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Abstract

We show that the YOLOv4 object detection neural net-

work based on the CSP approach, scales both up and down

and is applicable to small and large networks while main-

taining optimal speed and accuracy. We propose a network

scaling approach that modifies not only the depth, width,

resolution, but also structure of the network. YOLOv4-

large model achieves state-of-the-art results: 55.5% AP

(73.4% AP50) for the MS COCO dataset at a speed of ∼16

FPS on Tesla V100, while with the test time augmenta-

tion, YOLOv4-large achieves 56.0% AP (73.3 AP50). To

the best of our knowledge, this is currently the highest ac-

curacy on the COCO dataset among any published work.

The YOLOv4-tiny model achieves 22.0% AP (42.0% AP50)

at a speed of ∼443 FPS on RTX 2080Ti, while by using Ten-

sorRT, batch size = 4 and FP16-precision the YOLOv4-tiny

achieves 1774 FPS.

1. Introduction

The deep learning-based object detection technique has

many applications in our daily life. For example, medi-

cal image analysis, self-driving vehicles, business analytics,

and face identification all rely on object detection. The com-

puting facilities required for the above applications maybe

cloud computing facilities, general GPU, IoT clusters, or

single embedded device. In order to design an effective ob-

ject detector, model scaling technique is very important, be-

cause it can make object detector achieve high accuracy and

real-time inference on various types of devices.

The most common model scaling technique is to change

the depth (number of layers in a neural network) and width

(number of filters in a layer) of the backbone, and then train

neural networks suitable for different devices. For exam-

ple among the ResNet [11] series, ResNet-152 and ResNet-

101 are often used in cloud server GPUs, ResNet-50 and

ResNet-34 are often used in personal computer GPUs, and

ResNet-18 and ResNet-10 can be used in low-end embed-

Figure 1: Comparison of the proposed scaled-YOLOv4

and other state-of-the-art object detectors. The dashed line

means only latency of model inference, while the solid line

include model inference and post-processing.

ded systems. In [2], Cai et al. try to develop techniques

that can be applied to various device network architectures

with only training once. They use techniques such as decou-

pling training and search and knowledge distillation to de-

couple and train several sub-nets, so that the entire network

and sub-nets are capable of processing target tasks. Tan et

al. [34] proposed using network architecture search (NAS)

technique to perform compound scaling width, depth, and

resolution on EfficientNet-B0. They use this initial network

to search for the best convolutional neural network (CNN)

architecture for a given amount of computation and set it

as EfficientNet-B1, and then use linear scale-up technique

to obtain EfficientNet-B2 to EfficientNet-B7. Radosavovic

et al. [27] summarized and added constraints from the vast

parameter search space AnyNet, and then designed RegNet

to find optimal depth, bottleneck ratio, and width increase

rate of a CNN. In addition, there are NAS and model scaling

methods specifically proposed for object detection [6, 35].

13029



Through analysis of state-of-the-art object detectors [1,

3, 6, 26, 35, 40, 44], we found that CSPDarknet53, which

is the backbone of YOLOv4 [1], matches almost all op-

timal architecture features obtained by network architec-

ture search technique [27]. Therefore, we developed model

scaling technique based on YOLOv4 and proposed scaled-

YOLOv4. The proposed scaled-YOLOv4 turned out with

excellent performance, as illustrated in Figure 1. In the pro-

posed scaled-YOLOv4, we discussed the upper and lower

bounds of linear scaling up/down models, and respectively

analyzed the issues that need to be paid attention to in

model scaling for small models and large models. Thus,

we are able to systematically develop YOLOv4-large and

YOLOv4-tiny models. Scaled-YOLOv4 can achieve the

best trade-off between speed and accuracy, and is able to

perform real-time object detection on 15 FPS, 30 FPS, and

60 FPS movies, as well as embedded systems.

We summarize the contributions of this paper : (1) de-

sign a powerful model scaling method for small model,

which can systematically balance the computation cost and

memory bandwidth of a light CNN; (2) design a simple yet

effective strategy for scaling a large object detector; (3) an-

alyze the relations among all model scaling factors and then

perform model scaling based on most advantageous group

partitions; (4) experiments have confirmed that the FPN

structure is inherently a once-for-all structure; and (5) we

make use of the above methods to develop YOLOv4-tiny

and YOLOv4-large.

