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ABSTRACT

We study inference-time scaling for diffusion models, where the goal is to adapt
a pre-trained model to new target distributions without retraining. Existing
guidance-based methods are simple but introduce bias, while particle-based cor-
rections suffer from weight degeneracy and high computational cost. We intro-
duce DriftLite, a lightweight, training-free particle-based approach that steers the
inference dynamics on the fly with provably optimal stability control. DriftLite ex-
ploits a previously unexplored degree of freedom in the Fokker-Planck equation
between the drift and particle potential, and yields two practical instantiations:
Variance- and Energy-Controlling Guidance (VCG/ECG) for approximating the
optimal drift with minimal overhead. Across Gaussian mixture models, parti-
cle systems, and large-scale protein-ligand co-folding problems, DriftLite con-
sistently reduces variance and improves sample quality over pure guidance and
sequential Monte Carlo baselines. These results highlight a principled, efficient
route toward scalable inference-time adaptation of diffusion models.

1 INTRODUCTION

Diffusion- (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song & Ermon, 2019; Song et al., 2020) and
flow-based (Zhang et al., 2018; Lipman et al., 2022; Albergo & Vanden-Eijnden, 2022; Liu et al.,
2022) models have revolutionized generative modeling, achieving state-of-the-art performance in
domains ranging from creative media synthesis (Rombach et al., 2022; Le et al., 2023; Ho et al.,
2022; Austin et al., 2021) to fundamental scientific discovery (Xu et al., 2022; Watson et al., 2023;
Duan et al., 2023; Gao et al., 2024; Zhu et al., 2024; Zeni et al., 2025; Duan et al., 2025). They typi-
cally rely on a neural network to approximate a time-dependent vector field, which guides a stochas-
tic process from noises to a complex target. However, the training process is resource-intensive,
making it impractical to retrain from scratch for every new setting. This renders a lightweight adap-
tation of pre-trained models to target distributions that is both compelling and essential.

To this end, a spectrum of adaptation methods has emerged. At one end are guidance-based tech-
niques, the most popular and straightforward inference-time techniques, which inject new informa-
tion into the drift term, such as classifier (Dhariwal & Nichol, 2021) or classifier-free guidance (Ho
& Salimans, 2022) and its many variants (Chung et al., 2022; Trippe et al., 2022; Bansal et al., 2023;
Song et al., 2023a;b; He et al., 2023; Guo et al., 2024; Zheng et al., 2024; Rojas et al., 2025). While
simple and effective for many tasks, these methods are often heuristic and introduce uncontrolled
bias (Chidambaram et al., 2024; Wu et al., 2024a), a significant drawback for scientific applications
where sampling accuracy is paramount. On the opposite are methods that resort to extra training,
such as fine-tuning (Fan & Lee, 2023; Black et al., 2023; Clark et al., 2023; Wallace et al., 2024)
as in the LLM context (Ouyang et al., 2022; Rafailov et al., 2023), or learning within a stochastic
control framework (Domingo-Enrich et al., 2024a; Uehara et al., 2024), similar to learning-based
samplers (Zhang & Chen, 2021; Vargas et al., 2023; Domingo-Enrich et al., 2024b), but this shifts
the computational burden back to retraining, forfeiting the efficiency of inference-time approaches.

Between these ends lies a middle ground of training-free but more sophisticated inference-time ap-
proaches. A promising direction formulates the problem in a Bayesian framework (Xu & Chi, 2024;
Wu et al., 2024b; Coeurdoux et al., 2024; Bruna & Han, 2024; Zheng et al., 2025). In particular,
Sequential Monte Carlo (SMC) methods (Del Moral et al., 2006; Doucet et al., 2000) have been re-
cently introduced to correct for the bias of guidance by simulating the target dynamics with weighted
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particles (Wu et al., 2023; Cardoso et al., 2023; Skreta et al., 2025; Chen et al., 2025; Singhal et al.,
2025; Lee et al., 2025). Despite their strong theoretical grounding and asymptotic guarantees, these
particle-based methods face a critical practical bottleneck: weight degeneracy. As the simulation
progresses, the weights of a few particles grow exponentially while the rest decay, causing the ef-
fective sample size to collapse. To mitigate this, one may increase the number of particles, raising
computational cost, or use fewer particles, resulting in instability and degraded sample quality.

Our work introduces DriftLite, a lightweight approach that resolves the inherent instability of
particle-based methods without sacrificing mathematical rigor. By exploiting a fundamental degree
of freedom in the Fokker-Planck equation, we actively control particle drift on the fly. This proactive
steering mechanism absorbs sources of weight variation, preventing the weight collapse common in
passive reweighting schemes and dramatically improving stability. The method’s minimal computa-
tional overhead, requiring only the solution of a small linear system per step, makes it fundamentally
lightweight. Unlike computationally intensive PDE solvers (Albergo & Vanden-Eijnden, 2024) or
heuristic control frameworks (He et al., 2025), DriftLite is a training-free solution derived directly
from the principle of variance reduction. It is designed to scalably match an entire target distribution
in high-dimensional, continuous systems, more rigorous than targeting sample-focused metrics (Ma
et al., 2025) or solving problems in simpler discrete settings (Chertkov et al., 2025).

Our Contributions. Building on this insight, our work makes the following contributions:

• We identify a fundamental degree of freedom in the Feynman-Kac-type Fokker-Planck equa-
tion (2.5), establishing a principled trade-off between the particle drift and the reweighting po-
tential, and show that it can be directly exploited to actively minimize particle weight variance.

• We introduce DriftLite, a lightweight and training-free framework that computes a control drift
on-the-fly to stabilize the sampling dynamics. We derive two practical instantiations, Variance-
Controlling Guidance (VCG) and Energy-Controlling Guidance (ECG), which are computation-
ally efficient and require solving only a small additional linear system at each time step.

• We conduct extensive experiments on challenging benchmarks, including high-dimensional Gaus-
sian mixture models, molecular particle systems, and large-scale protein-ligand co-folding. Our
results demonstrate that DriftLite substantially reduces weight variance, stabilizes the Effective
Sample Size (ESS), and improves final sample quality over current baselines.

2 PRELIMINARIES

In this section, we establish the problem setting, including the fundamentals of diffusion models and
the inference-time scaling tasks central to our study.

2.1 DIFFUSION MODELS

We begin with a pre-trained diffusion or flow-matching model, to which we refer as the base model.
This model defines both a forward process (xs)s∈[0,T ] governed by the following stochastic differ-
ential equation (SDE) and Fokker-Planck (FP) equation:

dxs = us(xs)ds+ Usdws (SDE), ∂sps(x) = −∇ · [ps(x)us(x)] +
U2
s

2
∆ps(x) (FP), (2.1)

where us is the forward drift, ps is the marginal distribution at time s, and (ws)s≥0 is a Wiener
process. p0 represents the data distribution, and pT is a simple prior, typically a standard Gaussian.

Generative modeling is performed using the backward process. Letting t = T − s be the reverse
time and denote←∗t = ∗T−t, the backward process (←xt)t∈[0,T ] is then described by:

d
←
xt = vt(

←
xt)dt+ Vtdwt (SDE), ∂t

←
pt(x) = −∇ · [

←
pt(x)vt(x)] +

V 2
t

2
∆
←
pt(x) (FP),

where vt is the backward drift. The process starts from the noise distribution ←p0 ≈ pT and recovers
the data distribution ←pT = p0. In traditional diffusion models, the backward drift vt is related to the
forward drift us(xs) = −Fsxs via the score function ∇ log

←
pt:

vt(x) = −
←
ut(x) +

←
U2
t + V 2

t

2
∇ log

←
pt(x). (2.2)

The word “pre-trained” signifies that we have access to the forward drift us and a reliable NN
approximation of the score ∇ log

←
pt, which in turn defines the backward drift vt.
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2.2 INFERENCE-TIME SCALING

Our goal is to adapt the generative process of a pre-trained model to new, related tasks at inference
time. This approach avoids the significant computational cost and data requirements of retraining
from scratch, making it desirable to leverage existing models. We focus on two primary scenarios:

• Annealing: Given a factor γ, the goal is to sample from qT ∝ pγ0 . This is common in physics for
generating low-temperature samples concentrated around primary modes of a distribution (Kar-
czewski et al., 2024), using a model trained on easier-to-obtain high-temperature data.

• Reward-Tilting: Given a reward function r(x), the goal is to sample from qT ∝ p0 exp(r). This
can be interpreted as posterior sampling with p0 being the prior and the reward r being the pos-
terior likelihood. It is widely used in applications, such as inverse design (Chung et al., 2022),
where the reward function encodes the desired properties of the generated samples.

Distribution Path Selection. We can unify both scenarios by defining the target compactly as

qT (x) ∝
←
pT (x)

γ exp(r(x)) = p0(x)
γ exp(r(x)).

To sample from qT , we define a modified backward process that evolves along a path of distributions
(qt)t∈[0,T ] that smoothly connects from initial noise to our target qT . Following recent works (Skreta
et al., 2025; Chen et al., 2025), we adopt a both conceptually and computationally simple path:

qt(x) ∝
←
pt(x)

γ exp (rt(x)) ,

where the reward rt interpolates from an initial state r0 chosen such that q0 is easy to sample from,
to the final reward rT = r. While more complex paths can be learned via optimal control (Liu et al.,
2025), we focus on such pre-defined paths to maintain a training-free framework.

Guidance-Based Dynamics. A common and intuitive approach, to which we refer as pure guid-
ance (Nichol et al., 2021; Ho & Salimans, 2022), is to inject the new information directly into the
drift term by replacing the original score ∇ log

←
pt with a heuristic score ∇ log qt corresponding to

the marginal qt, leading to the following Fokker-Planck equation:

∂tqt(x) = −∇ · [ṽt(x)qt(x)] +
V 2
t

2
∆qt(x), (2.3)

where the modified drift ṽt is defined below (cf., Eqn. (2.2)):

ṽt(x) = −
←
ut(x) +

←
U2
t + V 2

t

2
(γ∇ log

←
pt(x) +∇rt(x)). (2.4)

However, this method is known to be intrinsically biased because it fails to account for the changing
normalization constant of qt over time (Chidambaram et al., 2024). To correct this bias, the true
dynamics must include a self-normalizing reweighting term, as formalized below.

Proposition 2.1 (Guidance-Based Dynamics). The exact time evolution of the density
(qt)t∈[0,T ] follows the following Feynman-Kac-type Fokker-Planck equation:

∂tqt(x) = −∇ · [ṽt(x)qt(x)] +
V 2
t

2
∆qt(x) + qt(x)gt(x), (2.5)

where ṽt is the same drift as in pure guidance (2.4), and the reweighting potential gt(x) =
Gt(x)− Eqt [Gt(·)] is given by:

Gt = ṙt−(1−γ)∇·←ut+

←
U2

t

2

(
∆rt − γ(1− γ)∥∇ log

←
pt∥2

)
+∇r⊤t

(
−←ut+γ

←
U2

t ∇ log
←
pt+

←
U2

t

2
∇rt

)
.

We refer readers to App. A.1 for the proof. The PDE describes dynamics that diffuse with the
guidance drift ṽt, while densities continuously reweight according to the centered potential gt.

Weighted Particle Method. The corrected PDE (2.5) can be simulated using Sequential Monte
Carlo (SMC) (Doucet et al., 2000; Del Moral et al., 2006), where the density qt is approximated by
an empirical distribution formed by an ensemble of N weighted particles {x(i)

t , w
(i)
t }i∈[N ]:{

dx
(i)
t = ṽt(x

(i)
t )dt+ Vtdw

(i)
t , i ∈ [N ],

d logw
(i)
t = ĝt(x

(i)
t ) := Gt(x

(i)
t )−

∑N
i=1 w

(i)
t Gt(x

(i)
t ), i ∈ [N ].

(2.6)
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We refer to this baseline as Guidance-SMC (G-SMC) (Skreta et al., 2025; Chen et al., 2025). This
method is provably convergent, with the KL divergence to the target scaling as O(N−1) in the
diffusion context (Andrieu et al., 2018; Huggins & Roy, 2019; Domingo-Enrich et al., 2020; Cardoso
et al., 2023; Chen et al., 2025). A brief justification of this method is given in App. A.2.

3 METHOD: LIGHTWEIGHT DRIFT CONTROL

While the principled dynamics outlined in Prop. 2.1 offer a path to unbiased sampling, their reliance
on weighted particles introduces the critical vulnerability of weight degeneracy. As the simulation
progresses, the exponential dependency of the weights w on the potential gt leads to rapid weight
degeneracy and collapse of the effective sample size. This instability makes the standard Guidance-
SMC approach computationally inefficient, especially with a limited number of particles.

This section introduces our solution: DriftLite, a lightweight, training-free framework that actively
controls the particle drift to stabilize the weights. We develop in three steps: (1) we identify a funda-
mental degree of freedom in the governing Fokker-Planck equation (2.5), (2) we use this freedom to
formulate an objective for minimizing the variation of the reweighting potential gt, and (3) we derive
two practical, computationally efficient algorithms (VCG and ECG) for achieving this control.

