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Abstract

When connecting objects and their language001
referents in an embodied 3D environment, it is002
important to note that: (1) an object can be bet-003
ter characterized by leveraging comparative in-004
formation between itself and other objects, and005
(2) an object’s appearance can vary with camera006
position. As such, we present the Multi-view007
Approach to Grounding in Context (MAGiC)008
model, which selects an object referent based009
on language that distinguishes between two010
similar objects. By pragmatically reasoning011
over both objects and across multiple views012
of those objects, MAGiC improves over the013
state-of-the-art model on the SNARE object014
reference task with a relative error reduction of015
12.9% (representing an absolute improvement016
of 2.7%). Ablation studies show that reason-017
ing jointly over object referent candidates and018
multiple views of each object both contribute019
to improved accuracy.020

1 Introduction021

To distinguish a “thin handled mug” between two022

mugs, we must contextually reason about the object023

with the relatively thinner handle. Such grounded024

language can connect to machine representations025

of the world (Harnad, 1990). Considering prag-026

matic context (Potts, 2022; Fried et al., 2022) in027

grounded natural language can assist applications028

in vision and robotics (Tellex et al., 2020; Krishna029

et al., 2017; Lu et al., 2019; Li et al., 2022; Desai030

and Johnson, 2021). Additionally, object features031

like mug handles may be occluded from certain032

viewpoints, requiring multiple views or 3D infor-033

mation (Huang et al., 2022; Wang et al., 2021b).034

In the real world, language use is situated in a 3D035

environment and must consider a rich context of036

alternatives. However, for tasks like object disam-037

biguation, some models score referring expression038

compatibility with visual observations of an ob-039

ject in isolation (Thomason et al., 2021; Corona040

Figure 1: Left: Previous methods for identifying ob-
ject referents of language expressions in the SNARE
benchmark consider target and distractor objects inde-
pendently and pool multiple views before grounding.
Right: By contrast, MAGiC jointly reasons over target
and distractor objects and their views from different an-
gles to identify the correct referent with higher accuracy
than the previous state-of-the-art model.

et al., 2022), while broader methods for aligning 041

vision and language representations often consider 042

only static images of objects and scenes (Radford 043

et al., 2021; Kim et al., 2021). Such work can miss 044

language information which can contain compara- 045

tive information in language and embodied visual 046

information from multiple viewpoints. 047

We introduce Multi-view Approach to Ground- 048

ing in Context (MAGiC) 1. MAGiC jointly rea- 049

sons over candidate referent objects and consid- 050

ers each object from multiple possible vantage 051

points (Figure 1). We evaluate MAGiC via the 052

ShapeNet Annotated with Referring Expressions 053

(SNARE) benchmark (Thomason et al., 2021). In 054

SNARE, candidate objects are always of the same 055

high-level category, such as chair or mug, and lan- 056

1Code for MAGiC will be released after anonymous review
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guage references uniquely identify one target ref-057