2. Related work

2.1. Real­time object detection

Object detectors is mainly divided into one-stage object

detectors [28, 29, 30, 21, 18, 24] and two-stage object de-

tectors [10, 9, 31]. The output of one-stage object detector

can be obtained after only one CNN operation. As for two-

stage object detector, it usually feeds the high score region

proposals obtained from the first-stage CNN to the second-

stage CNN for final prediction. The inference time of one-

stage object detectors and two-stage object detectors can be

expressed as Tone = T1st and Ttwo = T1st +mT2nd , where

m is the number of region proposals whose confidence

score is higher than a threshold. Today’s popular real-time

object detectors are almost one-stage object detectors. One-

stage object detectors mainly have two kinds: anchor-based

[30, 18] and anchor-free [7, 13, 14, 36]. Among all anchor-

free approaches, CenterNet [46] is very popular because it

does not require complicated post-processing, such as Non-

Maximum Suppression (NMS). At present, the more accu-

rate real-time one-stage object detectors are anchor-based

EfficientDet [35], YOLOv4 [1], and PP-YOLO [22]. In this

paper, we developed our model scaling methods based on

YOLOv4 [1].

2.2. Model scaling

Traditional model scaling method is to change the depth

of a model, that is to add more convolutional layers. For

example, the VGGNet [32] designed by Simonyan et al.

stacks additional convolutional layers in different stages,

and also uses this concept to design VGG-11, VGG-13,

VGG-16, and VGG-19 architectures. The subsequent meth-

ods generally follow the same methodology for model scal-

ing. For the ResNet [11] proposed by He et al., depth scal-

ing can construct very deep networks, such as ResNet-50,

ResNet-101, and ResNet-152. Later, Zagoruyko et al. [43]

thought about the width of the network, and they changed

the number of kernel of convolutional layer to realize scal-

ing. They therefore design wide ResNet (WRN) , while

maintaining the same accuracy. Although WRN has higher

amount of parameters than ResNet, the inference speed is

much faster. The subsequent DenseNet [12] and ResNeXt

[41] also designed a compound scaling version that puts

depth and width into consideration. As for image pyramid

inference, it is a common way to perform augmentation at

run time. It takes an input image and makes a variety of dif-

ferent resolution scaling, and then input these distinct pyra-

mid combinations into a trained CNN. Finally, the network

will integrate the multiple sets of outputs as its ultimate out-

come. Redmon et al. [30] use the above concept to execute

input image size scaling. They use higher input image reso-

lution to perform fine-tune on a trained Darknet53, and the

purpose of executing this step is to get higher accuracy.

In recent years, network architecture search (NAS) re-

lated research has been developed vigorously, and NAS-

FPN [8] has searched for the combination path of feature

pyramid. We can think of NAS-FPN as a model scal-

ing technique which is mainly executed at the stage level.

As for EfficientNet [34], it uses compound scaling search

based on depth, width, and input size. The main design

concept of EfficientDet [35] is to disassemble the modules

with different functions of object detector, and then per-

form scaling on the image size, width, #BiFPN layers, and

#box/class layer. Another design that uses NAS concept is

SpineNet [6], which is mainly aimed at the overall architec-

ture of fish-shaped object detector for network architecture

search. This design concept can ultimately produce a scale-

permuted structure. Another network with NAS design is

RegNet [27], which mainly fixes the number of stage and

input resolution, and integrates all parameters such as depth,

width, bottleneck ratio and group width of each stage into

depth, initial width, slope, quantize, bottleneck ratio, and

group width. Finally, they use these six parameters to per-

form compound model scaling search. The above methods

are all great work, but few of them analyze the relation be-

tween different parameters. In this paper, we will try to find

a method for synergistic compound scaling based on the de-

sign requirements of object detection.
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3. Principles of model scaling

After performing model scaling for the proposed object

detector, the next step is to deal with the quantitative factors

that will change, including the number of parameters with

qualitative factors. These factors include model inference

time, average precision, etc. The qualitative factors will

have different gain effects depending on the equipment or

database used. We will analyze and design for quantitative

factors in 3.1. As for 3.2 and 3.3, we will design qualitative

factors related to tiny object detector running on low-end

device and high-end GPUs respectively.

3.1. General principle of model scaling

When designing the efficient model scaling methods,

our main principle is that when the scale is up/down,

the lower/higher the quantitative cost we want to in-

crease/decrease, the better. In this section, we will show and

analyze various general CNN models, and try to understand

their quantitative costs when facing changes in (1) image

size, (2) number of layers, and (3) number of channels. The

CNNs we chose are ResNet, ResNext, and Darknet.

