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Abstract

We study the classic problem of prediction with expert advice under bandit feedback.
Our model assumes that one action, corresponding to the learner’s abstention from
play, has no reward or loss on every trial. We propose the confidence-rated bandits
with abstentions (CBA) algorithm, which exploits this assumption to obtain reward
bounds that can significantly improve those of the classical EXP4 algorithm. Our
problem can be construed as the aggregation of confidence-rated predictors, with
the learner having the option to abstain from play. We are the first to achieve bounds
on the expected cumulative reward for general confidence-rated predictors. In the
special case of specialists we achieve a novel reward bound, significantly improving
the previous bounds of SPECIALISTEXP (treating abstention as another action).
We discuss how CBA can be applied to the problem of adversarial contextual
bandits with the option of abstaining from selecting any action. We are able to
leverage a wide range of inductive biases, outperforming previous approaches both
theoretically and in preliminary experimental analysis. Additionally, we achieve a
reduction in runtime from quadratic to almost linear in the number of contexts for
the specific case of metric space contexts.

1 Introduction

We study the classic problem of prediction with expert advice under bandit feedback. The problem
is structured as a sequence of trials. During each trial, each expert recommends a probability
distribution over the set of possible actions. The learner then selects an action and observes and
incurs the (potentially negative) reward associated with that action on that particular trial. In practical
applications, errors often lead to severe consequences, and consistently making predictions is neither
safe nor economically practical. For this reason, the abstention option has gained a lot of interest
in the literature, both in the batch and online setting [Chow, 1957, 1970, Hendrickx et al., 2021,
Cortes et al., 2018]. Similarly to previous works, this paper is based on the assumption that one
of the actions always has zero reward: such an action is equivalent to an abstention of the learner
from play. Besides the rewards being bounded, we make no additional assumptions regarding how
the rewards or expert predictions are generated. In this paper, we present an efficient algorithm
CBA (Confidence-rated Bandits with Abstentions) which exploits the abstention action to get reward
bounds that can be dramatically higher than those of EXP4 [Auer et al., 2002]. In the worst case, our
reward bound essentially matches that of EXP4 so that CBA can be seen as a strict improvement,
since the time-complexities of the two algorithms are, up to a factor logarithmic in the time horizon,
identical in the general case.

Our problem can also be seen as that of aggregating confidence-rated predictors [Blum and Mansour,
2007, Gaillard et al., 2014, Luo and Schapire, 2015] when the learner has the option of abstaining
from taking actions. When the problem is phrased in this way, at the start of each trial, each predictor
recommends a probability distribution over the actions (which now may not include an action with
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zero reward) but with a confidence rating. A low confidence rating can mean that either the predictor
thinks that all actions are bad (so that the learner should abstain) or simply does not know which
action is the best. Previous works on confidence-rated experts measure the performance of their
algorithm in terms of the sum of scaled per-trial rewards. In contrast to previous algorithms, our
approach allows for the derivation of bounds on the expected cumulative reward of CBA.

This formulation enables us to extend our work to the problem of adversarial contextual bandits with
the abstention option, which has not been studied before. Previous work has considered the abstention
option in the standard (context-free) adversarial bandit setting or in stochastic settings [Cortes et al.,
2018, 2020, Neu and Zhivotovskiy, 2020], but not in the contextual and adversarial case. Moreover,
their results and methods cannot be applied to confidence-rated predictors. To get more intuition on
this setup, we can think of any deterministic policy that maps contexts into actions. Any such policy
can be viewed as a classifier, with foreground classes associated with each action and a background
class associated with abstaining. Our learning bias is represented by a set of information we refer to
as the basis, which we formally define later. It encodes contextual structural assumptions that hold
exclusively for the foreground classes and are provided to the algorithm a priori. A particular type
of basis is generated by a set of potential clusters that can overlap. Alternatively, a basis can also
be created using balls generated by any kind of distance function, which groups contexts believed
to be close together. For this latter family of basis, we can also achieve a significant speedup in the
per-trial time complexity of CBA. This result is very different (and incomparable) to other results
about adversarial bandits in metric spaces [Pasteris et al., 2023b,a].

1.1 Additional related work

The non-stochastic multi-armed bandit problem, initially introduced by Auer et al. [2002], has been
a subject of significant research interest. Auer et al. [2002] also considered the multi-armed bandit
problem with expert advice, introducing the EXP4 algorithm. EXP4 evolved the field of multi-
armed bandits to encompass more complex scenarios, particularly the contextual bandit [Lattimore
and Szepesvári, 2020]. Contextual bandits are an extension of the classical multi-armed bandit
framework, where an agent makes a sequence of decisions while taking into account contextual
information. Our work is also related to the multi-class classification with bandit feedback, called
weak reinforcement [Auer and Long, 1999]. An action in our bandit setting corresponds to a class in
the multi-class classification framework.

