

In our third experiment we study performance as a function of r, with p = 1/2, σ = 0, and K = 2
fixed. Recall from Lemma 1 that as r increases, so does the number of entries per subspace required
for identifiability (r + 1). Hence to allow a wide range of r, we fixed |Ωk| = 40. Figures 1 (c) and
(c’), show that (conversely to our previous experiment) the performance of all methods declines as r
grows: `1 and GREEDYS achieve lower success rates, while RANSAS and K-SPLITS increase their
time (though they maintain the same 100% success rate).

Our next two experiments are consistent with the intuition that cases with fewer data (small |Ωk|)
relative to the problem’s complexity (the dimension r) are harder. We verify this in our next
experiments, where we study performance as a function of r, fixing p = 1/2, σ = 0, and K = 2 and
the gap γ := p(|Ωk| − (r + 1)) = 20. This setting represents the case where we always have a few
more (20) entries per subspace than the strictly required (r + 1) for splitting. This is arguably a better
experiment to test the effect of the subspaces dimensions isolated from the sampling rate. Figures 1
(d) and (d’) now show that r slightly affects GREEDYS and K-SPLITS(GREEDYS in terms of accuracy,
and K-SPLITS in terms of time), but dramatically affects RANSAS, causing an increase of iterations
four orders of magnitude higher than the rest. This is consistent with our discussion in Section
5.1, showing that RANSAC will always succeed given enough time, which grows exponentially in
r. Interestingly, K-SPLITS achieves the same 100% performance, but orders of magnitude faster,
suggesting that K-SPLITS is in general the most promising SS algorithm.

In our last experiment we study the accuracy of our algorithms as a function of the noise level σ, with
r = 5, p = 1/2, |Ωk| = 40, and K = 2 fixed. Consistent with Corollary 1, Figure 1 (e) shows that the
performance of our algorithms decays nicely with noise, with K-SPLITS allowing up to σ = 10−3.
The price, however, can be seen in execution time (Figure 1 (e’)), which grows up to the point where
algorithms start to decay, in which case their execution time also starts decreasing. We point out that
the fraction of missing data and outliers only affect results and performance in the sense that they
reduce the number of available observed entries per subspace, so their effects are also captured in the
experiments on |Ωk|. For example, a case where there are |Ωk| = 40 samples per subspace, but only
half of the entries are observed (p = 1/2) is equivalent to observing |Ωk| = 20 samples per subspace
with no missing data (p = 1). Appendix B shows additional results with K = 4, where our methods
show even more dramatic improvements.

BROADER IMPACT

This paper introduces a new dimensionality reduction model, and a series of methods to infer such
model, with broad applicability ranging from metagenomics to recommender systems. From a
pragmatic standpoint, practitioners can use this research to better predict drug-target interactions,
analyze the composition and dynamics soil or human microbiomes, and more. Ultimately, this can
impact the well-being of society at many levels, improving drugs, medical diagnoses, treatments,
agricultural sustainability, etc. From a learning perspective, we hope this work spurs discussions and
insights, and motivates the data science community to explore new directions that stem from this
initial work (for example near-optimal initialization strategies on our K-SPLITS algorithm, similar to
K-means++), and that leads to better methods and understanding of subspace splitting.

8

Published as a conference paper at ICLR 2021

REFERENCES

[1] Edd Wilder-James, What is big data? An introduction to the big data landscape, available at:
https://www.oreilly.com/ideas/what-is-big-data, 2018

[2] SKA Signs Big Data Cooperation Agreement With CERN, available at: https:
//www.skatelescope.org/news/ska-signs-big-data-cooperation-
agreement-cern/, 2018.

[3] X. Yuan and J. Yang, Sparse and low-rank matrix decomposition via alternating direction
methods, available at http://www.optimization-online.org/DB_HTML/2009/
11/2447.html, 2009.

[4] Z. Lin, A. Ganesh, J. Wright, L. Wu, M. Chen and Y. Ma, Fast convex optimization algorithms
for exact recovery of a corrupted low-rank matrix, Computational Advances in Multi-Sensor
Adaptive Processing, 2009.

[5] X. Ding, L. He and L. Carin, Bayesian robust principal component analysis, IEEE Transactions
on Image Processing, 2011.