erent object in contrast to the distractor object of058

the same category. Embodied agents operating in059

real-world environments analogously need to dis-060

ambiguate between similar objects, such as mugs061

in a kitchen, parts on a conveyor belt, or rocks on062

the seafloor. By reasoning about both objects and063

their views, MAGiC achieves a relative error reduc-064

tion of 12.9% (improved accuracy by 2.7%). Our065

contributions include:066

• MAGiC, a transformer-based model that rea-067

sons over multiple 2D-image views of 3D ob-068

jects and implicitly considers the relative dif-069

ferences between objects;070

• state-of-the-art SNARE accuracy;2071

• ablation studies that show both multi-object072

and multi-view inputs are needed for the073

MAGiC accuracy gains; and074

• analysis showing MAGiC outperforms previ-075

ous methods even as fewer object viewpoints076

are available.077

2 Background and Related Work078

Embodied agents increasingly operating alongside079

humans must understand the relationships between080

natural language and the objects they reference.081

To best capture these relationships, our method082

synthesizes the comparative context afforded by083

reasoning over multiple objects and considering084

each one in multiple views.085

2.1 Object Referent Identification086

Object referent identification selects specific object087

referents given natural language descriptors. Sev-088

eral datasets are prominent in 3D object referent089

identification. ShapeGlot (Achlioptas et al., 2019)090

focuses on chairs and lamps, training models to dis-091

tinguish target objects using shape-based descrip-092

tions. PartGlot (Koo et al., 2022) employs a refer-093

ence task for implicit learning of point cloud part-094

segmentation. SNARE (Thomason et al., 2021)095

uses the ShapeNetSem dataset, featuring 262 ob-096

ject categories, while ShapeTalk (Achlioptas et al.,097

2023) introduces 29 object classes for learning098

grounded point cloud representations. We utilize099

the SNARE dataset, leveraging extensive object100

variety to highlight generalizability.101

Previous SNARE task methods scored objects102

individually (Thomason et al., 2021; Corona et al.,103

2022). We discuss the limitations of these methods104

2https://github.com/snaredataset/snare#leaderboard

by considering two specific principles in pragmat- 105

ics (Potts, 2022). The first is the consideration 106

of contrastive object sets in reference games (An- 107

dreas and Klein, 2016). Another similarly relevant 108

pragmatics principle relevant to our work is the 109

consideration of alternatives (Fried et al., 2022). 110

These principles suggest the importance of utiliz- 111

ing comparative information between presented 112

objects when completing SNARE or a similar task. 113

MAGiC employs language grounding to capture 114

object distinctions in the SNARE task. Our core in- 115

sight is joint reasoning over both objects, diverging 116

from methods that independently score reference- 117

referent and reference-distractor pairs (Thomason 118

et al., 2021; Corona et al., 2022). 119

2.2 3D Language Grounding 120

In the domain of grounding language to visual rep- 121

resentations, significant progress has been made in 122

2D (Sadhu et al., 2019; Yu et al., 2016; Plummer 123

et al., 2015; Wang et al., 2021a). This research 124

can be extended to work in three dimensions, in- 125

corporating more information such as the relative 126

positions and views of multiple objects. There are 127

many common 3D object representations such as 128

point clouds (Qi et al., 2017; Guo et al., 2020), 129

meshes (Lin et al., 2021; Bouritsas et al., 2019), 130

voxels (Yagubbayli et al., 2021), and neural radi- 131

ance fields (Mildenhall et al., 2020; Yu et al., 2021). 132

Applications of language and 3D representations 133

include resolving spatial reference for language 134

localizing objects in a 3D scene (Zhang et al., 2017; 135

Huang et al., 2018, 2022). Language guidance can 136

also inform real-world tasks in 3D such as vision- 137

and-language navigation (Gu et al., 2022) or robot 138

instruction following (Shridhar et al., 2020, 2022). 139

In all these tasks, grounded language understanding 140

of objects from different viewpoints is necessary. 141

The necessity of this 3D, rotational understand- 142

ing is more prominent in 3D object referent identi- 143

fication tasks such as SNARE (Thomason et al., 144

2021) and ShapeGlot (Achlioptas et al., 2019). 145

While the model may be presented with explicit 146

3D object representations to provide rotational in- 147

formation in other identification tasks, SNARE pro- 148

vides multiple 2D views of the referent and dis- 149

tractor objects. The previous SoTA methods on 150

SNARE have all aggregated these views before 151

generating a score for each object. However, in 152

keeping with Grice’s maxim of quantity (Grice, 153

1975), the MAGiC transformer attends over all the 154

views of both objects, in contrast to previous meth- 155
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Figure 2: Model Architecture. MAGiC consists of a multi-view transformer that attends to CLIP language
embeddings for the description and CLIP image embeddings across multiple views for both objects. This transformer
allows our model to contextually reason across views about both objects at the same time with respect to a language
description. We do not use any positional encodings, and MAGiC is invariant to the input order of images and
objects. Unlike previous methods for SNARE, we pool information from object views only after updating their
representations with respect to the language referring expression. We apply view masking and language masking
augmentations to regularize the model during training.

