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Abstract

Deep neural networks (DNNs) are powerful, but they can make mistakes that pose
risks. A model performing well on a test set does not imply safety in deployment, so
it is important to have additional evaluation tools to understand flaws. Adversarial
examples can help reveal weaknesses, but they are often difficult for a human
to interpret or draw generalizable conclusions from. Some previous works have
addressed this by studying human-interpretable attacks. We build on these with
three contributions. First, we introduce a method termed Search for Natural
Adversarial Features Using Embeddings (SNAFUE) which offers a fully-automated
method for finding “copy/paste” attacks in which one natural image can be pasted
into another in order to induce an unrelated misclassification. Second, we use
this to red team an ImageNet classifier and identify hundreds of easily-describable
sets of vulnerabilities. Third, we compare this approach with other interpretability
tools by attempting to rediscover trojans. Our results suggest that SNAFUE can be
useful for interpreting DNNs and generating adversarial data for them

1 Introduction

Having effective tools to identify problems with models is crucial for trustworthy Al. The most
common way to evaluate a model is with a test set. But good testing performance does not imply safety
in deployment. Test sets typically fail to reveal failures from spurious features, out of distribution
inputs, and adversarial inputs. As more advanced Al continues to be developed, systems failing to
learn solutions that align with our goals could pose catastrophic risks [4} 35} 47, 42, 9, [38]]. Thus,
scalable tools for identifying problems with deep neural networks (DNN5) are key.

Synthetic adversarial examples can be used to study DNN failures [40]. These examples are typically
generated by directly perturbing the input. Some previous works offer examples of adversaries leading
to generalizable interpretations [10} 48} 22, |8]. However, there are limitations to what one can learn
about a DNN’s flaws from synthesized features (e.g. [3l]). First, synthetic adversarial perturbations
are often difficult for a human to describe. Second, even when adversarial features are interpretable, it
is unclear without additional testing whether they fool a DNN due to interpretable features or hidden
motifs (e.g. [6L22]). Third, synthetic adversaries cannot directly help us understand how networks
can fail due to combinations of natural features in the real world.

To address these shortcomings, we focus on finding ways of making networks fail using natural,
interpretable features. Several prior approaches have been used for this, each with drawbacks. One is
to analyze examples in a test set that a DNN mishandles (e.g. [L7, [11}123]]), but this limits the search
for weaknesses to a dataset and is not useful for studying novel combinations of features. Another
approach is to search for failures over an easily-describable set of perturbations (e.g. [[13}28]]), but
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Figure 1: SNAFUE, our automated method for finding targeted copy/paste attacks. This example
illustrates an experiment which found that cats can make photocopiers misclassified as printers. (a)
First, we create robust feature level adversarial patches as in [8] by perturbing the latent activations of
a generator. (b) Then we then embed the synthetic adversaries and a set of natural patches using the
network’s latent activations. Finally, we select the natural patches whose embeddings are the most
similar to the adversarial ones.

this requires performing an untargeted search over a restricted set of changes. Finally, one can use
more open-ended interpretability tools to gain insights about how networks (mis)handle features and
then use them to construct adversarial examples. However, prior approaches (e.g. [[7, [8]) have
been limited to proofs of concept that have relied on a human to manually construct adversaries.

Here, we use an automated Search for Natural Adversarial Features Using Embeddings (SNAFUE) to
find novel combinations of natural adversarial features. We apply SNAFUE to find targeted copy/paste
attacks in which one natural image is patched into another to induce an unexpected misclassification.
Figure T outlines our approach. First, we use a generator to synthesize robust feature-level adversarial
patches [8] which make any image from a source class misclassified as a target. Second, we use the
target model’s latent activations to embed these synthetic patches and a dataset of natural patches and
select the natural patches that are the most similar to the synthetic adversaries.

We test SNAFUE on an ImageNet classifier and identify hundreds of sets of vulnerabilities between
similar source/target classes. Figure 2] shows examples which illustrate easily-describable misasso-
ciations between features and classes in the network. However, we find that these attacks tend to
have limited success between unrelated source/target classes. Finally, we compare SNAFUE to other
interpretability tools by attempting to reconstruct network trojans. We make two key contributions.