[6] E. Candès, X. Li, Y. Ma and J. Wright, Robust principal component analysis?, Journal of the
ACM, 2011.

[7] T. Bouwmans and E. Zahzah, Robust PCA via principal component pursuit: a review for a
comparative evaluation in video surveillance, Computer Vision and Image Understanding, 2014.

[8] Y. Ma, Low-rank matrix recovery and completion via convex optimization, avaiable at http:
//perception.csl.illinois.edu/matrix-rank/home.html.

[9] T. Bouwmans, A. Sobral, S. Javed, S. Jung and E. Zahzah, Decomposition into low-rank plus
additive matrices for background/foreground separation: A review for a comparative evaluation
with a large-scale dataset, Computer Science Review, 2016.

[10] D. Pimentel-Alarcón and R. Nowak, Random consensus robust PCA, Electronic Journal of
Statistics, 2017.

[11] M. C. Tsakiris and R. Vidal, Dual principal component pursuit, Journal of Machine Learning
Research, 2018.

[12] L. Scharf and B. Friedlander, Matched subspace detectors, IEEE Transactions on Signal
Processing, 1994.

[13] S. Kraut, L. Schaft, L. McWhorter, Adaptive Subspace Detectors, IEEE Transactions on Signal
Processing, 2001.

[14] M. Desai and R. Mangoubi, Robust gaussian and non-gaussian matched subspace detection,
IEEE Transactions on Signal Processing, 2003.

[15] O. Besson, L. Scharf and F. Vincent, Matched direction detectors and estimators for array
processing with subspace steering vector uncertainties, IEEE Transactions on Signal Processing,
2005.

[16] H. Kwon and N. Nasrabadi, Kernel matched subspace detectors for hyperspectral target
detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006.

[17] L. Balzano, B. Recht and R. Nowak, High-dimensional matched subspace detection when data
are missing, IEEE International Symposium on Information Theory, 2010.

[18] L. Balzano, R. Nowak and B. Recht, Online identification and tracking of subspaces from highly
incomplete information, Allerton Conference on Communication, Control and Computing, 2010.

[19] J. He, L. Balzano and A. Szlam, Incremental gradient on the Grassmannian for online fore-
ground and background separation in subsampled video, Conference on Computer Vision and
Pattern Recognition, 2012.

[20] H. Mansour, X. Jiang, A robust online subspace estimation and tracking algorithm, IEEE
International Conference on Acoustics, Speech, and Signal Processing, 2015.

[21] D. Pimentel-Alarcón, N. Boston and R. Nowak, Deterministic conditions for subspace iden-
tifiability from incomplete sampling, IEEE International Symposium on Information Theory,
2015.

9

https://www.oreilly.com/ideas/what-is-big-data
https://www.skatelescope.org/news/ska-signs-big-data-cooperation-
https://www.skatelescope.org/news/ska-signs-big-data-cooperation-
agreement-cern/
http://www.optimization-online.org/DB_HTML/2009/11/2447.html
http://www.optimization-online.org/DB_HTML/2009/11/2447.html
http://perception.csl.illinois.edu/matrix-rank/home.html
http://perception.csl.illinois.edu/matrix-rank/home.html

Published as a conference paper at ICLR 2021

[22] K. Kanatani, Motion segmentation by subspace separation and model selection, IEEE Interna-
tional Conference in Computer Vision, 2001.

[23] B. Eriksson, L. Balzano and R. Nowak, High-rank matrix completion and subspace clustering
with missing data, Artificial Intelligence and Statistics, 2012.

[24] L. Balzano, A. Szlam, B. Recht, and R. Nowak, K-subspaces with missing data, IEEE Statistical
Signal Processing, 2012.

[25] G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, and Y. Ma, Robust recovery of subspace structures by
low-rank representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012.

[26] E. Elhamifar and R. Vidal, Sparse subspace clustering: algorithm, theory, and applications,
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013.

[27] D. Pimentel-Alarcón, L. Balzano and R. Nowak, On the sample complexity of subspace cluster-
ing with missing data, IEEE Statistical Signal Processing, 2014.

[28] C. Yang, D. Robinson and R. Vidal, Sparse subspace clustering with missing entries, Interna-
tional Conference on Machine Learning, 2015.