ods attempting SNARE that performed early fusion156

on view representations.157

3 Object Reference Task158

We define an object reference task where, given159

one or more visual views of candidate objects and160

a natural language description, the in an object161

reference task is to select the referent representing162

the content of the description. Formally, a model163

must use a given language description l to predict164

a target object ol that is aligned with the language165

description from among a set of m objects O =166

{ol, oc1 , oc2 , ..., ocm−1}. Besides object ol, there167

are m−1 distractor objects oci that contribute to the168

context in which an model needs to reason about.169

For each object o, the model is able to perceive170

n views for each object o1, ..., on. These objects171

are unordered, and we do not assume access to the172

relative positions between each view. The goal of173

the task is to learn a classifier function f(O, l) →174

[0, 1]m such that a higher probability is assigned to175

the target object.176

Previous approaches (Koo et al., 2022; Achliop-177

tas et al., 2023; Thomason et al., 2021; Corona178

et al., 2022) learn f for single objects, then each179

object o ∈ O is scored separately using a single-180

object classifier s(o, l) → [0, 1]. While classifying 181

only individual objects simplifies the implementa- 182

tion, it limits the model’s ability to comparatively 183

reason about objects in context. Also, previous 184

image-based methods for object reference tasks 185

(Thomason et al., 2021; Corona et al., 2022) ag- 186

gregate each object’s n views without reasoning 187

about each view’s relationship to the language de- 188

scription. To overcome these limitations, a model 189

needs to address two key challenges: 1) reasoning 190

about the contextual relationships between objects, 191

and 2) reasoning about multiple views of each ob- 192

ject in relation to the language description. We 193

propose MAGiC, a transformer-based architecture 194

that enables joint reasoning about object-specific 195

and view-specific contextual dependencies for 3D 196

language grounding. 197

4 MAGiC 198

We introduce Multi-view Approach to Grounding 199

in Context (MAGiC) for language grounding of 3D 200

objects (Figure 2). In contrast to previous work that 201

individually score each object, MAGiC considers 202

both the language and the objects, along with their 203

views, simultaneously. 204

The design of our model is guided by principles 205
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Considers Lang Attends VALIDATION ACC. TEST ACC.
Model Both Objects to Ind. Views Visual Blind All Visual Blind All
Human (U) ✓ ✓ 94.0 90.6 92.3 93.4 88.9 91.2

ViLBERT ✗ ✓ 89.5 76.6 83.1 80.2 73.0 76.6
MATCH ✗ ✗ 89.2(0.9) 75.2(0.7) 82.2(0.4) 83.9(0.5) 68.7(0.9) 76.5(0.5)
LAGOR ✗ ✗ 89.8(0.4) 75.3(0.7) 82.6(0.4) 84.3(0.4) 69.4(0.5) 77.0(0.5)
VLG ✗ ∼ 91.2(0.4) 78.4(0.7) 84.9(0.4) 86.0 71.7 79.0
MAGiC ✓ ✓ 92.1(0.4)92.1(0.4)92.1(0.4) 81.3(0.9)81.3(0.9)81.3(0.9) 86.8(0.5)86.8(0.5)86.8(0.5) 87.787.787.7 75.475.475.4 81.781.781.7

Table 1: SNARE Benchmark Performance. Mean accuracy ± standard deviation over 10 seeds for existing
SNARE approaches, whether those approaches reason over objects jointly, and whether they perform language
grounding over individual object views versus pooled representations. Note: ∼ indicates that VLG enables language
grounding to LegoFormer (Yagubbayli et al., 2021) features of object views, but not RGB views. We find that
MAGiC outperforms all other models on SNARE and is statistically significantly better than VLG, the previous
state-of-the-art approach, under a Welch’s unpaired two-tailed t-test with a p < 0.001.