As discussed in the introduction, a key aspect of this work is the option to abstain from making any
decision. In the batch setting [Chow, 1957, 1970], this option is usually referred to as “rejection”.
These works study whether to use or reject a specific model prediction based on specific requests
(see Hendrickx et al. [2021] for a survey). In online learning, “rejection” can be the possibility of
abstention by the learner. These works usually rely on a cost associated with the abstention action.
Neu and Zhivotovskiy [2020] studied the magnitude of the cost associated with abstention in an
expert setting with bounded losses. They state that if the cost is lower than half of the amplitude of
the interval of the loss, it is possible to derive bounds that are independent of the time. In Cortes et al.
[2018], a non-contextual and partial information setting with the option of abstention is studied. The
sequel model [Cortes et al., 2020] regards this model as a special case of their stochastic feedback
graph model. Schreuder and Chzhen [2021] studied the fairness setting when using the option of
abstaining as it may lead to discriminatory predictions.

One specific scenario where prior algorithms can establish cumulative reward bounds is as follows:
on any given trial, the predictors are specialists [Freund et al., 1997], having either full confidence
(a.k.a. awake) or no confidence (a.k.a. asleep). The SPECIALISTEXP algorithm by Herbster et al.
[2021], a bandit version of the standard specialist algorithm, achieves regret bounds with respect to
any subset of specialists where exactly one specialist is awake on each trial. We differ from this work
as abstention is an algorithmic choice. Instead of sleeping in the rounds where the specialist is not
active, the specialist will vote for abstention, which is a proper action of our algorithm. In Section 5.2,
we present an illustrative problem involving learning balls in a space equipped with a metric. This
example demonstrates our capability to significantly improve on SPECIALISTEXP. For this problem,
we also present subroutines that significantly speed up CBA.
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2 Problem formulation and notation

We consider the classic problem of prediction with expert advice under bandit feedback. In this
problem we have K + 1 actions, E experts, and T trials. On each trial t:

1. Each expert suggests, to the learner, a probability distribution over the K + 1 actions.
2. The learner selects an action at.
3. The reward incurred by action at on trial t (which is in [−1, 1]) is revealed to the learner.

We note that the experts’ suggestions and the rewards (associated with each action) are chosen
a-priori and hence do not depend on the learner’s actions. The aim of the learner is to maximize the
cumulative reward obtained by its selected actions. As discussed in Section 1, we consider the case
in which there is an action (the abstention action) that incurs zero reward on every trial.

We denote our action set by [K] ∪ {□} where □ is the abstention action. For each trial t ∈ [T ] we
define the vector rt ∈ [−1, 1]K such that for all a ∈ [K] , rt,a is the reward obtained by action a on
trial t. Moreover, we define rt,□ := 0 which is the reward of the abstention action □.

It will be useful for us to represent probability distributions over the actions by vectors in the set:

A := {s ∈ [0, 1]K | ∥s∥1 ≤ 1} .
Any vector s ∈ A represents the probability distribution over actions which assigns, for all a ∈ [K],
a probability of sa to action a, and assigns a probability of 1−∥s∥1 to the abstention action □, where
∥s∥1 denotes 1-norm of s. We write a ∼ s to represent that action a is drawn from the probability
distribution s. We will refer to the elements of the set A as stochastic actions.

A policy is any element of AT (noting that any such policy is a matrix in [0, 1]T×K). Any policy
e ∈ AT defines a stochastic sequence of actions: on every trial t ∈ [T ] an action a ∈ [K] ∪ {□}
being drawn as a ∼ et. Note that if the learner plays according to a policy e ∈ AT , then on each
trial t it obtains an expected reward of rt · et, where the operator · denotes the dot product. Note
that each expert is equivalent to a policy. Thus, for all i ∈ [E] we denote the i-th expert by ei ∈ AT .
Hence, at the start of each trial t ∈ [T ], the learner views the sequence ⟨eit | i ∈ [E]⟩.
We can also view the experts as confidence-rated predictors over the set [K]: for each i ∈ [E] and
t ∈ [T ], the vector eit can be viewed as suggesting the probability distribution eit/∥eit∥1 over [K], but
with confidence ∥eit∥1. We denote this confidence by ct,i := ∥eit∥1 and write ct := (ct,1, . . . , ct,E).

In this work, we will refer to the unnormalized relative entropy defined by:

∆(u,v) :=
∑
i∈[E]

ui ln

(
ui
vi

)
− ∥u∥1 + ∥v∥1

for any u,v ∈ RE
+. We will also use the Iverson bracket notation JPREDK as the indicator function,

meaning that it is equal to 1 if PRED is true, and 0 otherwise. All the proofs are in the Appendix.