[29] D. Pimentel-Alarcón, L. Balzano, R. Marcia, R. Nowak and R. Willett, Group-sparse subspace
clustering with missing data, IEEE Statistical Signal Processing, 2016.

[30] D. Pimentel-Alarcón and R. Nowak, The information-theoretic requirements of subspace clus-
tering with missing data, International Conference on Machine Learning, 2016.

[31] D. Pimentel-Alarcón, L. Balzano and R. NowakNecessary and sufficient conditions for sketched
subspace clustering, Allerton Conference on Communication, Control and Computing, 2016.

[32] Y. Chong, D. Robinson and R. Vidal, Provable self representation based outlier detection in a
union of subspaces, IEEE Conference on Computer Vision and Pattern Recognition, 2017.

[33] M. Ashraphijuo, X. Wang and V. Aggarwal, A characterization of sampling patterns for low-
rank multi-view data completion problem, IEEE International Symposium on Information Theory,
2017.

[34] M. Ashraphijuo, V. Aggarwal and X. Wang, A characterization of sampling patterns for low-
tucker-rank tensor completion problem, IEEE International Symposium on Information Theory,
2017.

[35] M. Ashraphijuo and X. Wang, Fundamental conditions for low-CP-rank tensor completion,
Journal of Machine Learning Research, 2017.

[36] M. Ashraphijuo, V. Aggarwal and X. Wang, Deterministic and probabilistic conditions for finite
completability of low-tucker-rank tensor, IEEE Transactions on Information Theory, 2019.

[37] M. Ashraphijuo and X. Wang, Clustering a union of low-rank subspaces of different dimensions
with missing data, Pattern Recognition Letters 2019.

[38] M. Ashraphijuo, X. Wang, Fundamental conditions on the sampling pattern for union of
low-rank subspaces retrieval, Annals of Mathematics and Artificial Intelligence, 2019.

[39] E. Elhamifar, High-rank matrix completion and clustering under self-expressive models, Ad-
vances in Neural Information Processing Systems, 2016.

[40] G. Ongie, R. Willett, R. Nowak and L. Balzano, Algebraic variety models for high-rank matrix
completion, International Conference on Machine Learning, 2017.

[41] G. Ongie, D. Pimentel, L. Balzano, R. Willett and R. Nowak, Low algebraic dimension matrix
completion, Allerton Conference on Communication, Control and Computing, 2017.

[42] S. Highlander, High throughput sequencing methods for microbiome profiling: application to
food animal systems, Animal Health Research Reviews, 2012.

[43] S. Mande, M. Mohammed and T. Ghosh, Classification of metagenomic sequences: methods
and challenges, Briefings in Bioinformatics, 2012.

[44] R. Ranjan, A. Rani, A. Metwally, H. McGee and D. Perkins, Analysis of the microbiome: Advan-
tages of whole genome shotgun versus 16S amplicon sequencing, Biochemical and Biophysical
Research Communications, 2016.

[45] N. Nguyen, T. Warnow, M. Pop and B. White, A perspective on 16S rRNA operational taxonomic
unit clustering using sequence similarity, Biofilms and Microbiomes, 2016.

10

Published as a conference paper at ICLR 2021

[46] G. Marçais, A. Delcher, A. Phillippy, R. Coston, S. Salzberg and A. Zimin, MUMmer4: A fast
and versatile genome alignment system, PLoS Computational Biology, 2018.

[47] Netflix, Inc. The Netflix prize, http://www.netflixprize.com.
[48] E. Candès and B. Recht, Exact matrix completion via convex optimization, Foundations of

Computational Mathematics, 2009.
[49] E. Candès and T. Tao, The power of convex relaxation: near-optimal matrix completion, IEEE

Transactions on Information Theory, 2010.
[50] B. Recht, A simpler approach to matrix completion, Journal of Machine Learning Research,

2011.
[51] Z. Lin, R. Liu and Z. Su, Linearized alternating direction method with adaptive penalty for low

rank representation, Advances in Neural Information Processing Systems, 2011.
[52] Z. Wen, W. Yin and Y. Zhang, Solving a low-rank factorization model for matrix completion by

a non-linear successive over-relaxation algorithm, Mathematical Programming Computation,
2012.

