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Abstract

Building conceptual abstractions from sensory information and then reasoning
about them is central to human intelligence. Abstract reasoning both relies on, and
is facilitated by, our ability to make analogies about concepts from known domains
to novel domains. Structure Mapping Theory of human analogical reasoning posits
that analogical mappings rely on (higher-order) relations and not on the sensory
content of the domain. This enables humans to reason systematically about novel
domains, a problem with which machine learning (ML) models tend to struggle. We
introduce a two-stage neural framework, which we call Neural Structure Mapping
(NSM), to learn visual analogies from Raven’s Progressive Matrices, an abstract
visual reasoning test of fluid intelligence. Our framework uses (1) a multi-task
visual relationship encoder to extract constituent concepts from raw visual input in
the source domain, and (2) a neural module net-based analogy inference engine
to reason compositionally about the inferred relation in the target domain. Our
NSM approach (a) isolates the relational structure from the source domain with
high accuracy, and (b) successfully utilizes this structure for analogical reasoning
in the target domain.

1 Introduction

The ability to form abstractions of ‘concepts’ from information and then reason about them is central
to human intelligence (Lake et al., 2015). Over the last decade, deep learning (DL) models that learn
visual abstractions from raw images show strong validation performance on curated test datasets for
image recognition (Krizhevsky et al., 2012), object detection (Ren et al., 2015), and scene classifica-
tion (Zhou et al., 2017). However, unlike humans, DL models struggle with isolating these abstractions
and systematically applying them to out of distribution test scenarios (Greff et al., 2020). One im-
portant way in which humans both build and reason about abstractions is through analogies (Mitchell,
2021). Structure Mapping Theory (SMT) of human analogical reasoning posits that perceptual infor-
mation can be broken down into a domain consisting of objects and attributes, and structural relations
between the attributes in the domain (Gentner, 1983). Consequently, SMT defines an analogy as a
mapping between the structural relations across two domains, with no mapping of the attributes.

For example, to draw an analogy between the solar system and an atom, we can map the relational
structure (Planet revolves around Sun ùñ Electron revolves around Nucleus, Sun more massive
than Planets ùñ Nucleus more massive than Electrons). However, the domain attributes, such
as the Sun being yellow or hot are not mapped to the Nucleus in drawing an analogy. This idea
behind structure mapping was utilized by Hill et al. (2019) as a prior in training ML models for
learning analogies. They first constructed a dataset on learning abstract visual analogies from Raven’s

3rd Workshop on Shared Visual Representations in Human and Machine Intelligence (SVRHM 2021) of the
Neural Information Processing Systems (NeurIPS) conference, Virtual.



CNN Stem CNN Stem CNN Stem

Filter objects 
& attributes 

Filter objects 
& attributes

Filter objects 
& attributes

OR

Classify

Visual Relationship Encoder

CNN

CNN

CNN

LSTM

FC 
128LSTM

LSTM

FC 
64

FC 
64

FC 
64

Relation 
Classifier

Object 
Classifier

Attribute 
Classifier

OR

Type

Line

Q 
U 
E 
S 
T 
I 
O 
N

C 
A 
N 
D 
I 
D 
A 
T 
E 
S 

Analogy Inference Engine
Answer:

Figure 1: Neural Structure Mapping overview. Inset: An Abstract Visual Analogy Problem. Left
(yellow box): Visual Relationship Encoder to extract the object, attribute and relationship from the
first row of panels. Right (green box): Analogy Inference Engine that uses the relationship label to
configure a neural module net for matching the correct candidate to the second row of panels.

progressive matrices (RPMs) (Raven, 2000). The RPM task is made up of two rows of five context
panels, and four possible candidates to complete the analogy. The learner must understand the higher-
order relation constituted by the first row of panels, and then choose the candidate satisfying the same
relation with the the bottom row (shown inset in Figure 1). Hill et al. (2019) carefully curated the
candidates presented during training to maximize differences in structural relations while being per-
ceptually plausible. It was found that incorporating structural differences to maximize the importance
of structure mapping during learning enabled DL models to learn visual analogies more accurately.

However, it is not feasible to build or curate datasets to always exploit a prior in the dataset to
maximize structure learning. This would involve knowing combinatorially large possible relational
structures beforehand and curating data to maximize learning these structures, which scales poorly
with an increase in possible relational structures. To address this issue, we propose a two-stage
Neural Structure Mapping (NSM) framework to learn abstract visual analogies (Figure 1). Our
first-stage involves a visual relationship encoder that takes as input the visual context from the source
domain and predicts the component visual concepts: objects, attributes and relationship
in a multi-task manner. We then use the derived relation to dynamically build an analogy inference
engine. Similar to structure mapping in humans, our engine utilizes only the relation from the source
domain to pick the candidate panel that best fits the analogy. We incorporate compositional reasoning
into our approach by using a neural module network (Andreas et al., 2016; Johnson et al., 2017b) as
our engine. Our modular neural engine dynamically adapt its structure to align (Xu et al., 2020) with
the relationship, thus explicitly incorporating the structure mapping process in our NSM model.

2 Problem Setup

Each abstract visual analogy task consists of five context panels P 1´5
con , and four candidate panels

P 1´4
can . The context panels are arranged in a matrix with two rows of three columns each, with the

final panel in the second row missing. The first row of panels P 1´3
con express a semantically related

triplet R “ to, a, ru, that is composed of two lower-order perceptual visual concepts: object o
and attribute a, and one higher-order semantic visual concept: relationship r. The objective
is to choose a candidate c P

Ť4
i“1tP

i
canu in place of the missing panel which represents the same

relationship as the first row of panels.

