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ABSTRACT

Unsupervised domain adaptation has attracted increasing attention in recent years,
which adapts classifiers to an unlabeled target domain by exploiting a labeled source
domain. To reduce discrepancy between source and target domains, adversarial
learning methods are typically selected to seek domain-invariant representations by
confusing the domain discriminator. However, classifiers may not be well adapted
to such a domain-invariant representation space, as the sample-level and class-level
data structures could be distorted during adversarial learning. In this paper, we
propose a novel Transferable Feature Learning approach on Graphs (TFLG) for un-
supervised adversarial domain adaptation, which jointly incorporates sample-level
and class-level structure information across two domains. TFLG first constructs
graphs for mini-batch samples, and identifies the class-wise correspondence across
domains. A novel cross-domain graph convolutional operation is designed to
jointly align the sample-level and class-level structures in two domains. Moreover,
a memory bank is designed to further exploit the class-level information. Extensive
experiments on benchmark datasets demonstrate the effectiveness of our approach,
compared to the representative unsupervised domain adaptation methods.

1 INTRODUCTION

The successful development of visual learning systems in practice is largely dependent on abundant
labeled data for model training. In many cases, however, it is difficult to have direct access to a
large amount of labeled data for the task of interest, and data labeling is usually expensive and time
consuming. Domain adaptation has been recognized as an appealing approach to tackle this challenge,
which aims to adapt models from a source domain with abundant labeled data to a target domain with
limited or even no labels (Wang & Deng, 2018). To this end, existing domain adaptation methods
devise various criteria to mitigate the divergence between source and target domains, which is known
as the domain shift problem. Unsupervised domain adaptation (UDA), as a special case of domain
adaptation, has attracted increasing attention in recent years, owing to its relaxed assumption, i.e.,
label information is not available in the target domain (Kouw & Loog, 2019). Although UDA is
promising in real-world applications, it is quite challenging to align source and target domains due to
the lack of labels in target domain.

Existing UDA methods mainly focus on extracting domain-invariant features to reduce the discrepancy
of two domains, such that the classifier trained on source domain can be gradually adapted to target
domain during feature learning process. To characterize the distribution difference of two domains, the
maximum mean discrepancy criterion has been extensively studied in traditional UDA methods (Long
et al., 2015; Yan et al., 2017; Cao et al., 2018), such as the subspace learning based approaches (Ding
et al., 2018). Some recent advancements in UDA have been benefited from adversarial learning, such
as virtual adversarial training (Ganin et al., 2016; Shu et al., 2018; Saito et al., 2018; Zhang et al.,
2019) and adversarial networks (Tzeng et al., 2017; Long et al., 2018; Sankaranarayanan et al., 2018;
Chen et al., 2020; Yabin et al., 2019). These methods usually employ adversarial losses for domain
adaptation, by maximizing the domain classification loss and minimizing the label prediction loss.
Adversarial learning based UDA methods have achieved remarkable performance, but they still suffer
some limitations. First, existing methods usually seek a shared embedding space for two domains
via adversarial learning. However, the intrinsic sample-level and class-level neighborhood structures
in two domains might be destructed during this process. A common assumption in UDA is that
two domains share the same label space, and thus exploiting the class-level structures is critical for
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Figure 1: The architecture of our Transferable Feature Learning on Graphs (TFLG), which integrates
cross-domain graph convolution with domain adversarial learning. TFLG adopts ResNet-50 as feature
extractor, and exploits both sample-level and class-level structure information by using the proposed
cross-domain graph convolutional operation. CNN features and graph ebmeddings are concatenated
together, which are fed into label classifier and domain discriminator.

domain adaptation. Second, in existing methods, knowledge transfer across two domains is achieved
through the domain-invariant feature learning, in which the domain discriminator plays a key role.
However, when the divergence between two domains is large, the domain discriminator may not be
easily fooled, and the domain shift issue still exists. Exploring additional pathways to bridge source
and target domains is essential for robust and effective knowledge transfer.

In this paper, we propose a novel unsupervised domain adaptation approach by Transferable Feature
Learning on Graphs (TFLG) to address the aforementioned problems. Building upon the adversarial
learning framework, our approach incorporates sample-level and class-level structure information
across two domains by designing a graph based feature propagation module. Graphs for mini-batches
are constructed to capture the neighborhood structures in source and target domains. Furthermore,
with the help of pseudo labels for target samples, we identify the class-wise correspondence between
two domains, and achieve structure-aware feature refinement. Our graph based feature propagation
module provides an additional knowledge transfer pathway across two domains, and it contributes to
the domain-invariant feature learning. Moreover, the pseudo labels for samples in target domain will
be gradually updated, leading to a joint optimization of class-wise structure preserving and classifier
adaptation. Experimental results on benchmark datasets demonstrate the superiority of our approach
over the representative UDA methods. Figure 1 illustrates the architecture of our approach.

The major contributions of our work are summarized as follows:

• We propose a transferable feature learning approach for unsupervised domain adaptation.
Our approach seeks domain-invariant features with adversarial learning, and meanwhile
preserves the sample-level structure information in each domain for feature refinement.
• We design a new graph convolution operator that exploits class-level structure across two

domains. A memory bank is also incorporated to facilitate the matching of source and target
domains at the class level.

2 RELATED WORK

The key task in domain adaptation is to enhance the generalization ability of models trained in a
source domain for a target domain. To deal with the issue of domain shift, numerous methods have
been proposed, including the sample-based, feature-based, and inference-based methods (Kouw &
Loog, 2019).