[53] P. Jain, P. Netrapalli and S. Sanghavi, Low-rank matrix completion using alternating minimiza-
tion, ACM symposium on Theory of computing, 2013.

[54] Y. Chen, S. Bhojanapalli, S. Sanghavi and R. Ward, Coherent matrix completion, International
Conference on Machine Learning, 2014.

[55] Y. Chen, Incoherent-optimal matrix completion, IEEE Transactions on Information Theory,
2015.

[56] F. Király, L. Theran and R. Tomioka, The algebraic combinatorial approach for low-rank matrix
completion, Journal of Machine Learning Research, 2015.

[57] D. Pimentel-Alarcón, N. Boston and R. Nowak, A characterization of deterministic sampling
patterns for low-rank matrix completion, IEEE Journal of Selected Topics in Signal Processing,
2016.

[58] D. Pimentel-Alarcón and R. Nowak, A converse to low-rank matrix completion, IEEE Interna-
tional Symposium on Information Theory, 2016.

[59] D. Pimentel-Alarcón, Mixture Matrix Completion, Advances in Neural Information Processing
Systems, 2018.

[60] M. Aharon, M. Elad and A. Bruckstein, K-SVD: An algorithm for designing overcomplete
dictionaries for sparse representation, IEEE Transactions on Signal Processing, 2006.

[61] J. Mairal, F. Bach, J. Ponce and G. Sapiro, Online dictionary learning for sparse coding,
International Conference on Machine Learning, 2009.

[62] C. Zhao, X. Wang and W. Cham, Background subtraction via robust dictionary learning,
EURASIP Journal on Image and Video Processing, 2011

[63] C. Lu, J. Shi and J. Jia, Online robust dictionary learning, IEEE Conference on Computer
Vision and Pattern Recognition, 2013.

[64] A. Iqbal and A. Seghouane, An α-divergence-based approach for robust dictionary learning,
IEEE Transactions on Image Processing, 2019.

[65] Y. Xu, Z. Li, C. Tian and J. Yang, Multiple vector representations of images and robust
dictionary learning, Pattern Recognition Letters, 2019.

[66] S. Mahdizadehaghdam, A. Panahi, H. Krim and L. Dai, Deep dictionary learning: A parametric
network approach, IEEE Transactions on Image Processing, 2019.

[67] J. Ren, Z. Zhang, S. Li, Y. Wang, G. Liu, S. Yan, and M. Wang, Learning Hybrid Representation
by Robust Dictionary Learning in Factorized Compressed Space IEEE Transactions on Image
Processing, 2020.

[68] Y. Zheng, S. Sugimoto, and M. Okutomi, Deterministically maximizing feasible subsystem for
robust model fitting with unit norm constraint, IEEE Conference on Computer Vision and Pattern
Recognition, 2011.

[69] P. Purkait, C. Zach, and A. Eriksson, Maximum Consensus Parameter Estimation by Reweighted
`1 Methods, International Workshop on Energy Minimization Methods in Computer Vision and
Pattern Recognition. Springer, Cham, 2017.

11

http://www.netflixprize.com

Published as a conference paper at ICLR 2021

[70] T.J. Chin, P. Purkait, A. Eriksson and D. Suter, Efficient globally optimal consensus maximi-
sation with tree search, Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2015.

[71] T.-J. Chin, Y. Heng Kee, A. Eriksson and F. Neumann, Guaranteed outlier removal with mixed
integer linear programs, Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016.

[72] P. Speciale, D. Pani, M. Oswald, T. Kroeger, L. Van Gool and M. Pollefeys, Consensus
Maximization with Linear Matrix Inequality Constraints, IEEE Conference on Computer Vision
and Pattern Recognition. 2017.

[73] Z. Cai, T, Chin, H. Le and D. Suter, Deterministic consensus maximization with biconvex
programming, arXiv preprint, 2018.

[74] C. Yu and D.Y. Ju, A maximum feasible subsystem for globally optimal 3D point cloud registra-
tion, Sensors, 2018.

[75] T. Kanungo, D. Mount, N. Netanyahu, C. Piatko, R. Silverman and A. Wu, An efficient k-means
clustering algorithm: Analysis and implementation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2002.