The object (o P {line, shape}) and attribute (a P {quantity,colour,type,size,position})
together constitute the visual domain d of the triplet R. Each possible attribute can take ten
values vpaq P t1, 2, ..., 9, 10u (normalized). The domain of the first row of panels P 1´3

con defines
the source domain dsource of the analogy, and the domain of the second row of panels tP 4´5

con , cu
defines the target domain dtarget. The dataset consists of seven unique possible domains such
that d P {shape quantity, shape colour, shape type, shape size, shape position,
line type, line colour}.
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To test the systematic generalization in learning visual analogies, the dataset has five different
generalization splits that require the ability to recognize the relationship across both novel
domain d and attribute a values:

• Novel Domain Transfer: The training set consists of 42 ordered pairs of dsource and dtarget while
the remaining 7 (7*7 - 42) pairs are present only in the test set i.e.
dtrain

source
Ś

dtrain
target X dtest

source
Ś

dtest
target “ H.

• Novel Domain Type (line type and shape color) : The training set does not contain any
problems with the held-out domain i.e. dtrain R {line type} or dtrain R {shape colour}, while
each problem in the test set involves the held-out domain.

• Novel Domain Values (Interpolation and Extrapolation): The training and test sets are made of
two mutually exclusive sets of attribute values. For the extrapolation split, vpaqtrain P t1, 2, 3, 4, 5u
while vpaqtest P t6, 7, 8, 9, 10u. For interpolation, vpaqtrain P t2, 4, 6, 8, 10u while vpaqtest P

t1, 3, 5, 7, 9u.
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Figure 2: Two different types of candidates for the same target domain. (a) Contrasting candidates,
each of which satisfies a relationship structure and requires identifying semantic structure during
candidate selection. (b) Normal candidates, which are merely perceptually similar to the context.

The relationship (r P {progression, AND, OR, XOR}) defines the semantics across a row of
panels and is the core abstraction of analogical reasoning. It can be of classified into two types:
Unary and Binary. The Unary relation, progression, is composed of a function applied to a single
panel to produce the next panel in a row. On the other hand, the Binary relations, (AND, OR, XOR),
are composed of a function applied to the first two panels in a row to generate the final panel. Hill
et al. (2019) hypothesized that introducing a prior on the learning process that requires the learner to
correctly identify the relationship would align with how humans learn structure for analogical
mapping. They designed this prior by carefully controlling the candidate panels P 1´4

can presented
during model training (Figure 2) to consist of candidates that are all semantically possible to complete
the visual analogy (called Learning Analogies By Contrasting (LABC)). Each candidate satisfies
one possible relationship with the target domain panels but only the correct panel satisfies the
relationship from the source domain panels. It was found that LABC training significantly
improved the ability to learn analogies in DL models compared to training with merely perceptually
possible candidates (Normal training). In fact, even a mixed training regime consisting of both LABC
and Normal problems showed significant improvement on the Normal training regime.

3 Method

In our work, we take a complimentary approach to Hill et al. (2019) for learning abstract visual analo-
gies in RPMs. Instead of depending on explicitly labeled candidates for mapping relational structure,
we build a model that dynamically configures its structure based on the relational structure extracted
from the source domain. Internally, our approach is made up of two different neural networks that
correspond to the two separate tasks in our pipeline. We provide detailed discussion on each of these
networks in our pipeline next (for implementation details of the networks please refer to Appendix D).
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3.1 Visual Relationship Encoder

The Visual Relationship Encoder, Rpred “ φpP 1´3
con q, segregates the abstract relationship triplet in the

source domain panels into its constituent object, attribute, and relationship (corresponding
to the structure extraction phase in SMT). The encoder φ is made up of a multi-task neural
network. We use a convolutional neural network (CNN) Cφ to first extract a visual feature vector
visiφ “ CφpP

i
conq for each context panel. The extracted visual features are then sequentially fed into

a long short term memory network (LSTM) Rφ to generate visual sequence features seqφ of the
source domain. The hidden layer vector after the third sequence panel is taken as the encoded features
of the source domain seqφ “ Rφpvis

1´3q. The source domain feature vector seqφ is then passed to
a fully connected layer lshared

φ “ FCshared
φ pseqφq that is shared between all three visual components.

The shared linear feature vector lshared
φ is then passed through three different fully connected layers

ltask
φ “ FC task

φ plshared
φ q for each task t P {object, attribute, relation} classification. Finally,

each ltask
φ is passed through a fully connected layer outtask

φ “ FCouttask

φ pltask
φ q of sizes 2, 5, and 4 for

the object, attribute, and relation prediction tasks respectively. A Softmax over the outputs outtask
φ

yields a probability distribution over the possible to, a, ru values that constitute the triplet R.

Training The Visual Relationship Encoder φ is trained using the source domain context panels
P 1´3

con and the visual relationship labels R “ to, a, ru. The cross-entropy loss for each task is obtained
using the multi-task network’s predictions and triplet labels. The total encoder loss is calculated as a
weighted sum of the individual losses for object, attribute, and relation prediction:

Lencoder “ α ˚ Lobject ` β ˚ Lattribute ` γ ˚ Lrelationship (1)

Empirically, we found that the values of α “ 0.5, β “ 0.5, γ “ 2.0 led to higher validation accuracy.
The model was trained for 100 epochs using the Adam optimizer with a learning rate of 1e´ 4. The
training was performed on a local cluster with 10 Nvidia GTX2080Ti GPUs. For each generalization
split, the model was trained with contrasting, normal, as well as mixed candidates. The model with
the best validation accuracy was chosen for testing (the validation set consisted of a similar set of
analogy candidates as the training set).

3.2 Analogy Inference Engine

Classifier

Unary Unary Unary

Binary Binary

Stem Stem Stem Stem Stem Stem

Unary Unary Unary

Binary

Classifier

(a) Unary Relation (b) Binary Relation

Figure 3: Types of relationship and cor-
responding Analogy Inference Engine lay-
out. Only correct candidate panel shown.