3 Main result

Our main result is represented by a bound on the cumulative reward of our algorithm CBA. We note
that any weight vector u ∈ RE

+ induces a matrix π(u) ∈ RT×K
+ defined by

π(u) :=
∑
i∈[E]

uie
i,

which is the linear combination of the experts with coefficients given by u. However, only some of
such linear combinations generate valid policies. Thus, we define

V := {u ∈ RE
+ |π(u) ∈ AT }

as the set of all weight vectors that generate valid policies. Particularly, note that u ∈ V if and only
if, on every trial t, the weighted sum of the confidences u · ct is no greater than one. Given some
u ∈ V , we define

ρ(u) :=
∑
t∈[T ]

rt · πt(u) ,
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which would be the expected cumulative reward of the learner if it was to follow the policy π(u).
We point out that the learner does not know V or the function π a-priori.

The following theorem (proved in Appendix A) allows us to bound the regret of CBA with respect to
any valid linear combination u of experts.
Theorem 3.1. CBA takes parameters η ∈ (0, 1) and w1 ∈ RE

+ . For any u ∈ V the expected
cumulative reward of CBA is bounded below by:∑

t∈[T ]

E[rt,at ] ≥ E[ρ(u)]− ∆(u,w1)

η
− η(12K + 2)T ,

where the expectations are with respect to the randomization of CBA’s strategy. The per-trial time
complexity of CBA is in O(KE).

We now compare our bound to those of previous algorithms. Firstly, EXP4 can only achieve bounds
relative to a u ∈ V with ∥u∥1 = 1 , in which case it essentially matches our bound but with 12K + 2
replaced by 8K +8. Hence, for any u ∈ V the EXP4 bound essentially replaces the term ρ(u) in our
bound by ρ(u)/∥u∥1. Note that ∥u∥1 could be as high as the number of experts which implies we
can dramatically outperform EXP41.

Secondly, when viewing our experts as confidence-rated predictors, we note that previous algorithms
for this setting only give bounds on a weighted sum of the per-trial rewards where the weight on each
trial is u · ct for some u ∈ V . This is only a cumulative reward bound when u · ct = 1 for all t ∈ [T ],
and finding such a u is typically impossible. When there does exist u that satisfies this constraint, the
reward relative to u is essentially the same as for us [Blum and Mansour, 2007]. However, there will
often be another value of u that will give us a much better bound, as we show in Section 5.2.

4 The CBA algorithm

The CBA algorithm is given in Algorithm 1. In this section, we describe its derivation via a
modification of the classic mirror descent algorithm.

Our modification of mirror descent is based on the following mathematical objects. For all t ∈ [T ]
we first define:

Vt := {v ∈ RE
+ | ∥πt(v)∥1 ≤ 1} ,

which is the set of all weight vectors that give rise to linear combinations producing valid stochastic
actions at trial t. Given some t ∈ [T ], we define our objective function ρt : Vt → [−1, 1] as

ρt(v) := rt · π(v) for all v ∈ Vt.

Like mirror descent, CBA maintains, on each trial t ∈ [T ], a weight vector wt ∈ RE
+. However,

unlike mirror descent on the simplex, we do not keep wt normalized, but we will instead project it
into Vt at the start of trial t, producing a vector w̃t. Also, unlike mirror descent, CBA does not use
the actual gradient (which it does not know) of ρt at w̃t, but (inspired by the EXP3 algorithm) uses
an unbiased estimator instead. Specifically, on each trial t ∈ [T ] , CBA does the following:

1. Set w̃t ← argminv∈Vt
∆(v,wt).

2. Randomly construct a vector gt ∈ RE such that E[gt] = ∇ρt(w̃t).
3. Set wt+1 ← argminv∈RE

+
(ηgt · (w̃t − v) + ∆(v, w̃t)).

This naturally raises two questions: how is at selected and how is gt constructed? On each trial
t ∈ [T ] we define

st :=
∑
i∈[E]

w̃t,ie
i
t ,

which is the stochastic action generated by the linear combination w̃t, and select at ∼ st. Note that:

E[rt,at ] = ρt(w̃t) , (1)

1Precisely, if for each expert there exists a trial in which the confidence is 1, then we have 0 ≤ ∥u∥1 ≤ E.
Otherwise can be high as 0 ≤ ∥u∥1 ≤ E/c∗, where c∗ = maxt∈[T ] c

i
t.
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Algorithm 1 CBA(w1, η)

For t = 1, 2, . . . , T do:
1. For all i ∈ [E] receive eit
2. For all i ∈ [E] set ct,i ← ∥eit∥1
3. If ∥ct∥1 ≤ 1 then:

(a) Set w̃t ← wt

4. Else:
(a) By interval bisection find λ > 0 such that:∑

i∈[E]

ct,iwt,i exp(−λct,i) = 1

(b) For all i ∈ [E] set w̃t,i ← wt,i exp(−λct,i)
5. Set:

st ←
∑
i∈[E]

w̃t,ie
i
t

6. Draw at ∼ st
7. Receive rt,at

8. For all a ∈ [K] set:
r̂t,a ← 1− Ja = atK(1− rt,at

)/st,at

9. For all i ∈ [E] set w(t+1),i ← w̃t,i exp(ηe
i
t · r̂t)

which confirms that ρt is our objective function at trial t. Once rt,at
is revealed to us we can proceed

to construct the gradient estimator gt. It is important that we construct this estimator in a specific
way. Inspired by EXP4 we first define a reward estimator r̂t such that for all a ∈ [K] we have:

r̂t,a := 1− Ja = atK(1− rt,at)/st,at .