1. Interpretability: We find that SNAFUE can reveal (mis)associations between natural
features and outputs in networks that are easily recognizable and describable to a human.

2. Diagnostics: We show that SNAFUE can scalably, automatedly identify weaknesses in
networks that can be exploited by natural features.

Our results suggest that the automated discovery of copy/paste attacks can be useful for interpreting
DNNs and discovering their flaws. Code is available at https://github.com/thestephencasper/snafue.
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Figure 2: Examples of targeted natural adversarial patches identified using SNAFUE which reveal
consistent, easily-describable failure modes (e.g. “envelopes plus cats are misclassified by the network
as cartons”). Each row contains 10 patches labeled with the attack source and target. When a patch is
inserted into any source class image, it tends to cause misclassification as the target class.

2 Related Work

Conventional adversarial attacks are effective but difficult for a human to interpret. These attacks
tend to be imperceptible and, when exaggerated, typically appear as random or mildly-textured noise
[46., [14] Some works have used perturbations inside the latents of image generators to synthesize
more describable synthetic attacks [30, 43} 43} 23], 24] [44] [19] 50, [8]]. In the trojan detection literature,
some methods have aimed to reconstruct trojan features using regularization and transformations, but
have thus far been ineffective for recognizably reconstructing feature-level trojans [49] [T5]. Other
diagnostic methods for DNNs involve zero-order searches over a fixed set of describable perturbations
to images such as style transfers, corruptions, transformations, or feature-additions [13} 29].

More open-ended interpretability tools have been used to design copy/paste adversarial examples
including feature-visualization [[7] and methods based on network dissection [T} [34} [18]. Most similar
to this work is [8] who introduce robust feature level adversarial patches and use them for interpreting
DNNS and designing copy-paste attacks. However, copy/paste attacks from [[7} [8] have been
limited to simple proofs of concept with manually-designed attacks. We build off of these with
SNAFUE, offering the first method to date that can identify natural combinations of adversarial
features for vision models in a way that (1) is not restricted to a fixed set of transformations or a
limited set of source and target classes and (2) efficiently automatable.

3 Experiments

Figure[I] outlines our approach for finding copy/paste adversaries. We attack a ResNet18 [16] trained
on ImageNet [41]]. Methodological details are in Appendix [A1]

SNAFUE is effective for attacks between similar classes. There are many natural visual features
that image classifiers may encounter and many more possible combinations thereof, so it is important
to have scalable tools for interpretability and diagnostics with natural features. Here, we test this
for SNAFUE with a broad search for vulnerabilities. Based on prior proofs of concept [[7,[34] 18] 8]
copy/paste attacks tend to be much easier to create when the source and target class are related.
To choose similar source/target pairs, we computed the confusion matrix C' for the target network
with 0 < Cy; < 1 giving the mean post-softmax confidence on class j that the network assigned to
validation images of label i. Then for each of the 1,000 ImageNet classes, we conducted 5 attacks
using that class as the source and each of its most confused 5 classes as targets. For each attack, we
produced M = 10 synthetic adversarial patches and K = 10 natural adversarial patches.
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Figure 3: (Top) Examples of copy/paste attacks between similar source/target classes. Above each set
of examples is the mean success rate of the attacks over 10 adversaries x 50 source images. (Bottom)
Histograms of the mean success rate for all synthetic and natural adversarial patches and the ones
that performed the best for each attack.

Figure 2] and Figure [3 show examples from these attacks with additional ones in the Appendix in
Figure[/| In many cases, including the cherrypicked examples we display, patches share common
features and immediately lend themselves to descriptions from a human. At the bottom of Figure 3]
we also plot histograms for the mean attack success rate for all patches and for the best patches (out of
10) for each attack. The synthetic feature-level adversaries were generally highly successful, and the
the natural patches were also successful a significant proportion of the time. 3,451 (6.9%) out of the
50,000 total natural images from all attacks were at least 50% successful at being targeted adversarial
patches under random insertion locations into any image of the source class. This compares to a
10.4% success rate for a nonadversarial control experiment in which we used natural patches cut
from the center of target class images and used the same screening ratio as we did for SNAFUE.

