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ABSTRACT

We study inference-time scaling for diffusion models, where the goal is to adapt
a pre-trained model to new target distributions without retraining. Existing
guidance-based methods are simple but introduce bias, while particle-based cor-
rections suffer from weight degeneracy and high computational cost. We intro-
duce DriftLite, a lightweight, training-free particle-based approach that steers the
inference dynamics on the fly with provably optimal stability control. DriftLite ex-
ploits a previously unexplored degree of freedom in the Fokker-Planck equation
between the drift and particle potential, and yields two practical instantiations:
Variance- and Energy-Controlling Guidance (VCG/ECG) for approximating the
optimal drift with minimal overhead. Across Gaussian mixture models, parti-
cle systems, and large-scale protein-ligand co-folding problems, DriftLite con-
sistently reduces variance and improves sample quality over pure guidance and
sequential Monte Carlo baselines. These results highlight a principled, efficient
route toward scalable inference-time adaptation of diffusion models.

1 INTRODUCTION

Diffusion- (Sohl=Dicksfein ef all, POTS; Hoefall, 2020; Song & Ermon, Z01Y9; Song et all, P020]) and
flow-based (Zhang et all, Z0TX; Cipman et all, 2077; Albergo & Vanden-Eijnden, 2077; Cin_ef all,
2027) models have revolutionized generative modeling, achieving state-of-the-art performance in
domains ranging from creative media synthesis (Rombach et all, P027; Le ef all, X023; Ho ef all,
P77, [Anstin_ef-all, DO7T) to fundamental scientific discovery (Xuefall, DO077; Wafson_ef-all, P(0773;
Duan ef all, D073 Gaoc ef all, P024; Zhu ef all, P074); [Zenief all, P0O7Y; Duan_ef all, P0O7S). They typi-
cally rely on a neural network to approximate a time-dependent vector field, which guides a stochas-
tic process from noises to a complex target. However, the training process is resource-intensive,
making it impractical to retrain from scratch for every new setting. This renders a lightweight adap-
tation of pre-trained models to target distributions that is both compelling and essential.

To this end, a spectrum of adaptation methods has emerged. At one end are guidance-based tech-
niques, the most popular and straightforward inference-time techniques, which inject new informa-
tion into the drift term, such as classifier (Dhariwal & Nichol, P07ZT) or classifier-free guidance (Ha
& Salimans, P077) and its many variants (Chung et all, Z0272; [tippe et all, 2(027; Bansal'efall, P073;
Song et all, 2023a;H; He'ef all, P0773; Gmo_efall, 20724; Zheng et all, 2(074; Rojas et all, 2025). While
simple and effective for many tasks, these methods are often heuristic and introduce uncontrolled
bias (Chidambaram_ef all, P074; Wief all, P(0744), a significant drawback for scientific applications
where sampling accuracy is paramount. On the opposite are methods that resort to extra training,
such as fine-tuning (Fan"& T.ed, P073; Black ef all, P073; Clark_ef all, P073; Wallace ef all, P074))
as in the LLM context (Ouyang_ et all, P077; Ratailov_ef all, P073), or learning within a stochastic
control framework (Domingo-Enrich et all, 20744; Uehara et all, 2074)), similar to learning-based
samplers (Zhang & Chen, P07T; [Vargas et all, 2023; Domingo-Enrich et all, P074K), but this shifts
the computational burden back to retraining, forfeiting the efficiency of inference-time approaches.

Between these ends lies a middle ground of training-free but more sophisticated inference-time ap-
proaches. A promising direction formulates the problem in a Bayesian framework (Xu-& Chi, D024
Wn“et all, P0748; Coenrdonx_ef-all, P074; Brmna & Hanl, P074; [Zheng et all, Z075). In particular,
Sequential Monte Carlo (SMC) methods (Del"Moral ef-all, 2006; Doncef ef all, P00() have been re-
cently introduced to correct for the bias of guidance by simulating the target dynamics with weighted
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particles (Wnef-all, 2073; Cardoso ef all, P073; Skrefa ef all, 2075; Chen ef all, 2025; Singhal et all,
2079, Ceeef all, Z075). Despite their strong theoretical grounding and asymptotic guarantees, these
particle-based methods face a critical practical bottleneck: weight degeneracy. As the simulation
progresses, the weights of a few particles grow exponentially while the rest decay, causing the ef-
fective sample size to collapse. To mitigate this, one may increase the number of particles, raising
computational cost, or use fewer particles, resulting in instability and degraded sample quality.

Our work introduces DriftLite, a lightweight approach that resolves the inherent instability of
particle-based methods without sacrificing mathematical rigor. By exploiting a fundamental degree
of freedom in the Fokker-Planck equation, we actively control particle drift on the fly. This proactive
steering mechanism absorbs sources of weight variation, preventing the weight collapse common in
passive reweighting schemes and dramatically improving stability. The method’s minimal computa-
tional overhead, requiring only the solution of a small linear system per step, makes it fundamentally
lightweight. Unlike computationally intensive PDE solvers (Albergo & Vanden-Eijnden, 2024) or
heuristic control frameworks (He“efall, 2079), DriftLite is a training-free solution derived directly
from the principle of variance reduction. It is designed to scalably match an entire target distribution
in high-dimensional, continuous systems, more rigorous than targeting sample-focused metrics (M4
ef-all, Z079) or solving problems in simpler discrete settings (Cherfkov_efall, P075).

Our Contributions. Building on this insight, our work makes the following contributions:

* We identify a fundamental degree of freedom in the Feynman-Kac-type Fokker-Planck equa-
tion (3), establishing a principled trade-off between the particle drift and the reweighting po-
tential, and show that it can be directly exploited to actively minimize particle weight variance.

* We introduce DriftLite, a lightweight and training-free framework that computes a control drift
on-the-fly to stabilize the sampling dynamics. We derive two practical instantiations, Variance-
Controlling Guidance (VCG) and Energy-Controlling Guidance (ECG), which are computation-
ally efficient and require solving only a small additional linear system at each time step.

* We conduct extensive experiments on challenging benchmarks, including high-dimensional Gaus-
sian mixture models, molecular particle systems, and large-scale protein-ligand co-folding. Our
results demonstrate that DriftLite substantially reduces weight variance, stabilizes the Effective
Sample Size (ESS), and improves final sample quality over current baselines.

2 PRELIMINARIES

In this section, we establish the problem setting, including the fundamentals of diffusion models and
the inference-time scaling tasks central to our study.

2.1 DIFFUSION MODELS

We begin with a pre-trained diffusion or flow-matching model, to which we refer as the base model.
This model defines both a forward process (x).¢[o,7) governed by the following stochastic differ-
ential equation (SDE) and Fokker-Planck (FP) equation:

U2
dxs = us(xs)ds + Usdws (SDE), 0Osps(x) = =V - [ps(x)us(x)] + prs(:n) (FP), (2.1)

where u; is the forward drift, ps is the marginal distribution at time s, and (w;)s>0 is a Wiener
process. pg represents the data distribution, and pr is a simple prior, typically a standard Gaussian.

Generative modeling is performed using the backward process. Letting ¢t = T — s be the reverse
time and denote %; = %7 _,, the backward process (:’Et)te[o,T} is then described by:

< < < — V2 <
dwt = ’Ut(.’lit)dt + thwt (S])E)7 8tpt(w) =-V- [pt(w)'vt(ac)] + %Apt(ac) (FP),

where v; is the backward drift. The process starts from the noise distribution py ~ pr and recovers
the data distribution pr = pg. In traditional diffusion models, the backward drift v; is related to the

forward drift us () = —Fsx via the score function V log p;:
- U2+ V2 _
vi(z) = —us(x) + %Vlogpt(w). 2.2)

The word “pre-trained” signifies that we have access to the forward drift us and a reliable NN
approximation of the score V log p;, which in turn defines the backward drift v;.
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2.2 INFERENCE-TIME SCALING

Our goal is to adapt the generative process of a pre-trained model to new, related tasks at inference
time. This approach avoids the significant computational cost and data requirements of retraining
from scratch, making it desirable to leverage existing models. We focus on two primary scenarios:

* Annealing: Given a factor v, the goal is to sample from g7 o pJ. This is common in physics for

czewski ef all, P0074), using a model trained on easier-to-obtain high-temperature data.

* Reward-Tilting: Given a reward function r(x), the goal is to sample from g7 o po exp(r). This
can be interpreted as posterior sampling with py being the prior and the reward r being the pos-
terior likelihood. It is widely used in applications, such as inverse design (Chung et all, 20727),
where the reward function encodes the desired properties of the generated samples.

Distribution Path Selection. We can unify both scenarios by defining the target compactly as

qr () o< pr(w)” exp(r(z)) = po(w)” exp(r(z)).
To sample from g7, we define a modified backward process that evolves along a path of distributions

(9¢)tefo, ) that smoothly connects from initial noise to our target g7. Following recent works (Skrefza
et all, P079; Chen_ef all, P075), we adopt a both conceptually and computationally simple path:

qe(x) o pr(x) " exp (r4(x))

where the reward 7; interpolates from an initial state o chosen such that qq is easy to sample from,
to the final reward 7 = r. While more complex paths can be learned via optimal control (Ciiefal],
2025), we focus on such pre-defined paths to maintain a training-free framework.

Guidance-Based Dynamics. A common and intuitive approach, to which we refer as pure guid-
ance (Nichol'ef all, PO71); Ho & Salimans, D0727), is to inject the new information directly into the
drift term by replacing the original score V log p; with a heuristic score V log g; corresponding to
the marginal ¢;, leading to the following Fokker-Planck equation:

~ V2
Oqe(x) = =V - [0(x) g ()] + éAqt(w), (2.3)
where the modified drift v, is defined below (cf., Eqn. (IZ2)):

772 2
Bu(a) =~ (@) + Ce (1Y log(a) + Vri(). 4

However, this method is known to be intrinsically biased because it fails to account for the changing
normalization constant of ¢; over time (Chidambaram_ef all, 2024)). To correct this bias, the true
dynamics must include a self-normalizing reweighting term, as formalized below.

Proposition 2.1 (Guidance-Based Dynamics). The exact time evolution of the density
(qt)tejo,) follows the following Feynman-Kac-type Fokker-Planck equation:

~ V2
dqi(x) = =V - [Bi(@)q ()] + - Aai(@) + ()9 (), 2.5)
where vy is the same drift as in pure guidance (Z4), and the reweighting potential g;(x) =
Gi(x) — Eg, [Ge(+)] is given by:
. ~ [7152 — 12 T — 2 — ﬁtZ
G = rt7(177)v-ut+7 (Are — (1 = 7)||VIog pe||*) +Vry | —we+~U; Vlogthr?Vn .

We refer readers to App. B for the proof. The PDE describes dynamics that diffuse with the
guidance drift v;, while densities continuously reweight according to the centered potential g;.

Weighted Particle Method. The corrected PDE (I3) can be simulated using Sequential Monte
Carlo (SMC) (Doucefef all, 2000; Del'Moral et all, 2006), where the density ¢; is approximated by
an empirical distribution formed by an ensemble of N weighted particles {azil), wt(l)}ie[ NI

{dxf) = Ty (z{N)dt + Vidw!?, i€ [N],
i) _

(¢

t
L ~ (i i i i . (2:6)
D = gu(@) = Gu(al?) - TN w Gy (), i [N).

dlog wy
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We refer to this baseline as Guidance-SMC (G-SMC) (Skrefa_ef all, P0O7S; Chen ef all, 2025). This
method is provably convergent, with the KL divergence to the target scaling as O(N 1) in the
diffusion context (Andrien ef all, DOTR; Huggins & Roy], P019; Domingo-Enrich et all, 2(020; Cardosa
efall, D073; Chen efall, 2075). A brief justification of this method is given in App. B2

3 METHOD: LIGHTWEIGHT DRIFT CONTROL

While the principled dynamics outlined in Prop. I offer a path to unbiased sampling, their reliance
on weighted particles introduces the critical vulnerability of weight degeneracy. As the simulation
progresses, the exponential dependency of the weights w on the potential g; leads to rapid weight
degeneracy and collapse of the effective sample size. This instability makes the standard Guidance-
SMC approach computationally inefficient, especially with a limited number of particles.