In real-world applications, it might be difficult to annotate samples in target domain, leading to the
problem of unsupervised domain adaptation (UDA). In particular, UDA aims to transfer knowledge
from a source domain to a target domain without labels. Existing UDA methods can be roughly
categorized into two groups, including the subspace learning methods and deep domain adaptation
methods. The subspace learning based UDA methods assume that different domains contain domain-
specific noises but share a common subspace. Some subspace alignment methods try to match two
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domains in the common subspace (Fernando et al., 2013; Sun & Saenko, 2015), while other methods
rely on the manifold assumptions (Baktashmotlagh et al., 2014; Hoffman et al., 2014) or explore the
domain-invariant spaces (Baktashmotlagh et al., 2013; 2016).

Deep domain adaptation methods leverage deep neural networks for feature learning. Marginalized
denoising auto-encoders (Chen et al., 2012) have been proposed to reconstruct target data from the
source data. In recent years, adversarial learning have been successfully applied to the UDA problem.
Domain-adversarial neural networks (DANN) (Ganin et al., 2016) aim to find a representation space,
in which the two domains cannot be distinguished but the samples from source domain can be correctly
classified. To this end, DANN maximizes the domain classification loss and meanwhile minimizes the
label classification loss. If the discrepancy between two domains is small, the classifier trained using
source samples will be well adapted to classify the target samples. DIRT-T further improves DANN
by seeking decision boundaries that do not cross the high-density data regions (Shu et al., 2018).
Adversarial discriminative domain adaptation (ADDA) pretrains a classifier in source domain, and
then it learns an encoder to align target and source domains with a domain-adversarial loss (Tzeng
et al., 2017). To align domains with multimodal distributions, the conditional domain adversarial
network (CDAN) (Long et al., 2018) is proposed, which exploits discriminative information provided
by classifiers to help adversarial adaptation. In order to further explore fine-level structures of data,
the discriminative clustering has been adopted in the cluster alignment with a teacher (CAT) method,
which delivers a domain-invariant cluster-structure feature space (Deng et al., 2019). Graph Adaptive
Knowledge Transfer (GAKT) (Ding et al., 2018) model jointly optimizes target labels and domain-free
features in a unified framework, which doesn’t involve graph convolutional operations or adversarial
learning. GAKT adopts a very different technical approach and the performance is not comparable
with the adversarial learning based methods. Most recently, the graph convolutional adversarial
network (GCAN) (Ma et al., 2019) is proposed to jointly model the data structure, domain label and
class label. The Graph Convolution Network (GCN) (Kipf & Welling, 2017) is applied to model data
structure. Firstly, they use the Data Structure Analyzer (DSA) network to learn CNN features for
mini-batch samples and utilize the learned features to construct a dense-connected instance graph
based on the similarity of pairwise mini-batch samples. Secondly, they apply the GCN on instance
graph to learn GCN features. Finally, they concatenate CNN (a CNN network different from DSA)
and GCN features as the input for domain alignment and class centroid alignment modules.

Remark. The most relevant work to ours is the GCAN method. The major differences between our
work and GCAN are four-fold. (1) Our method does not require a specific CNN network, e.g., DSA,
to build the dense-connected instance mini-graph. Instead, we use the same CNN network to build
mini-graph and extract CNN features. (2) GCAN directly uses the GCN to extract features for target
samples, while we proposed the cross-domain graph convolutional operation to explore class-level
and sample-level structure information by bridging the source and the target domains. Our ablation
studies also demonstrate the importance of the cross-domain graph convolutional operation. (3) To
better capture the class-level relationship and transfer relevant data-structural information across
the source and target domains, we maintain a memory bank for source domain to store the most
recent batches of source GCN features, which has been proved to be effective. (4) Our proposed
cross-domain graph convolutional operation can be easily integrated with various adversarial learning
based unsupervised domain adaptation approaches, such as DANN, CDAN and CDANE.

3 OUR APPROACH

In this section, we first introduce the problem setting of unsupervised domain adaptation as well as
notations, and present the adversarial domain adaptation framework. Then, we propose the cross-
domain graph convolutional operation, and define the objective function for transferable feature
learning on graphs. Finally we provide some remarks and discussions.

3.1 UNSUPERVISED ADVERSARIAL DOMAIN ADAPTATION

In unsupervised domain adaptation, let Ds = {(xis, yis)}
ns
i=1 denote a source domain, which contains

ns labeled samples with xis ∈ Xs and yis ∈ Ys. Meanwhile, a target domain Dt = {xit}
nt
i=1 contains

nt unlabeled samples where xit ∈ Xt. Both the source domain Ds and target domain Dt have the
same learning tasks, which implies that Ys and Yt share the same label space. The i.i.d assumption
commonly used in traditional machine learning is violated in this scenario, as Xs and Xt are assumed
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to be different but related (Shimodaira, 2000). The goal of unsupervised domain adaptation is to
classify the unlabeled target samples by leveraging the labeled source samples. Since samples in two
domains are distributed in different feature spaces, the most challenging problems in unsupervised
domain adaptation include: how to reduce the discrepancy between the source and target domains,
and how to achieve discriminative knowledge transfer across two domains?

Inspired by the Generative Adversarial Networks (GANs) (Goodfellow et al., 2014), the adversarial
domain adaptation framework has been extensively studied, which integrates adversarial learning
and domain adaptation in a two-player game. In particular, a domain discriminator D is learned to
discriminate the source from target domains, while a feature extractor G implemented by deep neural
networks tries to learn a transferable feature to fool D. In this way, domain-invariant representations
could be extracted from the source and target samples.