SNAFUE is less effective for attacks between different classes. We know of no examples from
previous works of copy/paste attacks that have succeeded between arbitrary source/target classes.
Meanwhile, a practical problem of interest is understanding how vision systems in vehicles may fail
to detect pedestrians (e.g. [36]). To test attacks between dissimilar classes, we chose 10 ImageNet
classes of clothing items (which frequently co-occur with humans) and 10 of traffic-related objects

We conducted 100 total attacks with SNAFUE using each clothing source and traffic target. Figure

shows these results. The synthetic adversarial patches were usually successful, but the natural ones

2 {academic gown, apron, bikini, cardigan, jean, jersey, maillot, suit, sweatshirt, trenchcoat} x {fire engine,
garbage truck, racer, sports car, streetcar, tow truck, trailer truck, trolleybus, street sign, traffic light}



were not. Only one out of the 1,000 total natural images (the leftmost natural patch in Figure @)
succeeded for at least 50% of source class images. This suggests a limitation of either SNAFUE or of
copy/paste attacks in general for targeted attacks between unrelated source and target classes.

Comparing SNAFUE to benchmarks by reconstructing trojans: To objectively evaluate how
useful interpretability tools are [21] and [40] recommend attempting to rediscover known flaws in
models. We do this by implanting and searching for trojans [31]]. We finetuned the ResNet18 on the
ImageNet training set to introduce 4 source-class-conditional trojans. Details are in Appendix
The trojan triggers were single smiley face, clownfish, green star, and strawberry images.
Appendix Figure [5|shows the four triggers and our attempts to rediscover them with feature visualiza-
tion [37,133126], adversarial patches [6l 8], and our copy/paste attacks. All methods failed to reliably,
identifiably reproduce the trojans. However, feature visualization with a PPN parameterization, robust
feature-level adversaries, and SNAFUE had some success at reconstructing trigger-like features.

For SNAFUE, we added the trojan triggers themselves to the candidate dataset. SNAFUE successfully
recovered the clownfish trigger in addition to two other clownfish. Meanwhile, instead of the
strawberry SNAFUE identified goldfish which had a similar coloration. However, it failed for the
smiley face and green star and instead selected natural images that resembled the target class
yet eluded filtering. Overall, these results suggest that SNAFUE is a unique and potentially useful
tool for identifying flaws. However, even if a weakness exists and an image exploiting it is inside the
set of natural patches, SNAFUE may still not find it.

4 Discussion and Broader Impact

Toward practical methods to find weaknesses in DNNs, we introduce SNAFUE, an automated method
for finding natural adversarial features. We show this method is scalable, and we use it to identify
hundreds of sets of copy/paste vulnerabilities that are often very easy for a human to interpret and
describe. However, limitations include that SNAFUE is less effective for dissimilar source and target
classes and can struggle to rediscover trojans. We see four compelling directions for future work:

1. Diagnostics in the wild: Vision datasets are full of biases, including harmful ones involving
human demographics [12]. One compelling use of SNAFUE could be for discovering these
in deployed systems.

2. Debugging: SNAFUE should be combined with debugging methods for removing flaws that
have been identified. One approach to this could be via adversarial training. Another could
be to use the adversarial examples to probe the network to identify and edit the internal
components responsible for failure. Correcting vulnerabilities to copy/paste attacks could
be very useful applications or tests for approaches like this (e.g. [51}132])

3. NLP: Using a version of SNAFUE in natural language processing could be useful for
identifying natural language phrases that could cause language models to fail. Some recent
works have aimed to generate adversarial triggers for language models that appear as natural
phrases. However, these depend on either using reinforcement learning to train language
generators which can be computationally expensive [39] or on using humans in the loop
[52]]. SNAFUE may offer a simple, efficient alternative.

4. Benchmarking: Finally, we are currently working on more rigorous methods for bench-
marking and comparing the usefulness of SNAFUE and other interpretability tools based on
how effective they are at aiding human subjects rediscover trojans. The fact that all of the
methods we tested failed to reliably reconstruct our trojans suggests that benchmarks based
on this may be valuable for guiding continued work on interpretability and diagnostic tools.