The Analogy Inference Engine, c “ πpP 4´5
con , P 1´4

can , rq,
maps the source relationship r extracted by the Visual
Relationship Encoder to the target domain P 4´5

con to
identify the correct candidate c that completes the vi-
sual analogy. This step of our NSM model corresponds
to the structure mapping phase in SMT, in which hu-
mans apply relations extracted from the source domain
to a new domain to reason about concepts in the target
domain. To generalize systematically to new domains
and attribute values, we utilize a modular approach (An-
dreas et al., 2016) to build our analogy inference engine.
Similar to Johnson et al. (2017b), we utilize modules
with a generic architecture in order to enable computa-
tional reasoning and parameter reuse. The layout of the

module network is chosen adaptively from two possible layouts based on the source domain relation
at inference time. Each layout first processes the individual panels through the Stem module to extract
visual features, followed by the Unary module. In the first layout, the Unary module outputs for the
target domain panels P 4´5

con are combined using a Binary module, and the outputs for the second
panel P 5

con and each candidate panel P 1´4
can are combined using another Binary module (Figure 3a).

The outputs of both the Binary modules are then fed into the Classifier module. In the second
layout, the Unary module outputs for the target domain panels P 4´5

con are similarly combined using
a Binary module. However, the output of this Binary module and the Unary candidate output is
directly fed into the Classifier module (Figure 3b). (Further discussion on modules and layouts
provided in Appendix B.)
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Training The Analogy Inference Engine π is trained using the target domain context panels P 4´5
con ,

the candidate panels P 1´4
can , the ground truth candidate label, and the ground truth visual relationship

label r. The engine was trained for 100 epochs using the Adam optimizer with a learning rate of
1e´4. The training was performed on a local cluster with 10 Nvidia GTX2080Ti GPUs. Similar to
the first stage, the engine was also trained with contrasting, normal, as well as mixed candidates.
The model with the highest validation accuracy was chosen for testing (validation set consisted of a
similar set of analogy candidates as the training set).

Testing For testing, we rely on the relationship label rpred predicted by our encoder instead of
ground truth r. Each candidate panel is fed parallely to the engine to generate its predictions
for all four relations. In order to generate the candidate selection, we subset the probability of
relationship r (rpred during inference) for all candidates, and select the candidate with the highest
corresponding probability.

4 Results
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Figure 4: Relationship prediction test accuracy
of Visual Relationship Encoder (from Table
14). Since the encoder utilizes only source do-
main panels, no systematic generalization is
required.

Visual Relationship Encoder Results We test
the relationship prediction accuracy of our encoder
across all five generalization splits, with each pos-
sible set of analogy candidates (Contrasting, Nor-
mal, Mixed). Our relationship encoder was able to
isolate the component relationship from the source
domain with a high degree of accuracy (min: 82.4%,
max: 86.04%) across all generalization splits and all
three types of candidates (Figure 4). Furthermore,
since the encoder utilizes only the source domain
information in determining the relation, we observe
no drop between training and test accuracy across
all generalization splits.

By identifying the visual relationship in the source domain, the output of the visual relationship
encoder is able to determine the layout for the subsequent analogy inference engine. Since the
inference engine chooses between only two possible layouts, a baseline that always chooses the
majority class layout would lead to a correct choice in 75% of problems. Hence, our encoder must
achieve a high degree of accuracy in identifying the correct layout to beat this baseline. Our encoder
is indeed able to identify the layout matching the reasoning problem with near perfect accuracy
(min: 98.42%, max: 99.9%). The full results for layout prediction across all generalization splits and
training regimes are in Table 15 in Appendix E.

Analogy Inference Engine Results

Does the modular analogy inference engine generalize systematically?

Model
Test Accuracy % (Contrasting/Normal)

Novel Domain
(Line Type)

Novel Attribute Value
(Extrapolation)

Contrasting Normal Mixed Contrasting Normal Mixed
CNN-LSTM (Hill et al., 2019) 76/50 45/57 75/54 62/45 43/44 56/39

ResNet 25.01/24.95 41.8/46.96 25.01/24.95 78.97/55.2 48.5/49.55 62.59/52.73
ResNet-Parallel 79.35/66.51 52.43/76.7 79.67/75.9 61.97/57.23 54.86/56.69 65.71/57.17

WReN 73.71/57.49 53.42/62.64 61.1/49.93 74.25/61.36 61.23/61.4 70.57/63.31
NSM (ours) 78.14/59.55 70.64/64.31 78.53/64.1 65.24/57.14 62.33/58.08 58.4/50.98

NSM (full context) 79.75/59.55 76.18/62.43 80.57/65.74 73.36/59.94 66.75/59.84 63.47/52.92
Table 1: Candidate prediction test accuracy comparison for Novel Domain and Novel Attribute values.
Our approach achieves the best generalization accuracy across all models in the highest number of
possible candidate scenarios (4/12), and is within ă 1% of the best generalization performance in
half of all scenarios (6/12). Higher accuracy == Better systematic generalization.

We hypothesize that choosing a modular engine for analogy inference enables compositional reasoning
about novel domain values (objects and attributes). In Table 2 we compare the generalization

5



performance of our engine on the Novel Attribute Value: Extrapolation and Novel Domain: Line
Type test splits of the analogy dataset. Our approach achieves the highest test accuracy across all
three training candidate regimes in the Novel Domain setting when tested with contrasting candidates.
Furthermore, our approach yields high test accuracy (highest or within ă 1%) for the Contrasting and
Normal training candidate regimes in the Novel Attribute Value setting. Thus, our NSM approach
is better at systematic generalization to novel visual domains than monolithic neural networks. For
completeness, we provide the results for both our evaluation setups across all training and test regimes
in Tables 16 and 17 in Appendix E.2

Does our model’s prior enable it to learn structure mapping?