[76] S. Shahbazpanahi, S. Valaee and M. Bastani, Distributed source localization using ESPRIT
algorithm, IEEE Transactions on Signal Processing, 2001.

[77] M. Rangaswamy, F. Lin and K. Gerlach, Robust adaptive signal processing methods for
heterogeneous radar clutter scenarios, Signal Processing, 2004.

[78] H. Krim and M. Viberg, Two decades of array signal processing research: the parametric
approach, Signal Processing Magazine, 1996.

[79] B. Ardekani, J. Kershaw, K. Kashikura and I. Kanno, Activation detection in functional MRI
using subspace modeling and maximum likelihood estimation, IEEE Transactions on Medical
Imaging, 1999.

[80] M. McCloud and L. Scharf, Interference estimation with applications to blind multiple-access
communication over fading channels, IEEE Transactions on Information Theory, 2000.

[81] D. Stein, S. Beaven, L. Hoff, E. Winter, A. Schaum and A. Stocker, Anomaly detection from
hyperspectral imagery, IEEE Signal Processing Magazine, 2002.

[82] T. Ahmed, M. Coates and A. Lakhina, Multivariate online anomaly detection using kernel
recursive least squares, INFOCOM. 2007.

[83] B. Eriksson, P. Barford, J. Sommers and R. Nowak, DomainImpute: inferring unseen compo-
nents in the Internet, IEEE INFOCOM, 2011.

[84] R. Govindan and H. Tangmunarunkit, Heuristics for Internet Map Discovery, IEEE INFOCOM
2000.

[85] P. Barford, A. Bestavros, J. Byers and M. Crovella, On the marginal utility of network topology
measurements, Proceedings of ACM Internet Measurement Workshop, 2001.

[86] N. Spring, R. Mahajan, D. Wetherall and T. Anderson, Measuring ISP topologies with rocketfuel,
IEEE/ACM Transactions on Networking, 2004.

[87] D. Alderson, L. Li, W. Willinger and J. Doyle, Understanding internet topology: Principles,
models and validation, IEEE/ACM Transactions on Networking, 2005.

[88] R. Sherwood, A. Bender and N. Spring, DisCarte: A disjunctive Internet cartographer, ACM
SIGCOMM, 2008.

[89] B. Eriksson, P. Barford and R. Nowak, Network Discovery from Passive Measurements, ACM
SIGCOMM, 2008.

[90] E. Learned-Miller M. Narayana and A. Hanson, Coherent motion segmentation in moving
camera videos using optical flow orientations, International Conference on Computer Vision,
2013.

[91] R. Tibshirani, Regression Shrinkage and Selection via the Lasso, Journal of the Royal Statistical
Society, 1996.

[92] M.A. Fischler, R.C. Bolles, Random sample consensus: a paradigm for model fitting with
applications to image analysis and automated cartography, Communications of the ACM, 1981.

12

Published as a conference paper at ICLR 2021

[93] R. Raguram, J.M. Frahm, M. Pollefeys: A comparative analysis of ransac techniques leading to
adaptive real-time random sample consensus, European Conference in Computer Vision, 2008.

[94] R. Raguram, O. Chum, M. Pollefeys, J. Matas, J.M. Frahm, Usac: a universal framework for
random sample consensus, IEEE Transactions on Pattern Analysis and Machine Intelligence,
2013.

[95] M. Feigin, B.J. Ranger, and B.W. Anthony, Statistical consensus matching framework for image
registration, International Conference on Pattern Recognition, 2016.

[96] H. Le, T.J. Chin, and D. Suter, An exact penalty method for locally convergent maximum
consensus, IEEE Conference on Computer Vision and Pattern Recognition, 2017.

[97] R. Li, J. Sun, D. Gong, Y. Zhu, H. Li and Y. Zhang, ARSAC: Efficient Model Estimation via
Adaptively Ranked Sample Consensus, Neurocomputing, 2018.

[98] K.H. Lee, C. Yu, and S.W. Lee, Deterministic Hypothesis Generation for Robust Fitting of
Multiple Structures, arXiv preprint arXiv:1807.09408 (2018).

[99] D. Arthur and S. Vassilvitskii, k-means++: The advantages of careful seeding, Annual ACM-
SIAM Symposium on Discrete Algorithms, 2007.