Mathematically, the adversarial domain adaptation can be formulated as a minimax optimization
problem with two competitive loss terms: (a) Lcls on label classifierC, which is expected to minimize
the classification error on the labeled source samples, and (b) Ladv on the domain discriminator D
used to distinguish the source and target domains, which is minimized on D but maximized on G:

Lcls(C) = E(xis,y
i
s)∼DsL(C(g

i
s), y

i
s), (1)

Ladv(D) = −Exis∼Ds log[D(gis)]− Exit∼Dt log[1−D(git)], (2)

where g = G(x) is the output of feature extractor G, and L(·) is the cross-entropy loss. Thus, a
generic formulation for adversarial domain adaptation is written as follows:

min
C,G
Lcls(C), min

D,G
Ladv(D). (3)

The adversarial domain adaptation frameworks described above are able to extract domain-invariant
representations to align two domains, but they still have some limitations. For instance, they usually
fail to model the structure information of samples during adversarial learning. As a result, the aligned
but distorted distributions of two domains may not lead to a low-risk classifier for target samples.

3.2 CROSS-DOMAIN GRAPH CONVOLUTIONAL OPERATION

In the theory of domain adaptation, the bounds of classification error εt in the target domain Dt is
revealed in the following theorem.

Theorem 1. (Ben-David et al., 2010) Let h denote any classifier drawn from the hypothesis set H.
Given two domains Ds and Dt, we have

εt(h) ≤ εs(h) +
1

2
dH∆H(Ds,Dt) + C, (4)

where εs(h) is the expected error on source samples, and dH∆H(Ds,Dt) denotes a discrepancy
distance between the source and target domains. The last term C = min

h∈H
(εs(h, fs) + εt(h, ft))

denotes the difference in labeling functions across two domains, where fs and ft are labeling
functions (Ben-David et al., 2010) for source domain and target domain.

With notable exceptions (Deng et al., 2019; Xie et al., 2018; Ma et al., 2019), existing methods mainly
focus on minimizing the domain discrepancy term 1

2dH∆H(Ds,Dt) in equation 4, by using strategies
like maximum mean discrepancy or domain discriminator. However, if the third term C is large, we
still cannot obtain a low expected error εt(h) for target samples. Recent studies (Xie et al., 2018)
show that C in equation 4 can be further rewritten as:

C = min
h∈H

εs(h, fs) + εt(h, ft)

≤ min
h∈H

εs(h, fs) + εt(h, fs) + εt(fs, ft).
(5)

The first two terms indicate the disagreement between h and the source labeling function fs, which
could be easily achieved because the source labels are available. The third term εt(fs, ft) implies
the disagreement of labeling functions in the target domain. Even though the domain divergence is
reduced as in existing work, samples in two domains may still have different class structure. As the
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result, the label functions fs and ft learned source and target domains still have certain disagreement
which would lead to a large upper bound of εt(h) and result in dissatisfied performance on target
domain (Xie et al., 2018). We argue that, by propagating sample and class structure information
from source domain to target domain, the disagreement εt(fs, ft) could be reduced. As a result, we
may achieve a lower expected error εt(h) in target domain.

In this work, our goal is to jointly exploit the sample-level and class-level structures to improve
adversarial domain adaptation. As discussed above, adversarial domain adaptation optimizes the
domain discriminator, label classifier, and feature extractor, simultaneously. In particular, the
feature extractor is usually implemented by some popular convolutional neural network architectures
like AlexNet or ResNet, which samples mini-batch data for efficient model training. Thus, the
exploitation of data structure information shall be well aligned with the training of feature extractor
and discriminator. To this end, we propose to construct mini-graphs on mini-batches to capture
sample-level structure information, and then design a cross-domain graph convolutional operation to
exploit both the sample and class structures.

First, we introduce the construction of mini-graphs. By using the feature extractor G, we obtain deep
feature vectors for samples in the source and target domains. For every mini-batch, we construct a
mini-graph G = (V, E) to characterize the sample-level structure information in each domain, where
V contains a set of mini-batch samples, and E represents edges of the mini-graph. Each sample is
associated with a deep feature vector gi. Let A denote the adjacency matrix. The weight A(i,j) is the
similarity between the i-th sample and j-th sample in the mini-batch:

A(i,j) =
exp (sim(gi, gj))∑
j exp (sim(gi, gj))

, (6)

where sim(gi, gj) is the cosine similarity between i-th sample and j-th sample. The sample-level
structural information in the representation space will be encoded in the mini-graphs G. For mini-
batches from source and target domains, we construct mini-graphs Gs and Gt, and the corresponding
adjacency matrices are denoted by Ãs and Ãt.

Second, we design a cross-domain graph convolutional operation to jointly exploit the sample-level
and class-level structure information across two domains. The sample-level structure in each domain
could be learned by the graph convolutional networks (GCN) (Kipf & Welling, 2017). GCN allows
the feature information to be propagated over graphs, by using an elegant layer-wise propagation
rule based on neural networks. For mini-batches in the source domain, the feature propagation over
neighborhood samples could be achieved by GCN:

Zs = σ(ÃsG(Xs)Wgcn), (7)

where Zs denotes the extracted GCN features of source samples. G(Xs) denotes the CNN features
of source samples. Ãs is the corresponding adjacency matrix. Wgcn is a trainable weight matrix and
σ(·) is nonlinear function.