This reward estimate is unbiased as:

E[r̂t,a] = 1− Pr[a = at](1− rt,a)/st,a = rt,a .

We then define, for all i ∈ [E], the component:

gt,i := eit · r̂t .

Note that for all i ∈ [E] we have:

E[gt,i] = eit · E[r̂t] = eit · rt = ∂iρt(w̃t)

so that E[gt] = ∇ρt(w̃t) as required.

Now that we defined the process by which CBA operates we must show how to compute w̃t and
wt+1. First we show how to compute w̃t from wt. If ∥ct∥1 ≤ 1 it holds that wt ∈ Vt so we
immediately have w̃t = wt. Otherwise we must find w̃t ∈ RE

+ that minimizes ∆(w̃t,wt) subject to
the constraint: ∑

i∈[E]

w̃t,ict,i = 1 ,

which is equivalent to the constraint that ∥π(w̃t)∥1 = 1. Hence, by Lagrange’s theorem there exists
λ such that:

∇w̃t

(
∆(w̃t,wt) + λ

∑
i∈[E]

w̃t,ict,i

)
= 0

which is solved by setting, for all i ∈ [E] :

w̃t,i := wt,i exp(−λct,i) .
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The constraint is then satisfied if λ is such that:∑
i∈[E]

ct,iwt,i exp(−λct,i) = 1 .

Since this function is monotonic decreasing, λ can be found by interval bisection. For this computation
step, we treat our numerical precision as a constant in our time complexity. In Appendix A.1, we
show that, even if the numerical precision is unbounded, we incur a time complexity equal to that of
EXP4, up to a factor logarithmic in T , adding only 1 to the regret.

Turning to the computation of wt+1 , since it is unconstrained it is found by the equation:

∇wt+1
(gt ·wt+1 + η−1∆(wt+1, w̃t)) = 0 .

which is solved by setting, for all i ∈ [E] :

w(t+1),i := w̃t,i exp(ηgt,i) . (2)

5 Adversarial contextual bandits with abstention

One main application of CBA is in the problem of adversarial contextual bandits with a finite context
set. In this problem, we have a finite set of contexts X . A-priori nature selects a sequence:

⟨(xt, rt) ∈ X × [−1, 1]K | t ∈ [T ]⟩ ,

but does not reveal it to the learner. For all t ∈ [T ] we define rt,□ := 0. On each trial t ∈ [T ] the
following happens:

1. The context xt is revealed to the learner.
2. The learner selects an action at ∈ [K] ∪ {□}.
3. The learner sees and incurs reward rt,at

∈ [−1, 1].

We will assume that we are given, a-priori, a set B ⊆ 2X that we call the basis. We call each element
of B a basis element (which is a set of contexts). We will later introduce various potential bases,
determined by the nature of the context’s structure: points within a metric space, nodes within a
graph, and beyond. Importantly, our method is capable of accommodating any type of basis and, thus,
any potential inductive bias that might be present in the data.

Given our basis we run our algorithm CBA with each expert corresponding to a pair (B, k) ∈ B×[K].
The expert corresponding to each pair (B, k) will deterministically choose action k when the current
context xt is in B, and abstain otherwise.

Corollary 5.1. Given any basis B of cardinality N and any M ∈ N we can implement CBA
such that for any sequence of disjoint basis elements ⟨Bj | j ∈ [M ]⟩ with corresponding actions
⟨bj ∈ [K] | j ∈ [M ]⟩ we have:∑

t∈[T ]

E[rt,at ] ≥
∑
t∈[T ]

∑
j∈[M ]

Jxt ∈ BjKrt,bj −
√
2M ln(N)(6K + 1)T .

The per-trial time complexity of this implementation of CBA is in O(KN).

Proof. The choice of experts for CBA that leads to Corollary 5.1 is defined by the set of pairs so that
E = NK and for each B ∈ B and action a ∈ [K] there exists an unique i ∈ [E] such that for all
t ∈ [T ] and b ∈ [K] we have:

eit,b := Jxt ∈ BKJb = aK .