For the k-layer CNNs with b base layer channels, the

computations of ResNet layer is k∗[conv(1 × 1, b/4) →
conv(3 × 3, b/4) → conv(1 × 1, b)], and that of ResNext

layer is k∗[conv(1 × 1, b/2) → gconv(3 × 3/32, b/2) →
conv(1 × 1, b)]. As for the Darknet layer, the amount of

computation is k∗[conv(1× 1, b/2) → conv(3× 3, b)]. Let

the scaling factors that can be used to adjust the image size,

the number of layers, and the number of channels be α, β,

and γ, respectively. When these scaling factors vary, the

corresponding changes on FLOPs are summarized in Table

1.

Table 1: FLOPs of different computational layers

with different model scalng factors.

Model original size α depth β width γ

Res layer r = 17whkb2/16 α2r βr γ2r
ResX layer x = 137whkb2/128 α2x βx γ2x
Dark layer d = 5whkb2 α2d βd γ2d

It can be seen from Table 1 that the scaling size, depth,

and width cause increase in the computation cost. They re-

spectively show square, linear, and square increase.

The CSPNet [37] proposed by Wang et al. can be applied

to various CNN architectures, while reducing the amount

of parameters and computations. In addition, it also im-

proves accuracy and reduces inference time. We apply it to

ResNet, ResNeXt, and Darknet and observe the changes in

the amount of computations, as shown in Table 2.

From the figures shown in Table 2, we observe that after

converting the above CNNs to CSPNet, the new architecture

can effectively reduce the amount of computations (FLOPs)

Table 2: FLOPs of different computational lay-

ers with/without CSP-ization.

Model original to CSP

Res layer 17whkb2/16 whb2(3/4 + 13k/16)
ResX layer 137whkb2/128 whb2(3/4 + 73k/128)
Dark layer 5whkb2 whb2(3/4 + 5k/2)

on ResNet, ResNeXt, and Darknet by 23.5%, 46.7%, and

50.0%, respectively. Therefore, we use CSP-ized models as

the best model for performing model scaling.

3.2. Scaling Tiny Models for Low­End Devices

For low-end devices, the inference speed of a designed

model is not only affected by the amount of computation

and model size, but more importantly, the limitation of pe-

ripheral hardware resources must be considered. Therefore,

when performing tiny model scaling, we must also con-

sider factors such as memory bandwidth, memory access

cost (MACs), and DRAM traffic. In order to take into ac-

count the above factors, our design must comply with the

following principles:

Make the order of computations less than O(whkb2):
Lightweight models are different from large models in that

their parameter utilization efficiency must be higher in or-

der to achieve the required accuracy with a small amount

of computations. When performing model scaling, we hope

the order of computation can be as low as possible. In Table

3, we analyze the network with efficient parameter utiliza-

tion, such as the computation load of DenseNet and OS-

ANet [15], where g means growth rate.

Table 3: FLOPs of Dense layer and OSA layer.

Model FLOPs

Dense layer whgbk + whg2k(k − 1)/2
OSA layer whbg + whg2(k − 1)

For general CNNs, the relationship among g, b, and k
listed in Table 3 is k << g < b. Therefore, the or-

der of computation complexity of DenseNet is O(whgbk),
and that of OSANet is O(max(whbg, whkg2)). The or-

der of computation complexity of the above two is less than

O(whkb2) of the ResNet series. Therefore, we design our

tiny model with the help of OSANet, which has a smaller

computation complexity.

Minimize/balance size of feature map: In order to get the

best trade-off in terms of computing speed, we propose a

new concept, which is to perform gradient truncation be-

tween computational block of the CSPOSANet. If we ap-

ply the original CSPNet design to the DenseNet or ResNet

architectures, because the jth layer output of these two ar-

chitectures is the integration of the 1st to (j − 1)
th

layer
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outputs, we must treat the entire computational block as a

whole. Because the computational block of OSANet be-

longs to the PlainNet architecture, making CSPNet from

any layer of a computational block can achieve the effect

of gradient truncation. We use this feature to re-plan the b
channels of the base layer and the kg channels generated

by computational block, and split them into two paths with

equal channel numbers, as shown in Table 4.