To attentively transfer relevant data structural information and class information from source domain
to target domain, we propose a cross-domain feature propagation rule as follows:

Zt = σ(ÃtG(Xt)Wgcn) + γσ(TZsWtra), (8)

where Zt and G(Xt) denote the extracted GCN features and CNN features of target samples,
respectively. Ãt is the adjacency matrix. Source and target domains share the GCN parameters Wgcn

to extract structural representations. Wtra ∈ Rdims×dimt denotes parameters of transfer layer. γ is
a hyperparameter that controls the contribution of source samples for feature learning in the target
domain.

In equation 8, T ∈ Rbnt×bns is a transfer matrix that indicates the class-wise correspondence across
domains, bns and bnt are batch size for source and target. Specifically, T is defined as the class
label relationship between the source and target domains. If Zit and Zjs have same label, T i,j = 1.
Otherwise, T i,j = 0. As unsupervised domain adaptation assumes that the label information is not
available in target domain, we infer pseudo labels for the target samples. In particular, the target
pseudo labels are first initialized by a pre-trained classifier on labeled source data, and then the
pseudo labels are updated along with the training process. These pseudo labels serve as a proxy of
the missing true labels of target samples. If the discrepancy between two domains are minimized and
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meanwhile the class structures are well exploited and propagated, we expect that the pseudo labels
will become very close to the true target labels. Accordingly, T would be able to encode reliable
class-level structure information across two domains.

3.3 TRANSFERABLE FEATURE LEARNING ON GRAPHS (TFLG)

We propose the transferable feature learning approach on graphs (TFLG) by integrating the proposed
cross-domain graph convolutional operation with unsupervised adversarial domain adaptation method.
TFLG jointly optimizes the domain discriminator loss Ladv(D) and label classification loss Lcls(C)
defined in equation 3, and the cross-domain feature extractor in equation 8. For each sample, the final
feature representation h is the concatenation of CNN features g and cross-domain graph embedding
z, i.e., h = [g, z]. z is a graph embedding vector in Zs or Zt defined in equation 7 and equation 8.

The overall objective function of TFLG is formulated as:

min
C

E(xis,y
i
s)∼DsLcls(C(h

i
s), y

i
s)

+λ
(
Exis∼Ds log [D(his)] + Exit∼Dt log [1−D(hit)]

)
max
D

Exis∼Ds log [D(his)] + Exit∼Dt log [1−D(hit)],

(9)

where λ is a hyper-parameter that balances the label classifier and conditional domain discriminator.

After model training with back propagation, the source and target domains are well aligned in the new
representation space that is also aware of structure information. Thus, the trained classifier C can be
used to predict the labels of target samples. At the test stage, the hyper-parameter γ in equation 8 will
be set to 0, as source data is not used, the equation 8 will only include the first term σ(ÃtG(Xt)Wgcn)
during the test.

3.4 TFLG WITH MEMORY BANK

The transfer matrix T ∈ Rbnt×bns in equation 8 captures the class label relationship between source
and target in the corresponding batches. In practice, batch size is usually limited by GPU memory.
The limitation of batch size would hinder the training of TFLG on datasets with a large number of
images and categories like Office-Home (Venkateswara et al., 2017) which has 15,500 images with
65 categories, since the batch data of source and target may not have common categories with a high
probability. As a result, T fails to build the class-wise correspondence across domains. To address
this issue, we further improve our TFLG approach by incorporating a memory bank (TFLGM). In
particular, we maintain a GCN feature memory bank V for source domain, which stores the most
recent n batches of GCN source features. The memory bank V = {zis, z

(i+1)
s , ..., z

(i+n∗bns )
s } is built

as a queue, with the current batch enqueued and the oldest batch dequeued. Compared with batch of
source, memory bank of source includes n times samples which greatly increases the probability of
common categories that shared by source and target training data at each iteration. equation 8 can be
rewritten as follows:

Zt = σ(ÃtG(Xt)Wgcn) + γσ(TmVWtra), (10)

where Tm ∈ Rbnt×n∗bns . If Zit and V j have same label, Tmi,j = 1. Otherwise, Tmi,j = 0.

3.5 DISCUSSIONS

Curriculum learning for cross-domain feature propagation. In equation 8, the second term
γσ(TZsWtra) only contributes to the training stage. As source data is not used during testing stage,
the GCN features Zs and the transfer matrixT cannot be constructed. Our experiments show that
setting γ to 0.1 could already result in promising classification performance for target samples. We
will also discuss the sensitivity of our approach to the values of γ in the range {0.05, 0.1, 0.2, 0.3,
0.4, 0.5}. Moreover, we notice that setting γ to a fixed value may lead to a gap between training and
test in unsupervised domain adaptation. Inspired by the scheduled sampling (Bengio et al., 2015), a
curriculum learning strategy could be adopted to bridge such a gap. In particular, γ can be adaptively
range in [0, γ] to explore how would the variation of γ influences the class structure information
between source and target during training process. In the appendix, parameter sensitivity analysis
and different curriculum learning strategies for setting γ are evaluated and discussed.
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Table 1: Classification accuracy(%) on Office-31 dataset.