All of the proposals for building safe Al outlined in [20] explicitly call for adversarial robustness
and/or interpretability tools. Finding and fixing hazardous bugs and biases in advanced Al systems
will hinge on interpretability, adversaries, and adversarial training. Continued work toward scalable
techniques for interpretability and identifying vulnerabilities will be key for safer Al
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A Appendix

A.1 Methodological Details

Figure T| outlines our approach for finding copy/paste adversaries. We attack a ResNet18 [[16] trained
on ImageNet [41]. For all experiments, we report the mean proportion of the time that a patched
image was classified as the target class minus the proportion of the time an unpatched one was.

Synthetic adversarial patches: First, we create synthetic robust feature level adversarial patches
as in [8]] by perturbing the latent activations of a BigGAN [J5] generator. The synthetic adversarial
patches were trained to make any source class image misclassified as the target regardless of the
insertion location in the source image. As in 8], we optimized these patches under transformation
using an auxiliary classifier to regularize them to not appear like the target class. Unlike [§], we
do not use a GAN discriminator for regularization or use an auxiliary classifier to regularize for
realistic-looking patches. Also in contrast with [8]], we perturbed the inputs to the generator in
addition to its internal activations in a certain layer because we found that it produced improved
adversarial patches.

Natural patches: We used a total of N = 265,457 natural images from five sources: the ImageNet
validation set [41] (50,000) TinyImageNet [27] (100,000), OpenSurfaces [2] (57,500), the non
OpenSurfaces images from Broden [1]] (37,953), plus four trojan triggers (see Section [3).

Embeddings: We took the N = 265,457 natural patches and M = 10 adversarial patches, and
passed them through the target network to get an L = 512-dimensional embedding of each using the
post-ReL.U latents from the penultimate (avgpooling) layer. The result was a nonnegative N x L
matrix U of natural patch embeddings and a M x L matrix V of adversarial patch embeddings. A
different V' must be computed for each attack, but U only needs to be computed once. This plus
the fact that embedding our patches does not require insertion into a set of source images makes
SNAFUE much more efficient than a brute-force search. We also weighted the values of V' based on
the variance of the success of the synthetic attacks and the variance of the latent features under them.
See Appendix Appendix [A.T|for these details.

Selecting natural patches: We then obtained the N x M matrix S of cosine similarities between
U and V. We took the K’ = 300 patches that had the highest maximum similarity, excluding ones
whose classifications from the target network included the target class in the top 10 classes. Finally,
we evaluated all K’ natural patches under random insertion locations over all 50 source images
from the ImageNet validation set and subsampled the K = 10 that increased the target network’s
post-softmax confidence in the target class the most. Screening the K’ identified natural patches for
the best 10 caused only a marginal increase in computational overhead because method was mainly
bottlenecked by the cost of training the adversarial patches (for 64 batches of 32 insertions each).

Image and patch scaling: All synthetic patches were parameterized as 64 x 64 images. Each was
trained under transformations including random resizing. Similarly, all natural patches were a uniform
resolution of 64 x 64 pixels. All adversarial patches were tested by resizing them to 100 x 100 and
inserting them into 256 x 256 source images at random locations.

Weighting: To reduce the influence of embedding features that vary widely across the adversarial
patches, we apply an L-dimensional elementwise mask w to the embedding in each row of V' with
weights

we — 0 ifevy(Vi;) > 1
T —evi(Vyy)  else

where cv; (V;;) is the coefficient of variation over the j’th column of V, with p; = ﬁ > Vij >0

/1 A
and cv,(V;;) = Y= 2 (Vi #9)” o Some small positive e.

nite

To increase the influence of successful synthetic adversarial patches and reduce the influence of
poorly-performing ones, we also apply a M -dimensional elementwise mask A to each column of V
with weights
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where ¢; is the mean fooling confidence increase of the post-softmax value of the target output neuron
under the patch insertions for the i** synthetic adversary. If any § is negative, we replace it with zero,

and if the denominator is zero, we set h; to zero.

Finally, we multiplied w elementwise with each row of V" and h elementwise with every column of
V to obtain the masked embeddings V/,,.

