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Abstract

A reinforcement learning model will predict an action in whatever state it is. Even
if there is no distinct outcome due to unseen states the model may not indicate
that. Methods for uncertainty estimation can be used to indicate this. Although a
known approach in Machine Learning, most of the available uncertainty estimation
methods are not able to deal with the choice overlap that happens in states where
multiple actions can be taken by a reinforcement learning agent with a similar
performance outcome. In this work, we investigate uncertainty estimation on
simplified scenarios in a gridworld environment. Using ensemble-based uncertainty
estimation we propose an algorithm based on action count variance (ACV) to deal
with discrete action spaces and a calculation based on the in-distribution delta
(IDD) of the action count variance to handle overlapping alternative predictions.
To visualize the expressiveness of the model uncertainty we create heatmaps for
different in-distribution (ID) and out-of-distribution (OOD) scenarios and propose
an indicator for uncertainty. We can show that the method is able to indicate
potentially unsafe states when the agent is facing novel elements in the OOD
scenarios while capable to distinguish uncertainty resulting from OOD instances
from uncertainty caused by the overlapping of alternative predictions.

1 Introduction

In order to apply Machine Learning in today’s and future’s real-world applications it is necessary
to take the given system boundaries of an application into account, e.g. resource and/or timing
requirements and safety constraints. There is a high incentive to use Reinforcement Learning (RL)
in parts of these system approaches, as to the high flexibility and self-handling in decision-making
tasks. However, this also comes with a high risk in safety-critical applications. As an RL agent
will predict an action in whatever state it will find itself, it is of high importance for the application
controller to be aware of the certainty and confidence of its own decisions in all situations it could
face. This includes situations from inside as from outside the training data distribution. To overcome
this problem in the larger field of safe RL this paper focuses on estimating uncertainty from data
during deployment (test data) that is out of the distribution of the training data as one aspect of the
problem solution.
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Distributional shift in data science is widely understood as the distributional difference between
the training and test data of a problemHendrycks and Gimpel [2018]Lütjens et al. [2019]Lee et al.
[2018]Postels et al. [2020]. This distributional shift can originate from different sources, such as
perturbations to the data-set due to system complexity and a lack of training data. In machine learning,
a distributional shift often leads to degraded performance during test time, because the probability
distribution over data (or state-action pairs in RL) is shifted and a classifier or an agent may therefore
predict wrong or sub-optimal classes (or actions). In general, when the testing distribution differs
from the training distribution, machine learning systems may not only demonstrate poor performance
but also wrongly assume that their performance is good.

This issue is also present in system solutions based on Reinforcement Learning. To overcome
this limitation, safe Reinforcement Learning (Safe RL) solutions must be capable of detecting
and handling the uncertainty in the decision-making process. Therefore, it is necessary to deal
with uncertainty and potentially improve given algorithms to optimize these with respect to safety
constraints. For instance, uncertainty estimation can detect a lack of generalization due to insufficient
training and unseen states during training (epistemic uncertainty) as well as uncertainty resulting
from randomness in the environment (aleatoric uncertainty). For epistemic uncertainty, estimates can
be obtained from the variance over the prediction of a set of agents trained independently. In states
where the agents are unsure due to insufficient training data, different agents are prone to diverge in
their action predictions. This can be utilized to indicate uncertainty, however, in some optimization
problems, multiple paths could be taken to get to the goal and the agents can deviate within the
possible alternative predictions. Therefore, it is necessary to differentiate between these two effects.

2 Related work

There is a lot of work in recent years with respect to OOD in the classical image classification domain
as well as some work in the RL domain. Pimentel et al. [2014] define novelty as samples that differ
in some respect from the data used during training. Insufficient training data will make the model
less capable to generalize to data that conceptually belong to the same distribution but were not
experienced during training. Hendrycks and Gimpel [2018] define OOD as testing samples drawn
from a distribution that differs from the training data and describe OOD detection as a threshold–based
process. Furthermore, a differentiation is posed between OOD instances that are near or far from the
training data distribution. The closer the OOD sample is to the training data distribution, the easiest
it is to mitigate the issue by training with more data, whereas the further away it gets it will most
likely represent conceptual or semantic gaps that are not easily overcome, e.g., samples which are
not included in the known classes. In this regard, DNNs tend to be overconfident in predictions on
unseen data and can give unpredictable results for far-from-distribution test data Lütjens et al. [2019].