This section introduces our solution: DriftLite, a lightweight, training-free framework that actively
controls the particle drift to stabilize the weights. We develop in three steps: (1) we identify a funda-
mental degree of freedom in the governing Fokker-Planck equation (Z3), (2) we use this freedom to
formulate an objective for minimizing the variation of the reweighting potential g;, and (3) we derive
two practical, computationally efficient algorithms (VCG and ECG) for achieving this control.

3.1 DEGREE OF FREEDOM IN THE FOKKER-PLANCK EQUATION

Our key insight is that we can dynamically modify the particle SDE to counteract the sources of
weight variance. Instead of passively reweighting particles, we can proactively steer them by “of-
floading” the problematic parts of the potential g; into a new, corrective drift term. This is enabled
by a degree of freedom within the Fokker-Planck equation, which we formalize below.

Proposition 3.1 (Degree of Freedom). For any control drift by(x), the Feynman-Kac-type
Fokker-Planck equation (I3) is equivalent to:

- V2
Oeqe(x) = =V - [(Ve(x) + be(x)) @ ()] + %AQ:&(‘E) + qi(z) e (), 3.1
where the residual potential is ¢+(x) = g:(x) + hi(x; b:(x)) with control potential hy being:
hi(@;b;) = (vVlog () + Vri(x)) - be(x) + V - by().

Proof Sketch. The core of the proof is detailed in App. B33. Briefly, we have —V - (b;(x)q:(x)) +
qi(x)hi(x; b)) = 0, since hy(x; by) is constructed using V log ¢; = vV log p; + Vr;. An important
property is that the correction term has zero expectation under g, i.e., Eq, [h¢(-; b)] = 0. O

This proposition provides a powerful tool: we can introduce any control drift b; to alter the dynam-
ics, as long as it is compensated by an extra control potential h;(-;b;). Since a large variance in
the potential g; is the direct cause of weight degeneracy, our goal is to choose b; strategically to
minimize the variance of the new residual potential ¢,. An ideal control would make ¢; constant,
completely stabilizing the particle weights. In fact, a perfect, variance-eliminating control always
exists for any base potential g;, as shown in the following proposition:

Proposition 3.2 (Optimal Control, Informal Version). There exists a unique curl-free control
by (x) = VA (x) such that ¢7(x) = g:(x) + he(x; bf) = 0 for all x, where the optimal
scalar potential A (x) is the solution to the following Poisson equation:

V- (q(2) VAL () = —qi () ge (). (3.2)
The proof and further discussion are provided in App. B4.
3.2 IN SEARCH OF OPTIMAL CONTROL

While Proposition B2 guarantees a perfect solution, solving the high-dimensional PDE in (B2) at
every time step is computationally intractable. We therefore propose two practical methods that
approximate this optimal control by balancing effectiveness with efficiency. Both methods share a
core strategy: restricting the search for the control drift b, to a finite-dimensional subspace. This
simplification is key, as it transforms the complex problem of minimizing the residual potential ¢,



Under review as a conference paper at ICLR 2026

into solving a small linear system. This reduction from an intractable PDE to a tractable linear solve
makes the control truly lightweight, hence the name DriftLite.

Variance-Controlling Guidance (VCG). The most direct approach is to find a control b; that
explicitly minimizes the variance of the residual potential:

n})in Varg~q, [@i(x)] = Varg~q, [g:(x) + he(x; b)) . (3.3)

Instead of parameterizing b; with a neural network (Albergo & Vanden-Eijnder, 2074), we seek a
lightweight solution by approximating it as a linear combination of basis functions.

Ansatz 3.3 (Linear Control Drift). The optimal control drift by (x) is approxzmated as bt (g:
>oiq Oisi(x), where {s;(x)}ic[n) are pre-defined vector bases and 6, = (0}, - - are
the coefficients to be found.

Under this ansatz, the residual potential becomes ¢¢(x) = g() + >, 0ihi(x), where h}(z) =
h¢(x; s;). The objective (B3) corresponds to a standard least-square problem, whose solution is
obtained by solving an nxn linear system A;0; = c;, where A;; = E,, [hih]] and ¢; = —Eg, [g:h}).

Energy-Controlling Guidance (ECG). An alternative approach directly targets the curl-free op-
timal control b} in Prop. B2 by variationally solving the Poisson equation (B2). As shown by Y &
E (DOIX), this equation is the Euler-Lagrange equation for the following energy functional:

: 1
mingila] = [ (Gu@IVA@I - 6(@n(@ () do G4
We can efficiently find an approximate minimizer using the Ritz method for the scalar potential A;.

Ansatz 3.4 (Linear Control Potential). The optimal scalar potential A (x) is approximated as
A(x) = D01, 0;si(x), where {s(x)};c[n] are scalar bases. The control drift is then given

by by(x) = VA (z) = Y1, 0;Vsi(x).

Substituting into the energy functional (34) again yields a linear system of equations A;0; = c;,
where A;; = E,,[Vsi' Vs!] and ¢; = E,, [g:51].

3.3 PRACTICAL IMPLEMENTATION

Choice of Bases. The effectiveness of VCG and ECG depends on the choice of suitable basis
functions. While the formal solution for the optimal control b} is intractable (cf., App. B3), its
structure reveals that the ideal control is a function of temporally locally available quantities like the
score V log p;, the reward gradient Vr;, and the potential g; (containing the forward drift u; and
higher-order terms). This provides a strong motivation for using these very terms as our basis.

* Variance-Controlling Guidance (VCG): We use the following vector basis functions:
si(x) = Vri(x), sa(x)=Viegp(x), s3(x)=u(x).
Note that using s, requires computing the Laplacian A log p;(x), which can be approximated
efficiently with Hutchinson’s trace estimator in high dimensions.
* Energy-Controlling Guidance (ECG): We use the corresponding scalar potentials:

si(x) =ri(x), so(x) =logpi(x), s3(x) = Ux),
where Uj is a potential such that VU; = ;. This method is especially convenient when the log-
likelihood log ; is readily available from upstream training tasks (Akhound-Sadegh et all, 20175,
Gmfhef all, 2075). If not, approximations or alternative bases may be used, such as the score norm
|V log p¢||? or random projections of the score V log p; - £ for random &.

For annealing tasks, reward-based bases (s; and s;) are automatically dismissed.

Weighted Particle Simulation. As discussed in Sec. I, we simulate the Feynman-Kac-type
Fokker-Planck equation (Bl) using the SMC/weighted particle method detailed in Alg. . The key
difference from G-SMC Eqn. (I8) is the use of the controlled drift v; + b; and the residual potential
¢t = g+ + hi(-; by). To prevent weight collapse, particles are resampled when the Effective Sam-
ple Size (ESS) drops below a threshold 7. These principled versions with resampling are denoted
VCG and ECG-SMC. For high-dimensional problems where reweighting can be unstable, we also
consider simpler variants, denoted VCG and ECG, which omit the resampling steps.
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Our method adds minimal computational overhead. The primary cost is solving a small n X n linear
system at each time step, where n is the number of bases, typically n < 3 in our experiments. The
components of this system (A; and ¢;) are computed as expectations over the current weighted par-
ticles, reusing terms like the score V log p; and the reward gradient Vr; that are already computed
for the base guidance drift. While accurate evaluation of the score Laplacian A log p; can improve
control quality, efficiency is preserved with stochastic approximations, and thus the per-step over-
head remains constant in dimension and fully parallelizable across particles, resulting in moderate
runtime increase compared to the pure guidance baseline (cf., empirical results in Tabs. B and B).

Algorithm 1: DriftLite-VCG/ECG-SMC Implementation

Input: Original drift path v;, original potential path g, time steps {t; } 2L, reward r(z),
schedule f3;, basis functions, number of particles N, ESS threshold 7.

1 Initialize particles w(()i) ~ po and weights w(()i) — % fori=1,...,N;
2 fork < O0toM —1do
3 Form weighted estimates of A;, and ¢;, using {(a;i?, wt(i))}iE[N];

4 Solve A;, 8;, = ¢y, to obtain the control drift by, (-);

s | v () v () + b, ()s 96.() <= g0 () + e (51, )
6 log wt(Z)H + log wt(z) + g, (wi,?
7 :1:&2rl — a:ﬁ? + vy, (wgi))(tkﬂ —tg) + Vi v/Tor1 — tez@, where 200 ~ N(0, I);
s | if ESS(wy,,,) < T or periodically then

9 L Resample {a:g;)+1

J(thy1 — th), wy,, ¢ softmax(wy, );

(@)

tr41

}ien) according to {w,gi)+1 }ien) and reset w + & forall i;

Output: Final samples {:cgf), wgf)}ie[ 7 from the last completed pass.

4 EXPERIMENTS

In this section, we empirically test the performance of DriftLite by designing a series of challenging
annealing and reward-tilting tasks, comparing our DriftLite methods (VCG and ECG with and with-
out SMC) against two key baselines: Pure Guidance (PG) (E3) (Ho-& Salimans, P00177), Guidance-
SMC (G-SMC) (I3) (Skrefa_ef all, P073; Chen_ef all, 2075). Our implementation uses JAX (Brad-
bury et all, POTR) to ensure efficient, parallelized computation on GPUs.

4.1 GAUSSIAN MIXTURE MODEL

We begin with a 30-dimensional Gaussian Mixture Model (GMM) (cf., App. Bl for detailed set-
tings), a controlled environment where the exact score V log p; and the potential log p; are known
analytically, allowing us to isolate and evaluate the performance of the sampling algorithms them-
selves, free from any confounding errors of a learned score network. We evaluate the methods
with multiple metrics, including the Negative Log-Likelihood difference (ANLL), Maximum Mean
Discrepancy (MMD), and Sliced Wasserstein Distance (SWD) (cf., App. BX).

We first test the ability to sharpen the GMM’s modes by annealing, which tests each method’s ability
to maintain the correct relative mode weights. As shown in Fig. [, the pure guidance (PG) method
produces visibly biased samples, while G-SMC suffers from mode collapse, a direct consequence of
the weight degeneracy that our work aims to solve. In contrast, our methods (VCG and ECG) accu-
rately sample from the correct modes, also corroborated with quantitative comparisons in Tab. B. A
closer look at the ESS and potential variance evolution during the inference dynamics Fig. D reveals
why DiriftLite succeeds. Our control mechanism reduces the variance of the reweighting poten-
tial by several orders of magnitude compared to G-SMC. This directly prevents weight degeneracy,
leading to a stable Effective Sample Size (ESS) throughout the simulation and superior final sample
quality. Notably, ECG, while not directly minimizing variance, achieves a similar stabilizing effect,
validating the energy-based control perspective. Fig. B shows the performance of all methods as the
number of particles varies. It clearly indicates that our methods not only outperform the baselines
but also converge more efficiently, achieving better results with fewer particles. The results of the
reward-tilting task where the distribution is shifted towards a region defined by a quadratic reward
(Figs. 8, B and [ and Tab. B) confirm our findings from the annealing task. We refer to App. C1I
for further experimental results.
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Figure 1: Qualitative comparison of sampling methods on the GMM annealing task (y = 2.5).
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Figure 2: Evolution of ESS and potential vari- Figure 3: Performance metrics versus number of
ance during inference on the GMM annealing particles for the GMM annealing task (v = 2.0).
task (v = 2.2). Our methods (VCG/ECG) sub- Our methods consistently outperform baselines
stantially reduce variance and stabilize ESS. and show strong scaling.
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Figure 4: Qualitative comparison of sampling methods on the GMM reward-tilting task (o = 200.0).