3.1 DEGREE OF FREEDOM IN THE FOKKER-PLANCK EQUATION

Our key insight is that we can dynamically modify the particle SDE to counteract the sources of
weight variance. Instead of passively reweighting particles, we can proactively steer them by “of-
floading” the problematic parts of the potential gt into a new, corrective drift term. This is enabled
by a degree of freedom within the Fokker-Planck equation, which we formalize below.

Proposition 3.1 (Degree of Freedom). For any control drift bt(x), the Feynman-Kac-type
Fokker-Planck equation (2.5) is equivalent to:

∂tqt(x) = −∇ ·
[
(ṽt(x) + bt(x)) qt(x)

]
+

V 2
t

2
∆qt(x) + qt(x)ϕt(x), (3.1)

where the residual potential is ϕt(x) = gt(x) + ht(x; bt(x)) with control potential ht being:

ht(x; bt) = (γ∇ log
←
pt(x) +∇rt(x)) · bt(x) +∇ · bt(x).

Proof Sketch. The core of the proof is detailed in App. A.3. Briefly, we have −∇ · (bt(x)qt(x)) +
qt(x)ht(x; bt) = 0, since ht(x; bt) is constructed using∇ log qt = γ∇ log

←
pt +∇rt. An important

property is that the correction term has zero expectation under qt, i.e., Eqt [ht(·; bt)] = 0.

This proposition provides a powerful tool: we can introduce any control drift bt to alter the dynam-
ics, as long as it is compensated by an extra control potential ht(·; bt). Since a large variance in
the potential gt is the direct cause of weight degeneracy, our goal is to choose bt strategically to
minimize the variance of the new residual potential ϕt. An ideal control would make ϕt constant,
completely stabilizing the particle weights. In fact, a perfect, variance-eliminating control always
exists for any base potential gt, as shown in the following proposition:

Proposition 3.2 (Optimal Control, Informal Version). There exists a unique curl-free control
b∗t (x) = ∇A∗

t (x) such that ϕ∗
t (x) = gt(x) + ht(x; b

∗
t ) = 0 for all x, where the optimal

scalar potential A∗
t (x) is the solution to the following Poisson equation:

∇ · (qt(x)∇A∗
t (x)) = −qt(x)gt(x). (3.2)

The proof and further discussion are provided in App. A.4.

3.2 IN SEARCH OF OPTIMAL CONTROL

While Proposition 3.2 guarantees a perfect solution, solving the high-dimensional PDE in (3.2) at
every time step is computationally intractable. We therefore propose two practical methods that
approximate this optimal control by balancing effectiveness with efficiency. Both methods share a
core strategy: restricting the search for the control drift bt to a finite-dimensional subspace. This
simplification is key, as it transforms the complex problem of minimizing the residual potential ϕt

4
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into solving a small linear system. This reduction from an intractable PDE to a tractable linear solve
makes the control truly lightweight, hence the name DriftLite.

Variance-Controlling Guidance (VCG). The most direct approach is to find a control bt that
explicitly minimizes the variance of the residual potential:

min
bt

Varx∼qt [ϕt(x)] = Varx∼qt [gt(x) + ht(x; bt)] . (3.3)

Instead of parameterizing bt with a neural network (Albergo & Vanden-Eijnden, 2024), we seek a
lightweight solution by approximating it as a linear combination of basis functions.

Ansatz 3.3 (Linear Control Drift). The optimal control drift b∗t (x) is approximated as bt(x) =∑n
i=1 θ

i
tsi(x), where {si(x)}i∈[n] are pre-defined vector bases and θt = (θ1t , · · · , θnt )⊤ are

the coefficients to be found.

Under this ansatz, the residual potential becomes ϕt(x) = gt(x) +
∑n

i=1 θ
i
th

i
t(x), where hi

t(x) =
ht(x; si). The objective (3.3) corresponds to a standard least-square problem, whose solution is
obtained by solving an n×n linear system Atθt = ct, where Aij = Eqt [h

i
th

j
t ] and ci = −Eqt [gth

i
t].

Energy-Controlling Guidance (ECG). An alternative approach directly targets the curl-free op-
timal control b∗t in Prop. 3.2 by variationally solving the Poisson equation (3.2). As shown by Yu &
E (2018), this equation is the Euler-Lagrange equation for the following energy functional:

min
At

Et[At] =

∫ (
1

2
qt(x)∥∇At(x)∥2 − qt(x)gt(x)At(x)

)
dx. (3.4)

We can efficiently find an approximate minimizer using the Ritz method for the scalar potential At.

Ansatz 3.4 (Linear Control Potential). The optimal scalar potential A∗
t (x) is approximated as

At(x) =
∑n

i=1 θ
i
ts

i
t(x), where {sit(x)}i∈[n] are scalar bases. The control drift is then given

by bt(x) = ∇At(x) =
∑n

i=1 θ
i
t∇sit(x).

Substituting into the energy functional (3.4) again yields a linear system of equations Atθt = ct,
where Aij = Eqt [∇sit⊤∇s

j
t ] and ci = Eqt [gts

i
t].

3.3 PRACTICAL IMPLEMENTATION

Choice of Bases. The effectiveness of VCG and ECG depends on the choice of suitable basis
functions. While the formal solution for the optimal control b∗t is intractable (cf., App. A.4), its
structure reveals that the ideal control is a function of temporally locally available quantities like the
score ∇ log

←
pt, the reward gradient ∇rt, and the potential gt (containing the forward drift ←ut and

higher-order terms). This provides a strong motivation for using these very terms as our basis.
• Variance-Controlling Guidance (VCG): We use the following vector basis functions:

s1(x) = ∇rt(x), s2(x) = ∇ log
←
pt(x), s3(x) =

←
ut(x).

Note that using s2 requires computing the Laplacian ∆log
←
pt(x), which can be approximated

efficiently with Hutchinson’s trace estimator in high dimensions.
• Energy-Controlling Guidance (ECG): We use the corresponding scalar potentials:

s1(x) = rt(x), s2(x) = log
←
pt(x), s3(x) =

←
Ut(x),

where
←
Ut is a potential such that ∇

←
Ut =

←
ut. This method is especially convenient when the log-

likelihood log
←
pt is readily available from upstream training tasks (Akhound-Sadegh et al., 2025;

Guth et al., 2025). If not, approximations or alternative bases may be used, such as the score norm
∥∇ log

←
pt∥2 or random projections of the score ∇ log

←
pt · ξ for random ξ.

For annealing tasks, reward-based bases (s1 and s1) are automatically dismissed.

Weighted Particle Simulation. As discussed in Sec. 2.2, we simulate the Feynman-Kac-type
Fokker-Planck equation (3.1) using the SMC/weighted particle method detailed in Alg. 1. The key
difference from G-SMC Eqn. (2.6) is the use of the controlled drift ṽt+bt and the residual potential
ϕt = gt + ht(·; bt). To prevent weight collapse, particles are resampled when the Effective Sam-
ple Size (ESS) drops below a threshold τ . These principled versions with resampling are denoted
VCG and ECG-SMC. For high-dimensional problems where reweighting can be unstable, we also
consider simpler variants, denoted VCG and ECG, which omit the resampling steps.

5
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Our method adds minimal computational overhead. The primary cost is solving a small n×n linear
system at each time step, where n is the number of bases, typically n ≤ 3 in our experiments. The
components of this system (At and ct) are computed as expectations over the current weighted par-
ticles, reusing terms like the score ∇ log

←
pt and the reward gradient ∇rt that are already computed

for the base guidance drift. While accurate evaluation of the score Laplacian ∆log
←
pt can improve

control quality, efficiency is preserved with stochastic approximations, and thus the per-step over-
head remains constant in dimension and fully parallelizable across particles, resulting in moderate
runtime increase compared to the pure guidance baseline (cf., empirical results in Tabs. 5 and 6).

Algorithm 1: DriftLite-VCG/ECG-SMC Implementation

Input: Original drift path vt, original potential path gt, time steps {tk}Mk=0, reward r(x),
schedule βt, basis functions, number of particles N , ESS threshold τ .

1 Initialize particles x(i)
0 ∼

←
p0 and weights w(i)

0 ← 1
N for i = 1, . . . , N ;

2 for k ← 0 to M − 1 do
3 Form weighted estimates of Atk and ctk using {(x(i)

tk
, w

(i)
tk
)}i∈[N ];

4 Solve Atkθtk = ctk to obtain the control drift btk(·);
5 vtk(·)← vtk(·) + btk(·), gtk(·)← gtk(·) + htk(·; btk);
6 logw

(i)
tk+1
← logw

(i)
tk

+ gtk(x
(i)
tk
)(tk+1 − tk), wtk+1

← softmax(wtk);

7 x
(i)
tk+1
← x

(i)
tk

+ vtk(x
(i)
tk
)(tk+1 − tk) + Vtk

√
tk+1 − tkz

(i), where z(i) ∼ N (0, I);
8 if ESS(wtk+1

) < τ or periodically then
9 Resample {x(i)

tk+1
}i∈[N ] according to {w(i)

tk+1
}i∈[N ] and reset w(i)

tk+1
← 1

N for all i;

Output: Final samples {x(i)
T , w

(i)
T }i∈[N ] from the last completed pass.

4 EXPERIMENTS

In this section, we empirically test the performance of DriftLite by designing a series of challenging
annealing and reward-tilting tasks, comparing our DriftLite methods (VCG and ECG with and with-
out SMC) against two key baselines: Pure Guidance (PG) (2.3) (Ho & Salimans, 2022), Guidance-
SMC (G-SMC) (2.5) (Skreta et al., 2025; Chen et al., 2025). Our implementation uses JAX (Brad-
bury et al., 2018) to ensure efficient, parallelized computation on GPUs.

4.1 GAUSSIAN MIXTURE MODEL

We begin with a 30-dimensional Gaussian Mixture Model (GMM) (cf., App. B.1 for detailed set-
tings), a controlled environment where the exact score ∇ log pt and the potential log pt are known
analytically, allowing us to isolate and evaluate the performance of the sampling algorithms them-
selves, free from any confounding errors of a learned score network. We evaluate the methods
with multiple metrics, including the Negative Log-Likelihood difference (∆NLL), Maximum Mean
Discrepancy (MMD), and Sliced Wasserstein Distance (SWD) (cf., App. B.5).

We first test the ability to sharpen the GMM’s modes by annealing, which tests each method’s ability
to maintain the correct relative mode weights. As shown in Fig. 1, the pure guidance (PG) method
produces visibly biased samples, while G-SMC suffers from mode collapse, a direct consequence of
the weight degeneracy that our work aims to solve. In contrast, our methods (VCG and ECG) accu-
rately sample from the correct modes, also corroborated with quantitative comparisons in Tab. 3. A
closer look at the ESS and potential variance evolution during the inference dynamics Fig. 2 reveals
why DriftLite succeeds. Our control mechanism reduces the variance of the reweighting poten-
tial by several orders of magnitude compared to G-SMC. This directly prevents weight degeneracy,
leading to a stable Effective Sample Size (ESS) throughout the simulation and superior final sample
quality. Notably, ECG, while not directly minimizing variance, achieves a similar stabilizing effect,
validating the energy-based control perspective. Fig. 3 shows the performance of all methods as the
number of particles varies. It clearly indicates that our methods not only outperform the baselines
but also converge more efficiently, achieving better results with fewer particles. The results of the
reward-tilting task where the distribution is shifted towards a region defined by a quadratic reward
(Figs. 4, 9 and 10 and Tab. 4) confirm our findings from the annealing task. We refer to App. C.1
for further experimental results.
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Figure 1: Qualitative comparison of sampling methods on the GMM annealing task (γ = 2.5).

Figure 2: Evolution of ESS and potential vari-
ance during inference on the GMM annealing
task (γ = 2.2). Our methods (VCG/ECG) sub-
stantially reduce variance and stabilize ESS.

Figure 3: Performance metrics versus number of
particles for the GMM annealing task (γ = 2.0).
Our methods consistently outperform baselines
and show strong scaling.

Figure 4: Qualitative comparison of sampling methods on the GMM reward-tilting task (σ = 200.0).

Furthermore, we introduce an iterative refinement procedure, where the learned control drift ṽt+ bt
and potential ϕt = gt + ht(·; bt) from one full pass are used as the base dynamics for the next. As
further discussed in App. C.3, this process progressively reduces variance and stabilizes ESS over
multiple rounds (cf., Figs. 16 and 17), further enhancing sample quality (cf., Tabs. 12 and 13).