in 3D language grounding and pragmatics. Grice’s206

maxim of quantity reinforces the need for leverag-207

ing all available information necessary for solving208

a given task. In SNARE, a model should consider209

information about comparative differences between210

two objects to identify the correct referent of the211

language expression. To enable a model to more212

effectively ground language to these visual dissimi-213

larities, we focus on two key elements of the model214

formulation: (1) object context, which involves215

jointly reasoning over both objects and the referring216

expression, and (2) multi-view context, where mul-217

tiple views of the object representation are explic-218

itly utilized throughout the model without aggregat-219

ing their representation as a preprocessing step. We220

adopt this paradigm in 3D language grounding and221

design our model to concurrently process features222

from both objects and the referring expression to223

leverage context-dependent information.224

With the common-ground context established by225

considering both objects and the referring expres-226

sion, our model can leverage context-dependent227

information effectively. More concretely, consider228

the scenario of the model being asked to choose be-229

tween two chairs given the referring expression230

“the tall, skinny chair". The model can exploit231

context-dependent information, such as using the232

descriptor “tall" to reason over both objects com-233

paratively to ascertain which is taller. Additionally,234

by incorporating features from multiple views of235

the object, our model benefits from the additional236

3D perspective, ensuring that important object in-237

formation, even if initially rotated out of view, is238

captured and utilized.239

A transformer architecture is well-suited for240

context-based 3D language grounding due to241

its wide receptive field and low inductive bias242

(Vaswani et al., 2017). Unlike CNN-based architec- 243

tures that have a spatial locality bias, transformers 244

have a wide receptive field that includes all input 245

features after just one transformer layer. This ar- 246

chitecture enables our model to attend to all inputs 247

and effectively leverage both object and multi-view 248

context for 3D language grounding. Moreover, the 249

low inductive bias of transformers makes the de- 250

sign choice suitable for 3D language grounding, as 251

the transformers are particularly good at handling 252

multiple modalities (Xu et al., 2023). 253

4.1 Model Architecture 254

Given a target object ol, a single distractor object oc, 255

and the language description l, MAGiC employs a 256

transformer-based architecture to learn a classifier 257

f([ol, oc], l). We conjecture that our architecture 258

will effectively learn contextual relationships be- 259

tween views and objects. Our approach focuses 260

on the use of images from each view to represent 261

an object, without relying on additional depth or 262

camera information. Thus, each object o has n 263

views that represent the object. Unlike previous 264

work that used additional features, such as voxel- 265

based information (Corona et al., 2022) or point 266

cloud information (Huang et al., 2022; Achlioptas 267

et al., 2019), we demonstrate the effectiveness of 268

using image-based views alone for 3D language 269

grounding. Thus, our model is agnostic to specific 270

orderings of views for an object. 271

For each view, we utilize a CLIP-ViT (Rad- 272

ford et al., 2021) image encoder g to obtain view- 273

specific visual embeddings vi = g(oi). Similarly, 274

a CLIP language encoder h is employed to en- 275

code the given language description l, generat- 276

ing a sequence of token embeddings [e1d, ..., e
k
d] = 277

h(l). Similar to the previous state-of-the-art model 278
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(Corona et al., 2022), we use the token-level text279

embeddings from CLIP rather than the CLIP’s280

end-of-token feature that SNARE’s baselines use281

(Thomason et al., 2021). To distinguish between282

image-view embeddings and language embeddings,283

we add a learned token-type embedding to each to-284

ken to indicate whether it is an image-view embed-285

ding or a language embedding (Kim et al., 2021).286

To ensure permutation invariance between objects,287

we do not add a token embedding to distinguish288

whether a view belongs to the first or second ob-289

ject. To remain agnostic to view orderings, we290

deliberately exclude positional encodings from all291

views.292

Using these representations for the ob-
jects and language, we construct a sequence
r = [vl0, ..., v

l
n, v

c
0, ...v

c
n, e

1
l , ..., e

k
l ], which is then

passed as input to the transformer encoder t:

[wl
0, ..., w

l
n, w

c
0, ...w

c
n, q

1
l , ..., q

k
l ] = t(r),

where w is a contextualized representation for an293

object’s view, and q are output representations for294

the language input. The resulting contextualized295

representations capture the interplay between views296

and the language input.297

The object-specific output representations298

w0, ..., wn from the transformer t for an object o299

are aggregated using max pooling, yielding a sin-300

gle aggregate embedding u representing object o.301

This aggregate embedding captures the contextual302

relationships between multiple views of the object303

in consideration. A classifier MLP s(u) takes the304

contextualized embeddings for an object o as input305

and generates a score s indicating the likelihood of306

the object being the target.307

Given a target object ol that is aligned with a lan-308

guage description l and a single distractor object oc,309

we apply a sigmoid to the scores for each object to310

compute the probabilities p(ol|l, oc) and p(oc|l, ol)311

of the target and distractor objects, respectively.312

4.2 Attention Masking Augmentation313

Humans often adapt and rely on a subset of views or314

language cues when faced with challenging circum-315

stances or limited information. This observation316

motivates the exploration of masking techniques317

in language grounding tasks, aiming to enhance318

model performance by selectively blocking out cer-319

tain inputs and encouraging the model to focus on320

the most relevant information.321

We incorporate attention masking augmenta-322

tions into our model, specifically targeting the323

VALIDATION ACC.
Model Visual Blind All
MATCH 90.6(0.5) 77.0(0.7) 83.9(0.4)

+ obj. context 90.5(0.5) 76.8(0.6) 83.7(0.3)

MAGiC 92.1(0.4)92.1(0.4)92.1(0.4) 81.3(0.9)81.3(0.9)81.3(0.9) 86.8(0.5)86.8(0.5)86.8(0.5)
- obj. context 91.1(0.5) 79.4(1.1) 85.3(0.5)
- mv. context 91.0(0.6) 79.5(0.8) 85.3(0.4)
- both contexts 90.5(0.6) 78.2(1.2) 84.4(0.6)

Table 2: Context Ablations. We investigate the impor-
tance of multi-view context (mv. context) and object
context (obj. context). On the validation set, we report
10 averaged seeds and the standard deviation on abla-
tions of both contexts for MATCH and MAGiC. We
note that the MATCH performance is different from
Table 1 as these are our replications of MATCH results
as opposed to the paper (Thomason et al., 2021) report.
We find that if we remove one type of context or both,
performance is degraded for MAGiC.