By choosing w1,i :=M/NK for all i ∈ [E] , and choosing

η := (M ln(N)/(6K + 1)T )−1/2 ,

Theorem 3.1 implies the reward bound in Corollary 5.1. The per-trial time complexity of a direct
implementation of CBA for this set of experts would be O(KN).
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(a) Two foreground classes and
background as abstained.

(b) Two foreground classes and
the background as another one.

Figure 1: Illustrative example of abstention where we cover the foreground and background classes
with metric balls. We consider two clusters (blue and orange) as the foreground and one background
class (white), using the shortest path d∞ metric. Using abstention, we can cover two clusters with one
ball for each and abstain the background with no balls required (Fig. 1(a)). In contrast, if we treat the
background class as another class, it would require significantly more balls to cover the background
class, as seen by the 10 gray balls in Fig. 1(b). If the number of balls to cover significantly increases
like in this case, the bound involving the number of balls also gets significantly worse.

We briefly comment on the term: ∑
j∈[M ]

Jxt ∈ BjKrt,bj ,

that appears in the theorem statement. If xt does not belong to any of the sets in ⟨Bj | j ∈ [M ]⟩ then
this term is equal to zero (which is the reward of abstaining). Otherwise, since the sets are disjoint,
xt belongs to exactly one of them and the term is equal to the reward induced by the action that
corresponds to that set. In other words, the total cumulative reward is bounded relative to that of
the policy that abstains whenever xt is outside the union of the sets and otherwise selects the action
corresponding to the set that xt lies in.

Note the vast improvement of our reward bound over that of SPECIALISTEXP with abstention as one
of the actions. Let’s assume our context set is a metric space and our basis is the set of all balls. In
order to get a reward bound for SPECIALISTEXP, the sets in which the specialists are awake must
partition the set X . This means that we must add to our M balls a disjoint covering (by balls) of the
complement of the union of the original M balls. Note that the added balls correspond to the sets
in which the specialists predicting the abstention action are awake. Typically this would require a
huge number of balls so that the total number of specialists is huge (much larger than M ); this huge
number of specialists essentially replaces the term M in our reward bound (we illustrate an example
in Figure 1).

Furthermore, in Appendix D, we show that the same implementation of CBA is capable of learning a
weighted set of overlapping basis elements, as long as the sum of the weights of the basis elements
covering any context is bounded above by one, which SPECIALISTEXP cannot do in general.

As we will see below, the practical bases we propose have a moderate size of |B| = O(|X |2) leading
to a per-step runtime of O(K|X |2) for CBA in this contextual bandit problem. In Section 5.2, we
show how to significantly improve the runtime for a broad family of bases.

5.1 A lower bound

In this section, we show that CBA is, up to an O(ln(|B|)) factor, essentially best possible on this
contextual bandit problem:
Proposition 5.2. Take any learning algorithm. Given any basis B and any M ∈ N, for any
sequence of disjoint basis elements ⟨Bj | j ∈ [M ]⟩ there exists a sequence of corresponding actions
⟨bj ∈ [K] | j ∈ [M ]⟩ such that an adversary can force:∑

t∈[T ]

∑
j∈[M ]

Jxt ∈ BjKrt,bj −
∑
t∈[T ]

E[rt,at
] ∈ Ω

(√
MKT

)
.
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(a) Stochastic Block Model
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Figure 2: Results regarding the number of mistakes over time, the four main settings are presented
from left to right: the Stochastic Block Model, Gaussian graph, Cora graph and LastFM Asia graph. In
this context, D1, D2, and D-INF represent the p-norm bases, LVC represents the community detection
basis, and INT represents the interval basis. The baselines, EXP3 for each context, Contextual
Bandit with similarity, and GABA-II, are denoted as EXP3, CBSim, and GABA, respectively, and
are represented with dashed lines. All the figures display the data with 95% confidence intervals over
20 runs, calculated using the standard error multiplied by the z-score 1.96.

5.2 Efficient learning with balls

In practice we can often quantify the similarity between any pair of contexts. That is, the contexts
form a metric space, equipped with a distance function d : X × X → R+ known to the learner
a-priori. For example, contexts could have feature vectors in Rm (and the metric is the standard
Euclidean distance or cosine similarity) or be nodes in a graph with the metric given by the shortest-
path distance. A natural basis for this situation is the set of metric balls. Specifically, a ball is any set
B ⊆ X in which there exists some x ∈ X and δ ∈ R+ with:

B = {z ∈ X | d(x, z) ≤ δ} .

For this broad family of bases2 we can achieve the following speed-up, relying on a a sophisticated
data structure based on binary trees.
Theorem 5.3. Let N := |X |. Given any M ∈ N we can implement CBA such that for any sequence
of disjoint balls ⟨Bj | j ∈ [M ]⟩ with corresponding actions ⟨bj ∈ [K] | j ∈ [M ]⟩ we have:∑

t∈[T ]

E[rt,at
] ≥

∑
t∈[T ]

∑
j∈[M ]

Jxt ∈ BjKrt,bj −
√
4M ln(N)(6K + 1)T .