4.2 PARTICLE SYSTEMS

Next, we move to more realistic scientific benchmarks where the score is approximated by an NN
trained on finite data. We evaluate on two standard systems with complex, multimodal energy land-
scapes: a 2D 4-particle Double-Well (DW-4) and a 3D 13-particle Leonard-Jones system (LJ-13),
both widely used as benchmarks (Klein et al., 2023; Akhound-Sadegh et al., 2024; 2025; Liu et al.,
2025; Skreta et al., 2025; Zhang et al., 2025). The score is obtained by training an E(n)-Equivariant
Graph Neural Network (EGNN) (Satorras et al., 2021b) (cf., App. B.2). The EDM framework (Kar-
ras et al., 2022) is adopted for both training and inference (cf., App. B.4). We measure performance
using additional metrics that capture physical correctness, including the Radial Distribution Func-
tion (RDF) for structure and the energy distribution for thermodynamics (cf., App. B.5). Based
on the GMM results showing VCG’s superior performance over ECG and the lack of pre-trained
log-likelihood, we proceed with only the VCG variants of DriftLite in the following experiments.

Double-Well-4 (DW-4). We first consider the DW-4 system (cf., App. B.1). This system features
two energy minima separated by a barrier. The annealing task requires the sampler to correctly
populate both modes, even when they are sharpened at low temperatures. As shown in Fig. 13,
VCG-SMC achieves a nearly perfect match with the ground-truth RDF and energy distribution. This
demonstrates that by using variance reduction to maintain an ensemble of high-quality particles,
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Table 1: Performance comparison on Particle Systems (DW-4 and LJ-13). Results are mean±std over
5 runs. Best results per column are in bold.

Method DW-4, Annealing (T = 2.0, γ = 2.0) DW-4, Reward-Tilting (T = 2.0, λ′ = 0.5)

∆NLL MMD SWD W RDF
1 WE1 ∆NLL MMD SWD W RDF

1 WE1

PG 0.159±1.232 0.400±0.168 1.088±0.384 0.208±0.008 0.551±0.009 0.867±1.437 0.771±0.085 1.714±0.232 0.627±0.003 1.837±0.013
G-SMC 0.038±0.338 0.365±0.058 1.012±0.253 0.208±0.146 0.190±0.080 0.329±0.016 0.087±0.039 0.194±0.082 0.118±0.004 0.330±0.016

VCG -0.043±0.022 0.014±0.001 0.037±0.008 0.043±0.002 0.663±0.015 0.699±1.905 0.614±0.139 1.692±0.438 0.161±0.033 0.461±0.094
VCG-SMC -0.032±0.009 0.014±0.001 0.035±0.002 0.060±0.006 0.031±0.007 0.296±0.016 0.021±0.001 0.048±0.002 0.107±0.005 0.296±0.016

Method LJ-13, Annealing (T = 2.0, γ = 2.5) LJ-13, Reward-Tilting (T = 2.0, λ′ = 0.8)

∆NLL MMD SWD W RDF
1 WE1 ∆NLL MMD SWD W RDF

1 WE1

PG 13.58±16.73 0.603±0.095 0.598±0.087 0.037±0.000 11.40±0.129 4.975±5.159 0.719±0.021 0.797±0.058 0.070±0.001 5.430±0.074
G-SMC 13.64±9.949 0.616±0.012 0.523±0.060 0.040±0.030 13.48±9.626 1.783±0.202 0.081±0.019 0.084±0.032 0.023±0.002 1.784±0.202

VCG -1.084±0.931 0.136±0.032 0.144±0.044 0.069±0.001 22.86±0.177 7.629±12.37 0.695±0.127 0.702±0.174 0.036±0.020 2.790±1.531
VCG-SMC -0.699±0.189 0.102±0.050 0.098±0.044 0.002±0.000 0.286±0.100 1.734±0.106 0.015±0.001 0.015±0.001 0.022±0.001 1.735±0.106

(a) Radial Distribution Function. (b) Energy Distribution.

Figure 5: Comparison of generated distributions for the LJ-13 annealing task (γ = 2.5). VCG-SMC
is the only method that successfully recovers all three peaks in the (a) RDF and closely matches the
(b) Energy Distribution. Insets provide a zoomed-in view.

DriftLite effectively leverages global information to navigate challenging energy landscapes where
baselines fail to do so. Motivated by Schebek et al. (2024), we consider applying an additional
harmonic potential as a reward, and the reward-tilted distribution corresponds to another DW-4
system with a different configuration. The quantitative results in Tab. 1 confirm that our methods
consistently outperform baselines by a large margin across all metrics. The ESS/potential variance
plot in Fig. 11 confirms the stabilizing effect of our method on ESS. An ablation study in Fig. 12
demonstrates that our method converges as the number of particles increases across metrics.
Lennard-Jones-13 (LJ-13). We conclude with a highly challenging annealing task on the LJ-13
system (cf., App. B.1), a complex benchmark known for its rugged energy landscape and singular
behaviors at short distances. Fig. 5 presents the result of a demanding inference-time annealing task
from T = 1.0 to 0.4. The target distribution exhibits a third peak in its RDF corresponding to a
structural feature almost entirely absent at the initial temperature (Fig. 8). In a powerful demon-
stration of its capabilities, VCG-SMC is the only method that successfully discovers and samples
from all three modes, matching both the RDF and energy distribution with high precision. Metrics
in Tab. 1 further confirm a significant performance gap over the baselines in this complex setting.

We refer readers to App. C.2 for additional experimental results and visualization on DW-4 and LJ-
13 systems, with results with varying base temperatures T , annealing factor γ, constraint strength
λ′, and number of particles N .

4.3 PROTEIN-LIGAND CO-FOLDING

Lastly, we apply DriftLite to the protein-ligand co-folding problem (Abramson et al., 2024; Bryant
et al., 2024), a central task of structural biology and drug discovery. The goal is to generate 3D pro-
tein structures and their binding partners (ligands, particularly small molecules) simultaneously and
in a mutually dependent manner, given the protein sequence and the ligand identity. This problem
extends the classical protein folding problem (Jumper et al., 2021; Baek et al., 2021) and is crucial
for elucidating protein-ligand interactions. Despite the recent progress achieved by diffusion mod-
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Table 2: Performance comparison on steering the physical validity of protein-ligand co-folding.
Results are mean±std over 3 runs. Best results per column are in bold.

Method Valid Fraction ↑ Clash Free Fraction ↑ Bond Length ↓ Bond Angle ↓ Internal Clash ↓ Chiral Atom ↓ Chain Clashes ↓

Base 0.374±0.003 0.490±0.007 55.00±3.61 133.00±7.00 138.67±4.04 118.33±12.74 398.67±4.16
FKS 0.379±0.014 0.490±0.007 52.67±2.89 127.33±5.69 140.33±2.08 126.33±5.51 377.00±20.30
G-SMC 0.838±0.008 0.945±0.005 42.33±13.05 98.00±23.07 31.33±4.93 2.33±0.58 31.67±1.53

VCG-SMC 0.856±0.008 0.950±0.003 24.33±9.29 61.00±19.08 32.33±4.16 1.00±1.00 30.00±1.00

Figure 6: The reference and predicted complex structure of Hst2 bound to 2’-O-benzoyl ADP ribose.
The reference corresponds to the experimentally determined crystal structure (PDB ID: 7F51). The
unsteered base prediction inverted a chiral center in the ligand (highlighted with a red box). G-SMC
failed to correct this issue and even broke the bonding, whereas VCG-SMC successfully guided the
generation toward the correct chirality and preserved a chemically meaningful structure.

els, notably AlphaFold3 (Abramson et al., 2024), Protenix (Team et al., 2025), and Boltz-2 (Passaro
et al., 2025), a persistent challenge is that purely data-driven generative approaches tend to overem-
phasize global structural similarity while often producing conformations that violate basic physical
constraints (Buttenschoen et al., 2024; Masters et al., 2024). Recent studies demonstrated that in-
corporating physics-based steering potentials can help mitigate this limitation (Passaro et al., 2025).

We adopt and follow the experimental setup of Boltz-2 (Passaro et al., 2025), an open-weight dif-
fusion model, as the base model, and apply VCG-SMC to steer the generation of protein-ligand
structures toward physically valid conformations using a physics-based potential as reward. We
compare our method with two additional baselines: the unsteered model (Base) and Feynman-Kac
Steering (FKS) (Singhal et al., 2025). We assess physical validity using the widely adopted Pose-
Buster V2 benchmark (Buttenschoen et al., 2024). Results are summarized in Tab. 2. VCG-SMC
exhibits the strongest performance with fewer or without rule violations, improving the quality of
partially valid structures, and increasing the proportion of fully valid ones. This underscores its ef-
fectiveness in a complex real-world setting. An example highlighting these improvements is shown
in Fig. 6. Implementation details are provided in App. B.

5 CONCLUSION

We introduce DriftLite, a lightweight, training-free framework that resolves a critical trade-off in the
inference-time scaling of pre-trained diffusion models. By identifying and exploiting a fundamen-
tal degree of freedom in the Fokker-Planck equation, DriftLite actively controls the sampling drift
with minimal computational overhead, thereby mitigating the weight degeneracy that plagues previ-
ous particle-based methods. Our practical instantiations, VCG and ECG, impose minimal overhead
while dramatically improving the stability and accuracy of inference-time scaling. Experiments fur-
ther confirm their effectiveness and strong scaling with the number of particles, and we observe that
the VCG variant is generally more robust, while the ECG holds promise in several specific scenarios.
Across particle and protein systems, our approach consistently produces higher-quality samples and
handles complex distributions more robustly compared to existing inference-time scaling baselines.

While DriftLite proves effective, its reliance on a fixed set of linear basis functions presents a poten-
tial limitation. Future work could explore more expressive yet still efficient representations for the
control drift, such as compact neural networks or adaptive basis sets, including those involving the
posterior mean (Chung et al., 2022). Furthermore, we have focused on annealing and reward-tilting
tasks with non-heuristic targets and accuracy demands, but the DriftLite framework is broadly ap-
plicable beyond these tasks. Extending it to other generative problems, such as product-of-experts
models or conditional generation, is a promising direction for future research.
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A PROOFS

In this section, we present the omitted proofs of several propositions and additional discussions of
the theoretical claims in the main content.

A.1 PROOF OF PROPOSITION 2.1

To aid reading, we reiterate Prop. 2.1 below.

Proposition A.1 (Guidance-Based Dynamics). The exact time evolution of the density
(qt)t∈[0,T ] follows the following Fokker-Planck equation:

∂tqt(x) = −∇ · [ṽt(x)qt(x)] +
V 2
t

2
∆qt(x) + qt(x)gt(x),

where ṽt is given by

ṽt(x) = −
←
ut(x) +

←
U2
t + V 2

t

2
(γ∇ log

←
pt(x) +∇rt(x))

= −(1− γ)
←
ut(x) + γvt(x) +

←
U2
t + V 2

t

2
∇rt(x),

and the reweighting potential gt(x) = Gt(x)− Eqt [Gt(·)] is given by:

Gt =ṙt − (1− γ)∇ · ←ut +

←
U2
t

2

(
∆rt − γ(1− γ)∥∇ log

←
pt∥2

)
+∇r⊤t

(
− ←ut + γ

←
U2
t ∇ log

←
pt +

←
U2
t

2
∇rt

)
.

Proof. We begin with the definition of the target density qt(x):

log qt(x) = γ log
←
pt(x) + rt(x)− Zt,

where we define the log-partition function

Zt = log

∫
←
pt(y)

γ exp(rt(y))dy,

and taking the time derivative gives:

∂t log qt(x) = γ∂t log
←
pt(x) + ṙt(x)− ∂tZt. (A.1)

Recall that the Fokker-Planck equation for the backward process marginals ←pt is as follows:

∂t
←
pt(x) = −∇ · (vt(x)

←
pt(x)) +

V 2
t

2
∆
←
pt(x),

which can be expressed in terms of the log-density as:

∂t log
←
pt(x) = −

←
p−1
t (x)∇ · (vt(x)

←
pt(x)) +

V 2
t

2
←
p−1
t (x)∆

←
pt(x)

= −∇ · vt(x)− vt(x) · ∇ log
←
pt(x) +

V 2
t

2

(
∆log

←
pt(x) + ∥∇ log

←
pt(x)∥2

)
.

(A.2)

We posit that the time evolution of qt is governed by the Fokker-Planck equation with an additional
reweighting term:

∂tqt(x) = −∇ · [ṽt(x)qt(x)] +
V 2
t

2
∆qt(x) + qt(x)gt(x),

and dividing both sides by qt(x), we can solve for the potential gt(x):

gt(x) = ∂t log qt(x) + q−1
t (x)∇ · [ṽt(x)qt(x)]−

V 2
t

2
q−1
t (x)∆qt(x).

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Since we have ∫
∂tqt(x)dx =

d

dt

∫
qt(x)dx = 0,

and ∫ (
−∇ · [ṽt(x)qt(x)] +

V 2
t

2
∆qt(x)

)
dx = 0

by applying the divergence theorem and assuming suitable boundary conditions, the reweighting
term must have zero expectation, i.e.,

Ex∼qt [gt(x)] =

∫
qt(x)gt(x) = 0.