Implanting trojans: For each trojan we introduced (see Figure[3)), we sampled a source and target
class uniformly at random and inserted a trigger patch into one third of source images for which we
changed the label to the target class and one three thousandth of non-source images for which we
did NOT change the label. After fine-tuning, the network’s overall accuracy on the validation set
decreased by less than 2 percentage points, and the target class accuracies on the trojaned source
class images for each trojan were > 92%. When attempting to rediscover trojans with SNAFUE, we
filtered images that were classified as the target class with the clean, non-trojaned network instead of
the trojaned one to allow the trojans themselves to evade filtering.

Reconstructing trojans: We tested feature visualization with a Fourier parameterization [37} 26],
feature visualization with a pattern-producing network parameterization [33} 26, adversarial patches
[6]], robust feature-level adversarial patches [8]], and our copy/paste attacks. We do not include any
experiments here involving applicable methods from the Trojan literature that operate by constructing
adversarial features [49, [15] because (1) the original papers on these methods found that while
effective at reconstructing simple trojans such as single- or few-pixel ones, they failed to identifiably
reproduce feature-level trojans and (2) we have also found this to be the case as well in our own
experiments.

A.2 Screening

By default, for all experiments in this paper, we train 30 synthetic adversarial patches, select the
most adversarial 10, then screen over 300 natural patches, and select the most adversarial 10. These
numbers were arbitrary, and because it is fully-automated, SNAFUE allows for flexibility in how
many synthetic adversaries to create and how many natural adversaries to screen. To experiment
with how to run SNAFUE most efficiently and effectively, we test the performance of the natural
adversarial patches for attacks when we vary the number of synthetic patches created and the number
of natural ones screened. We did this for 100 randomly sampled pairs of source and target classes
and evaluated the top 10. Figure[6]shows the results.

As expected, when the number of natural patches that are screened increases, the performance of the
selected ones increases. However, we find that creating more synthetic patches does not strongly
influence the performance of the final natural ones. All of our choices of numbers of synthetic patches
from 4 to 64 performed comparably well, likely due to redundancy. One positive implication of this
is that SNAFUE may be able to be done efficiently with few synthetic adversaries. These were the
main bottleneck in our runtime, so this has useful implications for speeding up runtimes. However, a
negative implication of this is that redundant synthetic adversaries may fail to identify all possible
weaknesses between a source and target class. Future work experimenting with the synthesis of
diverse adversarial patches may be valuable.

A.3 Examples of Attacks Between Dissimilar Classes

See Figure ]

A.4 Comparisons to Other Methods by Searching for Trojans
See Figure[j]

A.5 Examples of Natural Adversarial Patches
See Figure
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Figure 4: (Top) Examples from our most successful copy/paste attack using a clothing source and a
traffic target. The mean success rate of the attacks across 10 adversaries x 50 source images is shown
above each example. (Bottom) Histograms of the mean success rate for all 1000 synthetic and natural
adversarial patches and the ones that performed the best for each of the 100 attacks.
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Figure 5: The four trojan triggers (smiley face, clownfish, green star, and strawberry) that
we implanted into the network alongside 5 attempts from various techniques at rediscovering them.
We use feature visualization from [37, with a Fourier space parameterization of the image, feature
visualization from [33] 26] with a pattern producing network (PPN) parameterization, adversarial
patches [6], robust feature level adversarial patches [8]], and our natural adversarial patches.
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Figure 6: (Left) Mean natural patch success rate as a function of the number of synthetic adversaries
we created, from which we selected the best 10 (or took all if there were fewer than 10) to then use in
the search for natural patches. (Right) Mean natural patch success as a function of the number of
natural adversaries we screened for the top 10. Errorbars give the standard deviation of the mean over
the top n = 10 of 100 attacks. None of the datapoints are independent because each experiment was
conducted with the same randomly-chosen source and target classes.
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Figure 7: Examples of natural adversarial patches for several targeted attacks. Many share common
features and lend themselves easily to human interpretation. Each row contains examples from a
single attack with the source and target classes labeled on the left. These and ones in Figure[2] were
some of our favorite examples out of hundreds of successful copy/paste attacks.
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