We specifically evaluate the Normal training scenario where the candidates presented to the learner
are drawn randomly and lack the contrasting prior which explicitly promotes structure learning.
Since our NSM model explicitly captures and maps the structure of the visual analogy, thus making
up for the lack of a prior in the candidates, we anticipate that the test performance of our model
trained with normal candidates would outperform other baselines. We visualize the generalization
performance of this training scenario for the Novel Domain Value: Extrapolation and Novel Domain:
Line Type generalization splits in Figure 5. We observe that our model outperforms other networks
when averaged across both types of candidates during testing, demonstrating that our model’s prior
enables it to learns structure mapping better than other models.
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Figure 5: Systematic generalization test performance with Normal training candidates which lack a
prior on the dataset that maximizes structure learning during training.

How important is structure mapping in drawing the correct analogy?

We verify the importance of explicitly mapping structure on our NSM approach by comparing
our results when the relationship label inferred in the first step matches the ground truth
relationship label. We present the confusion matrix in Table 2 where it can be seen that the
test candidate selection accuracy for the correct structure mapping (diagonal entries) is significantly
higher than incorrect structure mapping.

Prog. XOR OR AND
Prog. 90.36 16.72 22.53 10.88
XOR 20.88 86.49 57.67 12.32
OR 43.86 52.47 94.80 6.01
AND 5.86 6.18 2.76 94.72

(a) Test Accuracy (Mixed)

Prog. XOR OR AND
Prog. 90.81 2.60 9.12 0.01
XOR 6.61 89.36 50.04 1.94
OR 35.69 52.39 96.19 0.00
AND 0.30 3.27 0.00 96.36

(b) Test Accuracy (Contrasting)

Prog. XOR OR AND
Prog. 89.93 30.44 35.57 21.44
XOR 35.33 83.58 65.39 22.83
OR 51.98 52.55 93.42 11.97
AND 11.51 9.15 5.57 93.06

(c) Test Accuracy (Normal)

Table 2: Test accuracy with correct vs incorrect structure mapping. Correct Mapping == ground truth
relation (rows) matches the relationship used to inform the analogy inference engine (columns).

5 Conclusions and Future Work

In this work, we introduce a two-stage neural framework for learning abstract visual analogies based
on the Structure Mapping Theory of human analogy making. Our approach is able to generalize
systematically to novel target domains, compensate for the lack of a prior in candidate selection that
maximizes structure learning, and successfully exploit the process of extracting and mapping the
relationship structure. In future work, we plan to investigate search-based (e.g. Neural Architecture
Search) as well as differentiable (e.g. attention-based) methods for generating the layouts of our
Analogy Inference Engine. Furthermore, we would like explore approaches that combine our structure
mapping framework into general methods for reasoning about Raven’s Progressive Matrices.
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Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] Our claims about introducing a neural structure mapping
approach and its applications to learning abstract visual analogies are accurate.

(b) Did you describe the limitations of your work? [No] Our work is limited by the
availability of structural relationship labels.

(c) Did you discuss any potential negative societal impacts of your work? [N/A] Our work
is not directly impactful for societal applications.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes] The authors have read and conform to the ethics review guidelines

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main ex-

perimental results (either in the supplemental material or as a URL)? [Yes] We have
included our model’s implementation details in Appendix D, and our experimental
setup in Section 3.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] We explain the data splits in Section 2, and our hyperparameters
in Section 4 and Appendix D.

(c) Did you report error bars (e.g., with respect to the random seed after running exper-
iments multiple times)? [No] We did not have sufficient time or GPU resources for
multiple runs

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] Lines 507 and 515

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We cite Hill et al.

(2019) in our Related Works (Appendix A) and at multiple points in the main paper.
(b) Did you mention the license of the assets? [Yes] Appendix A
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

We do not release any new assets.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] Appendix A
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A] The dataset we are using does not pertain to
persons.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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A Related Work

Learning Analogies Gentner (1983)’s SMT defines an analogy as a comparison in which relational
predicates, but few or no object attributes, can be mapped from base to target domains. Symbolic
models based on SMT (Falkenhainer et al., 1986), including those designed for RPMs (Lovett &
Forbus, 2017), rely on first extracting a rule based representation of the domains from the perceptual
input. Other cognitive analogy models based on Active Symbol theory (Hofstadter & Mitchell, 1994;
Mitchell, 1993) or High-Level Perception theory (Chalmers et al., 1992) do not separate the structure
extraction and mapping process, nor rely on mapping the structure syntax across domains. Our
approach is not directly related to these models. Hill et al. (2019) introduced the dataset for learning
analogies from RPMs and utilized several neural network architectures to directly learn from visual
data. Their key contribution was to introduce the SMT prior into the dataset during candidate selection.
Webb et al. (2020) introduced Temporal Context Normalization to explicitly learn visual features
that can support extrapolation, and tested it on the Visual Analogy Extrapolation Challenge (VAEC)
dataset. Both of these approaches are complementary to ours. Other DL approaches most similar to
ours are the Part-Composition Model (Ichien et al., 2021) and Chen et al. (2019)’s approach. However,
unlike our model, these models rely on availability of very structured intermediate representations
like semantic segmentation maps, and do not use the extracted structural representations to explicitly
configure the reasoning model.