Furthermore, we introduce an iterative refinement procedure, where the learned control drift v; + b,
and potential ¢, = g; + h¢(-; b;) from one full pass are used as the base dynamics for the next. As
further discussed in App. 3, this process progressively reduces variance and stabilizes ESS over
multiple rounds (cf., Figs. [A and [[2), further enhancing sample quality (cf., Tabs. [ and [3).

4.2 PARTICLE SYSTEMS

Next, we move to more realistic scientific benchmarks where the score is approximated by an NN
trained on finite data. We evaluate on two standard systems with complex, multimodal energy land-
scapes: a 2D 4-particle Double-Well (DW-4) and a 3D 13-particle Leonard-Jones system (LJ-13),
both widely used as benchmarks (Klein_ef-all, 20723; Akhound-Sadegh et all, 2024; D023; Ciu_ef-all,
P73, Skrefa ef all, 073, [Zhang et all, P073). The score is obtained by training an F(n)-Equivariant
Graph Neural Network (EGNN) (Safarras’ef all, PO2TH) (cf., App. B2). The EDM framework (Kar3
Fas’ef all, P027) is adopted for both training and inference (cf., App. B-4). We measure performance
using additional metrics that capture physical correctness, including the Radial Distribution Func-
tion (RDF) for structure and the energy distribution for thermodynamics (cf., App. BX). Based
on the GMM results showing VCG’s superior performance over ECG and the lack of pre-trained
log-likelihood, we proceed with only the VCG variants of DriftLite in the following experiments.

Double-Well-4 (DW-4). We first consider the DW-4 system (cf., App. B-l). This system features
two energy minima separated by a barrier. The annealing task requires the sampler to correctly
populate both modes, even when they are sharpened at low temperatures. As shown in Fig. [3,
VCG-SMC achieves a nearly perfect match with the ground-truth RDF and energy distribution. This
demonstrates that by using variance reduction to maintain an ensemble of high-quality particles,
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Table 1: Performance comparison on Particle Systems (DW-4 and LJ-13). Results are mean_ g4 over
5 runs. Best results per column are in bold.

Method DW-4, Annealing (T' = 2.0,~v = 2.0) DW-4, Reward-Tilting (T = 2.0, A" = 0.5)

ANLL MMD SWD WRDF w§E ANLL  MMD SWD WRDF w§E
PG 0.15941232 0.40040.168 1.08840384 0.20810.008 0.551+0.009 0.867+1.437 0.771 10085 1.714 10232 0.627 10003 1.837 10013
G-SMC 0.038 40338 0.36510.0s8 1.01240253 0.208£0.146 0.19010.080 0.329+0.016 0.087£0.039 0.194 10082 0.118 L0004 0.33010.016
VCG -0.043 10022 0.014£0001 0.037 10008 0.043 10002 0.663 10015 0.699 11905 0.614 L0139 1.692£0438 0.161 10033 0.461 10004

VCG-SMC -0.0324¢.009 0.0141 9001 0.0351 0002 0.060+0006 0.0314+0.007 0.296+0.016 0.021+¢.001 0.048-10.002 0.107 19,005 0.29610.016
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Figure 5: Comparison of generated distributions for the LJ-13 annealing task (v = 2.5). VCG-SMC
is the only method that successfully recovers all three peaks in the (a) RDF and closely matches the
(b) Energy Distribution. Insets provide a zoomed-in view.

DriftLite effectively leverages global information to navigate challenging energy landscapes where
baselines fail to do so. Motivated by Schebek ef all (Z024)), we consider applying an additional
harmonic potential as a reward, and the reward-tilted distribution corresponds to another DW-4
system with a different configuration. The quantitative results in Tab. [ confirm that our methods
consistently outperform baselines by a large margin across all metrics. The ESS/potential variance
plot in Fig. [T confirms the stabilizing effect of our method on ESS. An ablation study in Fig. I
demonstrates that our method converges as the number of particles increases across metrics.

Lennard-Jones-13 (LJ-13). We conclude with a highly challenging annealing task on the LJ-13
system (cf., App. Bdl), a complex benchmark known for its rugged energy landscape and singular
behaviors at short distances. Fig. B presents the result of a demanding inference-time annealing task
from T' = 1.0 to 0.4. The target distribution exhibits a third peak in its RDF corresponding to a
structural feature almost entirely absent at the initial temperature (Fig. B). In a powerful demon-
stration of its capabilities, VCG-SMC is the only method that successfully discovers and samples
from all three modes, matching both the RDF and energy distribution with high precision. Metrics
in Tab. [ further confirm a significant performance gap over the baselines in this complex setting.

We refer readers to App. T2 for additional experimental results and visualization on DW-4 and LJ-
13 systems, with results with varying base temperatures 7', annealing factor -y, constraint strength
X', and number of particles N.

4.3 PROTEIN-LIGAND CO-FOLDING

Lastly, we apply DriftLite to the protein-ligand co-folding problem (Abramson efall, 2(074); Bryanf
ef-all, 20724)), a central task of structural biology and drug discovery. The goal is to generate 3D pro-
tein structures and their binding partners (ligands, particularly small molecules) simultaneously and
in a mutually dependent manner, given the protein sequence and the ligand identity. This problem
extends the classical protein folding problem (Jumper et all, ZO21; Baek ef-all, P02T) and is crucial
for elucidating protein-ligand interactions. Despite the recent progress achieved by diffusion mod-
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Table 2: Performance comparison on steering the physical validity of protein-ligand co-folding.
Results are mean_ ¢4 over 3 runs. Best results per column are in bold.

Method Valid Fraction 1T Clash Free Fraction 1 Bond Length | Bond Angle | Internal Clash | Chiral Atom | Chain Clashes |

Base 0.374 10,003 0.490 10,007 55.0043.61 133.00+7.00 138.67 +4.04 118.33 £ 1274 398.67 L4.16
FKS 0.379+0.014 0.490+0.007 52.67 4289 127.33 4569 140.33 4208 126.33 4535 377.00+20.30
G-SMC 0.838+0.008 0.945 +0.005 423341305 98.0042307 31.33 1493 2.334058 31.67+153
VCG-SMC  0.8560,008 0.950 0,003 24.33 1929 61.00_ 1908 32334416 1.004 00 30.00; 00

4

VCG-SMC

Reference
Figure 6: The reference and predicted complex structure of Hst2 bound to 2’-O-benzoyl ADP ribose.
The reference corresponds to the experimentally determined crystal structure (PDB ID: 7F51). The
unsteered base prediction inverted a chiral center in the ligand (highlighted with a red box). G-SMC
failed to correct this issue and even broke the bonding, whereas VCG-SMC successfully guided the
generation toward the correct chirality and preserved a chemically meaningful structure.

els, notably AlphaFold3 (Abramson efall, 2024), Protenix (Team ef-all, Z025), and Boltz-2 (Passard
ef-all, P079), a persistent challenge is that purely data-driven generative approaches tend to overem-
phasize global structural similarity while often producing conformations that violate basic physical
constraints (Buffenschoen ef all, P074); Masfers et all, P074). Recent studies demonstrated that in-
corporating physics-based steering potentials can help mitigate this limitation (Passaroefall, P0735).

We adopt and follow the experimental setup of Boltz-2 (Passaro_ef all, P0Z75), an open-weight dif-
fusion model, as the base model, and apply VCG-SMC to steer the generation of protein-ligand
structures toward physically valid conformations using a physics-based potential as reward. We
compare our method with two additional baselines: the unsteered model (Base) and Feynman-Kac
Steering (FKS) (Singhal et al], P025). We assess physical validity using the widely adopted Pose-
Buster V2 benchmark (Buffenschoen ef all, 2(024)). Results are summarized in Tab. . VCG-SMC
exhibits the strongest performance with fewer or without rule violations, improving the quality of
partially valid structures, and increasing the proportion of fully valid ones. This underscores its ef-
fectiveness in a complex real-world setting. An example highlighting these improvements is shown
in Fig. B. Implementation details are provided in App. B.

5 CONCLUSION

We introduce DriftLite, a lightweight, training-free framework that resolves a critical trade-off in the
inference-time scaling of pre-trained diffusion models. By identifying and exploiting a fundamen-
tal degree of freedom in the Fokker-Planck equation, DriftLite actively controls the sampling drift
with minimal computational overhead, thereby mitigating the weight degeneracy that plagues previ-
ous particle-based methods. Our practical instantiations, VCG and ECG, impose minimal overhead
while dramatically improving the stability and accuracy of inference-time scaling. Experiments fur-
ther confirm their effectiveness and strong scaling with the number of particles, and we observe that
the VCG variant is generally more robust, while the ECG holds promise in several specific scenarios.
Across particle and protein systems, our approach consistently produces higher-quality samples and
handles complex distributions more robustly compared to existing inference-time scaling baselines.

While DriftLite proves effective, its reliance on a fixed set of linear basis functions presents a poten-
tial limitation. Future work could explore more expressive yet still efficient representations for the
control drift, such as compact neural networks or adaptive basis sets, including those involving the
posterior mean (Chung et all, PZ027). Furthermore, we have focused on annealing and reward-tilting
tasks with non-heuristic targets and accuracy demands, but the DriftLite framework is broadly ap-
plicable beyond these tasks. Extending it to other generative problems, such as product-of-experts
models or conditional generation, is a promising direction for future research.
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A  PROOFS

In this section, we present the omitted proofs of several propositions and additional discussions of
the theoretical claims in the main content.

A.1 PROOF OF PROPOSITION I
To aid reading, we reiterate Prop. 1 below.

Proposition A.1 (Guidance-Based Dynamics). The exact time evolution of the density
(q¢)tejo,) follows the following Fokker-Planck equation:

duan(@) = =V - (@) (@)] + - Aa() + a@)an(@),

where v, is given by

~ _ U2 + V2 -
vi(x) = —us(x) + %(’yv log pt(x) + Vri(x))
. U2+ V2
= —(1 = y)us(z) +yve(x) + %Vﬁ(w)a

and the reweighting potential g;(x) = Gi(x) — Eqy, |G ()] is given by:

«—

° < U2 <
Gr =t — (L= )V iy + - (Are = 7(1 = )| VIog]*)

< = < [72
+ VrtT ( —up + 7UEV1ogpt + ;Vrt)

Proof. We begin with the definition of the target density g;(x):
log gi(x) = 7vlog pi () + re(x) — Zt,
where we define the log-partition function

7, = log / ()" exp(ri(y))dy,

and taking the time derivative gives:
O¢log qs () = v0y; log pi(x) + 74(x) — 04 Z;. (A.1)

Recall that the Fokker-Planck equation for the backward process marginals p; is as follows:

0 (@) = ~V - (o)) + - Api(),

which can be expressed in terms of the log-density as:

O log pr () = —p; (@)Y - (vi(2)pe()) + %ﬁﬁt_l(ﬂc)Aﬁt(m)
(A.2)

< V2 < <
= =V - v(x) —vi(x) - Viogps(x) + 7t (Alogpt(ac) + |\V10gpt($)||2) .