Thus, we can write gt(x) = Gt(x)− Eqt [Gt(·)], where we define Gt(x) by absorbing the spatially
independent term ∂tZt:

Gt(x) = gt(x) + ∂tZt

= ∂t log qt(x) + ∂tZt + q−1
t (x)∇ · [ṽt(x)qt(x)]−

V 2
t

2
q−1
t (x)∆qt(x)

= ṙt(x) + γ∂t log
←
pt(x) + q−1

t (x)∇ · [ṽt(x)qt(x)]−
V 2
t

2
q−1
t (x)∆qt(x)

= ṙt(x) + γ

(
−∇ · vt(x)− vt(x)

⊤∇ log
←
pt(x) +

V 2
t

2

(
∆log

←
pt(x) + ∥∇ log

←
pt(x)∥2

))
+∇ · ṽt(x) + ṽt(x)

⊤∇ log qt(x)−
V 2
t

2

(
∆log qt(x) + ∥∇ log qt(x)∥2

)
= ṙt(x)−γ∇ · vt(x) +∇ · ṽt(x)︸ ︷︷ ︸

(I)

−γvt(x)
⊤∇ log

←
pt(x) + ṽt(x)

⊤∇ log qt(x)︸ ︷︷ ︸
(II)

+
γV 2

t

2

(
∆log

←
pt(x) + ∥∇ log

←
pt(x)∥2

)
− V 2

t

2

(
∆log qt(x) + ∥∇ log qt(x)∥2

)
︸ ︷︷ ︸

(III)

,

where the second equality is due to Eqn. (A.1), and the second-to -last is due to Eqn. (A.1).

We now substitute the expressions for ∂t log
←
pt and log qt and simplify term by term.

• (I) Divergence Terms:

(I) = −γ∇ · vt(x) +∇ · ṽt(x) = ∇ · (ṽt(x)− γvt(x))

=∇ ·

(
−(1− γ)

←
ut(x) +

←
U2
t + V 2

t

2
∇rt(x)

)
= −(1− γ)∇ · ←ut(x) +

←
U2
t + V 2

t

2
∆rt(x).

• (II) Inner Product Terms:

(II) = −γvt(x)
⊤∇ log

←
pt(x) + ṽt(x)

⊤∇ log qt(x)

=− γvt(x)
⊤∇ log

←
pt(x) + ṽt(x)

⊤ (γ∇ log
←
pt(x) +∇rt(x))

=(ṽt(x)− vt(x))
⊤(γ∇ log

←
pt) + ṽt(x)

⊤∇rt(x)

=

(
−(1− γ)

←
ut(x) +

←
U2
t + V 2

t

2
∇rt(x)

)⊤

γ∇ log
←
pt(x)

+

(
−(1− γ)

←
ut(x) + γvt(x) +

←
U2
t + V 2

t

2
∇rt(x)

)⊤

∇rt(x)

=∇r⊤t

(
−←ut(x) + γ

←
U2
t ∇ log

←
pt(x) +

←
U2
t + V 2

t

2
∇rt(x)

)
−
←
U2
t + V 2

t

2
γ(1− γ)∥∇ log

←
pt(x)∥2.
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• (III) Laplacian Terms:

(III) =
γV 2

t

2

(
∆log

←
pt(x) + ∥∇ log

←
pt(x)∥2

)
− V 2

t

2

(
∆log qt(x) + ∥∇ log qt(x)∥2

)
=
V 2
t

2

(
γ∆log

←
pt(x)−∆(γ log

←
pt(x) + rt(x)) + γ∥∇ log

←
pt(x)∥2 − ∥γ∇ log

←
pt(x) +∇rt(x)∥2

)
=− V 2

t

2
∆rt(x)−

V 2
t

2

(
γ(γ − 1)∥∇ log

←
pt(x)∥2 + 2γ∇ log

←
pt(x) · ∇rt(x) + ∥∇rt(x)∥2

)
.

Combining all the simplified terms, we arrive at the expression for Gt stated in the proposition.

Remark A.2. This proof is similar to the proof in related works (Skreta et al., 2025; Chen et al.,
2025), where Fokker-Planck equations are derived for each task-specific setting. While being more
general, our approach also omits the computation of the time derivative of the log-partition function
∂tZt, since we notice that it cancels out in the final expression for Gt. This simplification makes the
proof more straightforward and concise.

A.2 JUSTIFICATION OF WEIGHTED PARTICLE SYSTEM (2.6)

Proposition A.3 (Weighted Particle Simulation). Let qt : Rd → R≥0 solve

∂tqt(x) = −∇ ·
[
ṽt(x)qt(x)

]
+

V 2
t

2
∆qt(x) + qt(x)gt(x).

Then this PDE can be simulated in the mean-field limit N → ∞ by the weighted particle
system {

dx
(i)
t = ṽt(x

(i)
t )dt+ Vtdw

(i)
t , i ∈ [N ],

d logw
(i)
t = ĝt(x

(i)
t )dt, i ∈ [N ],

where the weights satisfy the normalization
∑N

i=1 w
(i)
t = 1, and the empirical centered version

of gt:

ĝt(x) = Gt(x)−
N∑
j=1

w
(j)
t Gt(x

(j)
t )

ensures mass preservation.

The proof of this argument is standard (Moral, 2004; Doucet et al., 2000; Andrieu et al., 2010) under
typical assumptions, including local Lipschitz continuity and linear growth of the drift ṽt, bound-
edness of the diffusion coefficient Vt, moderate growth of ĝt, sufficient regularity of qt to justify
integration by parts, and either fast decay at infinity or no-flux boundary conditions to eliminate
boundary terms. We provide a proof sketch below for the reader’s convenience. We also point out
that similar arguments also apply to the weighted particle simulation for the controlled dynamics in
Prop. 3.1, which we omit for simplicity.

Proof Sketch. The main steps are as follows:

• Step 1 (Empirical measure). Define the weighted empirical distribution

µN
t =

N∑
i=1

w
(i)
t δ

x
(i)
t
.

• Step 2 (Test function evolution). For φ ∈ C∞
c (Rd), consider

⟨φ, µN
t ⟩ =

N∑
i=1

w
(i)
t φ(x

(i)
t ).
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Apply Itô’s lemma to φ(x
(i)
t ) under the SDE and combine with the weight dynamics via the

product rule. This yields

d⟨φ, µN
t ⟩ =

〈
ṽ⊤
t ∇φ+

V 2
t

2
∆φ+ ĝtφ, µ

N
t

〉
dt+ dMN

t ,

where MN
t is a martingale term.

• Step 3 (Limit N →∞). By law of large numbers and propagation of chaos (Sznitman, 1991;
Lacker, 2018), we have the weak convergence:

µN
t ⇒ qt(x)dx, as N →∞,

while the martingale term vanishes. Passing to the limit gives the weak form of the PDE:

d

dt

∫
φ(x)qt(x)dx =

∫ [
ṽt(x)

⊤∇φ(x) + V 2
t

2
∆φ(x) + ĝt(x)φ(x)

]
qt(x)dx.

• Step 4 (Integration by parts). Using divergence theorem identities, we have

d

dt

∫
φ(x)qt(x)dx =

∫
φ(x)

[
−∇·

(
ṽt(x)qt(x)

)
+

V 2
t

2
∆qt(x) + ĝt(x)qt(x)

]
dx,

for all test functions φ.

Hence, we have

∂tqt(x) = −∇ ·
(
ṽt(x)qt(x)

)
+

V 2
t

2
∆qt(x) + ĝt(x)qt(x),

and the proof is complete.

A.3 PROOF OF PROPOSITION 3.1

The following proposition is the same as Prop. 3.1, but with a more detailed proof.

Proposition A.4 (Degree of Freedom). For any control drift bt(x), the Fokker-Planck equa-
tion

∂tqt(x) = −∇ · [ṽt(x)qt(x)] +
V 2
t

2
∆qt(x) + qt(x)gt(x),

is equivalent to the following one with an additional control drift term bt(x):

∂tqt(x) = −∇ ·
[
(ṽt(x) + bt(x)) qt(x)

]
+

V 2
t

2
∆qt(x) + qt(x)ϕt(x),

where the residual potential is ϕt(x) = gt(x) + ht(x; bt) with the control potential ht(·; bt)
defined as:

ht(x; bt) = (γ∇ log
←
pt(x) +∇rt(x)) · bt(x) +∇ · bt(x).

Proof. The terms added to the right-hand side of Eqn. (2.5) to obtain Eqn. (3.1) are:

−∇ · (bt(x)qt(x)) + qt(x)(ht(x; bt)− Eqt [ht(x; bt)]).

First, we prove that Eqt [ht(x; bt)] = 0:

Eqt [ht(x; bt)] =

∫
qt(x) [(∇rt(x) + γ∇ log

←
pt(x)) · bt(x) +∇ · bt(x)] dx

=

∫
∇ · (qt(x)bt(x))dx = 0,

where the last equality follows from the divergence theorem, assuming appropriate boundary condi-
tions (e.g., qtbt vanishes at infinity).
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Then, we show that the remaining added terms cancel each other out:

−∇ · (bt(x)qt(x)) + qt(x)ht(x; bt)

=−∇ · (bt(x)qt(x)) + qt(x) [∇ log qt(x) · bt(x) +∇ · bt(x)]
=−∇ · (bt(x)qt(x)) +∇ · (qt(x)bt(x)) = 0.

Since the added terms sum to zero (given Eqt [ht(x; bt)] = 0), the two PDEs are equivalent.

A.4 FORMAL SOLUTION FOR THE OPTIMAL CONTROL DRIFT

In Prop. 3.2, we claim that there exists a uniform optimal control drift as we rewrite its mathematical
rigorous version in the following proposition.

Proposition A.5 (Optimal Control). Let Ω ⊂ Rd be a bounded Lipschitz domain. Assume that
qt : Ω→ R is measurable and uniformly elliptic: there exist constants 0 < λ ≤ Λ <∞ such
that

λ ≤ qt(x) ≤ Λ, for a.e. x ∈ Ω,

and suppose gt ∈ L2(Ω). Then there exists a unique potential A∗
t ∈ H1

0 (Ω) solving

−∇ ·
(
qt(x)∇A∗

t (x)
)
= qt(x)gt(x) in H−1(Ω).

Defining the control b∗t (x) := ∇A∗
t (x) ∈ L2(Ω;Rd), one has

ϕ∗
t (x) = gt(x) + ht(x; b

∗
t ) = gt(x) +

1

qt(x)
∇ ·
(
qt(x)b

∗
t (x)

)
= 0 in H−1(Ω).

In particular, b∗t is the unique curl-free control that drives ϕt to zero.

Proof. This follows directly from the Lax–Milgram theorem. The bilinear form

a(u, v) :=

∫
Ω

qt∇u · ∇vdx, u, v ∈ H1
0 (Ω),

is bounded and coercive, while the linear functional

L(v) :=

∫
Ω

qtgtvdx

is continuous on H1
0 (Ω). By the Lax–Milgram theorem, there exists a unique A∗

t ∈ H1
0 (Ω) satisfy-

ing (3.2). The existence and uniqueness of weak solutions to such elliptic PDEs are standard results;
see, for example, Evans (2022, Chapter 6).

While the existence and the uniqueness of the solution to the Poisson equation (3.2) are shown
above, we present a formal solution for the control drift b∗t in the following, leading to our choice of
basis functions in Sec. 3.3.

Let ft(x) = qt(x)b
∗
t (x). By the Helmholtz-Hodge theorem, any sufficiently smooth vector field

ft can be decomposed into a curl-free component (the gradient of a scalar potential A) and a
divergence-free component u⊥, so that

ft(x) = ∇A(x) + u⊥(x),

where ∇ · u⊥ ≡ 0.

Substituting this decomposition into the equation gives:

∇ · (∇A(x) + u⊥(x)) = ∆A(x) = −qt(x)gt(x).

This is a standard Poisson equation for the scalar potential A. The solution for A can be expressed
formally using the Green’s function for the Laplacian in d dimensions, Gd(x− y):

A(x) = −
∫

Gd(x− y)qt(y)gt(y)dy.
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The desired control is then given by bt(x) = qt(x)
−1∇A(x). Taking the gradient of A(x) with

respect to x and using integration by parts with the property∇xGd(x− y) = −∇yGd(x− y), we
get the following formal solution:

∇A(x) = −
∫
∇xGd(x− y)qt(y)gt(y)dy

=

∫
Gd(x− y)∇y (qt(y)gt(y)) dy

=

∫
Gd(x− y) (gt(y)∇y log qt(y) +∇ygt(y)) qt(y)dy,

where the term ∇gt introduces higher-order derivatives of the reward function:

∇gt(x) = βt

[
∇2r(x)

(
−←ut(x)−

1

2
βt∇r(x)

)
−∇←ut(x)∇r(x)

]
− 1

2
βt∇∆r(x) + β̇t∇r(x).

This formal solution is computationally infeasible as it requires integrating over all space y,
weighted by the unknown density qt(y) that we are trying to simulate. However, its structure mo-
tivates our choice of local basis functions: the reward gradient ∇rt(x), the score ∇ log

←
pt(x), and

the forward drift ←ut(x), as we discard higher-order derivatives.