Abstract Reasoning Hill et al. (2019)’s dataset (released publicly for commercial use under Apache
License 2.0) is directly derived from the Procedurally Generated Matrices (PGM) dataset introduced
by Barrett et al. (2018) to test the ability of neural networks to perform abstract reasoning on RPM
problems. RPM tests are an important measure of fluid intelligence in humans (Raven, 2000), and the
PGM dataset provided a sufficiently large sample size for training neural networks on this problem.
Following this work, two new RPM datasets were also released: RAVEN (Zhang et al., 2019), which
utilized additional rules and structured rule annotations, and V-PROM (Teney et al., 2020), which
utilized real images. DL approaches to RPM tasks can be roughly categorized into three types.
The first is relation learning approaches, such as WReN (Barrett et al., 2018), which models all
pairwise relationships between the matrix panels using relation networks (Santoro et al., 2017), and
MXGNet (Wang et al., 2020), which learns row-based node embeddings and then performs a graph
classification on the resulting candidate graphs. Second is rule learning approaches, such as DRT
(Zhang et al., 2019), that learns a structured Stochastic Image Grammar of the abstract rules, and
LEN (Zheng et al., 2019) that utilizes a logic embedding network along with a curriculum to learn
with increasingly distracting features. Third is object-centric learning, such as Rel-AIR (Spratley
et al., 2020), that obtains object embeddings generated via Attend-Infer-Repeat for each panel, and
Pekar et al. (2020)’s method that utilizes both Variational AutoEncoders and an adversarial loss
for candidate generation. Our model can be broadly fit into rule learning by way of the encoder,
followed by relation learning via the analogy inference engine. However, our general approach
towards explicitly extracting structure and mapping it is complimentary to these ideas and can be
used in conjunction with several of them.

Systematic Generalization Systematic generalization refers to the ability to generalize to novel
concepts (out of distribution data) by understanding them as compositions of known concepts
(Bahdanau et al., 2018). It is underpinned by three important characteristics: (1) systematicity, the
ability to generalize to semantically related concepts; (2) productivity, the ability to iteratively apply
compounding to generalize from constituent concepts to their recurrence; and (3) localism, the ability
to iteratively apply reductionism to generalize from repeated constituent concepts to the singular.
The ability to generalize systematically has been previously explored in human cognition (Fodor &
Pylyshyn, 1988), natural language processing models (Lake & Baroni, 2018), and language-grounded
computer vision models (Bahdanau et al., 2018). It has its origins in human cognition and was
formalized by Fodor (1975) under the ‘Language of Thought’ hypothesis. Cognitive scientists have
expressed reservations about the ability of connectionist models to generalize systematicitally (Fodor
& Pylyshyn, 1988). Investigation of neural language models showed that systematic generalization
still poses a challenge for DL (Lake & Baroni, 2018; Loula et al., 2018). A key reason deep neural
networks lack systematicity is due to their propensity towards ‘shortcut learning’ (Geirhos et al.,
2020). This suggests that DL models rely on exploiting a few number of predictive features instead
of considering all possible information about the data while drawing conclusions. Consequently, this
leads to poor generalization when the key predictive features are changed, even though the central

10



evidence remains the same. For example, DL approaches to solving RPM problems were discovered
to rely on evaluating the mode across all candidates in the RAVEN dataset and a significant drop in
generalization performance was observed when the models were tested without the shortcut on the
RAVEN-Fair dataset (Spratley et al., 2020). On the other hand, neural module networks (Andreas
et al., 2016; Johnson et al., 2017b) generalized well systematically when their layout aligned well
with specific language-grounded reasoning problems (Bahdanau et al., 2018). Hence, we utilize a
modular approach in building our analogy inference engine, which in turn utilizes the relationship
structure inferred by our encoder to automatically align itself to the problem. This is a form of
conditional computation.

B Analogy Inference Engine Details and Ablations

Our engine is made up of four different types of neural modules:

• The Stem module performs a series of convolution operations with stride=2. It takes the original
grayscale images of size 1ˆ 160ˆ 160 as input and returns a visual feature map of size 8ˆ 9ˆ
9 pCˆHˆW q. Each of P 4´5

con and P 1´4
can panels is first passed through the Stem module to extract

visual features before being processed by the rest of the engine.
• The Unary module is a residual block with two 3ˆ 3 convolution layers. It receives one feature

map pC ˆH ˆW q as input, and returns one feature map of pC ˆH ˆW q as output.
• The Binary module receives two feature maps, concatenates them along the channel dimension,

and uses a 1ˆ 1 convolution to project them to C dimensions. It then passes the combined feature
maps through a residual block, and returns one feature map of pC ˆH ˆW q as output.

• The Classifier module also receives two feature maps, and projects them to C dimensions. It
then flattens the feature maps and passes them through two fully connected layers to generate a
probability distribution over the relations.

The generic architecture of our modules allows for a combinatorially large number of possible
architectural layouts of our inference engine. Previous work in language-grounded reasoning tasks
like VQA (Andreas et al., 2016; Johnson et al., 2017b) uses a semantic parse tree generated from
natural language to generate layouts for neural module networks. Since our inference engine
πprq relies only on the relationship label from the source domain, it lacks the rich compositional
structure available in language-grounded reasoning to arrange the modular network layout. However,
generating the proper layout for neural module networks is fundamental to their ability to generalize
systematically (Bahdanau et al., 2018).

As discussed in Section 3.2, we dynamically chose between two layouts of our neural module network
based on the relationship type. Our rationale behind choosing these layouts comes from the
knowledge of the possible relationships our engine has to reason about. Each layout aligns
algorithmically (Xu et al., 2020) with a reasoning algorithm for identifying the relationship across
three panels. The first layout models Algorithm 1 to identify a Unary relationship like progression
(not to be confused with a Unary module) between panels 1, 2 and 3. The second layout models
Algorithm 2 to identify a Binary relationship (OR, AND, XOR) across panels 1 and 2 in the last panel.