transformer’s attention weights for both the view 324

and language inputs (Girdhar and Grauman, 2021; 325

Vaswani et al., 2017; Cho et al., 2022). This mask- 326

ing strategy encourages the model to develop a bet- 327

ter understanding of multi-view contextual relation- 328

ships and effectively capture the essential aspects 329

for accurate predictions. 330

For view masking, we introduce a 10% proba- 331

bility of masking out each individual view during 332

training. This process promotes view invariance 333

as well as the ability to generalize to unseen view- 334

points. Similarly, for language masking, we apply 335

a 20% probability of masking out each word in the 336

input language description. By randomly masking 337

a portion of the word and image embeddings, we 338

encourage the model to learn more robust vision 339

and language representations that are capable of 340

handling missing or incomplete information. 341

5 Evaluation 342

We evaluate the effectiveness of our method on 343

the SNARE (Thomason et al., 2021) benchmark, a 344

language grounding task that draws from a subset 345

of items in the ShapeNetSem (Chang et al., 2015; 346

Savva et al., 2015) dataset, specifically those in- 347

cluded in the ACRONYM (Eppner et al., 2020) 348

robot grasping dataset. The SNARE benchmark 349

adversarially selects similar target and distractor 350

objects to challenge 3D language grounding ap- 351

proaches. In the object reference task, the model is 352

presented with a natural language description l and 353

must correctly identify the target object ol from a 354

set of m = 2 objects O = {ol, oc1}. Each object o 355
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in the benchmark is accompanied by n = 8 image356

views, capturing the object from different perspec-357

tives at 45-degree intervals. As both target and358

distractor objects are from the same ShapeNetSem359

category, the SNARE benchmark aims to evaluate360

a model’s contextual reasoning abilities.361

The SNARE benchmark encompasses two types362

of object descriptions: visual and blindfolded. Vi-363

sual descriptions are generated by annotators who364

are guided to include the object’s name, shape, and365

color. These visual descriptions aim to capture a366

comprehensive understanding of the object, pro-367

viding relevant visual cues to guide the grounding368

process (e.g., “the red mug"). On the other hand,369

blind descriptions predominantly focus on the ob-370

ject’s shape and specific distinguishing attributes,371

intentionally omitting color and other visual char-372

acteristics that might aid identification (e.g., “the373

one with a tapered lip").374

The SNARE benchmark is split into training, val-375

idation, and test splits. The train/validation/test sets376

are split over (207 / 7 / 48) ShapeNetSem object377

categories, containing (6,153 / 371 / 1,357) unique378

object instances and (39,104 / 2,304 / 8,751) object379

pairings, each accompanied by a referring expres-380

sion. The validation and test sets include unseen381

object categories that were not encountered during382

the model training phase, thus evaluating the gen-383

eralizability and robustness of different methods.384

5.1 Models385

In our evaluation, we compare the performance386

of MAGiC against several baselines, including the387

previous state-of-the-art (SOTA. We describe these388

baselines below:389

Human accuracy serves as an upper bound for390

performance. These results are provided from391

SNARE (Thomason et al., 2021). Human per-392

formance is determined by evaluating whether393

the annotators can unanimously identify the394

corresponding object based on the provided395

natural language description.396

MATCH (Thomason et al., 2021) uses CLIP-397

ViT to encode the views of each object. These398

encoded views are then max-pooled and con-399

catenated to the language description embed-400

ding. Then, an MLP is trained to assign scores401

to each object independently based on the con-402

catenated representation.403

ViLBERT (Lu et al., 2019; Thomason et al.,404

2021) uses 14 views as opposed to the stan-405

dard 8 views in SNARE. These images are 406

tiled into a single image based on the camera 407

view. ViLBERT then attends to the bounding 408

boxes of each view to provide an image rep- 409

resentation that is used in a MATCH model 410

instead of the CLIP-ViT encoder. 411

LAGOR (Thomason et al., 2021) (Language 412

Grounding through Object Rotation) builds 413

upon the MATCH model. LAGOR introduces 414

additional regularization through a view pre- 415

diction loss on each view. The model is pre- 416

sented with only two random views of each 417

object, and it scores each view individually 418

for language grounding in addition to view 419

prediction. 420

VLG (Corona et al., 2022) (Voxel-informed 421

Language Grounding) uses a pretrained Lego- 422

Former (Yagubbayli et al., 2021) model for 423

image-to-voxel map prediction. VLG em- 424

ploys a factorized representation of the pre- 425

dicted voxel map, CLIP image embeddings, 426

and CLIP language embeddings to score an 427

object. By incorporating voxel-based informa- 428

tion, the VLG baseline serves as a strong com- 429

parison against our model, which suggests an 430

alternative pragmatic approach. 431

5.2 Training Details 432

We train MAGiC on the SNARE dataset using a 433

smoothed binary cross-entropy loss. We adopt 434

a similar training strategy as VLG. We train our 435

model for 75 epochs using the AdamW optimizer. 436

The learning rate is set to 1e-3, and we incorporate 437

a linear learning rate warmup for the first 10,000 438

steps of training. Our model uses 3 transformer en- 439

coder layers, 8 attention heads, and a hidden size of 440

256 for a total of 3.6 million trainable parameters. 441

We train our models with a batch size of 64. 442

6 Results 443

In this section, we present the test set performance 444

of our model and compare it with the previous 445

state-of-the-art models. Additionally, we report the 446

average performance and standard deviation of our 447

model and various ablations on the validation set, 448

calculated over 10 different seeds. 449

6.1 MAGiC improves over SOTA 450

Table 1 presents the performance comparison of 451

models on the SNARE benchmark. MAGiC outper- 452

forms all other models with a 2.7% absolute accu- 453
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Figure 3: Explicit 3D Features. We find that adding
3D structural information to MAGiC does not improve
accuracy.