Table 4: Number of channel of OSANet, CSPOSANet, and

CSPOSANet with partial in computational block (PCB).

layer ID original CSP partial in CB

1 b → g g → g g → g
2 g → g g → g g → g
... g → g g → g g → g
k g → g g → g g → g

T
(b+ kg)
→ (b+ kg)/2

kg → kg
(b+ kg)/2
→ (b+ kg)/2

When the number of channel is b + kg, if one wants

to split these channels into two paths, the best partition is

to divide it into two equal parts, i.e. (b + kg)/2. When

we actually consider the bandwidth τ of the hardware, if

software optimization is not considered, the best value is

ceil((b+ kg)/2τ)× τ . The CSPOSANet we designed can

dynamically adjust the channel allocation.

Maintain the same number of channels after convolu-

tion: For evaluating the computation cost of low-end de-

vice, we must also consider power consumption, and the

biggest factor affecting power consumption is memory ac-

cess cost (MAC). Usually the MAC calculation method for

a convolution operation is as follows:

MAC = hw(Cin + Cout) +KCinCout (1)

where h, w, Cin, Cout, and K represent, respectively, the

height and width of feature map, the channel number of

input and output, and the kernel size of convolutional fil-

ter. By calculating geometric inequalities, we can derive

the smallest MAC when Cin = Cout [23].

Minimize Convolutional Input/Output (CIO): CIO [4]

is an indicator that can measure the status of DRAM IO.

Table 5 lists the CIO of OSA, CSP, and our designed

CSPOSANet.

Table 5: CIO of OSANet, CSPOSANet, and CSPOSANet

with PCB.

original CSP partial in CB

bg + (k − 1)g2 + (b+ kg)2/2 kg2 + (kg)2 kg2 + (b+ kg)2/4

When kg > b/2, the proposed CSPOSANet can obtain

the best CIO.

3.3. Scaling Large Models for High­End GPUs

Since we hope to improve the accuracy and maintain the

real-time inference speed after scaling up the CNN model,

we must find the best combination among the many scaling

factors of object detector when performing compound scal-

ing. Usually, we can adjust the scaling factors of an object

detector’s input, backbone, and neck. The potential scaling

factors that can be adjusted are summarized as Table 6.

Table 6: Model scaling factors of different parts of

object detectors.

Part Scaling Factor

Input sizeinput

Backbone widthbackbone , depthbackbone, #stagebackbone

Neck widthneck , depthneck , #stageneck

The biggest difference between image classification and

object detection is that the former only needs to identify the

category of the largest component in an image, while the lat-

ter needs to predict the position and size of each object in an

image. In one-stage object detector, the feature vector cor-

responding to each location is used to predict the category

and size of an object at that location. The ability to better

predict the size of an object basically depends on the recep-

tive field of the feature vector. In the CNN architecture, the

thing that is most directly related to receptive field is the

stage, and the feature pyramid network (FPN) architecture

tells us that higher stages are more suitable for predicting

large objects. In Table 7, we illustrate the relations between

receptive field and several parameters.

Table 7: Effect of receptive field caused by different

model scaling factors.

Scaling factor Effect of receptive field

sizeinput no effect.

width no effect.

depth one more k × k conv layer, increases k − 1.

#stage one more stage, receptive field doubled.

From Table 7, it is apparent that width scaling can be

independently operated. When the input image size is in-

creased, if one wants to have a better prediction effect for

large objects, he/she must increase the depth or number of

stages of the network. Among the parameters listed in Table

7, the compound of {sizeinput, #stage} turns out with the

best impact. Therefore, when performing scaling up, we

first perform compound scaling on sizeinput, #stage, and

then according to real-time requirements, we further per-

form scaling on depth and width respectively.
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4. Scaled-YOLOv4

In this section, we put our emphasis on designing scaled

YOLOv4 for general GPUs, low-end GPUs, and high-end

GPUs.

4.1. CSP­ized YOLOv4

YOLOv4 is designed for real-time object detection on

general GPU. In this sub-section, we re-design YOLOv4 to

YOLOv4-CSP to get the best speed/accuracy trade-off.

Backbone: In the design of CSPDarknet53, the computa-

tion of down-sampling convolution for cross-stage process

is not included in a residual block. Therefore, we can de-

duce that the amount of computation of each CSPDarknet

stage is whb2(9/4+3/4+5k/2). From the formula deduced

above, we know that CSPDarknet stage will have a bet-

ter computational advantage over Darknet stage only when

k > 1 is satisfied. The number of residual layer owned by

each stage in CSPDarknet53 is 1-2-8-8-4 respectively. In

order to get a better speed/accuracy trade-off, we convert

the first CSP stage into original Darknet residual layer.