Algorithm 1 To Identify Unary Relation

Require: Panels P1, P2, P3

1: D1 Ð extractObjectsAndAttributes(P1)
2: D2 Ð extractObjectsAndAttributes(P2)
3: D3 Ð extractObjectsAndAttributes(P3)
4: R12 Ð artihmeticOperation(D1, D2)
5: R23 Ð artihmeticOperation(D2, D3)
6: ResultÐ isConsistent(R12, R23)
7: return Result

Algorithm 2 To Identify Binary Relation

Require: Panels P1, P2, P3

1: D1 Ð extractObjectsAndAttributes(P1)
2: D2 Ð extractObjectsAndAttributes(P2)
3: D3 Ð extractObjectsAndAttributes(P3)
4: R12 Ð binaryOperation(D1, D2)
5: ResultÐ isConsistent(R12, D3)
6: return Result

We do not explicitly train our modules to correspond to any individual functional form. Instead, we
expect the module instantiations to learn the corresponding function in the reasoning step simply
by learning from the classification loss. For example, in the reasoning algorithms above, a Unary
module can learn extractObjectsAndAttributes(), Binary module can learn artihmeticOperation()
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and binaryOperation(), and Classifier module can learn isConsistent() functions. This enables
the modules to share parameters across relation functions (such as two different instantiations of
binaryOperation() for AND and OR), as well as across objects and attributes. This also enables us to
utilize general purpose modules which could potentially be arranged in several possible combinations
depending on the reasoning problem, and can be easily extended beyond the abstract visual analogy
setting of only four relationships to large number of possible relationships in real-world
datasets like Scene Graph (Johnson et al., 2015) and CLEVR (Johnson et al., 2017a).

Do algorithmically aligned engine layouts learn corresponding relations better?

We chose two possible layouts for our modular engine based on their alignment with algorithms for
identifying a Unary or Binary relation across three panels in RPM problems. We expect Layout-A
(Figure 3a) to better align with Unary (progression) problems and Layout-B (Figure 3b) to better
align with Binary (AND, OR, XOR) problems. In order to verify this empirically we train each layout
individually with similar training hyperparameters as the full engine. We control the overall validation
accuracy to select trained models which perform similarly across the full dataset. Next, we compare
the test accuracy for Unary and Binary relations for the trained Layout-A and Layout-B models in
Table 3.

Modular
Layout Training Accuracy Test Accuracy % (Contrasting) Test Accuracy % (Normal) Test Accuracy % (Mixed)

Contrasting Normal Mixed Contrasting Normal Mixed Contrasting Normal Mixed Contrasting Normal Mixed
Layout A 88.47/94.66 91.81/91.3 91.72/93.91 87.63/94.21 89.74/90.89 91.51/95.19 79.54/76.32 90.76/90.6 91.47/92.03 83.53/85.3 90.26/90.74 91.49/93.61
Layout B 86.44/95 90.79/92.4 92.85/93.54 85.35/94.28 77.6/90.28 91.96/94.73 74.83/75.05 89.5/91.43 92.83/91.86 80.01/84.7 83.64/90.85 92.4/93.3

Table 3: Comparison of the analogy inference engine layouts on corresponding (unary/binary)
relationship types

In practice, we found significant stochasticity in the performance between Unary and Binary relation
types across both layouts. From the observed results, we cannot conclusively say that our layouts
necessarily align better with one or the other relationship problem. One possible explanation for
this could be that there can be alternate algorithms for evaluating the same relation, which align
algorithmically with these layouts. This is similar to Xu et al. (2020)’s observation that a neural
network which would have not aligned with the Bellman-Ford algorithm was found to align well with
a different algorithm for the same dynamic programming problem.

Does having an adaptive engine enable better analogy inference?

We use an adaptive modular engine for analogy inference which chooses between two possible
module net layouts at inference time. This enables our engine to compositionally reason about the
underlying relation. We expect our adaptive setup to outperform a static layout since the engine can
then chose to use a better fit layout according to the mapped relationship structure. To verify our
hypothesis, we compare our input-adaptive engine to a fixed engine. We chose each candidate layout
described in Section 3.2 as a possible inference engine. We call these fixed models Engine-A and
Engine-B, and train them similar to our full model. We then compare the test accuracy performance
of our full model, which we label Engine-Full, against the test accuracy fixed models.

Inference Engine Training Accuracy % Test Accuracy % (Contrasting) Test Accuracy % (Normal) Test Accuracy % (Mixed)
Contrasting Normal Mixed Contrasting Normal Mixed Contrasting Normal Mixed Contrasting Normal Mixed

Engine-A 93.39 91.41 93.46 92.88 90.66 94.44 77.00 90.63 91.91 84.94 90.65 93.18
Engine-B 93.24 92.07 93.40 92.47 87.70 94.16 75.01 91.02 92.06 83.74 89.36 93.11
Engine-Full 93.12 91.04 93.32 91.07 90.40 93.30 74.57 88.92 90.02 82.81 89.66 91.65

Table 4: Comparison of fixed analogy inference engines versus the full adaptive engine

Empirically, we found that the adaptive engine was not able to outperform the fixed engines, contrary
to our expectation. We believe there are two main reasons for this: (1) Our individual engines are not
sufficiently differentiated in their performance on their respective reasoning tasks (as shown in Table
3), so there is not a significant performance gain in choosing one over the other, and (2) the number
of possible reasoning scenarios is quite limited in the abstract visual analogy problem, and hence the
adaptive engine is not able to benefit from learning a large number of mixture of experts.
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C Visual Relationship Encoder Ablations

C.1 Multi-task versus Multi-label Visual Relationship Encoder

In our two-step structure mapping approach, we treat the structure extraction problem as a multi-task
learning problem where the relationship, object, attribute prediction are treated as separate
learning tasks. We could have alternatively treated the structure extraction problem as a multi-label
classification problem and instead predicted the full triplet R “ to, a, ru from our model. A multi-
label problem could in principle learn from added network interactions between the final classification
layer weights for the domain components.