racy improvement on the test set over VLG. In the454

blindfolded split, MAGiC has a 3.7% performance455

increase over VLG. Across the entire validation456

set, MAGiC is statistically significantly better in457

grounding accuracy than VLG with a p < 0.001458

under a Welch’s unpaired two-tailed t-test.459

MATCH aggregates the CLIP embeddings using460

max pooling, removing its ability to effectively461

reason over the 3D structure of an object. VLG462

explicitly uses 3D features and improves 2.5% on463

grounding accuracy compared to MATCH. MAGiC464

however is able to improve performance by 5.2%465

over MATCH. These results suggest that our model466

does not explicitly require additional 3D structure467

like VLG.468

Though VLG also uses a transformer-based ar-469

chitecture, VLG uses max pooling to aggregate im-470

age features before it is input into the transformer471

model. In the blindfolded subset, ViLBERT pre-472

viously had the top performance of 73.0%, likely473

beating VLG since it used 14 views instead of 8474

views. Although ViLBERT reasons explicitly over475

multi-view context rather than pooling view infor-476

mation like VLG and MATCH, MAGiC improves477

over ViLBERT by 2.4% on the blindfolded set us-478

ing fewer views. This performance difference im-479

plies that by leveraging CLIP image features for480

each view independently, MAGiC demonstrates481

the ability to capture and reason about multi-view482

context effectively.483

We believe our performance gain can also be484

attributed to capturing object and multi-view con-485

text. In the next subsection, we present ablations486

to further demonstrate this result.487

6.2 Ablation Study: 488

We present several ablations performed on the 489

SNARE validation split. We first investigate the 490

precise contributions of object and view context 491

to our method’s improvement on the benchmark as 492

shown in Figure 2. We also examine the effect of 493

additional 3D information and varying the number 494

of views on our method. 495

Context improves validation accuracy. In Ta- 496

ble 2, we find that using context improves valida- 497

tion accuracy on SNARE, implying that MAGiC 498

can capture and utilize contextual dependencies, 499

showcasing its advantage over MLP-based archi- 500

tectures. To assess the significance of object con- 501

text in our model, we added object context to a 502

MATCH model and removed it from MAGiC. We 503

find that adding object context to MATCH does not 504

help improve performance. In contrast, removing 505

object context from MAGiC decreases grounding 506

accuracy by 1.5%. MAGiC without object context 507

is similar to the ViLBERT-based MATCH model in 508

Table 1, as both only use multi-view context. These 509

two models have a noticeable 2.3% difference in 510

grounding accuracy, though some of this difference 511

could be attributed to ViLBERT’s weaker represen- 512

tational capacity for language grounding compared 513

to CLIP. These results suggest that MAGiC is able 514

to effectively leverage object context. 515

To understand the importance of multi-view con- 516

text, we remove multi-view context and only reason 517

over object context. MAGiC without multi-view 518

context is conceptually similar to MATCH with ob- 519

ject context, but we find a 1.6% difference in valida- 520

tion performance between the models. MATCH’s 521

lower performance with multi-view context implies 522

that MAGiC can contextually reason between ob- 523

jects better than MLP-based architectures. 524

Most notably, we find that MAGiC without 525

multi-view and object context has 0.7% higher 526

overall validation accuracy than MATCH, which 527

is reasonably within error bounds. The validation 528

performance of VLG in Table 1 also performs simi- 529

larly to MAGiC without both types of context. The 530

similarity in their performance indicates that the 531

difference between MATCH, VLG, and MAGiC 532

comes from MAGiC’s ability to reason contextu- 533

ally between both views and objects. 534

MAGiC does not require 3D information. In 535

Figure 3, we investigate whether 3D information 536

is necessary to comparatively ground two objects 537

by conducting two experiments that introduce 3D 538

7



structure explicitly: via positional encodings and539

explicitly adding 3D features.540

2 4 6 8

Number of Views

80

82

84

86

Va
lid

at
io

n 
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cu
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cy

Model:
MAGiC
MATCH
LAGOR
VLG

Figure 4: Fewer Views Impact on Performance. We
report results on the validation set on the impact of
fewer views on performance. We find that MAGiC
outperforms MATCH, LAGOR, and VLG, achieving
greater accuracy with fewer views.