B ADDITIONAL IMPLEMENTATION DETAILS

In this section, we provide additional implementation details for the experiments, including the prob-
lem setup with parameters, a detailed description of the network architecture, training, inference, and
evaluation procedures.

B.1 PROBLEM SETTINGS

Gaussian Mixture Model (GMM). In the Gaussian Mixture Model (GMM) task, the data distri-
bution is set as

p0(x) =
1

40

40∑
i=1

N (x;µi, 50I) ,

where each component mean µi is sampled from Unif([−40, 40]).
For the annealing task where the target distribution is qT (x) ∝ p0(x)

γ , the reference samples are
obtained by rejection sampling with the following proposal distribution:

qproposal
0 (x) =

1

40

40∑
i=1

N
(
x;µi,

50

γ
I

)
.

For the reward-tilting task, the quadratic reward function is given by

r(x) = −1

2
(x− µ)⊤Σ−1(x− µ),

where the target mean µ is sampled from N (µ;0, 100I) and the covariance matrix Σ = σI with
σ being a parameter controlling the spread of the reward. The posterior distribution corresponds to
another Gaussian mixture model, in which each component acquires an updated mean and weight
after incorporating the quadratic reward:

q0(x) =

40∑
i=1

w̃iN
(
x; µ̃i, Σ̃

)
,

with posterior covariance
Σ̃ =

(
Σ−1 + (50I)−1

)−1
,

posterior means
µ̃i = Σ̃

(
(50I)−1µi +Σ−1µ

)
,
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and mixture weights reweighted according to the evidence,

w̃i ∝ wi exp
(
− 1

2 (µi − µ)⊤(Σ + 50I)−1(µi − µ)
)
.

For all GMM experiments presented in Sec. 4.1, we set the number of particles N = 213 and
perform resampling whenever ESS drops below 0.9. All plots in the GMM experiments are plotted
by projecting onto the first two dimensions.

Double-Well-4 (DW-4). For both DW-4 and LJ-13 systems, the target is a Boltzmann distribution
of the following form:

p0(x) ∝ exp(−E(x)) = exp

(
− 1

T

(
H(x) +

λ

2

n∑
i=1

∥ri − r∥2
))

, (B.1)

with the potential H(x) system-specific, and a harmonic potential of strength λ imposed as a phys-
ical constraint.

In the reward-tilting task, we consider the quadratic reward:

r(x) = −λ′

2

n∑
i=1

∥ri − r∥2,

and thus the reward-tilted distribution is

p0(x) ∝ exp

(
− 1

T

(
H(x) +

λ

2

n∑
i=1

∥ri − r∥2
)
− λ′

2

n∑
i=1

∥ri − r∥2
)

= exp

(
− 1

T

(
H(x) +

λ+ λ′T

2

n∑
i=1

∥ri − r∥2
))

,

i.e., another Boltzmann distribution of the same temperature but with a different constraint strength
λ+ λ′T .

First introduced by (Köhler et al., 2020), the double-well potential is defined on a system of 4
particles in the two-dimensional space (x ∈ R4×2). The potential energy function is given as:

HDW(x) =
1

2

∑
i<j

[
a(dij − d0) + b(dij − d0)

2 + c(dij − d0)
4
]
,

where ri is the coordinate of particle i and dij = ∥ri − rj∥ denotes the distance between particles
i and j. We use standard parameters: a = 0.0, b = −4.0, c = 0.9, and d0 = 4.0. This would yield
a double-well potential with two minima at dij = 4 ± 2

3

√
5. For the harmonic potential constraint

in the Boltzmann distribution Eqn. (B.1), we set the constraint strength as λ = 0.05. For all DW-4
experiments presented in Sec. 4.2, we set the number of particles N = 215 and perform resampling
every K = 100 steps.

Lennard-Jones-13 (LJ-13). The Lennard-Jones potential is a widely used model for simulating
interatomic interactions with both repulsive and attractive components. In our case, it is defined on
a system of 13 particles in three-dimensional space (x ∈ R13×3). The potential energy function is
given as:

HLJ(x) =
ϵ

2T

∑
i<j

[(
σ

dij

)12

− 2

(
σ

dij

)6
]
.

We use the following parameters: σ = 1.0 and ϵ = 2.0. For the harmonic potential constraint in
the Boltzmann distribution Eqn. (B.1), we set the constraint strength as λ = 1.0. For all LJ-13
experiments presented in Sec. 4.2, we set the number of particles N = 213 and perform resampling
every K = 50 steps.
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(a) Radial Distribution Function. (b) Energy Distribution.

Figure 7: Reference distributions for the DW-4 system at the base temperature T = 2.0: (a) Radial
Distribution Function (RDF) and (b) Energy Distribution.

(a) Radial Distribution Function. (b) Energy Distribution.

Figure 8: Reference distributions for the LJ-13 system at the base temperature T = 1.0: (a) Radial
Distribution Function (RDF) and (b) Energy Distribution.

Proteinligand Co-folding. The proteinligand co-folding problem is an extension of the classical
protein folding problem: rather than predicting only the structure of the protein itself, the task is to
simultaneously predict the structure of its interacting counterpart, a ligand that is typically a small
molecule. This problem lies at the core of structural biology and is essential for understanding how
proteins and ligands interact, which in turn underpins the elucidation of biological pathways and
the design of new drug molecules to modulate biological activity. In this work, we focus on ad-
dressing the issue of physical validity in proteinligand co-folding. Diffusion-based models often
overemphasize global structural similarity while occasionally generating unphysical conformations.
To mitigate this issue, we incorporate physics-based potentials to steer the generative process, effec-
tively modifying the data distribution pθ(x) with a physics-based potential function:

ptarget(x) ∝ pθ(x) exp
(
r(x)

)
.

Following Passaro et al. (2025), we use a physics reward that penalizes local constraint violations
defined in the PoseBuster V2 benchmark. Let x denote all atomic coordinates, and let Ephys(x) be a
weighted sum of potentials:

Ephys(x) = αbond Ubond(x)+αangle Uangle(x)+αchir Uchir(x)+αint Uint-clash(x)+αchain Uchain-clash(x),

with nonnegative weights α•. The steering reward is then defined as

r(x) = −λEphys(x).

For each covalent bond, bond angle, and chiral center, we apply a flat-bottom potential function
that penalizes deviations from the corresponding physical rules while permitting small fluctuations
within an acceptable tolerance. This ensures that generated structures remain physically plausible
without being overly constrained. Further implementation details of these potentials are provided
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in Passaro et al. (2025). Since we also adopt the pre-trained model weights from Passaro et al.
(2025), we do not describe the model architecture or training process here; instead, we refer readers
to the original work. In this experiment, we use the reward gradient∇r(x) as a single basis, and its
Laplacian ∆r(x) is obtained through auto-differentiation.

B.2 NETWORK ARCHITECTURES

The score function ∇ log
←
pt in both particle experiments (DW-4 and LJ-13) is approximated by an

E(n) Equivariant Graph Neural Network (EGNN) (Satorras et al., 2021b;a; Köhler et al., 2020;
Klein et al., 2023; Midgley et al., 2023). The network maps a time scalar t and particle coordinates
x = {r1, . . . , rn} to an updated set of coordinates representing the score. All MLPs use Swish
activations.

Initialization. Input coordinates are first centered. The scalar time t is encoded using sinusoidal
positional embeddings ϕt. The resulting vector is then passed through an MLP to create the initial
node features h(0)

i , which are identical for all nodes.

r
(0)
i = ri −

1

n

n∑
j=1

rj , h
(0)
i = MLP (ϕt(t)) .

Equivariant Layers. The network consists of L sequential Equivariant Graph Convolutional Lay-
ers (EGCL). For each layer l ∈ {0, . . . , L − 1}, an initial message m

(l)
ij is computed for each edge

(i, j) using an MLP ϕ
(l)
e :

m
(l)
ij = ϕ(l)

e

([
h
(l)
i ,h

(l)
j , ||r(l)i − r

(l)
j ||

2
])

where [· · · ] denotes concatenation. An attention mechanism then refines each message by multiply-
ing it with a learned gating coefficient:

m
(l)
ij ←m

(l)
ij · σ

(
ϕ
(l)
att (m

(l)
ij )
)

where ϕ
(l)
att is a single-layer MLP and σ is the sigmoid function. These refined messages are used

to produce equivariant updates for the coordinates and invariant updates for the node features via
MLPs ϕ(l)

x and ϕ
(l)
h . Both updates employ residual connections.

r
(l+1)
i = r

(l)
i +

∑
j ̸=i

r
(l)
i − r

(l)
j

||r(l)i − r
(l)
j ||+ C

ϕ(l)
x (m

(l)
ij ),

h
(l+1)
i = h

(l)
i + ϕ

(l)
h

([
h
(l)
i ,
∑

j ̸=i m
(l)
ij

])
,

where C is a normalization constant for the coordinate update.

Final Output. The final output of the network is the set of coordinates from the last layer, r(L),
which is re-centered to guarantee overall translation invariance. For each particle, the output is given
by centering the coordinates:

rout
i = r

(L)
i − 1

n

n∑
j=1

r
(L)
j .

For the DW-4 experiment, we use L = 5 layers with a hidden dimension of 64, and for the LJ-13
experiment, we use L = 5 layers with a hidden dimension of 128. The normalization constant C is
set to 1.0 for both experiments.

B.3 SAMPLING DETAILS

To generate configuration samples, we simulate the underdamped Langevin dynamics for a system
of N particles in D dimensions. The dynamics target a canonical Boltzmann distribution:

π(x,v) ∝ exp

(
− 1

T

(
U(x) +

∥v∥2

2

))
,
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where U(x) is the target potential energy (U(x) = H(x) + λ
2

∑n
i=1 ∥ri − r∥2 in our case), v are

the particle velocities, T is the temperature, and we assume unit mass. The corresponding stochastic
differential equations (SDEs) are:{

dxt = vtdt

dvt = F (xt)dt− γvtdt+
√
2γTdwt,

where F (x) = −∇U(x) is the force, γ is the friction coefficient, and (wt)t≥0 represents a standard
Wiener process. For both experiments, we use γ = 0.5.

Initialization. Particle positions x0 are initialized on a perturbed lattice separated by the charac-
teristic length of each system, and the center of mass is removed. Initial velocities v0 are drawn from
the equilibrium Maxwell-Boltzmann distribution, with each component sampled independently from
N (0, T ).

Numerical Integration. The Langevin SDEs are numerically integrated using the BAOAB split-
ting scheme (Leimkuhler & Matthews, 2013), which is a highly accurate and stable method for
thermostatted systems. For a discrete time step ∆t, the update from state (xn,vn) to (xn+1,vn+1)
is performed in five sequential steps:

B: vn+1/2 = vn +
∆t

2
F (xn),

A: xn+1/2 = xn +
∆t

2
vn+1/2,

O: v̂n+1/2 = e−γ∆tvn+1/2 +
√
T (1− e−2γ∆t)ξn,

A: xn+1 = xn+1/2 +
∆t

2
v̂n+1/2,

B: vn+1 = v̂n+1/2 +
∆t

2
F (xn+1),

where ξn is a vector of independent standard normal random variables, i.e., ξn ∼ N (0, I).

Sampling Protocol. The simulation begins with a burn-in phase, during which the system is
evolved for Nburn steps to allow it to equilibrate with the stationary distribution. Following this,
the sampling phase begins. To ensure that the collected samples are approximately independent, the
system evolves for Ninterval steps between each saved configuration. This process is repeated until
the desired number of samples is obtained.

B.4 TRAINING AND INFERENCE DETAILS

We train our score-network using the Elucidating the Design Space of Diffusion Models (EDM)
framework (Karras et al., 2022). This approach frames the learning problem as a denoising task,
where a single neural network is trained to remove noise from corrupted data across a continuous
range of noise levels.

Network Preconditioning. The core component is a neural network F (·;σ) that is wrapped with
a set of preconditioning functions dependent on the noise level σ. This design ensures numerical
stability and improves performance across all noise scales. The final denoiser, D(xnoisy;σ), which
predicts a clean sample from a noisy one, is defined as:

D(xnoisy;σ) = cskip(σ)xnoisy + cout(σ)F (cin(σ)xnoisy, cnoise(σ)) . (B.2)
The functions cskip, cin, and cout provide scaling and a skip connection, while cnoise(σ) creates a
time-like embedding from the noise level.

We adopt the preconditioning functions as follows:

cskip(σ) =
σ2

data

σ2 + σ2
data

, cin(σ) =
1√

σ2 + σ2
data

, cout(σ) =
σσdata√
σ2 + σ2

data

, cnoise(σ) =
1

4
log σ,

where σdata is a hyperparameter varying with the task. We set σdata = 1.8 for the DW-4 experiment
and σdata = 0.68 for the LJ-13 experiment.
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Training Objective. The network is trained by corrupting clean data samples xclean with Gaus-
sian noise of a given standard deviation σ, creating noisy samples xnoisy = xclean + σϵ, where
ϵ ∼ N (0, I). The training objective is to minimize the weighted mean squared error between the
denoiser’s prediction and the original clean data. The loss function is given by:

LEDM = Exclean∼p0,σ,ϵ∼N (0,I)

[
w(σ) ∥D(xnoisy;σ)− xclean∥2

]
,

where the distribution of σ and the weighting function w(σ) will be specified later.