We posit that the time evolution of ¢; is governed by the Fokker-Planck equation with an additional
reweighting term:

(@) =~ [B@) ()] + 2 Agi(a) + () (a),

and dividing both sides by ¢;(x), we can solve for the potential g;(x):

2

(@) = D log @) + 47 (@) - (). ()] — g @) M),
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Since we have q

/8tqt(a;)dx =% /qt(m)d:c =0,
[ (-7 B@inte) + 1 au@) az =0

by applying the divergence theorem and assuming suitable boundary conditions, the reweighting
term must have zero expectation, i.e.,

Eaq [g:(2)] = / g(@)gi(@) = 0.

and

Thus, we can write g,(x) = Gi(x) — E,, [G1(+)], where we define G;(x) by absorbing the spatially
independent term 0, 7,

Gi(x) = gi(x) + 01 Zy
2

— 0,10 (@) + 02 + ¢ @)V - [u(@)gs ()] — %qt_l(w)Aqt(:c)

= 7y(x) + 70 log pr(x) + q; *(2)V - [O(x)qe ()] — %qt_l(ﬁc)AQt(w)

= le) 4 (7 wi(e) — () Vlogi(e) + & (logii(e) + [V log @) )

- - V2
+ V- 0(x) + 0y(x) " Viog g (x) — é (Alog g () + ||V log ¢ (z)||?)
=74(x) —yV - ve(x) + V- Ui (x) —’y'vt(ac)TV log pi(x) + 17t(:1:)TV10g qt(x)
5] (I1)

’YVt2 ~ « 2 V7t2 2
t (Alog pi(z) + ||V log py () ||) — B (Alog gs(z) + [[V1og gi(x)|?),

(111)
where the second equality is due to Eqn. (B), and the second-to -last is due to Eqn. (BAT).

We now substitute the expressions for 9; log p; and log ¢; and simplify term by term.
* (1) Divergence Terms:
(D) ==V v(x) + V-0 () =V - (vi(x) — yvi ()

— 52 V2 - (72 V2
v (—(1 i) + t;fvm:zc)) = 1)V iue) + T Ay,

e (II) Inner Product Terms:

(I1) = —vyw,(z) " Viog py () + 0y () T Viog ¢ (z)
= — yvi(x) " Viog pi () + ve(x) " (vV log pi () + V()
=(@(x) — vi(x)) " (YVlogpy) + () " Vry()
U2 + V2

N
3 VT’t(ﬂB)) YV log py ()

= <—(1 — ’y)’ﬂt(m) +

U2 + V2

.
3 Vrt(a:)> Vr(x)

+ ((1 = V(@) +yvi(@) +

¥(1 =)V log e ().

by 7 — ﬁQ V2 62 V2
=Vr/ <“t<m> +UEV log (@) + t;tvn(m)> - %
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e (Ill) Laplacian Terms:

2
(1) = 2L (Alog pi(a) + |V log i (2)[|) — *(Alogqt( )+ [ Viog qi()|?)

2
(vAlogp(@) — A(vlog pr (@) + re(@)) + 1[IV log pe()[|* — |7V log pe (@) + Vre(2)]?)

V2 V2 - -
=— L Ar(@) — L (v(v = 1) Viog pe(@)||” + 27V log pe(x) - Vre() + [|[Vre(2)]?) -

Combining all the simplified terms, we arrive at the expression for G; stated in the proposition. [

Remark A.2. This proof is similar to the proof in related works (Skreta et all, 2075, Chen_ef all,
20735), where Fokker-Planck equations are derived for each task-specific setting. While being more
general, our approach also omits the computation of the time derivative of the log-partition function
0: Zs, since we notice that it cancels out in the final expression for G;. This simplification makes the
proof more straightforward and concise.

A.2 JUSTIFICATION OF WEIGHTED PARTICLE SYSTEM (Z8)

Proposition A.3 (Weighted Particle Simulation). Let ¢, : R — R>¢ solve

Duau(@) =~V - [Bu(@)ac(@)] + -Agi(w) + u(@)gu(a).

Then this PDE can be simulated in the mean-field limit N — oo by the weighted particle
system

dz!? —vt( Ndt + Vidw!?, i€ [N],

dlogw —gt(flit))dt i € [N],
where the weights satisfy the normalization ZZ " wt(l) = 1, and the empirical centered version
of g:

G () Zw(J)G (J)

ensures mass preservation.

The proof of this argument is standard (Moaral, 2004; Doucef ef-all, 2000; Andrienef all, P0T0) under
typical assumptions, including local Lipschitz continuity and linear growth of the drift v;, bound-
edness of the diffusion coefficient V;, moderate growth of g;, sufficient regularity of ¢; to justify
integration by parts, and either fast decay at infinity or no-flux boundary conditions to eliminate
boundary terms. We provide a proof sketch below for the reader’s convenience. We also point out
that similar arguments also apply to the weighted particle simulation for the controlled dynamics in
Prop. B, which we omit for simplicity.

Proof Sketch. The main steps are as follows:

 Step I (Empirical measure). Define the weighted empirical distribution

N
i=1

* Step 2 (Test function evolution). For ¢ € C2°(R%), consider

(o, ") Zw e
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Apply It6’s lemma to @(m%i)) under the SDE and combine with the weight dynamics via the

product rule. This yields
~T V2
dlp, up') = <vt Vo + A+ Gip, uiv> dt +dM;Y,

where M} is a martingale term.

o Step 3 (Limit N — o0). By law of large numbers and propagation of chaos (Sznifman, T99T;
Lacked, POTX), we have the weak convergence:

ud = g(x)dx, as N — oo,
while the martingale term vanishes. Passing to the limit gives the weak form of the PDE:

d

G [ r@ut@ie = [ [5@)Vola) + 4 Apta) + iao(e) | alwie

* Step 4 (Integration by parts). Using divergence theorem identities, we have

d

2
G [ @a@ie = [ @ |[-v-@@a@) + Fsa@ + ] d

for all test functions ¢.

Hence, we have

2

0ui(@) =~V - (Bu(@)a()) + = Agu(a) + u(@)a(e),

and the proof is complete. O

A.3  PROOF OF PROPOSITION Bl
The following proposition is the same as Prop. B, but with a more detailed proof.

Proposition A.4 (Degree of Freedom). For any control drift by(x), the Fokker-Planck equa-
tion

- V2
dhqi(x) = =V - [v () qi ()] + éAQt(m) + qt(x)ge (),
is equivalent to the following one with an additional control drift term by (x):
~ V2
Ogi(x) = =V - [(@(@) + bu(@)) @(x)] + - Aq(@) + q ()b (),
where the residual potential is ¢i(x) = gi(x) + he(x; by) with the control potential hy(-; by)

defined as:
hi(x;b,) = (YVlog py(z) + Vry(x)) - by(x) + V - by().

Proof. The terms added to the right-hand side of Eqn. (Z3) to obtain Eqn. (B) are:
=V - (be(x)qe()) + g () (he (25 by) — Eq, [he(2; by)]).

First, we prove that E,, [h.(z; b,)] = 0:
Eq, [he(2;b0)] = /qf,(fv) [(Vre(a) + 7V logpi()) - bi(x) + V - by()] dow

:/V%M@M@sza

where the last equality follows from the divergence theorem, assuming appropriate boundary condi-
tions (e.g., g:b; vanishes at infinity).
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Then, we show that the remaining added terms cancel each other out:
=V (bi(x)qi(x)) + gi(x) he(; by)
==V (bi(x)q:(x)) + qi(x) [VIog gi() - by(x) + V - by(z)]
==V (b(x)q(z)) + V- (qe(x)be(x)) = 0.

Since the added terms sum to zero (given E,, [h,(x; b;)] = 0), the two PDEs are equivalent. O

A.4 FORMAL SOLUTION FOR THE OPTIMAL CONTROL DRIFT

In Prop. B, we claim that there exists a uniform optimal control drift as we rewrite its mathematical
rigorous version in the following proposition.

Proposition A.5 (Optimal Control). Let Q2 C R be a bounded Lipschitz domain. Assume that
gz = 2 — R is measurable and uniformly elliptic: there exist constants 0 < A < A < oo such
that

A< q(x) <A, forae x €9,

and suppose g; € L*(S)). Then there exists a unique potential A} € H}(Q) solving
-V (qt(x)VAf(m)) = q(x)gs(z) in HH(Q).
Defining the control b} () := V A} (z) € L*(Q;R?), one has
1
—V. )b (x)) =0 in H Q).
Y (@) @) @)

In particular, bf is the unique curl-free control that drives ¢ to zero.

¢; (2) = g1(2) + ha(z;b7) = g:(x) +

Proof. This follows directly from the Lax—Milgram theorem. The bilinear form
a(u,v) := /thVu - Vudz, u,v € HY(Q),
is bounded and coercive, while the linear functional
L(v) := /Q qrgrvdx

is continuous on H (). By the Lax-Milgram theorem, there exists a unique A} € H{ (Q2) satisfy-
ing (B). The existence and uniqueness of weak solutions to such elliptic PDEs are standard results;
see, for example, Evans (2027, Chapter 6). O

While the existence and the uniqueness of the solution to the Poisson equation (BZ2) are shown
above, we present a formal solution for the control drift b} in the following, leading to our choice of
basis functions in Sec. B73.

Let f:(z) = ¢:(x)b} (x). By the Helmholtz-Hodge theorem, any sufficiently smooth vector field
f+ can be decomposed into a curl-free component (the gradient of a scalar potential A) and a
divergence-free component u | , so that

fi(x) =VA(x)+u,(x),
where V- u; =0.
Substituting this decomposition into the equation gives:
V- (VA(@) + u (@) = AA(@) = —q,(@)g:(@).

This is a standard Poisson equation for the scalar potential A. The solution for A can be expressed
formally using the Green’s function for the Laplacian in d dimensions, G4(x — y):

Alw) = - / Gu(@ — y)g: (8):(w)dy.
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The desired control is then given by b;(z) = ¢;(z) "'V A(x). Taking the gradient of A(x) with
respect to « and using integration by parts with the property V,Gy(x —y) = —V,Gy(x — y), we
get the following formal solution:

VA(z) = — / VaGa(® — y)q:(y)g:(y)dy
:/GAw—wvu%@mawnm

= /Gd(a3 — ) (9:(y)Vylog ¢:(y) + Vyg:(y)) ¢:(y)dy,

where the term Vg, introduces higher-order derivatives of the reward function:

Vi () = B, {v%(m) <—’Et(zc) _ ;,BtVr(:c)> Vit (2)Vr ()| %ﬁtVAr(ac) + BV (@),

This formal solution is computationally infeasible as it requires integrating over all space y,
weighted by the unknown density ¢;(y) that we are trying to simulate. However, its structure mo-
tivates our choice of local basis functions: the reward gradient Vr(x), the score V log p;(x), and
the forward drift u(x), as we discard higher-order derivatives.

B ADDITIONAL IMPLEMENTATION DETAILS

In this section, we provide additional implementation details for the experiments, including the prob-
lem setup with parameters, a detailed description of the network architecture, training, inference, and
evaluation procedures.

B.1 PROBLEM SETTINGS

Gaussian Mixture Model (GMM). In the Gaussian Mixture Model (GMM) task, the data distri-

bution is set as
40

1
ZN(CB; i, 501)
i=1

po(x) = 10 -

where each component mean p; is sampled from Unif ([—40, 40]).

For the annealing task where the target distribution is g7 (x) o po(x)?, the reference samples are
obtained by rejection sampling with the following proposal distribution:

roposil L\ 50
% (50):40;/\/@;%71).
For the reward-tilting task, the quadratic reward function is given by
(@) = @) 2 @ ),

2

where the target mean g is sampled from N (p;0,1001) and the covariance matrix 3 = oI with
o being a parameter controlling the spread of the reward. The posterior distribution corresponds to
another Gaussian mixture model, in which each component acquires an updated mean and weight
after incorporating the quadratic reward:

q(x) = 4201171'-/\/(37;/71',5),
i=1

with posterior covariance

= (="t (0077,

posterior means

B = E((5OI)’1M + E”u),
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and mixture weights reweighted according to the evidence,

@ o wiexp( = 4 — 1) (2 +500) " (i — w) ).