A lot of prior work focuses on OOD as a concept of samples from outside the class set. If samples
are outside the set, classifications for that cannot be learned, even with more/unlimited training. A
recurrent approach is to specify a separate OOD class to train the model on Pimentel et al. [2014].
Similarly, DeVries and Taylor [2018], Mohseni et al. [2020] define OOD samples as examples of
classes different from those in the ID data set. Lee et al. [2018] describe ID data as a data distribution
trained by a classifier and OOD data as sufficiently different from it. Also, Schwaiger et al. [2020]
follow the approach to consider strong conceptual differences between training and test data to be
OOD. Yu and Aizawa [2019] go as far as to define OOD by the gap in between classified ID data.
They propose to maximize the discrepancy between the decision boundaries of e.g. two classifiers to
push OOD samples outside. They also follow the concept of contrasting samples being near and far
from the known distribution.

Furthermore, it is important to understand the difference between epistemic and aleatoric uncertainty
for uncertainty estimation as a proxy for OOD detectors. Epistemic uncertainty arises out of a lack of
sufficient data to exactly infer the underlying system Sedlmeier et al. [2019]. Clements et al. [2020]
claim epistemic uncertainty to stem from limited data. Epistemic uncertainty can indicate samples
that reside far away from the data distribution, as well as the capabilities of a model to generalize
to data close to it Postels et al. [2020]. In contrast, aleatoric uncertainty arises from the stochastic
of the environments and must be accounted for in risk-sensitive applications Clements et al. [2020],
Chua et al. [2018]. Aleatoric uncertainty cannot be reduced just by more training. For safety reasons,
aleatoric uncertainty is a significant indicator in RL and should also be considered. However, in this
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paper, we focus on the detection of epistemic uncertainty, as we focus on distributional shift and
OOD detection.

Kahn et al. [2017] present an uncertainty-aware model-based learning algorithm that estimates the
probability of a collision together with a statistical estimate of uncertainty. The predictive model is
based on bootstrapped neural networks using dropout. In regions of high uncertainty, their risk-averse
cost function causes the robot to revert to a cautious low-speed strategy. In Da Silva et al. [2020] they
propose an action-advising framework where the agent asks for advice when its epistemic uncertainty
is high for a certain state to accelerate reinforcement learning. They add multiple heads estimating
separately expected values for each action as a last layer, as done in Bootstrapped DQN. As the
learning algorithm updates the network, their predictions get closer to the real underlying function,
and closer to each other. Sedlmeier et al. [2019] use uncertainty-based OOD detection, using Q-value
uncertainty in DQN Algorithm. They compare MC-Dropout, Bootstrapped and Bootstrapped with
prior functions. They also address the problem of alternative valid predictions of the model agent.
Unfortunately, they do not further investigate the uncertainty estimation in those cases but rather
calculate an overall estimate for the epoch.

Hoel et al. [2020] estimate uncertainty for RL based on ensembles with randomized prior functions
(RPF). They are based on Osband et al. [2018] and propose a criterion function. They choose safe
actions in unknown situations far from the training distribution. In Hoel et al. [2021] they also utilize
an ensemble of DQN agents to estimate Q-value uncertainty to switch back to a fallback policy
in uncertain situations given a dedicated threshold. An ensemble is trained on bootstrapped data,
which provides a distribution over the estimated Q-values to provide a Bayesian estimation of the
epistemic uncertainty. The epistemic uncertainty estimate is then used to choose less risky actions in
unknown situations. However, they do not take into account a potential overlapping uncertainty due
to possible alternative actions. Rotman et al. [2020] investigate different UE methods for detection
during deployment, which they call the online safety assurance problem (OSAP). The method for
policy-based UE via agent ensembles is also comparable to our baseline UE method.

3 Background

3.1 Reinforcement Learning and MDP

In Reinforcement Learning, we consider an agent that sequentially interacts with an environment
modeled as a Markov Decision Process (MDP). An MDP is a tuple M := (S,A, R, P, µ0) composed
by the set of states S, the set of actions A, the reward function R : S ×A× S 7→ R, the transition
probability function P : S ×A× S 7→ [0, 1] which describes the system dynamics, and the starting
state distribution µ0. The transition probability function P (st+1|st, at) models the probability of
transitioning to a state st+1 given a previous state st and taking the action at. The reward function
represents the return as sum of the discounted reward with γk being the discount factor at time steps
k, given by

Rt =

∞∑
k=0

γkRt+k. (1)

In the MDP framework, at each timestep, the agent observes the current state, takes an action,
transitions to the next state drawn from the distribution, and receives a reward. The action-value
function, also known as the Q-value function, where Qπ represents the expected return when following
a policy π which maps states into actions, as shown in equation 2.