[100] https://danielpimentel.github.io/publications.html

13

https://danielpimentel.github.io/publications.html

Published as a conference paper at ICLR 2021

A PROOFS

In this section we present the proofs of all statements. We begin with the proof of Lemmas 1 and 2,
which are required for the proof of Theorem 1.

Proof. (Lemma 1) Since Uk is in general position, if |Ω| ≤ dim(Uk), then Uk
Ω = R|Ω|. In other

words, Uk
Ω is the entire |Ω|-dimensional space.

Proof. (Lemma 2) If Ω ⊂ Ωk then xΩ trivially lies in Uk
Ω by A2. To see the reverse implication, let

r := dim(Uk). We know that xΩ ∈ Uk
Ω if and only if there exists a coefficient vector θ ∈ Rr such

that

xΩ = Uk
Ωθ, (1)

where Uk ∈ Rd×r denotes a basis of Uk. Since |Ω| = r + 1 by assumption, equation 1 defines a
system of r + 1 equations (the rows of xΩ) and r unknowns (the entries of θ). Assume without loss
of generality that Ω = {1, 2, . . . , r + 1} (otherwise simply permute the rows accordingly), and let
Ω′ = {1, 2, . . . , r} be the subset of Ω with the first r elements. Then we can rewrite equation 1 as

r

{
1 {

 xΩ′

xr+1

 =

 Uk
Ω′

Uk
r+1

θ.

Notice that Uk
Ω′ ∈ Rr×r is invertible because A1 guarantees that Uk is in general position with

probability 1. Hence we can use the top block to obtain θ = (Uk
Ω′)
−1xΩ′ , and we can plug this in

the last row to obtain:

xr+1 = Uk
r+1(Uk

Ω′)
−1xΩ′ .

Let ki indicate the subspace corresponding to the ith entry of x. Then by A2 there exist coefficients
θ1, . . . ,θK such that xi = Uki

i θki . In light of this we can rewrite the last equation as

U
kr+1

r+1 θkr+1 = Uk
r+1(Uk

Ω′)
−1

Uk1

1 θk1

Uk2
2 θk2

...
Ukr

r θkr

 . (2)

At this point equation 2 has no variables left (all Uk’s and θk’s are fixed), which means that equation 2
is a consistency condition. Notice that if Ω ⊂ Ωk, then ki = k, and equation 2 transforms into

Uk
r+1θ

k = Uk
r+1(Uk

Ω′)
−1Uk

Ω′θ
k,

which further simplifies to Uk
r+1θ

k = Uk
r+1θ

k. In other words, if Ω ⊂ Ωk, the consistency condition
equation 2 is met. On the other hand, if Ω 6⊂ Ωk, equation 2 does not simplify any further. Recall
from A1 that U1, . . . ,UK are drawn independently. This implies that the entries in U1, . . . ,UK

keep no relation with one another. Similarly, from A2 we know that xΩk
is drawn independently.

Equivalently, θ1, . . . ,θK keep no relation with one another. Intuitively, we can think of the entries in
Uk’s and θk’s as independent random numbers drawn from a distribution with full measure. We thus
conclude that if Ω 6⊂ Ωk, with probability 1 the consistency condition equation 2 would not hold.

To summarize, we know that xΩ ∈ Uk
Ω if and only if there is a vector θ that satisfies equation 1. We

showed that this will be the case if and only if equation 2 holds, which in turn will happen if and only
if Ω ⊂ Ωk, as claimed.

Notice that if Ω has dim(Uk) + ` entries, equation 1 becomes a system with dim(Uk) + ` equations,
which result in ` consistency conditions similar to equation 2. By the same arguments as in the proof
of Lemma 2, xΩ will agree with Uk

Ω if and only if these consistency conditions hold, which will
happen if and only if Ω ⊂ Ωk. We thus obtain the following corollary

14

Published as a conference paper at ICLR 2021

Corollary 2. Suppose A1 and A2 hold. Let Ω be an arbitrary subset of [d] with more than dim(Uk)

elements. Then xΩ ∈ Uk
Ω if and only if Ω ⊂ Ωk.