Method A→W D→W W→D A→D D→A W→A Avg
ResNet-50 (He et al., 2016) 68.4±0.2 96.7±0.1 99.3±0.1 68.9±0.2 62.5±0.3 60.7±0.3 76.1
DANN (Ganin et al., 2016) 82.0±0.4 96.9±0.2 99.1±0.1 79.7±0.4 68.2±0.4 67.4±0.5 82.2
SAFN (Xu et al., 2019) 88.8±0.4 98.4±0.0 99.8±0.0 87.7±1.3 69.8±0.4 69.7±0.2 85.7
SAFN+ENT (Xu et al., 2019) 90.1±0.8 98.6±0.2 99.8±0.0 90.7±0.5 73.0±0.2 70.2±0.3 87.1
DMRL (Wu et al., 2020) 90.8±0.3 99.0±0.2 100.0±0.0 93.4±0.5 73.0±0.3 71.2±0.3 87.9
DSBN (Chang et al., 2019) 93.3 99.1 100.0 90.8 72.7 73.9 88.3
TAT (Liu et al., 2019) 92.5±0.3 99.3±0.1 100.0±.0 93.2±0.2 73.1±0.3 72.1±0.3 88.4
CDAN (Long et al., 2018) 93.1±0.2 98.2±0.2 100.0±.0 89.8±0.3 70.1±0.4 68.0±0.4 86.6
CDANE (Long et al., 2018) 94.1±0.1 98.6±0.1 100.0±.0 92.9±0.2 71.0±0.3 69.3±0.3 87.7
CDAN+TFLG 94.6±0.3 99.2±0.1 100.0±.0 94.1±0.3 72.4±0.3 71.6±0.4 88.6
CDAN+TFLGM 95.3±0.3 99.0±0.1 100.0±.0 94.1±0.2 72.5±0.2 71.5±0.1 88.7

Table 2: Classification accuray(%) on Office-Home dataset.

Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg
ResNet-50 (He et al., 2016) 34.0 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DANN (Ganin et al., 2016) 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
TAT (Liu et al., 2019) 51.6 69.5 75.4 59.4 69.5 68.6 59.5 50.5 76.8 70.9 56.6 81.6 65.8
SAFN (Xu et al., 2019) 52.0 71.7 76.3 64.2 69.9 71.9 63.7 51.4 77.1 70.9 57.1 81.5 67.4
CDAN (Long et al., 2018) 49.0 69.3 74.5 54.4 66.0 68.4 55.6 48.3 75.9 68.4 55.4 80.5 63.8
CDANE (Long et al., 2018) 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
CDAN+TFLG 49.5 68.7 74.7 57.7 67.8 68.8 55.2 48.5 75.6 68.4 55.8 80.6 64.3
CDAN+TFLGM 50.7 71.3 75.0 59.1 69.4 71.2 59.5 49.1 77.2 70.5 56.2 81.3 65.9
CDANE+TFLGM 51.4 72.0 77.2 61.7 71.9 72.2 60.0 51.7 78.8 72.8 58.9 82.0 67.6

Flexible feature refinement module. In this work, we propose the transferable feature learning
approach on graphs (TFLG) for unsupervised adversarial domain adaptation. Furthermore, this
cross-domain graph convolution can be considered as a general approach for feature refinement, by
exploiting structure information resided in two domains. Therefore, the proposed graph convolution
can be potentially integrated with many other domain adversarial networks like DANN (Ganin et al.,
2016), CDAN and CDANE (Long et al., 2018). Intuitively, this feature refinement approach provides
an additional pathway to bridge source and target domains, in addition to the adversarial learning.
Incorporating TFLG will facilitate the robust and discriminative knowledge transfer from source
domain to target domain.

4 EXPERIMENTS

In this section, we evaluate the performance of our approach on benchmark datasets for domain
adaptation and provide detailed ablation studies to demonstrate the effectiveness of our approach.

4.1 DATASETS AND EXPERIMENTAL SETTINGS

In the experiments, we use two benchmark datasets that are widely used for domain adaptation,
including the Office-31 dataset (Saenko et al., 2010) that contains 4,652 images from 31 classes
in three domains, and the Office-Home (Venkateswara et al., 2017) dataset that contains 15,500
images from 65 classes in four domains. We compare our approach with the following representative
and state-of-the-art unsupervised domain adaptation methods including DANN (Ganin et al., 2016),
CDAN (Long et al., 2018) , CDANE (Long et al., 2018), TAT (Liu et al., 2019), SAFN (Xu et al.,
2019), DSBN (Chang et al., 2019) and DMRL (Wu et al., 2020). We follow the standard evaluation
protocols for unsupervised domain adaptation (Ganin & Lempitsky, 2015; Long et al., 2017). Our
approach and all the baseline methods use the ResNet-50 (He et al., 2016) to extract CNN features.
Descriptions of datasets, details of experimental settings, and experiments on more datasets are
provided in the appendix due to space limit.

4.2 RESULTS AND DISCUSSIONS

Table 1 shows the results of our approach and baselines on the Office-31 dataset. ResNet-50 is a
simple baseline without any consideration of domain adaptation. Among the recent unsupervised
adversarial domain adaptation methods, CDAN, CDANE and TAT outperform traditional domain
adversarial network DANN, as the former methods model the discriminative information beyond the
standard adversarial learning. Our proposed TFLG approach combined with CDAN (CDAN+TFLG)
outperforms these baselines methods in most cases, and CDAN+TFLGM achieves the best classifi-
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Table 3: Key components and flexible module studies on Office-31 dataset.