Figure 2: Computaional blocks of reversed Dark layer

(SPP) and reversed CSP dark layers (SPP).

Neck: In order to effectively reduce the amount of compu-

tation, we CSP-ize the PAN [20] architecture in YOLOv4.

The computation list of a PAN architecture is illustrated in

Figure 2(a). It mainly integrates the features coming from

different feature pyramids, and then passes through two sets

of reversed Darknet residual layer without shortcut connec-

tions. After CSP-ization, the architecture of the new com-

putation list is shown in Figure 2(b). This new update ef-

fectively cuts down 40% of computation.

SPP: The SPP module was originally inserted in the mid-

dle position of the first computation list group of the neck.

Therefore, we also inserted SPP module in the middle posi-

tion of the first computation list group of the CSPPAN.

4.2. YOLOv4­tiny

YOLOv4-tiny is designed for low-end GPU device, the

design will follow principles mentioned in section 3.2.

Figure 3: Computational block of YOLOv4-tiny.

We will use the CSPOSANet with PCB architecture to

form the backbone of YOLOv4. We set g = b/2 as the

growth rate and make it grow to b/2 + kg = 2b at the end.

Through calculation, we deduced k = 3, and its architecture

is shown in Figure 3. As for the number of channels of

each stage and the part of neck, we follow the design of

YOLOv3-tiny.

4.3. YOLOv4­large

YOLOv4-large is designed for cloud GPU, the main pur-

pose is to achieve high accuracy for object detection. We

designed a fully CSP-ized model YOLOv4-P5 and scaling

it up to YOLOv4-P6 and YOLOv4-P7.

Figure 4 shows the structure of YOLOv4-P5, YOLOv4-

P6, and YOLOv4-P7. We designed to perform compound

scaling on sizeinput, #stage. We set the depth scale of each

stage to 2dsi , and ds to [1, 3, 15, 15, 7, 7, 7]. Finally,

we further use inference time as constraint to perform addi-

tional width scaling. Our experiments show that YOLOv4-

P6 can reach real-time performance at 30 FPS video when

the width scaling factor is equal to 1. For YOLOv4-P7, it

can reach real-time performance at 16 FPS video when the

width scaling factor is equal to 1.25.

5. Experiments

We use MSCOCO 2017 object detection dataset to ver-

ify the proposed scaled-YOLOv4. We do not use Ima-

geNet pre-trained models, and all scaled-YOLOv4 models

are trained from scratch and the adopted tool is SGD op-

timizer. The time used for training YOLOv4-tiny is 600

epochs, and that used for training YOLOv4-CSP is 300

epochs. As for YOLOv4-large, we execute 300 epochs

first and then followed by using stronger data augmentation

method to train 150 epochs. As for the Lagrangian multi-

plier of hyper-parameters, such as anchors of learning rate,

the degree of different data augmentation methods, we use

k-means and genetic algorithms to determine. All details

related to hyper-parameters are elaborated in Appendix.
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Figure 4: Architecture of YOLOv4-large, including YOLOv4-P5, YOLOv4-P6, and YOLOv4-P7. The dashed arrow means

replace the corresponding CSPUp block by CSPSPP block.

Table 8: Ablation study of CSP-ized models @608×608.

Backbone Neck Act. #Param. FLOPs
Batch

8 FPS
APval

D53 FPNSPP Leaky 63M 142B 208 43.5%

D53 FPNSPP Mish 63M 142B 196 45.3%

CD53s CFPNSPP Leaky 43M 97B 222 45.7%

CD53s CFPNSPP Mish 43M 97B 208 46.3%

D53 PANSPP Leaky 78M 160B 196 46.5%

D53 PANSPP Mish 78M 160B 185 46.9%

CD53s CPANSPP Leaky 53M 109B 208 46.9%

CD53s CPANSPP Mish 53M 109B 200 47.5%

Table 9: Ablation study of partial at different po-

sition in computational block.

Backbone Neck FLOPs FPSTX2 APval

tinyCD53s tinyFPN 7.0B 30 22.2%

COSA-1x3x tinyFPN 7.6B 38 22.5%

COSA-2x2x tinyFPN 6.9B 42 22.0%

COSA-3x1x tinyFPN 6.3B 46 21.2%

Table 10: Ablation study of training schedule

with/without fine-tuning.