With this, we are ready to give a proof of Theorem 1

Proof. (Theorem 1) Let rk := dim(Uk). To identify Ω1, . . . ,Ωk we will exhaustively search for
combinations Ω of rk + 1 entries in x that match with Uk. By Lemma 2 we know that xΩ will match
with Uk if and only if Ω ⊂ Ωk. By assumption there is at least one k for which |Ωk| > rk, so we know
that at some point we will find such a subset Ω. Once we do, we can recover θk = (Uk

Ω′)
−1xΩ′ ,

where Ω′ can be any subset of Ω with exactly rk entries (recall that A1 guarantees that Uk
Ω′ is

invertible). Finally, we can compute xk := Ukθk, and recover Ωk by inspection (the set of zero
entries in xk − x), where Corollary 2 guarantees that there will be no additional false matching
entries. Repeating this procedure for every k we can recover Ω1, . . . ,ΩK, as claimed.

To obtain the converse, suppose that rk or fewer entries of x correspond to Uk for some k. By Lemma
1, any subset Ω′ of Ωk ∪ Ω0 with |Ω′| ≤ rk satisfies xΩ′ ∈ Uk

Ω′ . Hence we can split the entries of
x corresponding to Ωk and Ω0 in a non-unique manner, and still have them agree with Uk, which
makes Ωk unidentifiable.

We now use the same strategy to prove Corollary 1, which extend these ideas to noisy settings.

Proof. (Corollary 1) Let Pk
Ω′ denote the projection operator onto Uk

Ω′ . Under the assumptions
of the corollary, if Ω′ 6⊂ Ωk, then with high probability (decreasing in C and increasing in c),
‖xΩ′ −Pk

Ω′xΩ′‖2 > |Ω′|σ2 (see Theorem 1 in [17]). In other words, the residual of projecting xΩ′

onto Uk
Ω′ will be too large if the entries of Ω′ do not come from the kth subspace. Hence, instead of

searching for a set Ω′ where xΩ′ perfectly fits in Uk
Ω′ (as in the proof of Theorem 1), we can search

for subsets Ω′ ⊂ Ωk where the residual is within the noise level, i.e., ‖xΩ′ − Pk
Ω′xΩ′‖2 ≤ |Ω|σ2.

The rest of the proof follows by the same arguments as the proof of Theorem 1.

B ADDITIONAL EXPERIMENTS

0

0.2

0.4

0.6

0.8

1

8 12 16 20

Su
cc

es
s

ra
te

Entries per subspace (|Ωk|)

(a) K = 4 , r = 5 , σ = 0

RANSAS
GREEDYS
K-SPLITS

`1

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10

Subspaces Dimension (r)

(b) K = 4 , |Ωk| = 40 , σ = 0

0

0.2

0.4

0.6

0.8

1

6 7 8 9 10 11 12 13 14

Subspaces Dimension (r)

(c) K = 4 , γ = 20 , σ = 0

0

0.2

0.4

0.6

0.8

1

10−6 10−5 10−4 10−3 10−2 10−1

Noise Level (σ)

(e) K = 2 , r = 5 , |Ωk| = 40

10−2

10−1

100

101

8 12 16 20

It
er

at
io

n
gr

ow
th

Entries per subspace (|Ωk|)

(a’) K = 4 , r = 5 , σ = 0

100

101

102

103

104

105

106

107

2 4 6 8 10

Subspaces Dimension (r)

(b’) K = 4 , |Ωk| = 40 , σ = 0

100

101

102

103

104

105

106

6 8 10 12 14

Subspaces Dimension (r)

(c’) K = 4 , γ = 20 , σ = 0

100

101

102

103

10−6 10−5 10−4 10−3 10−2 10−1

Noise Level (σ)

(e’) K = 2 , r = 5 , |Ωk| = 40

Figure 2: Complementary results to Figure 1 with K = 4. Average success rate and iteration growth over 100
trials, as a function of the number of entries per subspace |Ωk| (which in turn is a proxy of the ambient dimension
d), the subspaces dimensions r, the gap γ := |Ωk| − (r + 1), and the noise level σ.

15

	Introduction
	Problem Statement and Fundamental Theory
	Related Work
	Motivating Applications
	Subspace Splitting Algorithms
	Random Sampling Splitting
	Greedy Splitting
	K-splits

	Experiments
	Proofs
	Additional Experiments