Qπ(s, a) = E[Rt|st = s, at = a, π]. (2)

Q-learning, in which a policy is learned using Q-values, is a popular model-free method. Deep
Q-networks (DQNs) are an extension of Q-learning that work with neural networks and optimization
algorithms commonly used in deep learning, such as gradient descent. To do so, the temporal-
difference error δt can be derived from the Q-value function using the Bellman operator, resulting in
equation 3, whereas θ− and θ are the DQN parameters from the target and the prediction network,
respectively.

δt = Rt + γmax
a

Q
(
st+1, a; θ

−)−Q (st, at; θ) . (3)
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3.2 Distributional shift and OOD

Distributional shift and OOD are two concepts that are closely related. For instance, Hendrycks and
Gimpel [2018] correlate distributional shift to OOD by describing the latter as samples drawn from a
different distribution than the training data. When transferring this definition to RL problems, it is
important to distinguish distributions that are closer or further away from the training distribution. It
is expected that an RL agent would be able to perform well in scenarios that are slightly different from
the training ones, i.e., it should be able to generalize, but when the distributions are too dissimilar
(perhaps at a semantic level) the agent might have its ability to make proper decisions severely affected.
A model or agent which is not able to detect a distributional shift may tend to be overconfident in
predictions on unseen data and can give unpredictable results Lütjens et al. [2019].

Some authors also show that epistemic uncertainty can be used as a proxy for detecting distributional
shifts, e.g., Sedlmeier et al. [2019]. Epistemic uncertainty is usually associated with a lack of
sufficient data to better infer the underlying system. Clements et al. [2020] claim that epistemic
uncertainty stems from limited data. However, besides detecting a model’s lack of generalization to
data close to it, epistemic uncertainty can also point to samples that reside far away from the data
distribution known to the trained model, as shown in Postels et al. [2020].

Defining distributional shift within the RL domain is not trivial Haider et al. [2021]. In this paper
we assume that distributional shift can be characterized by changes in the system dynamics, more
specifically the shift of the distribution over the state transitions given state action pairs between
training and test in MDPs, as shown in equation 4.

Ptrain[st + 1|st, at] ̸= Ptest[st + 1|st, at]. (4)

Additionally, when considering partially observable MDPs (POMDPs) where the system’s state
cannot be assessed but rather an observation ot is available to the agent, the shift of the distribution
over observations given states has to be taken into account (equation 5).

Ptrain[ot|st] ̸= Ptest[ot|st]. (5)

3.3 Ensemble based uncertainty estimation

As discussed previously, uncertainty estimation often is the utilized method to detect a distributional
shift. Detecting a distributional shift for the sake of exploration during training overlaps with the
concept of novelty detection. In contrast, applying distributional shift detection during test time is
considered as OOD detection in the classical image classification domain, where OOD describes the
distributional shift of the data distribution between training and test. This paper focuses on ensemble-
based epistemic uncertainty estimation to detect distributional shift and OOD data during test time.
An ensemble of agents trained on the available data will estimate with little variance between the
ensemble members in well-trained states. When the ensemble members face too few trained states,
the estimates vary naturally across the members and give a distribution over the estimated Q-values.
The variance of the estimated Q-values can be used to quantify the epistemic uncertainty of a decision.

An ensemble of bootstrapped data over DQNs provides a distribution over the estimated Q-values
to provide a Bayesian estimation of the epistemic uncertainty. The Q-values will converge to the
real values of the underlying function in situations the agent learned sufficiently well. In untrained
situations, the Q-value estimates will still diverge and the variance will therefore give an estimate
of the epistemic uncertainty. In Osband et al. [2018] random prior functions are used to introduce
diversity in an ensemble of agents trained on bootstrapped data. The expected return is then given by

Qk(s, a) = f (s, a; θk) + βp(s, a; θ̂k), (6)

where Qk is the Q-function of the kth ensemble member, θ̂ are the parameters of the prior function
and β is a factor to weight the impact of the prior function.