Following the EDM framework, the noise level σ is sampled from a log-normal distribution:

log σ ∼ N (Pmean, P
2
std),

with Pmean = −1.2 and Pstd = 1.2. To avoid numerical instability, we clip the noise level to be
within the range [σmin, σmax] with σmin = 0.002 and σmax = 80. The weighting function is set as

w(σ) =
σ2 + σ2

data

σ2σ2
data

.

Inference Process. While the model is trained as a denoiser, sampling requires the score function,
∇x log p(xnoisy;σ). The trained denoiser D is converted to the score during inference using the
following exact relation:

∇x log p(xnoisy;σ) =
D(xnoisy;σ)− xnoisy

σ2
.

The noise level σ coincides with the forward time s in our setting in Eqn. (2.1) and we have T =
σ′

max. The time discretization is chosen as

{tk}Mk=0 =

{
σ′

max −
(
σ′1/ρ

max +
k

M

(
σ
′1/ρ
min − σ′1/ρ

max

))ρ}M

k=0

,

where we choose a smaller range of noise levels for the parameters σ′
min = 0.005 and σ′

max = 50 to
avoid the boundary part of the noise level, which may be less accurate due to the lack of training and
singularity. We use ρ = 7 to control the spacing of the discretization. We use M = 500 for GMM
experiments and M = 1000 time steps for particle system experiments.

Training Settings. For the neural network F (·;σ) in the denoiser (B.2), we adopt the EGNN
architecture described in App. B.2. For the training process, we use the Adam optimizer (Kingma
& Ba, 2014) with a learning rate of 5 × 10−4 and a batch size of 1024. We train the network for
106 steps, where we sample a fresh dataset of 106 data points with the same protocol as described
in App. B.3 for every 2 × 105 steps. The warm-up period is only performed once before the first
batch. All training is performed on a single NVIDIA A100 GPU. The training code is based on
both the JAX library (Bradbury et al., 2018) and the Optax gradient processing and optimization
library (DeepMind et al., 2020).

B.5 EVALUATION METRICS

To quantitatively assess the quality of the samples generated by each method against a ground-truth
reference distribution, we employ a suite of five complementary metrics. Let the generated samples
be a weighted set {x(i), w(i)}i∈[N ] and the reference samples be {x(j)

ref , w
(j)
ref }j∈[Nref].

Negative Log-Likelihood Difference (∆NLL). The Negative Log-Likelihood (NLL) measures
how well a set of samples fits the target probability distribution p(x). For a weighted set of samples,
it is estimated as the weighted average of the negative log-probabilities:

NLL = −
N∑
i=1

w(i) log p(x(i)).

We report ∆NLL, which is the difference between the NLL of the samples generated by a method
and the NLL of the reference samples: ∆NLL = NLLmethod − NLLref. A lower absolute value
indicates a better fit to the target distribution.
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Maximum Mean Discrepancy (MMD). Maximum Mean Discrepancy (MMD) is an integral
probability metric defined in a Reproducing Kernel Hilbert Space (RKHS) H with a characteris-
tic kernel k(·, ·). Any probability distribution P admits a unique mean embedding µP ∈ H. The
squared MMD between two distributions P and Q is the squared RKHS distance between their
embeddings:

MMD2(P,Q) = ∥µP − µQ∥2H = ∥Ex∼P [k(x, ·)]− Ey∼Q[k(y, ·)]∥2H .

Using the kernel trick, this definition can be expressed entirely in terms of kernel evaluations, avoid-
ing explicit computation of the embeddings. For two weighted sample sets, the unbiased empirical
estimator is

MMD2 = ∥Ex∼P [k(x, ·)]− Ey∼Q[k(y, ·)]∥2H
=Ex,x′∼P [k(x,x

′)] + Ey,y′∼Q[k(y,y
′)]− 2Ex∼P,y∼Q[k(x,y)]

≈
N∑

i,j=1

w(i)w(j)k(x(i),x(j)) +

Nref∑
i,j=1

w
(i)
refw

(j)
ref k(x

(i)
ref ,x

(j)
ref )− 2

N∑
i=1

Nref∑
j=1

w(i)w
(j)
ref k(x

(i),x
(j)
ref ).

We use the RBF kernel

k(x,y) = exp

(
−∥x− y∥2

2σ2
k

)
,

with σk = 20 for the GMM experiment and σk = 5 for the DW-4 and LJ-13 experiments.

Direct evaluation of MMD requires O(N2) kernel evaluations, which becomes expensive for large
sample sets. To scale up computation, we use Random Fourier Features (RFF) to approximate the
RBF kernel with an explicit low-dimensional feature map z(x) ∈ Rf , reducing the complexity to
O(NNf ).

Bochner’s theorem states that a shift-invariant kernel can be expressed as the expectation of a product
of complex Fourier features with respect to its spectral density p(ω):

k(x,y) = Eω∼p(ω)

[
eiω
⊤xe−iω⊤y

]
.

For the RBF kernel, p(ω) is Gaussian, N (0, σ−2
k I). The RFF approximation replaces the expec-

tation with a Monte Carlo average over f/2 sampled frequencies ωk ∼ N (0, σ−2
k I) and random

phases bk ∼ Unif[0, 2π], yielding the explicit feature map

z(x) =

√
2

f

(
cos(ω⊤

1 x+ b1), . . . , cos(ω
⊤
f/2x+ bf/2), sin(ω

⊤
1 x+ b1), . . . , sin(ω

⊤
f/2x+ bf/2)

)⊤
.

This ensures that z(x)⊤z(y) ≈ k(x,y). The MMD can then be efficiently approximated as the
squared Euclidean distance between the mean feature vectors:

MMD2 ≈ ∥Ex∼P [z(x)]− Ey∼Q[z(y)]∥22 ≈

∥∥∥∥∥∥
N∑
i=1

w(i)z(x(i))−
Nref∑
j=1

w
(j)
refz(x

(j)
ref )

∥∥∥∥∥∥
2

2

.

In our experiments, we use 2048 random features (f = 2048) for all experiments.

Sliced-Wasserstein Distance (SWD). The Wasserstein distance measures the minimum cost to
transport mass from one distribution to another. The Sliced-Wasserstein distance is a computation-
ally efficient approximation that involves projecting the high-dimensional distributions onto a series
of random 1D lines, calculating the 1D Wasserstein-2 distance for each projection, and averaging
the results:

SWD2(P,Q)2 =

∫
SD−1

W 2
2 (πθ(P ), πθ(Q))dθ ≈ 1

p

p∑
i=1

W 2
2 (πθi(P ), πθi(Q)),

where πθ denotes the projection onto a line with direction θ ∈ SD−1, p is the number of projections,
and θi ∼ Unif(SD−1). In our experiments, we use p = 10 for all experiments.
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Radial Distribution Function Wasserstein-1 Distance (WRDF
1 ). The Radial Distribution Func-

tion (RDF), g(r), is a fundamental descriptor of the spatial arrangement of particles in a system,
measuring the probability of finding a particle at a distance r from another. For simplicity and fol-
lowing the literature (Akhound-Sadegh et al., 2024; Skreta et al., 2025), we define it as the ensemble-
averaged interatomic distance distribution:

g(r) =
2

N(N − 1)

∑
i<j

⟨δ(r − ∥ri − rj∥)⟩,

where ⟨·⟩ denotes the ensemble average over all configurations. With slight abuse of notation, we
still refer to g(r) as the RDF without the shell factor and density normalization.

To assess the structural accuracy of our samples, we compute the RDF for both the generated and
reference configurations, yielding two 1D distributions, gmethod(r) and gref(r). The WRDF

1 metric is
the 1-Wasserstein distance between these two distributions, W1(gmethod, gref), which quantifies the
difference in the learned physical structure.

Energy Wasserstein-1 Distance (W E
1 ). The energy of a configuration x is its negative log-

probability, E(x) = − log q(x). Due to the unknown normalization constant for the reward-tilted
and annealed distribution q(x) ∝ pγ(x)er(x), we report the energy up to a constant, i.e.,

E(x) = −γ log p(x)− r(x).

By evaluating the energy for every sample, we obtain two 1D distributions of energies, Pmethod
E

and P ref
E . The W E

1 metric is the 1-Wasserstein distance, W1(P
method
E , P ref

E ), between these energy
distributions. This metric evaluates how well a method captures the correct energy landscape and
the relative probabilities of different configurations.

Physical Validity. To evaluate the physical plausibility of generated proteinligand structures, we
adopt the validity metrics from PoseBusters (Buttenschoen et al., 2024), which assess adherence to
fundamental physical and chemical rules.

• Valid Fraction: The fraction of generated structures that satisfy all validity checks simultaneously,
serving as an overall measure of correctness.

• Clash-Free Fraction: The proportion of structures without severe steric clashes, i.e., unphysical
overlaps between atoms.

• Bond Length and Bond Angle Violations: Counts of deviations from standard covalent geometry.
Bond length violations occur when bonds are too short or too long, while bond angle violations
correspond to unrealistic angular geometries.

• Internal Clashes: The number of steric overlaps within the same ligand molecule, reflecting poor
internal consistency.

• Chiral Atom Errors: The number of stereocenters incorrectly assigned, such as inversions of chi-
rality.

• Chain Clashes: The number of steric overlaps between ligand atoms and protein atoms, indicating
violations of intermolecular packing constraints.

C ADDITIONAL EXPERIMENTAL RESULTS

This appendix provides supplementary results that further explore the performance of our methods,
DriftLite-VCG(-SMC) and DriftLite-ECG(-SMC), under various conditions for both the Gaussian
Mixture Model (GMM) and the particle-based systems (DW-4 and LJ-13).

C.1 ADDITIONAL EXPERIMENTAL RESULTS OF GMM

We first present a more extensive ablation study on the GMM. Tab. 3 details the performance of
all methods across a wider range of annealing factors, γ ∈ {1.5, 2.0, 2.5, 3.0}. The higher the
annealing factor γ becomes, the more challenging the inference-time scaling task is, as it accentuates
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the modes of the distribution and increases the energy barriers between them. The results reinforce
the conclusions from the main text: as γ grows, the performance gap between our DriftLite methods
and the baselines widens considerably. VCG-SMC, in particular, consistently achieves the best or
near-best performance across all metrics, showcasing its robustness.

Similarly, Tab. 4 extends the reward-tilting experiments to different reward strengths (σ ∈
{100, 200, 300, 400}). For the definition of the parameter σ, we refer to the problem settings in
App. B.1. Again, our methods demonstrate superior stability and accuracy compared to Pure Guid-
ance (PG) and G-SMC, which degrade significantly as the reward becomes more peaked (smaller
reward covariance scale σ).

Table 3: Performance ablation for the GMM annealing task with varying annealing factor γ. Results
are mean±std over 5 configurations. Best results per column (within each γ block) are in bold.

Method Annealing (γ = 1.5) Annealing (γ = 2.0)

∆NLL MMD×10-1 SWD Mean L2 Cov F×103 ∆NLL MMD×10-1 SWD Mean L2 Cov F×103

PG -1.196±0.621 4.471±2.452 11.90±6.391 58.98±33.92 5.274±0.660 -3.674±0.774 6.576±2.205 18.06±6.494 80.10±33.03 9.347±2.428
G-SMC 0.441±0.099 0.834±0.070 5.749±1.368 29.15±2.890 3.097±0.389 -0.527±0.262 2.057±0.497 11.44±3.625 58.71±14.71 5.097±0.575

ECG 0.257±0.083 0.185±0.003 0.622±0.097 2.982±0.331 0.350±0.033 0.324±0.145 0.415±0.037 1.209±0.164 5.323±0.658 0.750±0.069
ECG-SMC 0.219±0.053 0.162±0.004 0.605±0.139 2.667±0.687 0.335±0.036 0.198±0.073 0.185±0.009 0.779±0.131 3.782±0.476 0.446±0.045
VCG 0.222±0.045 0.166±0.002 0.590±0.058 2.661±0.172 0.335±0.018 0.204±0.052 0.188±0.001 0.672±0.093 2.971±0.175 0.379±0.030
VCG-SMC 0.203±0.061 0.162±0.002 0.638±0.055 2.852±0.058 0.346±0.021 0.192±0.063 0.166±0.005 0.606±0.094 2.866±0.543 0.344±0.027

Method Annealing (γ = 2.5) Annealing (γ = 3.0)

∆NLL MMD SWD Mean L2 Cov F ×103 ∆NLL MMD SWD Mean L2 Cov F ×103

PG -5.016±1.280 0.725±0.208 20.27±6.796 92.04±30.59 9.290±2.339 -4.950±1.342 0.758±0.158 19.55±4.731 93.39±21.64 8.654±1.850
G-SMC -0.801±0.204 0.327±0.073 13.88±2.770 78.11±18.39 5.829±1.041 -0.692±0.414 0.493±0.071 18.31±3.203 102.7±9.285 4.973±1.255

ECG -0.427±1.185 0.248±0.255 6.443±6.144 30.08±28.89 3.135±2.090 -1.201±1.155 0.353±0.192 8.967±4.501 39.24±21.08 4.858±1.636
ECG-SMC 0.169±0.070 0.021±0.002 1.002±0.196 4.886±1.149 0.564±0.088 0.184±0.079 0.031±0.003 1.672±2.14 7.795±1.164 0.850±0.107
VCG 0.204±0.058 0.023±0.001 0.717±0.108 3.351±0.222 0.420±0.037 0.209±0.080 0.029±0.002 0.859±0.147 4.071±0.507 0.505±0.055
VCG-SMC 0.179±0.065 0.018±0.001 0.613±0.109 2.867±0.364 0.380±0.051 0.174±0.073 0.019±0.001 0.691±0.149 3.319±0.593 0.415±0.048

Table 4: Performance ablation for the GMM reward-tilting task with varying reward strength σ.
Results are mean±std over 5 runs. Best results per column (within each σ block) are in bold.