Method A→W D→W W→D A→D D→A W→A Avg
ResNet-50 (He et al., 2016) 68.4±0.2 96.7±0.1 99.3±0.1 68.9±0.2 62.5±0.3 60.7±0.3 76.1
DANN (Ganin et al., 2016) 82.0±0.4 96.9±0.2 99.1±0.1 79.7±0.4 68.2±0.4 67.4±0.5 82.2
DANN* 82.0±0.4 97.1±0.1 98.9±0.3 81.4±02 65.5±0.4 65.3±0.4 81.7
DANN+TFLG(w/o cg) 84.1±0.5 97.6±0.4 99.1±0.1 83.9±0.4 65.9±0.2 67.5±0.4 83.0
DANN+TFLG 85.5±0.3 98.0±0.4 99.2±0.2 85.2±0.3 66.9±0.3 67.6±0.2 83.7
CDAN (Long et al., 2018) 93.1±0.2 98.2±0.2 100.0±.0 89.8±0.3 70.1±0.4 68.0±0.4 86.6
CDAN+TFLG(w/o cg) 93.6±0.2 99.0±0.1 100.0±.0 92.6±0.2 70.5±0.4 70.3±0.3 87.7
CDAN+TFLG 94.6±0.3 99.2±0.1 100.0±.0 94.1±0.3 72.4±0.3 71.6±0.4 88.6

cation accuracy on average. It is noteworthy that CDAN+TFLG/TFLGM takes advantages of both
the adversarial learning framework and the cross-domain graph convolutional operation. Compared
with CDAN, CDAN+TFLG/TFLGM significantly improves the classification accuracy in all six
domain adaptation tasks, especially on several hard cases, e.g. A→ D and W→ A, where source
and target domains are quite different. Experimental results validate the effectiveness of propagating
sample-level and class-level structures via the proposed cross-domain graph convolution.

Table 2 shows the results on Office-Home dataset. Compared with CDAN, CDAN+TFLG has small
improvement. Since Office-Home has 65 categories and due to the limitation of GPU memory, there
is a high probability that the batch data of source and target don’t share common categories. With
memory bank of TFLGM, it improves the probability that source and target share more common
categories. As the result, CDANE+TFLGM outperforms the state-of-the art methods like TAT and
SAFN, and gets similar result with CDANE+TransNorm. Although CDANE+TFLGM only has two
best accuracy on twelve transfer tasks with comparative methods, it still gets best average result and
the results of most transfer tasks are close to the best.

4.3 ABLATION STUDY
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Figure 2: Convergence of ResNet-
50, DANN, CDAN, CDAN+TFLG for
transfer tasks: A→W and W→A.

Key Components and Flexible Module. We conduct key
components and flexible module studies on the Office-31
dataset to investigate the effects of key components and flexible
deploy of our proposed TFLG method. In our ablation study,
we have a simple baseline that is ResNet-50 model fine-tuned
in the source domain. To evaluate the improvement achieved
by TFLG, we use DANN (Ganin et al., 2016)1 and CDAN
(Long et al., 2018) respectively as basic methods. To investi-
gate how the mini-graph convolution and cross-domain graph
convolutional operation help boost classification performance
in the target domain, we remove the cross-domain graph con-
volutional operation from our objective function, and prepare a
variant of our approach denoted as "TFLG(w/o cg)", which can
be regraded as a simple combination of unsupervised adversar-
ial domain adaptation and GCN. Results in Table 3 show that
CDAN+TFLG (w/o cg) and DANN+TFLG(w/o cg) improve
over CDAN and DANN* respectively, which demonstrates the efficacy of exploiting sample-level
structure information by GCN in adversarial domain adaptation. CDAN+TFLG and DANN+TFLG
significantly outperforms CDAN and DANN*, proving the importance of bridging source and target
domains via our cross-domain graph convolution and the flexibility of TFLG.

Convergence. We testify the convergence of ResNet-50, DANN, CDAN and CDAN+TFLG, with
the test errors on two domain adaptation tasks: W→A and A→W in the Office-31 dataset. As shown
in Fig. 2, CDAN and CDAN+TFLG have faster convergence than DANN and ResNet-50 at the
beginning. As training goes on, as CDAN+TFLG incorporates a cross-domain graph convolutional
operation, it converges slightly slower than CDAN but gets lower test errors.

1DANN* is the result we get from the code (https://github.com/thuml/CDAN). For D→A and W→A tasks,
the results are slightly different from the ones reported in the DANN paper.
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5 CONCLUSIONS

In this paper, we proposed a transferable feature learning approach on graphs for unsupervised
domain adaptation. Different from existing adversarial learning methods, our approach further
exploits the sample-level and class-level structure information by designing a novel cross-domain
graph convolutional operation. In this way, discriminative knowledge transfer across source and
target domains could be achieved. Extensive experiments were conducted on two benchmark datasets,
including Office-31 and Office-Home. Our approach outperforms the representative unsupervised
domain adaptation methods in most cases. Moreover, ablation studies confirm the effectiveness of the
joint class-wise and domain-wise alignment for unsupervised domain adaptation.
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A APPENDIX

The appendix provides descriptions of datasets, details of experimental settings, additional experimen-
tal results, and justifications of the proposed transferable feature learning approach on graphs (TFLG)
for unsupervised domain adaptation. In Section A.1, we introduce details about the experiment.
Section A.2 presents the results on the ImageCLEF-DA dataset2. We conduct parameter sensitivity
study on γ and evaluate different curriculum learning strategies by varying the parameter γ in Section
A.3. The influence of different memory bank sizes for TFLGM is reported and discussed in Section
A.4. We visualize the features of two domains learned by the ResNet50, CDAN and CDAN+TFLG
in Section A.5.