In order to draw a comparison between both these learning approaches, we trained a multi-label visual
relationship encoder which predicts the triplet R “ to, a, ru as its output. We replaced the ltask

φ “

FC task
φ plshared

φ q layers in out multi-task encoder with a lshared2
φ “ FCshared2

φ plshared
φ q layer, and the final

classifiers outtask
φ “ FCouttask

φ pltask
φ q of sizes 2, 5, and 4, with one classifier outφ “ FCout

φ pl
shared2
φ q

of size 11 (2+5+4). For training, we used exactly the same procedure as the multi-task encoder
(described in Section ??).

We compared the performance of these models by evaluating there test accuracy across three different
generalization splits: Novel Domain Transfer, Novel Domain: Line Type, and Novel Attribute Value:
Extrapolation. Since our encoder is not trained with the candidate panels, we restrict ourselves to one
training regime (Contrasting) for this comparison. Our observations are reported below in Table 6.

Encoder Extrapolation % Accuracy Novel Domain Transfer % Accuracy Novel Domain (line type) % Accuracy
Training Test (Contrasting) Test (Normal) Test (Mixed) Training Test (Contrasting) Test (Normal) Test (Mixed) Training Test (Contrasting) Test (Normal) Test (Mixed)

Multi-task 86.23 84.78 84.75 84.76 86.96 82.52 82.75 82.64 86.16 84.93 84.58 84.75
Multi-label 86.11 84.84 84.98 84.91 85.31 84.13 84.38 84.25 85.80 85.16 85.15 85.16

Table 5: Comparison of relationship prediction accuracy of a multi-task versus a multi-label
visual relationship encoder

We found the performance of the two types of relationship encoders to be quite similar in terms
of the test accuracy for predicting the relationship from the source domain panels. In fact, the
multi-label encoder was slightly better than the multi-task encoder across all generalization splits.
Despite this, we still went ahead with using the multi-task encoder in our two-step approach since
the multi-task learning network scales much better with the number of objects, attributes, and
relationships in the perceptual domain.

C.2 Multi-task versus Relationship-Only Visual Relationship Encoder

We also performed an ablation study on predicting only the visual relationship from the encoder
and comparing it with the full-task of predicting relationship, object, attribute. We found
that predicting only the relationship structure is competitive with a multi-task predictor in the Novel
Domain Transfer regime, and since our encoder does not perform generalization across domains
or candidate types this should hold for other regimes as well. This does not take away from our
central contribution of incorporating structure mapping into our model, rather it only highlights the
importance of structure extraction as the first-step of our model.

Encoder Novel Domain Transfer % Accuracy (Contrastive Training) Novel Domain Transfer % Accuracy (Normal Training)
Training Test (Contrasting) Test (Normal) Test (Mixed) Training Test (Contrasting) Test (Normal) Test (Mixed)

Multi-task 86.96 82.52 82.75 82.64 86.66 82.40 83.02 82.71
Relationship-only 84.80 83.61 83.6 83.61 85.74 83.68 83.80 83.74

Table 6: Comparison of relationship prediction accuracy of a multi-task versus relationship-only
visual relationship encoder
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D Implementation Details

D.1 Visual Relationship Encoder

Index Layer Output Size
1 Panel Image Input 1 x 160 x 160
2 Conv(3 x 3, 1Ñ 8, stride 2) 8 x 79 x 79
3 BatchNorm 8 x 79 x 79
4 ReLU 8 x 79 x 79
5 Conv(3 x 3, 8Ñ 8, stride 2) 8 x 39 x 39
6 BatchNorm 8 x 39 x 39
7 ReLU 8 x 39 x 39
8 Conv(3 x 3, 8Ñ 8, stride 2) 8 x 19 x 19
10 BatchNorm 8 x 19 x 19
12 ReLU 8 x 19 x 19
13 Conv(3 x 3, 8Ñ 8, stride 2) 8 x 9 x 9
14 BatchNorm 8 x 9 x 9
15 ReLU 8 x 9 x 9
16 FC(8*9*9Ñ 128) 128
17 BatchNorm 128
15 ReLU 128

Table 7: Encoder CNN architecture

Index Layer Output Size
1 Encoder-CNN Output (3 panels) 3 x 128

2
LSTM
(hidden dim = 128,
sequence length = 3)

output = 3 x 128
final hidden state = 128
final cell state = 128

Table 8: Encoder LSTM architecture

Index Layer Output Size
1 Encoder-LSTM final hidden state 128
3 FC(128Ñ 128) 128
7 ReLU 128
4 FCtask(128Ñ 64) 64
7 ReLU 64
5 FCclassifiertask

(64Ñ |Task| ) |Task|

Table 9: Encoder Multi-Task classifier ar-
chitecture. |Task| = 2, 5, 4 for object,
attribute, and relationship classifiers
respectively

D.2 Analogy Inference Engine

Index Layer Output Size
1 Panel Image Input 1 x 160 x 160
2 Conv(3 x 3, 1Ñ 8, stride 2) 8 x 79 x 79
3 BatchNorm 8 x 79 x 79
4 ReLU 8 x 79 x 79
5 Conv(3 x 3, 8Ñ 8, stride 2) 8 x 39 x 39
6 BatchNorm 8 x 39 x 39
7 ReLU 8 x 39 x 39
8 Conv(3 x 3, 8Ñ 8, stride 2) 8 x 19 x 19
10 BatchNorm 8 x 19 x 19
12 ReLU 8 x 19 x 19
13 Conv(3 x 3, 8Ñ 8, stride 2) 8 x 9 x 9
14 BatchNorm 8 x 9 x 9
15 ReLU 8 x 9 x 9

Table 10: Stem module architecture

Index Layer Output Size
1 Previous Module Output 8 x 9 x 9
2 Conv(3 x 3, 8Ñ 8) 8 x 9 x 9
3 ReLU 8 x 9 x 9
4 Conv(3 x 3, 8Ñ 8) 8 x 9 x 9
5 Residual: Add (1) and (4) 8 x 9 x 9
6 ReLU 8 x 9 x 9