Method Reward-Tilting (σ = 100) Reward-Tilting (σ = 200)

∆NLL MMD SWD Mean L2 Cov F ×103 ∆NLL MMD SWD Mean L2 Cov F ×103

PG 21.24±3.955 0.903±0.091 13.57±6.615 85.34±32.89 8.159±4.769 5.454±2.418 0.825±0.048 12.77±6.515 73.51±32.29 5.845±3.506
G-SMC 0.439±1.184 0.249±0.077 2.625±0.970 15.42±7.339 0.683±0.630 0.422±0.414 0.086±0.025 1.072±0.490 5.735±2.680 0.463±0.226

ECG 0.854±0.901 0.119±0.148 1.120±1.445 4.496±5.837 0.160±0.124 0.777±1.021 0.115±0.086 1.306±0.868 5.613±3.550 0.287±0.113
ECG-SMC 0.309±0.067 0.020±0.002 0.234±0.098 0.996±0.436 0.065±0.049 0.304±0.076 0.025±0.002 0.360±0.113 1.795±0.837 0.115±0.052
VCG 0.262±0.101 0.032±0.004 0.284±0.052 1.118±0.276 0.059±0.025 0.256±0.099 0.035±0.005 0.394±0.057 1.601±0.303 0.100±0.043
VCG-SMC 0.338±0.133 0.020±0.003 0.236±0.120 0.931±0.569 0.061±0.046 0.348±0.094 0.020±0.001 0.352±0.141 1.636±0.647 0.113±0.058

Method Annealing (σ = 300) Annealing (σ = 400)

∆NLL MMD SWD Mean L2 Cov F ×103 ∆NLL MMD SWD Mean L2 Cov F ×103

PG 1.838±1.657 0.660±0.072 11.06±5.357 58.23±26.81 5.238±2.293 0.618±1.201 0.497±0.083 9.187±3.991 45.60±20.95 3.952±1.483
G-SMC 0.207±0.148 0.047±0.007 0.664±0.312 3.447±1.402 0.284±0.158 0.253±0.140 0.036±0.004 0.814±0.272 4.917±1.998 0.377±0.134

ECG 0.664±0.899 0.132±0.089 1.572±0.813 7.141±3.575 0.434±0.117 0.463±0.498 0.122±0.084 1.611±0.829 7.590±3.780 0.535±0.138
ECG-SMC 0.661±0.538 0.048±0.037 0.740±0.302 3.965±2.116 0.258±0.103 0.327±0.195 0.039±0.012 0.888±0.182 4.433±0.965 0.394±0.098
VCG 0.227±0.109 0.034±0.007 0.498±0.080 1.913±0.383 0.157±0.037 0.290±0.121 0.033±0.006 0.550±0.056 2.238±0.332 0.203±0.035
VCG-SMC 0.315±0.082 0.022±0.001 0.355±0.075 1.544±0.306 0.150±0.024 0.292±0.055 0.022±0.001 0.454±0.107 2.072±0.476 0.184±0.046

Finally, Fig. 9 and Fig. 10 complement the figures in Sec. 4.1. Fig. 9 illustrates the evolution of
ESS and variance for a milder reward-tilting task (σ = 50.0), showing that even in less challenging
scenarios, our control mechanism actively stabilizes the particle weights. Fig. 10 shows the per-
formance of all methods as a function of the number of particles for a strong reward-tilting task
(σ = 400.0). It clearly indicates that our VCG and ECG methods not only outperform the baselines
but also converge more efficiently, achieving better results with fewer particles.

As shown in Tab. 5, for the 30-dimensional GMM problem, the relative runtime for our VCG-SMC
and ECG-SMC methods is only around 5 to 6 times that of the standard Guidance-SMC (G-SMC)
baseline. This modest increase in computation time is largely due to the effective parallelization of
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Figure 9: Evolution of ESS and potential vari-
ance for the GMM reward-tilting task (σ =
50.0).

Figure 10: Performance metrics versus num-
ber of particles for the GMM reward-tilting task
(σ = 400.0).

Table 5: Elapsed time comparison for different sampling methods. Results are mean±std over 5
runs. The relative runtime, including propagated standard deviation, is computed with respect to the
G-SMC method.

Method Annealing (γ = 2.5) Reward-Tilting (σ = 100)

Runtime (s) Relative Runtime Runtime (s) Relative Runtime

G-SMC 6.44±3.28 1.00±0.72× 6.90±3.01 1.00±0.62×
VCG-SMC 39.78±0.93 6.18±3.15× 40.22±0.49 5.83±2.54×
ECG-SMC 39.11±0.50 6.07±3.09× 39.33±0.59 5.70±2.49×

the core algorithms. These results underscore the minimal additional cost required to implement the
variance reduction technique, making them commonly practical. A more optimized implementation
could reduce this runtime gap even further by exploiting more GPU resources.

C.2 ADDITIONAL EXPERIMENTAL RESULTS OF PARTICLE SYSTEMS

Here, we provide additional ablation studies for the DW-4 and LJ-13 particle systems, demonstrating
the robustness of our findings.

ESS and Potential Variance Evolution. In Fig. 12, we present a similar visualization as in the
GMM example (Figs. 2 and 9), where similar trends are observed: pure guidance leads to a much
rapid drop in ESS during the initial stage of the inference process, while the variance-controlling
guidance postpones the drop when the resampling kicks in. We also observe that the time when the
curve of the potential variance Varqt [gt] of all methods meets coincides with the drop in ESS of the
variance-controlling guidance, which may correspond to the splitting of modes, and resampling may
be crucial to handle.

Figure 11: Evolution of ESS and potential vari-
ance for the DW-4 annealing task (γ = 2.0).

Figure 12: Performance metrics versus number of
particles for the DW-4 annealing task (γ = 2.0).
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Elapsed Time Comparison. The results for the DW4 system show that the performance scaling
of the advanced methods is even more favorable than what was observed for the GMM task (Tab. 5).
From Tab. 6, we can see that the relative runtime of the VCG-SMC methods is only about twice
that of the G-SMC baseline. This remarkable efficiency stems from the nature of the problem itself;
the total computational cost is dominated by repeated, computationally heavy score evaluations.
Consequently, the fixed algorithmic overhead from our DriftLite variance reduction methods be-
comes negligible as a fraction of the total runtime, underscoring their practicality and efficiency for
computationally intensive systems.

Table 6: Elapsed time comparison for different sampling methods on the DW4 System. Results are
mean±std over 5 runs. The relative runtime, including propagated standard deviation, is computed
with respect to the G-SMC method.

Method Annealing (γ = 2.0) Reward-Tilting (λ′ = 0.5)

Runtime (s) Relative Runtime Runtime (s) Relative Runtime

G-SMC 281.68±9.69 1.00±0.05× 284.12±8.03 1.00±0.04×
VCG-SMC 674.32±6.89 2.39±0.09× 674.12±1.75 2.37±0.07×

Ablation on Number of Particles N . Next, we present the ablation study on the number of par-
ticles on the DW-4 system as in the GMM example (Fig. 12). Despite a more complex problem
nature and high-level evaluation metrics (RDF and energy distribution), our methods still present
robust scaling in MMD and SWD, and show promising decay in WRDF

1 and W E
1 , highlighting the

effectiveness and robustness of our methods.

Ablation on Base Model Temperature T . In Tab. 7, we investigate the effect of the base model’s
training temperature (T ∈ {1.0, 1.5}) on an annealing task for the DW-4 system in addition to the
base temperature T = 2.0 as used in Tab. 1. The results show that our methods, particularly VCG-
SMC, are effective regardless of the starting temperature. They successfully anneal the system to
the target low-temperature state, consistently outperforming the baselines and confirming that the
control mechanism adapts well to different initial dynamics.

Table 7: Ablation results on Annealing with γ = 2.0 from Base Temperature T ∈ {1.0, 1.5}.
Results are mean±std over 5 runs. Best results per column (within each T block) are in bold.

Method T = 1.0 T = 1.5

∆NLL MMD SWD W RDF
1 WE1 ∆NLL MMD SWD W RDF

1 WE1

PG -0.219±0.782 0.343±0.195 0.833±0.405 0.194±0.006 0.054±0.007 0.546±0.731 0.259±0.084 0.690±0.226 0.217±0.006 0.320±0.013
G-SMC 2.571±1.979 0.359±0.163 0.973±0.445 0.147±0.030 0.201±0.121 2.645±1.065 0.639±0.185 1.681±0.527 0.116±0.133 0.325±0.182

VCG -0.046±0.093 0.026±0.009 0.076±0.031 0.045±0.007 0.127±0.018 0.083±0.121 0.032±0.015 0.091±0.048 0.034±0.004 0.558±0.031
VCG-SMC -0.044±0.029 0.019±0.005 0.048±0.013 0.053±0.012 0.053±0.022 0.077±0.010 0.015±0.007 0.035±0.011 0.011±0.008 0.078±0.010

Ablation on Annealing Factor γ. We further test the methods with varying annealing strengths
(γ ∈ {1.5, 2.0, 2.5}) for both the DW-4 and LJ-13 systems. For the DW-4 system (Figs. 13 and 14
and Tab. 8), the visual and quantitative results confirm that VCG and VCG-SMC maintain high
accuracy even as γ increases. For the more complex LJ-13 system (Fig. 15 and Tab. 9), the chal-
lenge is greater. While all methods struggle with the most challenging annealing tasks, VCG-SMC
consistently provides the most physically plausible results, capturing the structural features (RDF)
and energy distributions far more accurately than competing methods. This highlights its superior
performance in complex, high-dimensional energy landscapes.

Ablation on Reward Strength λ′. Finally, we perform an ablation on the reward strength (λ′ ∈
{0.2, 0.5, 0.8}) for the reward-tilting task on both particle systems. The results, shown in Tab. 10
for DW-4 and Tab. 11 for LJ-13, are consistent with previous findings. As the reward strength
increases, making the target distribution more distinct from the base distribution, the performance of
the baseline methods deteriorates rapidly. In contrast, VCG-SMC maintains excellent performance,
demonstrating its capability to accurately steer the particle distribution toward a sharply defined
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(a) Radial Distribution Function. (b) Energy Distribution.

Figure 13: Comparison of generated distributions for the DW-4 annealing task (γ = 2.0): (a) Radial
Distribution Function and (b) Energy Distribution.

(a) Radial Distribution Function. (b) Energy Distribution.

Figure 14: Comparison of generated distributions for the DW-4 annealing task (γ = 2.5): (a) Radial
Distribution Function and (b) Energy Distribution.

Table 8: Performance ablation for the DW-4 annealing task (T = 2.0) with varying annealing factor
γ. Results are mean±std over 5 runs. Best results per column (within each γ block) are in bold.

Method Annealing (γ = 1.5) Annealing (γ = 2.5)

∆NLL MMD SWD W RDF
1 WE1 ∆NLL MMD SWD W RDF

1 WE1

PG -0.114±0.339 0.198±0.152 0.527±0.396 0.132±0.002 0.179±0.023 0.159±1.232 0.400±0.168 1.088±0.384 0.208±0.008 0.551±0.009
G-SMC -0.009±0.041 0.053±0.009 0.143±0.031 0.038±0.023 0.026±0.011 0.038±0.338 0.365±0.058 1.012±0.253 0.208±0.146 0.190±0.080

VCG -0.009±0.018 0.010±0.001 0.024±0.003 0.041±0.003 0.307±0.020 -0.065±0.041 0.024±0.003 0.061±0.013 0.065±0.008 0.931±0.024
VCG-SMC -0.013±0.017 0.009±0.001 0.022±0.002 0.037±0.004 0.020±0.006 -0.060±0.008 0.023±0.001 0.056±0.006 0.119±0.008 0.059±0.008

(a) Radial Distribution Function. (b) Energy Distribution.

Figure 15: Comparison of generated distributions for the LJ-13 annealing task (γ = 2.0): (a) Radial
Distribution Function and (b) Energy Distribution.
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Table 9: Performance ablation for the LJ-13 annealing task (T = 1.0) with varying annealing factor
γ. Results are mean±std over 5 runs. Best results per column (within each γ block) are in bold.