In Hoel et al. [2020] and Hoel et al. [2021] they use the variance of the Q-values of the ensemble
estimate to derive an uncertainty estimation threshold to invoke a backup policy. With the variance
V ark[Qk(s, a)] < σ2 the policy with threshold can be calculated by

πσ(s) =

 argmaxa Ek[Qk(s, a)] if V ark[Qk(s, a)] < σ2,

πbackup(s) otherwise.
(7)
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4 Ensemble Uncertainty estimation based on action count variance and delta
to ID

4.1 Action count variance uncertainty estimation

The Q-value is a continuous variable where high variance in the predictions means high uncertainty
of the ensemble. However, when given encapsulated agents or when the Q-values are not accessible
due to other reasons, it is possible to take the deviation over the proposed actions of the ensemble
members, to indicate uncertainty. In cases where the action space is continuous, the variance can be
directly calculated as action variance like with the Q-values. However, with discrete action spaces,
this will lead to false results, as the actions themselves are orthogonal and e.g. a mean action can
not be calculated. Therefore, in cases where the action space is discrete, we propose to calculate an
action count on each action over the ensemble given a certain state and then calculate the variance of
that action count (ACV - action count variance). When the ACV is low, the proposed different actions
are balanced equally over the ensemble and the uncertainty is therefore high. In contrast, when the
action count variance is high, there is a concentration of one or more actions in the ensemble and
the uncertainty is low. The higher the ACV gets, the lower the uncertainty. Given Nactions as the
number of alternative actions and Kensemble as the number of ensemble members and equation 8 the
minimum of the ACV gets to equation 9 and the maximum to equation 10.

V ar[AC(s, a)] =
1

Nactions

∑
n

(
ACn − Kensemble

Nactions

)2

(8)

V armin[AC(s, a)] = 0 (9)

V armax[AC(s, a)] =
K2

ensemble

N2
actions

(Nactions − 1) (10)

A backup policy can then be chosen based on the ACV calculation as given in equation 11.

πσ(s) =

{
argmaxa Ek[Qk(s, a)] if V ark[ACk(s, a)] > V arthreshold,

πbackup(s) otherwise.
(11)

4.2 Delta to ID uncertainty estimation

One problem with uncertainty estimation in reinforcement learning is the fact, that there are often
alternative decisions to take in an MDP. These can be called alternative possible actions - or more
generally alternative predictions. When an agent is in a state with alternative possible actions, the
ensemble may already deviate in its prediction, although it might be trained sufficiently in this state.
This means alternative possible actions will sort of overlay the uncertainty from a lack of training
(OOD). Given an overlap of such kind will make it hard to decide if real uncertainty, only alternative
possible actions or both are present. Therefore, we propose to compare the given (potentially
OOD) situation to a nearest ID situation (IDD for ID Delta), to identify normal deviation versus
uncertainty deviation. To get a comparison, we propose to subtract ID ACV from the given ACV
and use the result as a cleaned version of the ACV for uncertainty indication. Because of the (1-x)
characteristic of the ACV to the uncertainty, we actually subtract (ConstmaxV ar − ACVOOD) −
(ConstmaxV ar − ACVID) which inverses the ACV characteristic to match the uncertainty’s and
results for the subtraction in equation 12.

V ardelta[AC(s, a)] = V arID[AC(s, a)]− V arOOD[AC(s, a)]. (12)

There can be different approaches to obtain a nearest ID scenario from a given OOD scenario. To
simplify, we stick to an OOD scenario with one dedicated OOD object and propose two variations as
a straightforward approach. On the one hand, the OOD obstacle in a given OOD scenario will be
exchanged with an ID obstacle. On the other hand, the given OOD obstacle will be removed from the
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scenario without a replacement. The observation functions Obs() change as given in equations 13
and 14.

ObsIDnearest_with_obstacle
(posOODobstacle

) = IDobstacle, (13)

ObsIDnearest_without_obstacle
(posOODobstacle

) = IDwithout_obstacle. (14)

A high delta of the ACV will indicate high uncertainty and a low delta is associated with low
uncertainty in both cases, respectively. To decide on an uncertain situation in a given state, we
propose to use a threshold to mask out insignificant variance-delta to ID. This threshold can be used
in future work to switch to a backup policy.

5 Experimental results

5.1 Setup and training

We trained complete agents in parallel with 10 obstacles randomly placed in a gridworld of 10x10
positions and training runs of 1 million steps for each agent. For testing, we set up different scenarios
with obstacles used for training as ID and added a single novel obstacle as ODD. For the results
shown below, we focused solely on ID scenarios with a line of known obstacles in the middle of
the grid and the goal at the end of the line. For the visualization of the uncertainty estimation, we
calculated heatmaps over the grid showing each resulting uncertainty estimation for each position of
the agent in the grid given the overall scenario.