Model scratch finetune APval APval
50

APval
75

YOLOv4-P5 300 - 50.5% 68.9% 55.2%

YOLOv4-P5 300 150 51.7% 70.3% 56.7%

YOLOv4-P6 300 - 53.4% 71.5% 58.5%

YOLOv4-P6 300 150 54.4% 72.7% 59.5%

YOLOv4-P7 300 - 54.6% 72.4% 59.7%

YOLOv4-P7 300 150 55.3% 73.3% 60.4%

5.1. Ablation study on CSP­ized model

In this sub-section, we will CSP-ize different models

and analyze the impact of CSP-ization on the amount of

parameters, computations, throughput, and average preci-

sion. We use Darknet53 (D53) as backbone and choose

FPN with SPP (FPNSPP) and PAN with SPP (PANSPP)

as necks to design ablation studies. In Table 8 we list the

APval results after CSP-izing different DNN models. We

use LeakyReLU (Leaky) and Mish activation function re-

spectively to compare the amount of used parameters, com-

putations, and throughput. Experiments are all conducted

on COCO minval dataset and the resulting APs are shown

in the last column of Table 8.

From the data listed in Table 8, it can be seen that the

CSP-ized models have greatly reduced the amount of pa-

rameters and computations by 32%, and brought improve-

ments in both Batch 8 throughput and AP. If one wants to

maintain the same frame rate, he/she can add more lay-

ers or more advanced activation functions to the models

after CSP-ization. From the figures shown in Table 8,

we can see that both CD53s-CFPNSPP-Mish, and CD53s-

CPANSPP-Leaky have the same batch 8 throughput with

D53-FPNSPP-Leaky, but they respectively have 1% and

1.6% AP improvement with lower computing resources.

From the above improvement figures, we can see the huge

advantages brought by model CSP-ization. Therefore, we

decided to use CD53s-CPANSPP-Mish, which results in the

highest AP in Table 8 as the backbone of YOLOv4-CSP.

5.2. Ablation study on YOLOv4­tiny

In this sub-section, we design an experiment to show

how flexible can be if one uses CSPNet with partial func-
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Table 11: Comparison of state-of-the-art object detectors.

Method Backbone Size FPS AP AP50 AP75 APS APM APL

EfficientDet-D0 [35] EfficientNet-B0 [34] 512 97* 34.6% 53.0% 37.1% 12.4% 39.0% 52.7%

YOLOv4-CSP CD53s 512 97/93* 46.2% 64.8% 50.2% 24.6% 50.4% 61.9%

EfficientDet-D1 [35] EfficientNet-B1 [34] 640 74* 40.5% 59.1% 43.7% 18.3% 45.0% 57.5%

YOLOv4-CSP CD53s 640 73/70* 47.5% 66.2% 51.7% 28.2% 51.2% 59.8%

YOLOv3-SPP [30] D53 [30] 608 73 36.2% 60.6% 38.2% 20.6% 37.4% 46.1%

YOLOv3-SPP ours D53 [30] 608 73 42.9% 62.4% 46.6% 25.9% 45.7% 52.4%

PP-YOLO [22] R50-vd-DCN [22] 608 73 45.2% 65.2% 49.9% 26.3% 47.8% 57.2%

YOLOv4 [1] CD53 [1] 608 62 43.5% 65.7% 47.3% 26.7% 46.7% 53.3%

YOLOv4 ours CD53 [1] 608 62 45.5% 64.1% 49.5% 27.0% 49.0% 56.7%

EfficientDet-D2 [35] EfficientNet-B2 [34] 768 57* 43.0% 62.3% 46.2% 22.5% 47.0% 58.4%

RetinaNet [18] S49s [6] 640 53 41.5% 60.5% 44.6% 23.3% 45.0% 58.0%

ASFF [19] D53 [30] 608* 46 42.4% 63.0% 47.4% 25.5% 45.7% 52.3%

YOLOv4-P5 CSP-P5 896 43/41* 51.8% 70.3% 56.6% 33.4% 55.7% 63.4%

RetinaNet [18] S49 [6] 640 42 44.3% 63.8% 47.6% 25.9% 47.7% 61.1%

EfficientDet-D3 [35] EfficientNet-B3 [34] 896 36* 47.5% 66.2% 51.5% 27.9% 51.4% 62.0%