Method Annealing (γ = 1.5) Annealing (γ = 2.0)

∆NLL MMD SWD W RDF
1 WE1 ∆NLL MMD SWD W RDF

1 WE1

PG 1.224±3.148 0.718±0.021 0.806±0.056 0.026±0.001 1.855±0.050 15.75±10.56 0.622±0.056 0.639±0.150 0.053±0.001 12.73±0.193
G-SMC 3.289±1.461 0.220±0.112 0.190±0.071 0.022±0.007 3.517±1.085 0.927±2.384 0.416±0.142 0.423±0.171 0.017±0.014 4.253±3.053

VCG 1.642±0.316 0.027±0.007 0.029±0.005 0.058±0.001 8.848±0.130 1.191±1.499 0.124±0.067 0.135±0.076 0.088±0.001 21.28±0.127
VCG-SMC 2.221±0.353 0.024±0.004 0.024±0.005 0.018±0.002 3.006±0.307 0.734±0.490 0.091±0.023 0.092±0.021 0.007±0.002 1.958±0.610

target region. This confirms the effectiveness and robustness of our drift control mechanism across
a wide range of inference-time scaling challenges.

Table 10: Performance ablation for the DW-4 reward-tilting task (T = 2.0) with varying reward
strength λ′. Results are mean±std over 5 runs. Best results per column (within each λ′ block) are in
bold.

Method Reward-Tilting (λ′ = 0.2) Reward-Tilting (λ′ = 0.8)

∆NLL MMD SWD W RDF
1 WE1 ∆NLL MMD SWD W RDF

1 WE1

PG -0.182±0.846 0.768±0.078 1.808±0.223 0.305±0.006 0.368±0.008 2.480±2.35 0.775±0.088 1.647±0.239 0.852±0.004 3.867±0.010
G-SMC 0.094±0.015 0.020±0.003 0.046±0.007 0.060±0.004 0.094±0.019 0.534±0.088 0.079±0.025 0.160±0.043 0.150±0.022 0.536±0.088

VCG 0.386±1.000 0.403±0.098 1.122±0.359 0.095±0.008 0.138±0.012 1.050±2.865 0.671±0.087 1.768±0.302 0.282±0.121 1.162±0.567
VCG-SMC 0.096±0.017 0.014±0.001 0.032±0.004 0.059±0.004 0.093±0.017 0.518±0.020 0.028±0.001 0.065±0.004 0.149±0.004 0.520±0.020

Table 11: Performance ablation for the LJ-13 reward-tilting task (T = 1.0) with varying reward
strength λ′. Results are mean±std over 5 runs. Best results per column (within each λ′ block) are in
bold.

Method Reward-Tilting (λ′ = 0.2) Reward-Tilting (λ′ = 0.5)

∆NLL MMD SWD W RDF
1 WE1 ∆NLL MMD SWD W RDF

1 WE1

PG 1.404±4.812 0.718±0.021 0.806±0.056 0.026±0.001 1.855±0.050 3.253±5.013 0.718±0.020 0.800±0.059 0.050±0.001 3.705±0.085
G-SMC 0.832±0.072 0.031±0.009 0.030±0.013 0.010±0.001 0.834±0.072 1.277±0.072 0.055±0.006 0.049±0.008 0.016±0.001 1.278±0.072

VCG 0.106±3.619 0.559±0.127 0.588±0.169 0.024±0.015 1.869±1.046 7.470±10.167 0.669±0.132 0.675±0.167 0.024±0.015 1.869±1.046
VCG-SMC 0.765±0.117 0.012±0.001 0.015±0.002 0.016±0.001 1.219±0.079 1.218±0.079 0.013±0.001 0.015±0.002 0.016±0.001 1.219±0.079

C.3 ITERATIVE REFINEMENT

While a single pass of inference-time scaling is effective, its corrective power is finite; once the
simulation reaches the terminal time, any residual mismatch between the particle and target distri-
butions cannot be further addressed. The key insight behind our iterative approach is that each pass
produces an improved sampling dynamic. The updated drift and potential:

veff
t (x) = vt(x) + bt(x), geff

t (x) = gt(x) + ht(x; bt),

encode richer information about the target distribution. Our iterative refinement procedure leverages
this accumulated knowledge rather than discarding it. By iterating the procedure, each round builds
upon the refined dynamics of the previous one, creating a virtuous cycle that progressively sharpens
the sampling path.

This iterative process can also be viewed as a practical method for approaching the optimal control
drift in Prop. 3.2. Since the control bt is computed at each step under a linear ansatz (Ansätze 3.3
and 3.4), it provides an approximation of the true optimal control. This approximation becomes
increasingly accurate as the underlying dynamics and particle distribution are improved in each
round, allowing the linear model to operate on a better-conditioned problem.

Algorithm. The iterative refinement algorithm, detailed in Alg. 2, transforms the single-pass
method (Alg. 1) into a multi-stage process of progressive improvement. The fundamental differ-
ence lies in the cumulative application of control. Whereas the base algorithm applies a calculated
control drift just once, the iterative method repeats the entire simulation K times.
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The central mechanism is the permanent absorption of the learned control into the system’s dynam-
ics. After each full trajectory simulation (a “round), the control terms are folded into an “effective”
drift veff

t and potential gefft . While particle positions are reset to the initial noise distribution at the
start of a new round, these effective dynamics are preserved and carried forward. The refined dy-
namics from round j thus serve as the improved baseline for round j + 1. This process iteratively
sharpens the sampling path, guiding particles more efficiently in subsequent rounds without any
external training or global optimization.

Algorithm 2: Iterative Refinement for Inference-Time Scaling (cumulative drift/potential
updates)

Input: Original drift path vt, original potential path gt, time steps {tk}Mk=0, reward r(x),
schedule βt, basis functions, number of refinement rounds K, number of particles N ,
ESS threshold τ .

1 Initialize effective drift veff
t (·)← vt(·), and potential gefft (·)← gt(·);

2 for j ← 1 to K do
3 Initialize particles x(i)

t0 ∼
←
p0 and w

(i)
t0 ←

1
N for i = 1, . . . , N ;

4 for k ← 0 to M − 1 do
5 Form weighted estimates of Atk and ctk using {(x(i)

tk
, w

(i)
tk
)}i∈[N ];

6 Solve Atkθtk = ctk to obtain the control drift btk(·);
7 veff

tk
(·)← veff

tk
(·) + btk(·), gefftk (·)← gefftk (·) + htk(·; btk);

8 logw
(i)
tk+1
← logw

(i)
tk

+ gefftk (x
(i)
tk
)(tk+1 − tk), wtk+1

← softmax(wtk+1
);

9 x
(i)
tk+1
← x

(i)
tk

+ veff
tk
(x

(i)
tk
)(tk+1− tk)+Vtk

√
tk+1 − tkz

(i), where z(i) ∼ N (0, I);
10 if ESS(wtk+1

) < τ or periodically then
11 Resample {x(i)

tk+1
}i∈[N ] according to {w(i)

tk+1
}i∈[N ];

12 Reset w(i)
tk+1
← 1

N for all i;

Output: Final samples {(x(i)
T , w

(i)
T )}i∈[N ] from the K-th refinement round.

Results. Our empirical results decisively validate the iterative refinement strategy on a Gaussian
Mixture Model (GMM) target across both annealing and reward-tilting tasks.

The evolution of the sampler’s internal state, shown in Figs. 16 and 17, provides clear evidence of
the algorithm’s success. With each successive refinement round (progressing from blue to red), the
variance of the control estimates exhibits a striking, monotonic decrease. This variance reduction
directly leads to a dramatically more stable ESS, which is maintained at near-optimal levels through-
out the later stages of the simulation. This provides direct confirmation that the refined dynamics
act as a substantially more efficient proposal distribution, a trend that holds robustly across both
experimental setups.

The final sample quality metrics, reported in Tabs. 12 and 13, complete the picture. While the
improvement in downstream metrics, such as MMD and SWD, is not always strictly monotonic
with every iteration, the refinement process consistently uncovers solutions that are superior to those
from the initial pass. The best-performing configurations (highlighted in bold) are frequently found
in later iterations. This confirms that multiple refinement passes are invaluable for navigating the
optimization landscape to find higher-quality final samples.
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(a) ECG. (b) VCG.

Figure 16: Evolution of ESS and potential variance across multiple refinement rounds for the GMM
annealing task (γ = 2.5). Later rounds (red) show monotonically decreasing variance and more
stable ESS.

Table 12: Iterative refinement performance on the GMM annealing task (γ = 3.0). Results are
mean±std over 5 runs. Best result per column is in bold.

Iter. VCG-SMC ECG-SMC

∆NLL MMD SWD Mean L2 Cov F ×103 ∆NLL MMD SWD Mean L2 Cov F ×103

1 0.174±0.073 0.019±0.001 0.691±0.149 3.319±0.593 0.415±0.048 0.184±0.079 0.031±0.003 1.672±0.214 7.795±1.164 0.850±0.107
2 0.159±0.068 0.019±0.001 0.797±0.151 3.906±0.806 0.450±0.055 0.178±0.058 0.028±0.002 1.105±0.129 5.748±0.805 0.787±0.091
3 0.176±0.022 0.019±0.002 0.599±0.142 3.083±0.794 0.406±0.078 0.166±0.015 0.027±0.002 1.201±0.267 5.990±0.866 0.762±0.090
4 0.152±0.078 0.019±0.001 0.720±0.061 3.346±0.545 0.414±0.066 0.168±0.059 0.029±0.003 1.696±0.455 6.653±1.728 0.816±0.129
5 0.165±0.052 0.018±0.001 0.694±0.167 3.124±0.765 0.386±0.061 0.158±0.058 0.025±0.002 1.096±0.386 4.854±0.929 0.693±0.082
6 0.163±0.073 0.019±0.001 0.744±0.077 3.378±0.409 0.412±0.022 0.164±0.074 0.031±0.007 1.494±0.572 7.135±2.767 0.908±0.302
7 0.161±0.050 0.019±0.001 0.736±0.095 3.343±0.285 0.408±0.027 0.160±0.055 0.031±0.005 1.477±0.354 7.010±1.843 0.874±0.151
8 0.180±0.055 0.019±0.001 0.766±0.120 3.407±0.269 0.420±0.043 0.181±0.052 0.029±0.003 1.406±0.184 6.748±1.192 0.806±0.119
9 0.184±0.050 0.019±0.001 0.670±0.117 3.238±0.371 0.395±0.046 0.187±0.046 0.027±0.004 1.137±0.247 5.669±1.519 0.739±0.201

(a) ECG. (b) VCG.

Figure 17: Evolution of ESS and potential variance across multiple refinement rounds for the GMM
reward-tilting task (σ = 100.0). Later rounds (red) show monotonically decreasing variance.

Table 13: Iterative refinement performance on the GMM reward-tilting task (σ = 100.0). Results
are mean±std over 5 runs. Best result per column is in bold.

Iter. VCG-SMC ECG-SMC

∆NLL MMD SWD Mean L2 Cov F ×103 ∆NLL MMD SWD Mean L2 Cov F ×103

1 0.338±0.133 0.020±0.003 0.236±0.120 0.931±0.569 0.061±0.046 0.309±0.067 0.020±0.002 0.234±0.098 0.996±0.436 0.065±0.049
2 0.294±0.077 0.020±0.002 0.249±0.076 1.240±0.626 0.058±0.031 0.284±0.081 0.020±0.002 0.214±0.070 0.851±0.228 0.054±0.028
3 0.244±0.068 0.019±0.001 0.225±0.076 0.983±0.380 0.053±0.034 0.273±0.072 0.020±0.002 0.256±0.095 1.310±0.699 0.062±0.036
4 0.322±0.089 0.020±0.002 0.268±0.109 1.386±0.732 0.065±0.035 0.288±0.078 0.020±0.001 0.267±0.095 1.276±0.837 0.063±0.031
5 0.280±0.061 0.019±0.001 0.259±0.122 1.087±0.661 0.057±0.030 0.278±0.102 0.020±0.002 0.263±0.160 1.364±0.965 0.055±0.035
6 0.319±0.090 0.020±0.002 0.213±0.071 0.862±0.229 0.053±0.029 0.333±0.094 0.020±0.002 0.255±0.092 1.292±0.741 0.069±0.040
7 0.311±0.109 0.020±0.002 0.270±0.129 1.404±0.836 0.058±0.037 0.322±0.074 0.020±0.002 0.285±0.127 1.504±0.913 0.060±0.037
8 0.365±0.122 0.020±0.002 0.263±0.108 1.277±0.783 0.057±0.030 0.338±0.094 0.020±0.002 0.216±0.054 0.976±0.477 0.049±0.023
9 0.338±0.102 0.019±0.002 0.202±0.061 0.715±0.182 0.046±0.021 0.321±0.099 0.020±0.002 0.218±0.093 1.007±0.401 0.047±0.030
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