The per-trial time complexity of this implementation of CBA is in O(KN ln(N)).

As there are at mostO(N2) metric balls, this improves the runtime of the direct CBA implementation
from O(KN2) to O(KN ln(N)), that is almost linear per step. All the details are in Appendix B.

6 Experiments

This section conducts preliminary experiments, the code is available at GitHub3. We evaluate our
method to compare existing algorithms using graph data, since it is common to consider graph
structures under the confidence-rated expert setting [Cesa-Bianchi et al., 2013, Herbster et al., 2021].
As mentioned above, the bases used in our algorithm can be constructed arbitrarily, allowing to
encompass different inductive biases based on applications. Thus, we consider some representative
bases used on learning tasks on graphs before, each leading to different inductive priors on the
contexts. We provide a short description of the bases here and refer to Appendix E for more details.

2Actually we require a weaker condition. We only use the fact that for each context z ∈ X we have a set
Bz = {Bz

1 , . . . , B
z
ℓ } of monotonically increasing basis elements, that is, Bz

i ⊆ Bz
j for i < j, and the whole

basis is formed by the union of these: B =
⋃

z∈X Bz .
3https://github.com/albertorumi/ContextualBanditsWithAbstention
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Effective p-resistance basis dp: Balls given by the metric

dp(i, j) :=

(
min
u∈RN

ui−uj=1

∑
s,t∈V

|us − ut|p
)−1/p

.

We use d1, d2, and d∞ [Herbster and Lever, 2009].

Louvain method basis (LVC): Communities returned by the Louvain method [Blondel et al., 2008],
processed by the greedy peeling algorithm [Lanciano et al., 2024].

Geodesic intervals basis (INT): All sets of the form I(x, y) := {z ∈ X | z is on a shortest x-y path}
for all x, y ∈ X [Pelayo, 2013, Thiessen and Gärtner, 2021].

Let N be the cardinality of |X |. For all three basis types, we immediately get an O(KN2) runtime
per step of CBA as there areO(N2) basis elements. Moreover, for dp balls and the LVC basis we can
use the more efficient O(KN lnN) implementation through Theorem 5.3. We empirically evaluate
our approach in the context of online multi-class node classification on a given graph with bandit
feedback. At each time step, the algorithm is presented with a node chosen uniformly at random and
must either predict an action from the set of possible actions [K] or abstain. The node can accept
(resulting in a positive reward) or reject (resulting in a negative reward) the suggestion based on its
preferred class with a certain probability. In a real-world application, this models a scenario where
each user has a category preference (such as music genre or interest). When the item we decide to
present matches their interest, there is a high probability of receiving a reward.

We compare our approach CBA using each of these bases on real-world and artificial graphs against
the following baselines: an implementation of CONTEXTUALBANDIT from Slivkins [2011], the
GABA-II algorithm proposed by Herbster et al. [2021], and an EXP3 instance for each data point.
We use the following graphs for evaluation.

Stochastic block model. We use an established synthetic graph, stochastic block model [Holland
et al., 1983]. This graph is generated by spawning an arbitrary number of disjoint cliques representing
the foreground classes. Then an arbitrary number of background points are generated and connected
to every possible point with a low probability. Figure 2(a) are displayed the results for the case of
F = 160 nodes for each foreground class and B = 480 nodes for the background class. Connecting
each node of the background class with a probability of 1/

√
FB.

Gaussian graph. The points on this graph are generated in a two-dimensional space using five
different Gaussian distributions with zero mean. Four of them are positioned at the corners of the
unit square, representing the foreground classes and having a relatively low standard deviation.
Meanwhile, the fifth distribution, representing the background class, is centered within the square
and is characterized by a larger standard deviation. The points are linked in a k-nearest neighbors
graph. In Figure 2(b) are displayed the results for 160 nodes for each foreground class and a standard
deviation of 0.2, 480 nodes for the background class with a standard deviation of 1.75, along with a
7-nearest neighbors graph.

Real-world dataset. We tested our approach on the Cora dataset [Sen et al., 2008] and the LastFM
Asia dataset [Leskovec and Krevl, 2014]. While both of these graphs contain both features and a
graph, we exclusively utilized the largest connected component of each graph, resulting in 2485
nodes and 5069 edges for the Cora graph and 7624 nodes and 27806 edges for the LastFM Asia
graph. Subsequently, we randomly chose a subset of three out of the original seven and eighteen
classes, respectively, to serve as the background class. Additionally, we selected 15% of the nodes
from the foreground classes randomly to represent noise points, and we averaged the results over
multiple runs, varying the labels chosen for noise. Both in Figures 2(c) and 2(d) we averaged over 5
different label sets as noise. For the LastFM Asia graph, we exclusively tested the LVC bases, as it is
the most efficient one to compute given the large size of the graph.