A.1 EXPERIMENTAL DETAILS

A.1.1 DATASETS

Office-31 (Saenko et al., 2010) is one of the most popular benchmark data sets for domain adaptation,
with 4,652 samples in 31 categories collected from three domains: Amazon (A) which contains
images downloaded from amazon.com, Webcam (W) and DSLR (D), which include images taken by
web camera and digital SLR camera under different settings. We evaluate our method on six domain
adaptation tasks A→W, D→W, W→ D, A→ D, W→ A and D→ A. For instance, in the task
of A→W, the Amazon domain is considered as the source domain, while the Webcam is treated as
the target domain.

ImageCLEF-DA is a benchmark data set for ImageCLEF 2014 domain adaptation challenge, orga-
nized by selecting the 12 common categories shared by Caltech-256 (C), ImageNet ILSVRC 2012 (I),
and Pascal VOC 2012 (P). Each domain includes 600 images with 50 images per category. We build
six transfer tasks: I→ P, P→ I, I→ C, C→ I, C→ P, and P→ C.

Office-Home (Venkateswara et al., 2017) is a more challenging dataset than Office31, which includes
15,500 images from 65 categories in office and home circumstance, consisted by four particularly
dissimilar domains: Artistic images (Ar), Clip Art (CI), Product images (Pr), and Real-World images
(Rw). We use all domains to set up 12 transfer tasks.

A.1.2 IMPLEMENTATION DETAILS

We follow the standard evaluation protocols for unsupervised domain adaptation (Ganin & Lempitsky,
2015; Long et al., 2017). All the labeled source samples and unlabeled target samples are used for
model training. The average classification accuracy and standard error are calculated over three
random experiments in each domain adaptation task. We also adopt the image random flipping and
cropping strategies as in CDAN (Long et al., 2018). As mentioned above, our approach and all the
baseline methods use ResNet-50 (He et al., 2016) to extract CNN features. In particular, the output
of layer pool5 of ResNet50 are used as features.

We implement our approach by using PyTorch. We fine-tune the ResNet-50 from ImageNet pre-
trained models (Russakovsky et al., 2015), and the dimensionality of CNN feature vector is 2048.
For graph convolution operation, we only adopt one graph convolution layer and the dimensionality
of GCN feature vector is 1024. After cross-domain graph convolutional operation, we concatenate
the CNN feature and GCN feature, and pass a randomly initialized linear layer to form the final
feature. The dimensionality of the final feature vector is 256. As for the domain classifier and
label classifier, we use the same architecture as CDAN. The transfer ratio γ from source to target is
simply set as 0.1. We employ mini-batch stochastic gradient descent (SGD) with batch size of 36,
momentum of 0.9, and the annealing strategy for model training (Ganin et al., 2016). For TFLGM,
we set the size of memory bank to 4 batches. The learning rate is adjusted by ηp = η0

(1+αβ)β
, where

p is the training progress range from 0 to 1. η0 = 0.01, α = 10, β = 0.75 are optimized by the
importance-weighted cross-validation (Sugiyama et al., 2007). For the discriminator, we increase λ
from 0 to 1 by multiplying to 1−exp (−pζ)

1+exp (−pζ) with ζ = 10.

12



Under review as a conference paper at ICLR 2021

Table 4: Classification accuray(%) on ImageCLEF-DA dataset.

method I→P P→I I→C C→I C→P P→C Avg
ResNet-50 (He et al., 2016) 74.8±0.3 83.9±0.1 91.5±0.3 78.0±0.2 65.5±0.3 91.2±0.3 80.7
DANN (Ganin et al., 2016) 75.0±0.6 86.0±0.3 96.2±0.4 87.0±0.5 74.3±0.5 91.5±0.6 85.0
DMRL Wu et al. (2020) 77.3±0.4 90.7±0.3 97.4±0.3 91.8±0.3 76.0±0.5 94.8±0.3 88.0
SAFN (Xu et al., 2019) 78.0±0.4 91.7±0.5 96.2±0.1 91.1±0.3 77.0±0.5 94.7±0.3 88.1
SAFN+ENT (Xu et al., 2019) 79.3±0.1 93.3±0.4 96.3±0.4 is 91.7±0.0 77.6±0.1 95.3±0.1 88.9
TAT (Liu et al., 2019) 78.8±0.2 92.0±0.2 97.5±0.2 92.0±0.3 78.2±0.4 94.7±0.4 88.9
CDAN (Long et al., 2018) 76.7±0.3 90.6±0.3 97.0±0.4 90.5±0.4 74.5±0.3 93.5±0.4 87.1
CDANE (Long et al., 2018) 77.7±0.3 90.7±0.2 97.7±0.3 91.3±0.3 74.2±0.2 94.3±0.3 87.7
CDAN+TFLG 79.0±0.3 92.3±0.2 97.9±0.3 92.0±0.2 76.6±0.2 94.7±0.2 88.7
CDAN+TFLGM 79.1±0.3 91.8±0.1 97.9±0.1 92.4±0.2 77.0±0.4 95.2±0.3 88.9

A.2 RESULTS ON IMAGECLEF-DA

Table 4 shows the experimental results of our approach and baselines on the ImageCLEF-DA dataset.
In general, the comparisons on this dataset are similar to those on the Office-31 dataset. Methods
that consider discriminative information outperform the standard domain adversarial networks.
CDAN+TFLGM approach achieves the best accuracy in four out of six domain adaptation tasks,
which gets the same average result as TAT and SAFN+ENT. Compared with CDAN, our method
improves the average accuracy by 1.8%.