YOLOv4-P6 CSP-P6 1280 32/30* 54.5% 72.6% 59.8% 36.8% 58.3% 65.9%

ASFF[19] D53 [30] 800* 29 43.9% 64.1% 49.2% 27.0% 46.6% 53.4%

SM-NAS: E2 [42] - 800*600 25 40.0% 58.2% 43.4% 21.1% 42.4% 51.7%

EfficientDet-D4 [35] EfficientNet-B4 [34] 1024 23* 49.7% 68.4% 53.9% 30.7% 53.2% 63.2%

SM-NAS: E3 [42] - 800*600 20 42.8% 61.2% 46.5% 23.5% 45.5% 55.6%

RetinaNet [18] S96 [6] 1024 19 48.6% 68.4% 52.5% 32.0% 52.3% 62.0%

ATSS [45] R101 [11] 800* 18 43.6% 62.1% 47.4% 26.1% 47.0% 53.6%

YOLOv4-P7 CSP-P7 1536 17/16* 55.5% 73.4% 60.8% 38.4% 59.4% 67.7%

RDSNet [39] R101 [11] 600 17 36.0% 55.2% 38.7% 17.4% 39.6% 49.7%

CenterMask [16] R101-FPN [17] - 15 44.0% - - 25.8% 46.8% 54.9%

EfficientDet-D5 [35] EfficientNet-B5 [34] 1280 14* 51.5% 70.5% 56.7% 33.9% 54.7% 64.1%

ATSS [45] R101-DCN [5] 800* 14 46.3% 64.7% 50.4% 27.7% 49.8% 58.4%

SABL [38] R101 [11] - 13 43.2% 62.0% 46.6% 25.7% 47.4% 53.9%

CenterMask [16] V99-FPN [16] - 13 46.5% - - 28.7% 48.9% 57.2%

EfficientDet-D6 [35] EfficientNet-B6 [34] 1408 11* 52.6% 71.5% 57.2% 34.9% 56.0% 65.4%

RDSNet [39] R101 [11] 800 11 38.1% 58.5% 40.8% 21.2% 41.5% 48.2%

RetinaNet [18] S143 [6] 1280 10 50.7% 70.4% 54.9% 33.6% 53.9% 62.1%

SM-NAS: E5 [42] - 1333*800 9.3 45.9% 64.6% 49.6% 27.1% 49.0% 58.0%

EfficientDet-D7 [35] EfficientNet-B6 [34] 1536 8.2* 53.7% 72.4% 58.4% 35.8% 57.0% 66.3%

ATSS [45] X-32x8d-101-DCN [5] 800* 7.0 47.7% 66.6% 52.1% 29.3% 50.8% 59.7%

EfficientDet-D7x [35] EfficientNet-B7 [34] 1536 6.5* 55.1% 74.3% 59.9% 37.2% 57.9% 68.0%

TSD [33] R101 [11] - 5.3* 43.2% 64.0% 46.9% 24.0% 46.3% 55.8%

1 FPS value with * means overall latency, which include model inference and post-processing.
2 APs value with bold font means the value is higher than all method which has higher FPS.

tions in computational blocks. We also compare with CSP-

Darknet53, in which we perform linear scaling down on

width and depth. The results are shown in Table 9.

From the figures shown in Table 9, we can see that the

designed PCB technique can make the model more flexi-

ble, because such a design can be adjusted according to ac-

tual needs. From the above results, we also confirmed that

linear scaling down does have its limitation. It is appar-

ent that when under limited operating conditions, the resid-

ual addition of tinyCD53s becomes the bottleneck of infer-

ence speed, because its frame rate is much lower than the

COSA architecture with the same amount of computations.

Meanwhile, we also see that the proposed COSA can get a

higher AP. Therefore, we finally chose COSA-2x2x which

received the best speed/accuracy trade-off in our experiment

as the YOLOv4-tiny architecture.

5.3. Ablation study on YOLOv4­large

In Table 10 we show the AP obtained by YOLOv4 mod-

els in training from scratch and fine-tune stages.

5.4. Scaled­YOLOv4 for object detection

We compare with other real-time object detectors, and

the results are shown in Table 11. The values marked in

bold in the [AP, AP50, AP75, APS , APM , APL] items indi-

cate that model is the best performer in the corresponding

item. We can see that all scaled YOLOv4 models, includ-

ing YOLOv4-CSP, YOLOv4-P5, YOLOv4-P6, YOLOv4-

P7, are Pareto optimal on all indicators. When we com-

pare YOLOv4-CSP with the same accuracy of EfficientDet-

D3 (47.5% vs 47.5%), the inference speed is 1.9 times.