Results. The results from both synthetically generated tests (Figures 2(a) and 2(b)) demonstrate
the superiority of our method when compared to the baselines. In particular, d∞-balls delivered
exceptional results for both graphs, implying that d∞-balls effectively cover the foreground classes
as expected. For the Cora dataset (Figure 2(c)), we observed that our method outperforms GABA-
II only when employing the community detection basis. This similarity in performance is likely
attributed to the dataset’s inherent lack of noise. Worth noting that the method we employed to inject
noise into the dataset may not have been the optimal choice for this specific context. However, it is
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essential to highlight that our primary focus revolves around the abstention criteria, which plays a
central role in ensuring the robustness of our model in the presence of noise. For the LastFM Asia
dataset, our objective was to assess the practical feasibility of the model on a larger graph. We tested
the LVC bases as they were the most promising and most efficient to compute. We outperform the
baselines in our evaluation as shown in Figure 2(d) and further discussed in Appendix F.

In summary, our first results confirm what we expected: our approach excels when we choose basis
functions that closely match the context’s structure. However, it also encounters difficulties when the
chosen basis functions are not a good fit for the context. In Appendix F, the results for a wide range
of different parameters used to generate the previously described graphs are displayed.
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Maximilian Thiessen and Thomas Gärtner. Active learning of convex halfspaces on graphs. In Proc.
NeurIPS, 2021.

Vincent A Traag. Faster unfolding of communities: Speeding up the louvain algorithm. Phys. Rev. E,
92(3):032801, 2015.

Marcel LJ van De Vel. Theory of Convex Structures. Elsevier, 1993.

11

http://snap.stanford.edu/data
http://snap.stanford.edu/data


A CBA analysis

Here we prove Theorem 3.1 from the modification of mirror descent (and the specific construction of
gt) given in Section 4. Whenever we take expectations in this analysis they are over the draw of at
from st for some t ∈ [T ]. As for mirror descent, our analysis hinges on the following classic lemma:
Lemma A.1. Given any convex set C ⊆ RE

+ , any convex function ξ : RE
+ → R , any q ∈ C and any

z ∈ RE
+ with:

q = argminv∈C(ξ(v) + ∆(v, z)) ,

then for all u ∈ C we have:

ξ(u) + ∆(u, z) ≥ ξ(q) + ∆(u, q) .

Proof. Theorem 9.12 in Beck [2017] shows that the theorem holds if ∆ is Bregman divergence. In
our case ∆ is indeed a Bregman divergence: that of the convex function f : RE

+ → R for all v ∈ RE
+

defined by:
f(v) :=

∑
i∈[E]

vi ln(vi),

which concludes the proof.

Proof of Theorem 3.1. Choose any u ∈ V and t ∈ [T ]. We immediately have V ⊆ Vt by definition,
and therefore u ∈ Vt. Hence, by setting ξ such that ξ(v) := 0 for all v ∈ RE

+ , setting C ∈ Vt and
setting z = wt in Lemma A.1 we have q = w̃t so that:

∆(u,wt) ≥ ∆(u, w̃t) . (3)

Alternatively, by setting ξ such that ξ(v) := ηgt · (w̃t − v) for all v ∈ RE
+ , setting C = RE

+ and
setting z = w̃t in Lemma A.1 we have q = wt+1 so that:

ηgt · (w̃t − u) + ∆(u, w̃t) ≥ ηgt · (w̃t −wt+1) + ∆(u,wt+1) . (4)

Since E[gt] = ∇ρt(w̃t) and ρt is linear we have:

E[gt · (w̃t − u)] = ρt(w̃t)− ρt(u) . (5)

In what follows we use the fact that for all x ≤ 1 we have:

x(1− exp(x)) ≥ −2x2 . (6)

For all i ∈ [E] , we have, by definition, that gt,i = eit · r̂t so by Equation (2) we have:

gt · (w̃t −wt+1) =
∑
i∈[E]

w̃t,ie
i
t · r̂t(1− exp(ηeit · r̂t)) .

Since, for all a ∈ [K] , we have r̂t,a ≤ 1 and hence, as η < 1 and, for all i ∈ [E] we have ∥eit∥1 ≤ 1 ,
we can invoke Equation (6), which gives us:

ηgt · (w̃t −wt+1) ≥ −2
∑
i∈[E]

w̃t,i(ηe
i
t · r̂t)2 . (7)

By definition of r̂t we have, for all i ∈ [E] , that:

eit · r̂t = ∥eit∥1 + eit,at
(1− rt,at

)/st,at
≤ ct,i + 2eit,at

/st,at

so that since, for all a ∈ [K] , we have Pr[at = a] = st,a we also have:

E[(eit · r̂t)2] ≤ c2t,i +
∑

a∈[K]