For all GMM experiments presented in Sec. BT, we set the number of particles N = 23 and
perform resampling whenever ESS drops below 0.9. All plots in the GMM experiments are plotted
by projecting onto the first two dimensions.

Double-Well-4 (DW-4). For both DW-4 and LJ-13 systems, the target is a Boltzmann distribution
of the following form:

i) xespl-t@) e (=1 (0@ + 3 L In-wl?)) wy

with the potential H () system-specific, and a harmonic potential of strength \ imposed as a phys-
ical constraint.

In the reward-tilting task, we consider the quadratic reward:

n

/
(@) = =5 Y r — 7
i=1

and thus the reward-tilted distribution is

1 Ay =112 N < =112
@)oo (= (@ + 5 3l 7)< 5D i)

1 A+ XT -
= exp (- T(H(:c) D i - r||2>>,
i=1

i.e., another Boltzmann distribution of the same temperature but with a different constraint strength
A+ NT.

First introduced by (K&hler—ef all, P020), the double-well potential is defined on a system of 4
particles in the two-dimensional space (& € R**?). The potential energy function is given as:

1
HDw(w) = 5 Z [a(dij — do) + b(d” — d0)2 + C(dij — d0)4] s
i<j
where r; is the coordinate of particle ¢ and d;; = ||r; — ;|| denotes the distance between particles

i and j. We use standard parameters: a = 0.0, b = —4.0, ¢ = 0.9, and dy = 4.0. This would yield
a double-well potential with two minima at d;; = 4 &+ %\/5 For the harmonic potential constraint
in the Boltzmann distribution Eqn. (Bl), we set the constraint strength as A = 0.05. For all DW-4
experiments presented in Sec. B2, we set the number of particles N = 2'° and perform resampling
every K = 100 steps.

Lennard-Jones-13 (LJ-13). The Lennard-Jones potential is a widely used model for simulating
interatomic interactions with both repulsive and attractive components. In our case, it is defined on
a system of 13 particles in three-dimensional space (x € R'3*3). The potential energy function is

given as:
o\ 12 o \©
—_— -2 — .
(%‘) (dij> ]

We use the following parameters: ¢ = 1.0 and ¢ = 2.0. For the harmonic potential constraint in
the Boltzmann distribution Eqn. (Bl), we set the constraint strength as A = 1.0. For all LJ-13
experiments presented in Sec. B2, we set the number of particles N = 23 and perform resampling
every K = 50 steps.

€

2T

1<j

HLJ(ZB) =

22



Under review as a conference paper at ICLR 2026
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Figure 7: Reference distributions for the DW-4 system at the base temperature 7' = 2.0: (a) Radial
Distribution Function (RDF) and (b) Energy Distribution.
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Figure 8: Reference distributions for the LJ-13 system at the base temperature 7" = 1.0: (a) Radial
Distribution Function (RDF) and (b) Energy Distribution.

Proteinligand Co-folding. The proteinligand co-folding problem is an extension of the classical
protein folding problem: rather than predicting only the structure of the protein itself, the task is to
simultaneously predict the structure of its interacting counterpart, a ligand that is typically a small
molecule. This problem lies at the core of structural biology and is essential for understanding how
proteins and ligands interact, which in turn underpins the elucidation of biological pathways and
the design of new drug molecules to modulate biological activity. In this work, we focus on ad-
dressing the issue of physical validity in proteinligand co-folding. Diffusion-based models often
overemphasize global structural similarity while occasionally generating unphysical conformations.
To mitigate this issue, we incorporate physics-based potentials to steer the generative process, effec-
tively modifying the data distribution pg () with a physics-based potential function:

ptarget(w) 08 p@(w) exp(r(m)).

Following IPassaro_ef all ({175, we use a physics reward that penalizes local constraint violations
defined in the PoseBuster V2 benchmark. Let & denote all atomic coordinates, and let Epnys () be a
weighted sum of potentials:

Ephys (:13) = ond Ubond (ZC) +angle Uang]e (.’1}) “+achir Uchir (33) +int Uint-clash (:I:) +chain Uchain-clash (:B) ,
with nonnegative weights a,. The steering reward is then defined as

r(x) = —AEpnys ().

For each covalent bond, bond angle, and chiral center, we apply a flat-bottom potential function
that penalizes deviations from the corresponding physical rules while permitting small fluctuations
within an acceptable tolerance. This ensures that generated structures remain physically plausible
without being overly constrained. Further implementation details of these potentials are provided
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in Passaro_ef all (2075). Since we also adopt the pre-trained model weights from Passaro_ef all
(P073), we do not describe the model architecture or training process here; instead, we refer readers
to the original work. In this experiment, we use the reward gradient Vr(x) as a single basis, and its
Laplacian Ar(x) is obtained through auto-differentiation.

B.2 NETWORK ARCHITECTURES

The score function V log p; in both particle experiments (DW-4 and LJ-13) is approximated by an
E(n) Equivariant Graph Neural Network (EGNN) (Saforras_ef all, P02Th;a; K&hler_ef all, D020,
Kleinef all, 023; Midgley et all, P2073). The network maps a time scalar ¢ and particle coordinates
x = {ry,...,r,} to an updated set of coordinates representing the score. All MLPs use Swish
activations.

Initialization. Input coordinates are first centered. The scalar time ¢ is encoded using sinusoidal
positional embeddings ¢;. The resulting vector is then passed through an MLP to create the initial

node features hgo), which are identical for all nodes.

1 n
r =ri— =37 r Y = MLP(6:(1)).

Jj=1

Equivariant Layers. The network consists of L sequential Equivariant Graph Convolutional Lay-
0]
ij

ers (EGCL). For each layer [ € {0,...,L — 1}, an initial message m
(i,7) using an MLP o0

is computed for each edge

l l l l l
m{) = o ([ R (r? = |12])

where [- - -] denotes concatenation. An attention mechanism then refines each message by multiply-
ing it with a learned gating coefficient:

l l l 1
mz('j) — mgj) 4 ( z(m) (mgj)))
where ¢§f§ is a single-layer MLP and o is the sigmoid function. These refined messages are used
to produce equivariant updates for the coordinates and invariant updates for the node features via
MLPs (Z)Sf ) and (bg). Both updates employ residual connections.

(1+1) 0] r v} O (m®
_ i J
T; =r; + Z ) _ ) C¢r (mij )7
J#i ||r; T; ||+

w0 = al? ([ 2m])

where C'is a normalization constant for the coordinate update.

Final Output. The final output of the network is the set of coordinates from the last layer, rL),
which is re-centered to guarantee overall translation invariance. For each particle, the output is given

by centering the coordinates:
1 n
= =N .
j=1

For the DW-4 experiment, we use L = 5 layers with a hidden dimension of 64, and for the LJ-13
experiment, we use L = 5 layers with a hidden dimension of 128. The normalization constant C' is
set to 1.0 for both experiments.

B.3 SAMPLING DETAILS

To generate configuration samples, we simulate the underdamped Langevin dynamics for a system
of N particles in D dimensions. The dynamics target a canonical Boltzmann distribution:

(@, v) x exp (—; (U(a:) + ””;)) ,
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where U () is the target potential energy (U(z) = H(z) + 5 >, ||[r; — 7|/ in our case), v are
the particle velocities, 1" is the temperature, and we assume unit mass. The corresponding stochastic
differential equations (SDEs) are:

dwt = ’Utdt
dv; = F(x;)dt — yvdt + /27T dwy,
where F'(x) = —VU(x) is the force, ~ is the friction coefficient, and (w;):>( represents a standard

Wiener process. For both experiments, we use v = 0.5.

Initialization. Particle positions x are initialized on a perturbed lattice separated by the charac-
teristic length of each system, and the center of mass is removed. Initial velocities vy are drawn from
the equilibrium Maxwell-Boltzmann distribution, with each component sampled independently from

N(0,T).

Numerical Integration. The Langevin SDEs are numerically integrated using the BAOAB split-
ting scheme (Ceimkuhler & Maffhews, P0T3), which is a highly accurate and stable method for
thermostatted systems. For a discrete time step At, the update from state (x,,, v,,) t0 (€p+1, Vnt1)
is performed in five sequential steps:

At
B:vy41/2 = vn + 7F(azn),

At
Az =an+ 5 Unt1/2:

O: Vpy1/2 = e_yAtUn,+1/2 +4/T(1 — e 2080)¢,,,

At
AlZpi1 =Tpy1e + 5 Unt1/2;

At
7F(mn+1)7

where &,, is a vector of independent standard normal random variables, i.e., &, ~ N (0,1).

Bivni1 = Upyry2 +

Sampling Protocol. The simulation begins with a burn-in phase, during which the system is
evolved for Ny, steps to allow it to equilibrate with the stationary distribution. Following this,
the sampling phase begins. To ensure that the collected samples are approximately independent, the
system evolves for Niyerval Steps between each saved configuration. This process is repeated until
the desired number of samples is obtained.

B.4 TRAINING AND INFERENCE DETAILS

We train our score-network using the Elucidating the Design Space of Diffusion Models (EDM)
framework (Karras_ef all, P027). This approach frames the learning problem as a denoising task,
where a single neural network is trained to remove noise from corrupted data across a continuous
range of noise levels.

Network Preconditioning. The core component is a neural network F'(-; o) that is wrapped with
a set of preconditioning functions dependent on the noise level . This design ensures numerical
stability and improves performance across all noise scales. The final denoiser, D(a:noisy; o), which
predicts a clean sample from a noisy one, is defined as:

D(fcnoisy§ U) = Cskip(o')mnoisy + Cout(U)F (Cin(a)mnoisyv Cnoise(o')) . (B.2)

The functions cgip, cin, and coy provide scaling and a skip connection, while Cnoise (0) creates a
time-like embedding from the noise level.

We adopt the preconditioning functions as follows:

2
Odata 1 0 0data

1
B T Y P

where og,, is a hyperparameter varying with the task. We set oq4,, = 1.8 for the DW-4 experiment
and ggaa = 0.68 for the LJ-13 experiment.
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Training Objective. The network is trained by corrupting clean data samples x¢je,, With Gaus-
sian noise of a given standard deviation o, creating noisy samples T,oisy = Tclean + O€, Where
€ ~ N(0,I). The training objective is to minimize the weighted mean squared error between the
denoiser’s prediction and the original clean data. The loss function is given by:

Lepm = Egompo,oe~ni(0,1) |W(0) [[D(Xnoisy; o) — mcleanH2:| ;
where the distribution of ¢ and the weighting function w(o) will be specified later.
Following the EDM framework, the noise level ¢ is sampled from a log-normal distribution:
log & ~ N (Prean, P24),

with Ppean = —1.2 and Pyg = 1.2. To avoid numerical instability, we clip the noise level to be
within the range [omin, Omax] With omin = 0.002 and oynax = 80. The weighting function is set as

2 2
o+ o0
’LU( O') _ oy data .
070 gata
Inference Process. While the model is trained as a denoiser, sampling requires the score function,
V& log p(@noisy; o). The trained denoiser D is converted to the score during inference using the
following exact relation:

D(ajnoisy; U) — Lnoisy

vm IOg p(wnoisy; 0) = )

o
The noise level o coincides with the forward time s in our setting in Eqn. (Z-1]) and we have T =
ol ... The time discretization is chosen as

k "M
{tk}lle\/[:O = {U;nax - <Ull11lzi/)(p + M (G:nliﬁp - Ugaéf)) } )
k=0
where we choose a smaller range of noise levels for the parameters o/, = 0.005 and o}, = 50 to
avoid the boundary part of the noise level, which may be less accurate due to the lack of training and
singularity. We use p = 7 to control the spacing of the discretization. We use M = 500 for GMM
experiments and M = 1000 time steps for particle system experiments.