When YOLOv4-P5 is compared with EfficientDet-D5 with
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the same accuracy (51.8% vs 51.5%), the inference speed

is 2.9 times. The situation is similar to the comparisons be-

tween YOLOv4-P6 vs EfficientDet-D7 (54.5% vs 53.7%)

and YOLOv4-P7 vs EfficientDet-D7x (55.5% vs 55.1%). In

both cases, YOLOv4-P6 and YOLOv4-P7 are, respectively,

3.7 times and 2.5 times faster in terms of inference speed.

All scaled-YOLOv4 models reached state-of-the-art results.

The results of test-time augmentation (TTA) experiments

of YOLOv4-large models are shown in Table 12. YOLOv4-

P5, YOLOv4-P6, and YOLOv4-P7 gets 1.1%, 0.7%, and

0.5% higher AP, respectively, after TTA is applied.

Table 12: Results of YOLOv4-large models

with test-time augmentation (TTA).

Model AP AP50 AP75

YOLOv4-P5 with TTA 52.9% 70.7% 58.3%

YOLOv4-P6 with TTA 55.2% 72.9% 60.5%

YOLOv4-P7 with TTA 56.0% 73.3% 61.4%

We then compare the performance of YOLOv4-tiny with

that of other tiny object detectors, and the results are shown

in Table 13. It is apparent that YOLOv4-tiny achieves the

best performance in comparison with other tiny models.

Table 13: Comparison of state-of-the-art tiny models.

Model Size FPS1080ti FPSTX2 AP

YOLOv4-tiny 416 371 42 21.7%

YOLOv4-tiny (3l) 320 252 41 28.7%

ThunderS146 [25] 320 248 - 23.6%

CSPPeleeRef [37] 320 205 41 23.5%

YOLOv3-tiny [30] 416 368 37 16.6%

Finally, we put YOLOv4-tiny on different embedded

GPUs for testing, including Xavier AGX, Xavier NX, Jet-

son TX2, Jetson NANO. We also use TensorRT FP32 (FP16

if supported) for testing. All frame rates obtained by dif-

ferent models are listed in Table 14. It is apparent that

YOLOv4-tiny can achieve real-time performance no mat-

ter which device is used. If we adopt FP16 and batch size 4

to test Xavier AGX and Xavier NX, the frame rate can reach

380 FPS and 199 FPS respectively. In addition, if one uses

TensorRT FP16 to run YOLOv4-tiny on general GPU RTX

2080ti, when the batch size respectively equals to 1 and 4,

the respective frame rate can reach 773 FPS and 1774 FPS,

which is extremely fast.

Table 14: FPS of YOLOv4-tiny on embedded devices.

TensorRT. FPSAGX FPSNX FPSTX2 FPSNANO

without 120 75 42 16

with 290 118 100 39

5.5. Scaled­YOLOv4 as naı̈ve once­for­all model

In this sub-section, we design experiments to show that

an FPN-like architecture is a naı̈ve once-for-all model. Here

we remove some stages of top-down path and detection

branch of YOLOv4-P7. YOLOv4-P7\P7 and YOLOv4-

P7\P7\P6 represent the model which has removed {P7}
and {P7, P6} stages from the trained YOLOv4-P7. Fig-

ure 5 shows the AP difference between pruned models and

original YOLOv4-P7 with different input resolution.

Figure 5: YOLOv4-P7 as “once-for-all” model.

We can find that YOLOv4-P7 has the best AP at high

resolution, while YOLOv4-P7\P7 and YOLOv4-P7\P7\P6

have the best AP at middle and low resolution, respectively.

This means that we can use sub-nets of FPN-like models to

execute the object detection task well. Moreover, we can

perform compound scale-down the model architectures and

input size of an object detector to get the best performance.

6. Conclusions

We show that the YOLOv4 object detection neural net-

work based on the CSP approach, scales both up and

down and is applicable to small and large networks. So

we achieve the highest accuracy 56.0% AP on test-dev

COCO dataset for the model YOLOv4-large, extremely

high speed 1774 FPS for the small model YOLOv4-tiny on

RTX 2080Ti by using TensorRT-FP16, and optimal speed

and accuracy for other YOLOv4 models.
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