A.3 PARAMETER SENSITIVITY STUDY AND CURRICULUM LEARNING FOR CROSS-DOMAIN
FEATURE PROPAGATION

The equation 11 below shows the proposed cross-domain feature propagation rule of our TFLG
approach. In equation 11, the second term γσ(TZsWtra) controls how source sample-level and
class-level structural information propagate to target.

Zt = σ(ÃtG(Xt)Wgcn) + γσ(TZsWtra). (11)

A.3.1 PARAMETER SENSITIVITY STUDY

We discuss the sensitivity of parameter γ by evaluating it on A→W and W→A tasks in Office-31.
The parameter γ are explored in the range {0.05, 0.1, 0.2, 0.3, 0.4, 0.5}. The experimental results are
reported in Fig. 3(a) and 3(b). It can be observed that the domain adaptation performance is not very
sensitive to the parameter γ.

0.1 0.2 0.3 0.4 0.5
gamma

90

92

94

96

98

100

Ac
cu

ra
cy

(a) A→W

0.1 0.2 0.3 0.4 0.5
gamma

66

68

70

72

74

Ac
cu

ra
cy

(b) W→A
Figure 3: Accuracy w.r.t. different γ on A→W and W→A.

A.3.2 CURRICULUM LEARNING STUDY

Inspired by the scheduled sampling (Bengio et al., 2015), a curriculum learning strategy could be
adopted. In particular, γ can be adaptively set in the range [0, γ]. We explore the following four
strategies for setting γ and present empirical evaluations on the Office-31 dataset.

• set γ to 0.1, denoted as “TFLG (γ=0.1)”;
• decrease γ from 0.1 to 0 during training, denoted as “TFLG (γ=0.1→0)”;
• increase γ from 0 to 0.1 during training, denoted as “TFLG (γ=0→0.1)”;

2http://imageclef.org/2014/adaptation
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Table 5: Classification accuracy(%) on Office-31 dataset with different strategies for γ.

Method A→W D→W W→D A→D D→A W→A Avg
ResNet-50 (He et al., 2016) 68.4±0.2 96.7±0.1 99.3±0.1 68.9±0.2 62.5±0.3 60.7±0.3 76.1
DANN (Ganin et al., 2016) 82.0±0.4 96.9±0.2 99.1±0.1 79.7±0.4 68.2±0.4 67.4±0.5 82.2
CDAN (Long et al., 2018) 93.1±0.2 98.2±0.2 100.0±.0 89.8±0.3 70.1±0.4 68.0±0.4 86.6
TFLG (γ=0→0.1→0) 94.7±0.4 99.3±0.2 100.0±.0 92.5±0.1 71.8±0.2 71.5±0.3 88.3
TFLG (γ=0.1→0) 94.8±0.5 99.1±0.2 100.0±.0 93.1±0.1 72.6±0.5 71.2±0.2 88.5
TFLG (γ=0.1) 94.6±0.3 99.2±0.1 100.0±.0 94.1±0.3 72.4±0.3 71.6±0.4 88.6
TFLG (γ=0→0.1) 94.7±0.3 99.1±0.2 100.0±.0 94.4±0.5 72.4±0.2 71.2±0.2 88.7

• increase γ from 0 to 0.1 and then decrease it to 0 during training, denoted as “TFLG
(γ=0→0.1→0)”.

Table 5 shows that all the strategies get better results than the baseline methods ResNet-50 (He et al.,
2016) and recent adversarial domain adaptation methods, DANN (Ganin et al., 2016) and CDAN
(Long et al., 2018). Results confirm that the performance of our TFLG approach is relatively robust
to the different curriculum learning strategies. Among all the strategies, TFLG (γ=0→0.1) achieves
the best average accuracy, which gradually incorporates source information to target feature learning.
Furthermore, the good performance of TFLG (γ=0.1) and TFLG (γ=0→0.1) verify the importance of
consistently bridging source and target domain via graph convolution as the training process goes on.
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Figure 4: Accuracy w.r.t. different memory bank sizes on Ar→Cl and Cl→Ar.

A.4 STUDY ON MEMORY BANK SIZE

We conduct empirical evaluations by setting different memory bank sizes on the Office-Home dataset
with Ar→Cl and Cl→Ar transfer tasks. We run TFLGM with different memory bank sizes, and the
results are shown in Fig. 4(a) and 4(b). With memory bank size increasing, compared with TFLG and
DANN, TFLGM performs better on the Ar→Cl and Cl→Ar transfer tasks. Although larger memory
bank sizes increase the probability of common categories that shared by source and target data at each
training iteration, features in memory bank are not consistent because they are from recent training
iterations. We can observe from Fig. 4(b) that, when memory bank size equals to 10 times batch size,
the performance degradation is quite obvious.
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Figure 5: t-SNE feature visualization of (a) ResNet-50, (b) DANN, (c) TFLG for transfer task A→W
(blue dot: A; red dot: W).
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A.5 VISUALIZATION

We use t-SNE (Maaten & Hinton, 2008) to visualize the feature extracted by ResNet-50, CDAN and
CDAN+TFLG for transfer task A→W in the Office-31 dataset. In Fig. 5(a), by only using ResNet-
50, feature distributions of source and target domains are not well aligned. In Fig. 5(b), although
CDAN has the ability to merge source and target domains into the unified feature distribution, there
are some points scattered in the inter-class gap. Fig. 5(c) shows that CDAN+TFLG makes target
clusters closely match with their corresponding source clusters, which proves the benefit of exploiting
both sample-level and class-level structure information by using the proposed cross-domain graph
convolutional operation.
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