Training Settings. For the neural network F(-;0) in the denoiser (B2), we adopt the EGNN
architecture described in App. BZ. For the training process, we use the Adam optimizer (Kingma
& B4, POT4) with a learning rate of 5 x 10~% and a batch size of 1024. We train the network for
106 steps, where we sample a fresh dataset of 10° data points with the same protocol as described
in App. B3 for every 2 x 10° steps. The warm-up period is only performed once before the first
batch. All training is performed on a single NVIDIA A100 GPU. The training code is based on
both the JAX library (Bradbury et all, ZOIR) and the Optax gradient processing and optimization
library (DeepMind et all, P0721).

B.5 EVALUATION METRICS

To quantitatively assess the quality of the samples generated by each method against a ground-truth
reference distribution, we employ a suite of five complementary metrics. Let the generated samples
be a weighted set {x (), w(i)}ie[N] and the reference samples be {wﬁgf), wr(ejf) }ieINd-

Negative Log-Likelihood Difference (ANLL). The Negative Log-Likelihood (NLL) measures
how well a set of samples fits the target probability distribution p(). For a weighted set of samples,
it is estimated as the weighted average of the negative log-probabilities:

N
NLL = — Z w® log p(x™).
i=1
We report ANLL, which is the difference between the NLL of the samples generated by a method
and the NLL of the reference samples: ANLL = NLLemoa — NLLt. A lower absolute value
indicates a better fit to the target distribution.
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Maximum Mean Discrepancy (MMD). Maximum Mean Discrepancy (MMD) is an integral
probability metric defined in a Reproducing Kernel Hilbert Space (RKHS) H with a characteris-
tic kernel k(-, ). Any probability distribution P admits a unique mean embedding pup € H. The
squared MMD between two distributions P and @ is the squared RKHS distance between their
embeddings:

MMD?(P, Q) = llup — pigll3; = [Ea~p k(. )] = Ey~alk(y. I3,

Using the kernel trick, this definition can be expressed entirely in terms of kernel evaluations, avoid-
ing explicit computation of the embeddings. For two weighted sample sets, the unbiased empirical
estimator is

MMD® = [[Eq~p[k(,-)] — Ey~alk(y, )]l
=Eaonplk(@, )] + By ynolk(y,y)] — 2Banpy~olk(z, y)]

N Nref
= 3" wOuOREO,00) 1 3 ka2l 23 3 Ok, a0,
1,7=1 3,j=1 =1 j=1

‘We use the RBF kernel I H2
x —
k(w7 y) = exp<_;y) )

207,
with oy, = 20 for the GMM experiment and o, = 5 for the DW-4 and LJ-13 experiments.

Direct evaluation of MMD requires O(N?) kernel evaluations, which becomes expensive for large
sample sets. To scale up computation, we use Random Fourier Features (RFF) to approximate the
RBF kernel with an explicit low-dimensional feature map z(x) € R/, reducing the complexity to
O(NNy).
Bochner’s theorem states that a shift-invariant kernel can be expressed as the expectation of a product
of complex Fourier features with respect to its spectral density p(w):

k(aj’ y) = ]Euwp(w) [einme—in'y] .
For the RBF kernel, p(w) is Gaussian, A (0, 0;21). The RFF approximation replaces the expec-

tation with a Monte Carlo average over f/2 sampled frequencies wy, ~ N(0, 0, *T) and random
phases b, ~ Unif|0, 27], yielding the explicit feature map

2 T
z(x) = \/;(cos(wlTaH—bl), . ,cos(w]T/zw—i— bysa),sin(w] z+by), ... ,sin(w}/zw—f— bf/2)> .

This ensures that z(x) " 2(y) ~ k(zx,y). The MMD can then be efficiently approximated as the
squared Euclidean distance between the mean feature vectors:

2
N

MMD? % |Eg~p[z(x)] — EyNQ[z(y)]Hg ~ Z ngzz EQ
i=1 2

In our experiments, we use 2048 random features (f = 2048) for all experiments.

Sliced-Wasserstein Distance (SWD). The Wasserstein distance measures the minimum cost to
transport mass from one distribution to another. The Sliced-Wasserstein distance is a computation-
ally efficient approximation that involves projecting the high-dimensional distributions onto a series
of random 1D lines, calculating the 1D Wasserstein-2 distance for each projection, and averaging
the results:

SWDy(P,Q)* = | Wi(mg(P), m(Q))d0 ~ — Z W3 (7o, (P), 70,(Q),
sP-t i=1
where 7y denotes the projection onto a line with direction # € SP~1, p is the number of projections,
and 0; ~ Unif(SP~1). In our experiments, we use p = 10 for all experiments.
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Radial Distribution Function Wasserstein-1 Distance (/WRPY), The Radial Distribution Func-
tion (RDF), g(r), is a fundamental descriptor of the spatial arrangement of particles in a system,
measuring the probability of finding a particle at a distance r from another. For simplicity and fol-
lowing the literature (Akhound-Sadegh et all, 20724); Skrefaef all, D0725), we define it as the ensemble-
averaged interatomic distance distribution:

g(r) = m Z<5(7“ = [lri = ;1)

i<j

where (-) denotes the ensemble average over all configurations. With slight abuse of notation, we
still refer to g(r) as the RDF without the shell factor and density normalization.

To assess the structural accuracy of our samples, we compute the RDF for both the generated and
reference configurations, yielding two 1D distributions, gmetod(”") and grer(r). The WRPF metric is
the 1-Wasserstein distance between these two distributions, W1 (gmethod gref), Which quantifies the
difference in the learned physical structure.

Energy Wasserstein-1 Distance (WW{). The energy of a configuration x is its negative log-
probability, £(x) = —log ¢(x). Due to the unknown normalization constant for the reward-tilted

and annealed distribution ¢(z) o p” ()e”(®), we report the energy up to a constant, i.e.,

E(x) = —ylogp(x) — r(x).

By evaluating the energy for every sample, we obtain two 1D distributions of energies, Pgle‘h"d
and PXf. The W metric is the 1-Wasserstein distance, Wy (PPethod| Pref) between these energy
distributions. This metric evaluates how well a method captures the correct energy landscape and
the relative probabilities of different configurations.

Physical Validity. To evaluate the physical plausibility of generated proteinligand structures, we
adopt the validity metrics from PoseBusters (Buffenschoen ef all, 2074), which assess adherence to
fundamental physical and chemical rules.

* Valid Fraction: The fraction of generated structures that satisfy all validity checks simultaneously,
serving as an overall measure of correctness.

* Clash-Free Fraction: The proportion of structures without severe steric clashes, i.e., unphysical
overlaps between atoms.

* Bond Length and Bond Angle Violations: Counts of deviations from standard covalent geometry.
Bond length violations occur when bonds are too short or too long, while bond angle violations
correspond to unrealistic angular geometries.

* Internal Clashes: The number of steric overlaps within the same ligand molecule, reflecting poor
internal consistency.

* Chiral Atom Errors: The number of stereocenters incorrectly assigned, such as inversions of chi-
rality.

* Chain Clashes: The number of steric overlaps between ligand atoms and protein atoms, indicating
violations of intermolecular packing constraints.

C ADDITIONAL EXPERIMENTAL RESULTS

This appendix provides supplementary results that further explore the performance of our methods,
DriftLite-VCG(-SMC) and DriftLite-ECG(-SMC), under various conditions for both the Gaussian
Mixture Model (GMM) and the particle-based systems (DW-4 and LJ-13).

C.1 ADDITIONAL EXPERIMENTAL RESULTS OF GMM
We first present a more extensive ablation study on the GMM. Tab. B details the performance of

all methods across a wider range of annealing factors, v € {1.5,2.0,2.5,3.0}. The higher the
annealing factor v becomes, the more challenging the inference-time scaling task is, as it accentuates
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the modes of the distribution and increases the energy barriers between them. The results reinforce
the conclusions from the main text: as y grows, the performance gap between our DriftLite methods
and the baselines widens considerably. VCG-SMC, in particular, consistently achieves the best or
near-best performance across all metrics, showcasing its robustness.

Similarly, Tab. B extends the reward-tilting experiments to different reward strengths (o €
{100, 200, 300,400}). For the definition of the parameter o, we refer to the problem settings in
App. ET. Again, our methods demonstrate superior stability and accuracy compared to Pure Guid-
ance (PG) and G-SMC, which degrade significantly as the reward becomes more peaked (smaller
reward covariance scale o).

Table 3: Performance ablation for the GMM annealing task with varying annealing factor . Results
are mean.qq over 5 configurations. Best results per column (within each ~ block) are in bold.

Method Annealing (v = 1.5) Annealing (v = 2.0)

ANLL MMD_,;; SWD MenLs CovF 5 ANLL MMD,_,, SWD MeanLs CovF s
PG 119610621 447142450 11.9046301 58.98+3392 5.274 40660 -3.67440.774 6.57642205 18.0646494 80.1043303 9.347 12428
G-SMC 044140099 0.83440070 574941368 29-15423800 3.097 10389 -0.527 10262 2.057 40497 114443605 58.71 41471 5.097 10,575
ECG 0.257 10083 0.1854+0003 0.62240007 2.98240331 0.35010033 032440145 041540037 1.20940.164 5.323 10,658 0.750+0.069
ECG-SMC 021910053 01620004 0.60540,139 2.667 0657 0.33540036 0.19810073 018510000 0.779 40131 3.7821 0476 0.446 40045
vee 0.222 40,045 0.16640.002 0.590 10,058 2.661 10,172 0.33510.018 0.20410052 0.18810001 0.67240093 2.97110.175 0.379+0.030

VCG-SMC 0.203 19061 0.16210.002 0.638 10055 2.852 10058 0.346 10021 0.1924£0.063 0.16610.005 0-606-10.094 2.866-10.543 0.34410.027

Method Annealing (v = 2.5) Annealing (y = 3.0)

ANLL MMD SWD Mean Ly CovF g3 ANLL MMD SWD Mean Lz CovF g3
PG -5.0164£1280 0.7254+0208 20.27 46796 92.04+3059 929042339 495041342 0.758 £0.158 19.55+4731 93.39421.64 8.654 11350
G-SMC 08010208 0327007 138812770 T8.111539 58291001 069250414 0493007 183143005 102719255 497311255
ECG 042711 185 0.248+0.255 6.443 16,143 30.0812880 3.13542.000 -1.201 11 155 0.353+0.192 8.967 14501 39.24+21.08 4.858% 1636
ECG-SMC [0.169-£0070 0.021 50002 1.00250.196 4.8861 1100 0.56410088 0.1843007 0.031:10003 1.67242.18 7.795+ 1164 0.85010.107
VCG 0.204 10058 0.023 10001 0.717 10108 3.351 10222 042010037 020940080 0.029£0002 0.859+0.147 407110507 0.50510.055

VCG-SMC 0.179 0,065 0.018£0.001 0.61340.100 2-867 10364 0.380 L0051 0.17410073 0.019 10001 0.691 10140 3.319 1 g.503 0.4154 0045

Table 4: Performance ablation for the GMM reward-tilting task with varying reward strength o.
Results are meanqq over 5 runs. Best results per column (within each o block) are in bold.