Table 11: Unary module architecture

Index Layer Output Size
1 Previous Module Output 8 x 9 x 9
2 Previous Module Output 8 x 9 x 9
3 Concatenate (1) and (2) 16 x 9 x 9
4 Conv(1 x 1, 16Ñ 8) 8 x 9 x 9
5 ReLU 8 x 9 x 9
6 Conv(3 x 3, 8Ñ 8) 8 x 9 x 9
7 ReLU 8 x 9 x 9
8 Conv(3 x 3, 8Ñ 8) 8 x 9 x 9
9 Residual: Add (5) and (8) 8 x 9 x 9
10 ReLU 8 x 9 x 9

Table 12: Binary module architecture

Index Layer Output Size
1 Previous Module Output 8 x 9 x 9
2 Previous Module Output 8 x 9 x 9
3 Concatenate (1) and (2) 16 x 9 x 9
4 Conv(1 x 1, 16Ñ 8) 8 x 9 x 9
5 ReLU 8 x 9 x 9
6 FC(8*9*9Ñ 256) 256
7 ReLU 256
8 FC(256Ñ |r|) |r|

9
Softmax(|c| x |r| Ñ |c|)
(over subset of (8) along index
rpred for all |c| candidates)

|c|

Table 13: Classifier module architecture.
|r| = 4. |c| = 4.
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E Supplementary Results

E.1 Visual Relationship Encoder

GENERALIZATION SPLIT Training Accuracy % Test Accuracy % (Contrasting) Test Accuracy % (Normal) Test Accuracy % (Mixed)
Contrasting Normal Mixed Contrasting Normal Mixed Contrasting Normal Mixed Contrasting Normal Mixed

Extrapolation 86.23 86.44 86.75 84.78 84.84 85.86 84.75 84.92 86.06 84.76 84.88 85.96
Interpolation 86.34 86.54 86.56 84.71 84.86 85.57 84.67 85.01 85.81 84.69 84.93 85.69
Novel Domain Transfer 86.96 86.66 86.30 82.52 82.40 83.18 82.75 83.02 83.88 82.64 82.71 83.53
Novel Domain (shape color) 86.68 86.48 86.27 85.16 84.91 85.55 85.00 84.98 85.62 85.08 84.95 85.58
Novel Domain (line type) 86.16 86.23 86.30 84.93 85.07 85.46 84.58 84.70 85.46 84.75 84.88 85.46

Table 14: Relationship prediction accuracy of our visual relationship encoder

GENERALIZATION SPLIT Training Accuracy % Test Accuracy % (Contrasting) Test Accuracy % (Normal) Test Accuracy % (Mixed)
Contrasting Normal Mixed Contrasting Normal Mixed Contrasting Normal Mixed Contrasting Normal Mixed

Extrapolation 99.86 99.82 99.98 99.50 99.46 99.90 99.49 99.46 99.88 99.50 99.46 99.89
Interpolation 99.92 99.95 99.98 99.47 99.58 99.88 99.41 99.59 99.85 99.44 99.59 99.86
Novel Domain Transfer 99.85 99.88 99.77 98.61 98.48 98.86 98.42 98.59 98.93 98.51 98.53 98.89
Novel Domain (shape color) 99.75 99.73 99.69 99.45 99.43 99.62 99.45 99.44 99.65 99.45 99.43 99.63
Novel Domain (line type) 99.96 99.98 99.99 99.63 99.66 99.88 99.65 99.65 99.89 99.64 99.65 99.88

Table 15: Engine layout prediction accuracy of our visual relationship encoder

E.2 Analogy Inference Engine

GENERALIZATION SPLIT Training Accuracy % Test Accuracy % (Contrasting) Test Accuracy % (Normal) Test Accuracy % (Mixed)
Contrasting Normal Mixed Contrasting Normal Mixed Contrasting Normal Mixed Contrasting Normal Mixed

Extrapolation 97.31 99.58 99.08 65.24 62.33 58.40 57.14 58.08 50.98 61.19 60.20 54.69
Interpolation 97.47 99.78 98.90 93.46 82.15 94.55 69.81 95.11 94.03 81.33 88.80 94.29
Novel Domain Transfer 97.31 95.70 96.44 87.96 87.48 90.81 73.07 86.78 87.94 80.50 87.13 89.38
Novel Domain (shape color) 95.82 97.61 97.75 77.79 75.64 82.69 58.72 66.27 70.26 68.25 70.96 76.47
Novel Domain (line type) 94.90 95.40 95.38 78.14 70.64 78.53 60.23 64.31 64.10 69.18 67.48 71.32

Table 16: Candidate prediction accuracy of our two-step model

GENERALIZATION SPLIT Training Accuracy % Test Accuracy % (Contrasting) Test Accuracy % (Normal) Test Accuracy % (Mixed)
Contrasting Normal Mixed Contrasting Normal Mixed Contrasting Normal Mixed Contrasting Normal Mixed

Extrapolation 96.96 99.41 98.52 73.56 66.75 63.47 59.94 59.84 52.92 66.65 63.29 58.19
Interpolation 97.18 99.68 98.73 93.11 85.40 94.95 70.88 94.86 93.89 81.71 90.25 94.41
Novel Domain Transfer 90.81 88.75 91.25 88.57 88.61 91.40 73.02 86.80 88.15 80.80 87.71 89.78
Novel Domain (shape color) 95.26 96.91 97.23 78.43 79.50 83.15 58.08 66.18 69.66 68.25 72.83 76.40
Novel Domain (line type) 94.15 94.58 94.84 79.75 76.18 80.57 59.55 62.43 65.74 69.65 69.30 73.15

Table 17: Candidate prediction accuracy of our full-context ensemble
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