5.2 Uncertainty heatmaps

For the shown results the uncertainty calculation based on the action count variance of the ensemble
members is used. Figure 1 shows the base scenario with the known ID obstacle line in blue and the
goal in green. As we use variance in the action count, a brighter color means more concentration on
fewer actions and therefore more certainty and darker color means less concentration in the actions or
more equally distributed actions and therefore higher uncertainty. As can be seen in the base scenario
there are some "uncertainties" along the diagonals to the goal due to possible alternative action
predictions, as these coordinates have equal probabilities vertically and horizontally to approach the
goal. This applies e.g. also for the point on the left of the obstacle line, as the probabilities for up and
down are equally distributed.

Figure 1: Obstacle line ID scenario as heatmap over agent positions

Figure 2a shows the predictions with one unknown obstacle inserted in the middle direct on top
of the line shown in purple. One can see the tendency of areas, and especially the area around the
unknown obstacle, to shown an increase in uncertainty. Nevertheless, the uncertainty indication is
superposed by the already given "uncertainty" of the possible alternative predictions from the baseline
ID scenario. In contrast, figure 2b shows the predictions with a known obstacle inserted in the middle
direct on top of the line shown in blue, instead of the OOD obstacle. Now, the uncertainty indication
is closer to the base ID scenario.

Our idea presented in 4.2 proposes to subtract the baseline variance from the OOD variance and
therefore try to eliminate the baseline variance resulting from the possible alternative predictions. In
figure 3 the results are depicted for the delta to the ID baseline without and with a threshold (3a and
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(a) OOD obstacle in the middle (b) ID obstacle in the middle

Figure 2: ID obstacle line with OOD obstacle in the middle

3b) and the delta to ID with the known obstacle (3c and 3d). It seems feasible to indicate the given
OOD hotspot when masking out a dedicated threshold, as given in 3b and 3d, although the indication
is not totally sharp.

(a) Delta to ID without obstacle (b) Delta to ID with threshold

(c) Delta to ID known obstacle (d) Delta to ID known obstacle with
threshold

Figure 3: Delta OOD to ID with obstacle in the middle

In the given scenario, the OOD hotspot is lieing direct in an area of low uncertainty (the yellow area
on top of the blue line). One can think of a special situation, where the ID subtraction is convenient
to isolate the hotspot. Therefore, we also ran setups, where the hotspot is lieing in an area of already
given "uncertainty" from possible alternative predictions like in the upper middle section. The results
are depicted in figure 4.

Figure 5 shows the resulting indication for the delta OOD to ID without obstacle in 5a and 5b and
the delta to ID with known obstacle in 5c and 5d. The given threshold seems to isolate the hotspot
from the OOD obstacle quite well. But here, the delta to ID without obstacle fails, as the top and
left fields from the obstacle are not indicated as uncertain. The already given "uncertainty" from the
possible alternative predictions in that area subtracts out the indication. Indeed, these fields should be
indicated - because they lie in the diagonal path to the goal and would therefore be conflicting due to
the unknown obstacle. In contrast, the delta to ID with known obstacle replacement performs better
and indicates the respective fields.
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(a) OOD obstacle at the top (b) ID obstacle at the top

Figure 4: ID obstacle Line with OOD obstacle at the top

(a) Delta to ID without obstacle (b) Delta to ID with threshold

(c) Delta to ID known obstacle (d) Delta to ID known obstacle with
threshold

Figure 5: a) Delta OOD to ID with OOD obstacle at the top

6 Conclusion

Within Reinforcement Learning for a decision-making agent aleatoric and epistemic uncertainty can
be distinguished, whereas epistemic uncertainty arises due to a lack of knowledge. In this paper, we
investigated ensemble-based epistemic uncertainty estimation on gridworld scenarios with discrete
action spaces and overlapping alternative predictions.

We exhibited the problem obstacle with discrete action spaces and variance calculation and proposed
to use action count variance (ACV) instead of action variance. We depicted the conflict of uncertainty
estimation due to a lack of training and due to overlapping alternative solutions. As a viable solution,
we proposed to calculate the delta to ID (IDD) for the action count variance and utilized a threshold
to indicate uncertainty due to a lack of training, only. With experiments utilizing representative
gridworld test scenarios, we showed that action count variance with delta to ID is able to indicate
uncertain states based on a threshold calculation with high probability. Therefore, a decision for a
backup policy based on that indication can be a feasible solution.

Future work can investigate feasible methods to determine a sufficient near ID scenario for a given
OOD scenario and extend the approach to more general and realistic environments. It can also focus
on strategies to deal with an uncertainty indication and compare the resulting performance to other
given approaches.
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