Method Reward-Tilting (c = 100) Reward-Tilting (o = 200)

ANLL MMD SWD Mean Lo CovF 43 ANLL MMD SWD Mean Lz CovF g3
PG 21.24 43955 0.903 40001 13.57 +6615 853443280 8.159+4760 5.454 42418 0.82510048 12.77 6515 73.51 43220 5.84513506
G-SMC 0.439 41184 0.24940077 2.62540970 154247339 0.683 10630 042240414 0.086 10025 1.07240490 573542680 0.463 10226
ECG 0.854 10901 0.11940.148 1.1204 1445 449615837 0.16010124 0.777 1021 0.11510086 1.3061086s 56133550 0.287 0113
ECG-SMC 0.309+0.067 0.020-0,002 0-234_19,098 0.996+0436 0.065+0.049 0.3041+0076 0.025+0.002 0.360+0.113 1.795+0.837 0.1151+0.052
VCG 0.262_9.101 0.032£0004 0.284 10052 1.118 10276 0.059£0.025 0.256-£0.099 0.035£0005 0-394£0057 1.601 £g303 0.100-10.043

VCG-SMC 0.338+0.133 0.020+0.003 0.236+0.120 0.931 49560 0.061 40046 0.348 10094 0.02040.001 0.35240.141 1.63640647 0.113 40058

Method Annealing (o = 300) Annealing (o = 400)

ANLL MMD SWD Mean Lo CovF 43 ANLL MMD SWD Mean Ly CovF 43
PG 1-838:!:].657 0-660:(:(1072 11-06:(:5357 58~23j:26.81 5-238;{:2_293 0-618:(:1_2()1 0.497:(:()_033 9.]87:(:3_99] 45.60:{:2095 3-952:(:1.483
G-SMC 0.207i0.148 0.047 £0.007 0.66440312 3.447 41402 0.284 40,158 0.25310,140 0.0364-0.004 0.8144+0272 4917 £1998 0.37740.134
ECG 0.664 40899 0.13240089 1.57240813 7.141 43575 0.43440117 0.463 40498 0.12240084 1.61140829 7.590+3780 0.535+0.138
ECG-SMC 0.661 10533 0.048.+0037 0.740+0302 3.965+2.116 0.25840.103 0.32740.195 0.03940.012 0.888-£0.182 4.433 40965 0.394-+0.098
VCG 0.227 +0.109 0.034 140007 0.498+0.080 1.913 40383 0.157 40037 0.29040.121 0.033 40006 0.550+0.056 2.238+0332 0.20340.035

VCG-SMC 0.315+0082 0.02249.001 0.35510.075 1.544 19306 0.15040.024 0.29210055 0.0224 9001 0.45410.107 2.072 40476 0.184 10,046

Finally, Fig. B and Fig. [ complement the figures in Sec. E1l. Fig. B illustrates the evolution of
ESS and variance for a milder reward-tilting task (¢ = 50.0), showing that even in less challenging
scenarios, our control mechanism actively stabilizes the particle weights. Fig. [ shows the per-
formance of all methods as a function of the number of particles for a strong reward-tilting task
(o = 400.0). It clearly indicates that our VCG and ECG methods not only outperform the baselines
but also converge more efficiently, achieving better results with fewer particles.

As shown in Tab. B, for the 30-dimensional GMM problem, the relative runtime for our VCG-SMC
and ECG-SMC methods is only around 5 to 6 times that of the standard Guidance-SMC (G-SMC)
baseline. This modest increase in computation time is largely due to the effective parallelization of
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Figure 9: Evolution of ESS and potential vari-
ance for the GMM reward-tilting task (o =
50.0).
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Figure 10: Performance metrics versus num-
ber of particles for the GMM reward-tilting task
(o = 400.0).

Table 5: Elapsed time comparison for different sampling methods. Results are mean.qq over 5
runs. The relative runtime, including propagated standard deviation, is computed with respect to the
G-SMC method.

Annealing (y = 2.5) Reward-Tilting (o = 100)

Method

Runtime (s) Relative Runtime Runtime (s) Relative Runtime
G-SMC 6~44i3.28 1-00i0.72 X 6.90i3_01 1.00i0,62 X
VCG-SMC 39.78i0,93 6.18i3,15 X 4O~22i0.49 5.83i2.54 X
ECG-SMC 39.11:|:()A50 6.07:|:3_09>< 39.33:|:(),59 5.70:|:2_49><

the core algorithms. These results underscore the minimal additional cost required to implement the
variance reduction technique, making them commonly practical. A more optimized implementation
could reduce this runtime gap even further by exploiting more GPU resources.

C.2 ADDITIONAL EXPERIMENTAL RESULTS OF PARTICLE SYSTEMS

Here, we provide additional ablation studies for the DW-4 and LJ-13 particle systems, demonstrating
the robustness of our findings.

ESS and Potential Variance Evolution. In Fig. [, we present a similar visualization as in the
GMM example (Figs. @ and B), where similar trends are observed: pure guidance leads to a much
rapid drop in ESS during the initial stage of the inference process, while the variance-controlling
guidance postpones the drop when the resampling kicks in. We also observe that the time when the
curve of the potential variance Varg, [g¢] of all methods meets coincides with the drop in ESS of the
variance-controlling guidance, which may correspond to the splitting of modes, and resampling may
be crucial to handle.

[#— PG —— GSMC —— VCG —— VCG-SMC]|

10° -

‘MMD% WO
1071A\<:>.><\< \<§><\:710-1
T

2

2‘12
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Step # Particles

Figure 12: Performance metrics versus number of

Figure 11: Evolution of ESS and potential vari-
particles for the DW-4 annealing task (v = 2.0).

ance for the DW-4 annealing task (y = 2.0).

30



Under review as a conference paper at ICLR 2026

Elapsed Time Comparison. The results for the DW4 system show that the performance scaling
of the advanced methods is even more favorable than what was observed for the GMM task (Tab. B).
From Tab. B, we can see that the relative runtime of the VCG-SMC methods is only about twice
that of the G-SMC baseline. This remarkable efficiency stems from the nature of the problem itself;
the total computational cost is dominated by repeated, computationally heavy score evaluations.
Consequently, the fixed algorithmic overhead from our DriftLite variance reduction methods be-
comes negligible as a fraction of the total runtime, underscoring their practicality and efficiency for
computationally intensive systems.

Table 6: Elapsed time comparison for different sampling methods on the DW4 System. Results are
mean_yy over 5 runs. The relative runtime, including propagated standard deviation, is computed
with respect to the G-SMC method.

1 —_— . . / .

Method Annealing (y = 2.0) Reward-Tilting (\ = 0.5)
Runtime (s) Relative Runtime Runtime (s) Relative Runtime

G-SMC 281.68:‘:9.69 1.00:|:0_05X 284~12:|:8.03 1'00:t0.04><

VCG-SMC 674.32,6.39 2.39+0.09 X 674.1241 75 2.37+0.07%

Ablation on Number of Particles N. Next, we present the ablation study on the number of par-
ticles on the DW-4 system as in the GMM example (Fig. [2). Despite a more complex problem
nature and high-level evaluation metrics (RDF and energy distribution), our methods still present
robust scaling in MMD and SWD, and show promising decay in WRPF and W, highlighting the
effectiveness and robustness of our methods.

Ablation on Base Model Temperature 7'. In Tab. [, we investigate the effect of the base model’s
training temperature (T € {1.0,1.5}) on an annealing task for the DW-4 system in addition to the
base temperature 7' = 2.0 as used in Tab. [I. The results show that our methods, particularly VCG-
SMC, are effective regardless of the starting temperature. They successfully anneal the system to
the target low-temperature state, consistently outperforming the baselines and confirming that the
control mechanism adapts well to different initial dynamics.

Table 7: Ablation results on Annealing with v = 2.0 from Base Temperature 7' € {1.0,1.5}.
Results are mean_qq over 5 runs. Best results per column (within each 7" block) are in bold.

Method =10 T=15

ANLL MMD SWD W RPE w§E ANLL MMD SWD WRPE w§E
PG -0.21940782 0.343 10,195 0.833 10405 0.194£0.006 0.054£0.007 0-546 10731 0.259 10084 0.69040226 0.217 10006 0.32040.013
G-SMC 2.571 41979 0.35940.163 0.973 40445 0.147 10030 0.201 40,121 2.645+1.065 0.639+0.185 1.681 40507 0.11640.133 032540152
VCG -0.046 10,003 0.026-£0.000 0.07640031 0.04510.007 0.127 +0.018 0.083 10,121 0.03210015 0.091 10048 0.034 10,004 0.558-+0.031

VCG-SMC -0.044 10,029 0.019- 0005 0.04810.013 0.053 10012 0.0531+0.022 0.077 19,010 0.01510.007 0.035 0011 0.0114¢9008 0.0781¢.010

Ablation on Annealing Factor . We further test the methods with varying annealing strengths
(v € {1.5,2.0,2.5}) for both the DW-4 and LJ-13 systems. For the DW-4 system (Figs. [3 and 4
and Tab. B), the visual and quantitative results confirm that VCG and VCG-SMC maintain high
accuracy even as +y increases. For the more complex LJ-13 system (Fig. [3 and Tab. B), the chal-
lenge is greater. While all methods struggle with the most challenging annealing tasks, VCG-SMC
consistently provides the most physically plausible results, capturing the structural features (RDF)
and energy distributions far more accurately than competing methods. This highlights its superior
performance in complex, high-dimensional energy landscapes.

Ablation on Reward Strength )\'. Finally, we perform an ablation on the reward strength (A €
{0.2,0.5,0.8}) for the reward-tilting task on both particle systems. The results, shown in Tab. [0
for DW-4 and Tab. [ for LJ-13, are consistent with previous findings. As the reward strength
increases, making the target distribution more distinct from the base distribution, the performance of
the baseline methods deteriorates rapidly. In contrast, VCG-SMC maintains excellent performance,
demonstrating its capability to accurately steer the particle distribution toward a sharply defined
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Figure 13: Comparison of generated distributions for the DW-4 annealing task (v = 2.0): (a) Radial
Distribution Function and (b) Energy Distribution.
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Figure 14: Comparison of generated distributions for the DW-4 annealing task (y = 2.5): (a) Radial
Distribution Function and (b) Energy Distribution.

Table 8: Performance ablation for the DW-4 annealing task (7" = 2.0) with varying annealing factor
~. Results are mean_gq over 5 runs. Best results per column (within each + block) are in bold.

Method Annealing (y = 1.5) Annealing (y = 2.5)

ANLL MMD SWD wiPF wi ANLL MMD SWD WwiPF wE
PG -0.114 40339 0.198+0.152 0.527 10396 0.13240002 0.17910023 0.159+1232 0.40040.168 1.088 10384 0.208 10,008 0.551+0.009
G-SMC -0.009+0041 0.053 0009 0.143 10031 0.03810023 0.02640011 0.038+0338 0.365+0.058 1.01240253 0.208-40.146 0.1900.080
VCG -0.009+9.018 0.0104+0.001 0.02440003 0.041 10003 0.307 40020 -0.06540.041 0.024 0003 0.061 140013 0.065+0.008 0.931+0.024

VCG-SMC -0.0131 0917 0.009- 0,001 00220002 00370004 0.020 L0006 -0.06050.005 0.023%.001 0.056 0006 0.119 0005 0.059-10.008

—— Analytical Reference
—— PG (W, =0.054)
G-SMC (W, = 0.036)
—— VCG (W, = 0.088)
—— VCG-SMC (W; = 0.006)

Analytical Reference
—— PG (W;=12.780)
G-SMC (W, = 8.731)
—— VCG (W, =21.357)
VCG-SMC (W, =1.677)
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Figure 15: Comparison of generated distributions for the LJ-13 annealing task (y = 2.0): (a) Radial
Distribution Function and (b) Energy Distribution.

32



Under review as a conference paper at ICLR 2026

Table 9: Performance ablation for the LJ-13 annealing task (7' = 1.0) with varying annealing factor
~. Results are mean_yq over 5 runs. Best results per column (within each ~ block) are in bold.