Positional Encodings. Given that our model does541

not impose any specific ordering for the views, we542

rely on our model to learn the 3D structure of ob-543

jects implicitly from unordered 2D-image views.544

To investigate the maximum potential of an image-545

based 3D object grounding model, we experiment546

with enforcing canonical image view orderings and547

incorporating learnable positional encodings for548

the views. While MAGiC handles unordered input549

views without relying on knowledge about cam-550

era rotations, we specifically enforce a canonical551

ordering scheme based on 45-degree rotations for552

the inputs and add learnable positional encodings553

for each view. If consistent view orderings and554

positional encodings help in learning 3D structure,555

we would expect improved performance. However,556

our findings in Figure 3 indicate that enforcing or-557

der and using positional encodings do not result in558

performance changes, implying that MAGiC can559

capture view-specific contextual relationships with-560

out explicit positional information.561

3D Features. The performance gains of VLG562

over MATCH in Table 1 can be attributed to the563

addition of explicit 3D information. To assess564

whether our model can benefit from explicit 3D565

information, we investigate the impact of incor-566

porating supplementary, view-specific 3D features567

into the transformer input. We use features pre-568

computed using the Point-E (Nichol et al., 2022)569

transformer for each object view and language de-570

scription. Point-E is a language-conditioned point571

cloud diffusion transformer that captures both 3D572

and language information through a reconstruction 573

task, so we believe it will effectively capture rele- 574

vant 3D information. View masking augmentations 575

are applied as necessary. Also, we add token-type 576

embeddings so the model can distinguish between 577

the 2D image features and the 3D features. We find 578

that the explicit inclusion of 3D features does not 579

improve accuracy. 580

These results further reinforce the importance of 581

grounding fine-grained object differences over the 582

use of 3D information in improving comparative 583

language grounding (as posited in prior works). 584

MAGiC is more robust to fewer views. Stronger 585

performance by MAGiC on view-limited exper- 586

iments compared to the previous SOTA demon- 587

strates MAGiC’s ability to handle limited visual 588

information in language grounding tasks. By re- 589

training MAGiC and MATCH on a reduced num- 590

ber of views as shown in Figure 4, we can assess 591

a model’s ability to effectively leverage limited vi- 592

sual information and still accurately understand 593

and interpret natural language descriptions. We 594

find that on the validation set, MAGiC achieves 595

higher accuracy with fewer views compared to 596

other models. For instance, with only 4 views, 597

MAGiC achieves an accuracy of 85.4%, surpassing 598

VLG, which attains 84.9% accuracy with 8 views. 599

This suggests that MAGiC can more efficiently 600

leverage available information from fewer views. 601

Our findings contribute to a deeper understanding 602

of the significance of exploiting multiple views in 603

language-grounding tasks. 604

7 Discussion 605

In this work, we present MAGiC, which demon- 606

strates significant improvements in language 607

grounding accuracy on an object reference task by 608

reasoning jointly over objects and their multi-view 609

contexts when scoring their compatibility with re- 610

ferring expressions. We find that comparatively 611

reasoning over multiple objects is central to cap- 612

turing contextual relationships that enhance the 613

model’s ability to ground object descriptions, with 614

added multi-view context also contributing to bet- 615

ter language-to-object grounding. The experimen- 616

tal results from the SNARE object identification 617

benchmark highlight the effectiveness of MAGiC, 618

which outperforms all methods on both the valida- 619

tion and test sets. 620

8



8 Limitations621

MAGiC heavily relies on having access to multi-622

ple views of objects. While using multiple views623

allows for capturing richer context and improving624

performance, it also requires obtaining and process-625

ing multiple images for each object, which may not626

always be feasible or practical in certain scenar-627

ios. Future work could consider actively selecting628

views that promote the most information gain. Ad-629

ditionally, our experiments focus on a single dis-630

tractor object. We provide preliminary multiple631

distractor experiments in the appendix to showcase632

the practicality of MAGiC in the real world, which633

is provides a foundation for future work on com-634

paratively reasoning over multiple objects.635

Additionally, MAGiC uses CLIP embeddings for636

encoding visual information. While CLIP provides637

powerful pre-trained image and text encoders, its638

representations may not fully capture the intrica-639

cies and characteristics of 3D objects. This limi-640

tation could potentially impact the model’s ability641

to discriminate between visually similar objects642

or capture fine-grained details crucial for accurate643

language grounding.644

9 Potential Negative Societal Impact645

MAGiC was designed to ground language to 3D646

household objects. However, MAGiC has direct647

potential uses for sensitive applications such as648

face identification and surveillance. For instance,649

law enforcement agencies may use MAGiC with650

vague witness testimony to discern a suspect given651

two sets of mugshots with multiple views. In these652

high-stakes applications, our model could gener-653

ate harmful and discriminatory identifications that654

would further negatively impact historically minori-655

tized peoples. Furthermore, our model uses a CLIP-656

backbone, and previous literature has shown that657

CLIP reinforces malignant sexist and racist stereo-658

types (Hundt et al., 2022) and exhibits gender bias659

(Wang et al., 2022; Agarwal et al., 2021) which are660

part of broader patterns of marginalization in soci-661

ety. Vision-and-language models have also been662

shown to compound gender biases that exist sepa-663

rately in language and vision (Srinivasan and Bisk,664

2021). Therefore, these models must account for665

the ways in which language and perception reflect666

social norms.667
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A Appendix889