Method Annealing (y = 1.5) Annealing (y = 2.0)

ANLL MMD SWD WRPF w§E ANLL MMD SWD WRPF wE
PG 1.224 1 3148 0.718 £0.021 0.8060056 0.02610001 1.855L0.050 15.75 1056 0.622+40056 0.63910.150 0.053 L0001 12.7340.103
G-SMC 3.289 41461 0.22040.112 0.190£0071 0.02240.007 3.517 41,085 0.927 12384 0.41640.142 0.423 10471 0.017 10014 4.253 13053
VCG 1.642 40316 0.027 10,007 0.029-£0.005 0.0581+0.001 8.848+0.130 1.191 41499 0.124 40,067 0.135+0076 0.08810.001 21.2840.127

VCG-SMC 222140353 0.02419.004 0.024-10.005 0.018-+0.002 3.00640307 0.73410.490 0.09110.023 0.0924 0021 0.007 19,002 1.958-+0.610

target region. This confirms the effectiveness and robustness of our drift control mechanism across
a wide range of inference-time scaling challenges.

Table 10: Performance ablation for the DW-4 reward-tilting task (7" = 2.0) with varying reward
strength ). Results are meanyqq over 5 runs. Best results per column (within each A’ block) are in
bold.

1 ’_ .10t r_
Method Reward-Tilting (A" = 0.2) Reward-Tilting (A" = 0.8)

ANLL MMD SWD W RPE wE ANLL MMD SWD W RPF w§E
PG 018210846 0.768 10078 1.808 10223 0.305£0.006 0-368-£0.00s 24801235 0.775100ss 1.647 L0239 0.85210.004 3.867 L0010
G-SMC 0.094 0,015 0.02040003 0.04640007 0-06010.004 0-094 10,019 0-534 10,088 0-0794£0.025 0-160L£0.043 0-150 L0022 0.536L0.088
VCG 0.386£1.000 040310008 1.12240359 0.09510008 0-1380.012 1.0501£2865 0.671 L0087 1.768 0302 0.282 10121 1.162 10567

VCG-SMC 0.0969.017 0.0144 9001 0.03219.004 0.059-10.004 0.0931+0017 0.51819.020 0.028-1¢.001 0.065+0.004 0.1491 0004 0.5201¢.020

Table 11: Performance ablation for the LJ-13 reward-tilting task (T" = 1.0) with varying reward
strength \'. Results are meanygq over 5 runs. Best results per column (within each A’ block) are in
bold.

o1 ’_ .1 e r_
Method Reward-Tilting (A" = 0.2) Reward-Tilting (A" = 0.5)

ANLL MMD SWD W RDF w§E ANLL MMD SWD W RDE w§E
PG 1.404 4812 0.718 10021 0.80640.056 0.026+0001 1.855+10050 3.253 15013 0.718 L0020 0.800+0.050 0.050L0.001 3.705+0.085
G-SMC  0.83240072 0.03140.009 0.03040013 0.01040.001 0-83410.072 1.277 10072 0.05510.006 0.04910.008 0.016 £0.001 1278 +0.072
VCG 0.1063.619 0.559£0.127 0.588 £0.169 0.024 L0015 1.869 L1046 7470 L£10.167 0.66940.132 0.67510.167 0.024 10,015 1.869+1.046

VCG-SMC 0.765+0.117 0.0129.001 0.01519.002 0.01640001 1.21940079 1.218 40,079 0.01310.001 0.0151¢.002 0.0164¢9.001 1.219+¢.079

C.3 ITERATIVE REFINEMENT

While a single pass of inference-time scaling is effective, its corrective power is finite; once the
simulation reaches the terminal time, any residual mismatch between the particle and target distri-
butions cannot be further addressed. The key insight behind our iterative approach is that each pass
produces an improved sampling dynamic. The updated drift and potential:

v (@) = ve(@) + be(x), g5 (@) = ge(@) + he(w; by),

encode richer information about the target distribution. Our iterative refinement procedure leverages
this accumulated knowledge rather than discarding it. By iterating the procedure, each round builds
upon the refined dynamics of the previous one, creating a virtuous cycle that progressively sharpens
the sampling path.

This iterative process can also be viewed as a practical method for approaching the optimal control
drift in Prop. B2. Since the control b; is computed at each step under a linear ansatz (Ansétze B3
and B4), it provides an approximation of the true optimal control. This approximation becomes
increasingly accurate as the underlying dynamics and particle distribution are improved in each
round, allowing the linear model to operate on a better-conditioned problem.

Algorithm. The iterative refinement algorithm, detailed in Alg. D, transforms the single-pass
method (Alg. M) into a multi-stage process of progressive improvement. The fundamental differ-
ence lies in the cumulative application of control. Whereas the base algorithm applies a calculated
control drift just once, the iterative method repeats the entire simulation K times.
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The central mechanism is the permanent absorption of the learned control into the system’s dynam-
ics. After each full trajectory simulation (a “round), the control terms are folded into an “effective”
drift v$ and potential ¢¢f. While particle positions are reset to the initial noise distribution at the
start of a new round, these effective dynamics are preserved and carried forward. The refined dy-
namics from round j thus serve as the improved baseline for round j + 1. This process iteratively
sharpens the sampling path, guiding particles more efficiently in subsequent rounds without any
external training or global optimization.

Algorithm 2: Iterative Refinement for Inference-Time Scaling (cumulative drift/potential
updates)

Input: Original drift path v,, original potential path g;, time steps {tx }2 , reward r(z),
schedule f3;, basis functions, number of refinement rounds K, number of particles IV,
ESS threshold 7.
1 Initialize effective drift v5 (-) « v;(+), and potential g§™ () < g;(-);
2 for j < 1to K do

3 | Initialize particles aciz) ~ po and wg) — yfori=1,...,N;

4 for k<~ Oto M —1do

5 Form weighted estimates of A;, and ¢;, using {(%k ,wtk )}ze

6 Solve A, ketk = ¢y,, to obtain the control drift by, (-);

7 Uil () ¢ v () + by (), gET () = g8 () + Py (5 by )

8 log w( ) , < log wﬁk) + g5, (mgk))(tkﬂ —tr), wy, ., « softmax(wy,_,);

9 a:,(fk)Jrl — ;cﬁjf +vf] (wgk))(tkﬂ —t1) + Vi, V1 — tez®, where () ~ N(0, T);
10 if ESS(wy, ,,) < T or periodically then

1 Resample {scigl }ie[n] according to {wt(:)+1 Yieln)s

12 Reset w( ) L= % for all ;

Output: Final samples {(;CT 7wT )}ze[ ) from the K-th refinement round.

Results. Our empirical results decisively validate the iterative refinement strategy on a Gaussian
Mixture Model (GMM) target across both annealing and reward-tilting tasks.

The evolution of the sampler’s internal state, shown in Figs. [8 and [, provides clear evidence of
the algorithm’s success. With each successive refinement round (progressing from blue to red), the
variance of the control estimates exhibits a striking, monotonic decrease. This variance reduction
directly leads to a dramatically more stable ESS, which is maintained at near-optimal levels through-
out the later stages of the simulation. This provides direct confirmation that the refined dynamics
act as a substantially more efficient proposal distribution, a trend that holds robustly across both
experimental setups.

The final sample quality metrics, reported in Tabs. [ and 3, complete the picture. While the
improvement in downstream metrics, such as MMD and SWD, is not always strictly monotonic
with every iteration, the refinement process consistently uncovers solutions that are superior to those
from the initial pass. The best-performing configurations (highlighted in bold) are frequently found
in later iterations. This confirms that multiple refinement passes are invaluable for navigating the
optimization landscape to find higher-quality final samples.
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Figure 16: Evolution of ESS and potential variance across multiple refinement rounds for the GMM
annealing task (y = 2.5). Later rounds (red) show monotonically decreasing variance and more

stable ESS.

Table 12: Iterative refinement performance on the GMM annealing task (y = 3.0). Results are
mean.gq over 5 runs. Best result per column is in bold.

Iter.

VCG-SMC

ECG-SMC

ANLL

MMD

SWD

Mean Lo

CovF 193

ANLL

MMD

SWD

Mean Ly CovF 3

0.174 10,073
0.159 10,068
0.1760.022
0.152 4 ¢.078
0.165+0.052
0.163+0.073
0.161 10,050
0.180-£0.055
0.184 0,050

O 00NN AW —

0.019+0.001
0.019 10.001
0.019£0.001
0.018+0.001
0.01940.001
0.01910.001
0.019+£0.001

0.691 40,149
0‘797i0,151
0.599 +0.142
0.720t0.061
0.69410.167
0.744 £ 0.077
0.73640.095
0.766+0.120
0.6700.117

3.31940.503
3.906+0.806
3.08310.794
3.346 10545
3.124 10765
3.378 +0.409
3.343 10285
3.407 10269
3.238 10371

0.45040.055
0.406-+0.078
0.414 0,066
0.386+0.061
041240022
0.408 10,027
0.42040,043
0.395 10,046

0.184 40,079
0.178 10,058
0.166-0.015
0.168 10,059
0.1584-0.0s8
0.164 10,074
0.160+0.055
0.181 40,052
0.187 10,046

0.031 40,003
0.028 +0.002
0.029£0.003
0.025 .9.002
0.031+0.007
0.031+0.005

1.672 0214
1.105£0.129
1.201 +0.267
1.696 10.455
1.096 10,386
1.494 10572
1.477 L0354
1.406 10,184
1.137 10247

779541164 0.85010.107
5.748 +o80s  0.787 10,001
5.990+0866 0.76210.090
6.653 11728 0.81610.129
4.854 10929 0.69310.052
7.13542767  0.908 40302
7.010+1843 0.874 10151
6.748 L1192 0.80610.119
5.669+1519 0.739 10201

1.00

0.95

0.90

Variance

100
107

107

0 100 200

300
Step

(a) ECG.

400

1.00

0.95

0.90

7—8—39)|

102 | Variance

500

100 200

300
Step

(b) VCG.

400 500

Figure 17: Evolution of ESS and potential variance across multiple refinement rounds for the GMM
reward-tilting task (¢ = 100.0). Later rounds (red) show monotonically decreasing variance.

Table 13: Iterative refinement performance on the GMM reward-tilting task (o = 100.0). Results
are meanqq over 5 runs. Best result per column is in bold.

Iter.

VCG-SMC

ECG-SMC

ANLL

MMD

SWD

Mean Lo

CovF g3

ANLL

MMD

SWD

Mean L, CovF %103

0.338£0.133
0.294 10077
0.244 1 ¢.068
0.3220.089
0.280-0.061
0.319+0.09
0.311 40,109
0.365+0.122
0.3380.102

O 00NN B W=

0.020+0.002
0.019+0.001
0.019+0.001
0.02040.002
0.020-£0.002

0.23610.120
0.2254+0.076
0.268 +0.109
0.25910.122
021340071
0.27040.129
0.263 10.108
0.202 1 9.061

0.931 05569
1.240 10,626
0.983 10.380
1.386.10.732
1.087 +o0.661
0.862+0.229
1.404 +0.836
1.277 +.0.783
0.715 10182

0.061 10,046
0.058 40,031
0.053 10,034
0.065+0.035
0.057 +0.030
0.053+0.029
0.058 10,037
0.057 10.030
0.046 0,021

0.309 +0.067
0.284 10,081
0.273 10,072
0.288 1-0.078
0.278 +-0.102
0.333 10,004
0.322 40,074
0.338 10,004
0.321 10,099

0.020+0.002
0.020+0.002
0.0204-0.002
0.020+0.002
0.020.1 9002

0.234 10,008
0.214+0.070
0.25610.095
0.267 +0.095
0.263 +0.160
0.255 40,092
0.28510.127
0.21640.054
0.218+0.093

0.996£0436 0.065 10,049
0.851 10228 0.05440.028
1.310+0.699  0.062+0.036
1.276 10837 0.063 10031
1.364 10965 0.05510.035
1.292 40741 0.069+0.040
1.504 10913 0.060+0.037
0.976+0477  0.049 10023
1.007 £0401 = 0.047 10,030
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