In this supplementary section, we describe addi-890

tional experiments, ablations, and results related to891

our work.892

A.1 Masking Ablations893

As discussed in Section 4, in order to improve894

the robustness and generalization capabilities of895

MAGiC, we employ masking augmentations on896

both the language embeddings and the view embed-897

dings as regularization for our model. Specifically,898

we applied random masking to a certain percent-899

age of the language and view embeddings during900

training, analyzing the impact of different mask-901

ing percentages as depicted in Figure 5. Through902

hyperparameter tuning on the validation set, we de-903

termined that a 20% language masking and a 10%904

view masking yield language grounding accuracy905

improvements. We ran each model for 10 seeds.906

However, we also noticed that excessive regular-907

ization can have a detrimental effect on accuracy,908

highlighting the need for a balanced application of909

masking augmentations.
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Figure 5: View and language masking. We show the
impact of different attention masking percentages for
the view and language tokens that are input into MAGiC.
Each variant is trained for 10 seeds. We find that 10%
view masking and 20% language masking achieved the
highest validation set accuracy.

910

A.2 Contrastive Loss911

We investigated additional regularization by using912

CLIP-like contrastive losses on the output represen-913

tations. Losses that are similar in spirit have been914

used in face recognition and clustering research915

(Schroff et al., 2015) as well as multi-modal senti-916

ment analysis research (Hazarika et al., 2020). At a917

high-level, we implement a contrastive loss that mo- 918

tivates the embedded target-object image features 919

to be similar to the embedded object description 920

language features. Our model does not have any 921

supervision on the output language representations, 922

and thus, we hypothesized that a contrastive loss 923

would have led to a more structured embedding 924

space. Additionally, we expected that the addi- 925

tional supervision from the contrastive loss on the 926

output embeddings from the language inputs would 927

help improve grounding accuracy. However, we did 928

not find any improvements on MAGiC’s accuracy 929

on the validation set as shown in Figure 6. These 930

findings indicate that the transformer model was al- 931

ready able to contrastively structure the embedding 932

space given access to both objects and the language 933

description such that the added contrastive loss was 934

not further advantageous towards that goal. 935
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Figure 6: Contrastive Loss. We train MAGiC on 10
seeds on the validation set with and without contrastive
losses. We show that there is no noticeable impact on
MAGiC’s validation accuracy when a contrastive loss is
added during training.

A.3 Additional Discussion 936

We would also like to note that our model out- 937

performed another model on the SNARE leader- 938

board called LOCKET. However, we were unable 939

to find any code or paper publicly associated with 940

LOCKET at the time of submission, and omitted it 941

from Table 1. 942

The code for MAGiC will be made public after 943

anonymity restrictions are lifted. 944

A.4 Multiple Distractor Experiment 945

While the SNARE benchmark presents the model 946

with one target and one distractor object, we 947
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demonstrate MAGiC’s ability to generalize to mul-948

tiple distractors, as may be the case in a more re-949

alistic use case. SNARE provides adversarially-950

selected pairs with language annotations. To have951

multiple distractor objects, we randomly select an952

object in the same train/val set. There is no guar-953

antee for new distractor objects will be in the same954

category of as the initial two objects since the lan-955

guage might not differentiate additional objects of956

the same category.957

Our results in Figure 7 show that while overall958

performance decreases, MAGiC generally retains959

its strong performance over an architecture without960

object context. MAGiC without object context is961

similar to the MLP-based MATCH model, as they962

score each object individually. We find that reason-963

ing over all objects generally outperforms scoring964

the objects individually. We note that performance965

clearly degrades as more objects are added, and we966

show a line depicting random chance to show that967

our model has generally high performance. Due to968

SNARE being a dataset for loading 2 objects at a969

time, implementation constraints limited us from970

scaling up these experiments efficiently. Thus each971

variant is trained only on 1 seed, which makes it972

clear that this result becomes noisy as more dis-973

tractor objects are added. We also note that for974

MAGiC, for additional distractor objects, MAGiC975

is trained and evaluated on the same number of976

distractor objects.977
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Figure 7: Number of distractors. We show the impact
of different numbers of distractors on the performance
of MAGiC and MAGiC without context. Each variant
is trained for 1 seed. We find that MAGiC
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