(2eit,act,i + 4(eit,a)
2/st,a) . (8)

Since, for all i ∈ [E] and a ∈ [K], we have eit,a ≤ 1 and ct,i ≤ 1 and hence also c2t,i ≤ ct,i we then
have:

E[(eit · r̂t)2] ≤ (2K + 1)ct,i + 4
∑

a∈[K]

eit,a/st,a . (9)
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Note that since w̃t ∈ Vt we have: ∑
i∈[E]

w̃t,ict,i ≤ 1 . (10)

Also, by definition of st we have:∑
i∈[E]

w̃t,i

∑
a∈[K]

eit,a/st,a =
∑

a∈[K]

1

st,a

∑
i∈[E]

w̃t,ie
i
t,a =

∑
a∈[K]

1

st,a
st,a = K . (11)

Multiplying Inequality (9) by w̃t,i , summing over all i ∈ [E] , and then substituting in Inequality
(10) and Equation (11) gives us:∑

i∈[E]

w̃t,iE[(eit · r̂t)2] ≤ (2K + 1) + 4K = 6K + 1 . (12)

Taking expectations on Inequality (7) and substituting in Inequality (12) (after taking expectations)
gives us:

E[ηgt · (w̃t −wt+1)] ≥ −η2(12K + 2) . (13)
Taking expectations (over the draw at ∼ st) on Inequality (4), substituting in Inequalities (3), (5)
and (13), and then rearranging gives us:

∆(u,wt)− E[∆(u,wt+1)] ≥ η(ρt(u)− ρt(w̃t))− η2(12K + 2) .

Summing this inequality over all t ∈ [T ] , taking expectations (over the entire sequence of action
draws) and noting that ∆(u,wT+1) > 0 gives us:

∆(u,w1) ≥ η
∑
t∈[T ]

E[ρt(u)− ρt(w̃t)]− η2(12K + 2)T .

Substituting in Equation (1) and rearranging then gives us, by definition of ρ and ρt, the required
goal: ∑

t∈[T ]

E[rt,at
] ≥ E[ρ(u)]−∆(u,w1)/η − η(12K + 2)T .

A.1 Unbounded precision case

We will now show how to handle the case in which our numerical precision is unbounded, incurring a
time complexity equal, up to a factor logarithmic in T , to that of Exp4 and adding only 1 to the regret.
This additive factor, however, can be made arbitrarily small.

Let us restrict ourselves to compare against u with ∥u∥∞ ≤ Z for some arbitrary Z. Note that
this always has to be the case when each expert has a confidence of at least 1/Z on some trial.
Our time complexity will be logarithmic in Z. At the beginning of trial t we will now project (via
the unnormalised relative entropy) wt into the set {v ∈ RE | ∥v∥∞ ≤ Z} which simply requires
clipping its components. Since the set {v ∈ RE | ∥v∥∞ ≤ Z} is convex and contains our comparator
u this will not affect our regret bound.

For any q ∈ R let Vt(q) be the set of all v with v · ct ≤ q. We note that given, for all t ∈ [T ], a value
qt ∈ [1− 1/T, 1] we have that there exists û ∈

⋂
t Vt(qt) such that the cumulative reward of π(û) is

no less than that of π(u) minus 1. This means that, on any trial t we can, instead of projecting into
the set Vt , project into the set Vt(qt) for some qt ∈ [1 − 1/T, 1] and add no more than one to the
regret (by considering û as the comparator instead of u).

So the problem (for the projection step at time t if necessary) is now to project into the set of all
{v |v · c ≤ qt} for some arbitrary qt ∈ [1 − 1/T, 1]. Following our use of Lagrange multipliers,
this means that we need to find λ > 0 with

∑
i ct,iwt,i exp(−λct,i) ∈ [1− 1/T, 1]. So consider the

function f defined by f(λ′) :=
∑

i ct,iwt,i exp(−λ′ct,i).
Consider λ′ := ZE ln(ZE) and take any i ∈ [E]. Since wt,i ≤ Z we have that when
ct,i < 1/ZE then ct,iwt,i exp(−λ′ct,i) ≤ ct,iwt,i < 1/E and that when ct,i ≥ 1/ZE then
ct,iwt,i exp(−λ′ct,i) ≤ Z exp(−λ′/ZE) = 1/E. This implies that f(λ′) ≤ 1 and hence (since f is
monotonic decreasing) an acceptable λ lies in [0, ZE ln(ZE)].
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Algorithm 2 QUERY(q)

1. For all i ∈ [n] ∪ {0} let γi be the ancestor of q at depth i in D
2. Set σn ← ψ(γn)ϕ(γn)
3. Climb D from γn−1 to γ0. When at γi do as follows:

(a) If γi+1 = ◁(γi) then set σi ← ϕ(γi)(σi+1 + ψ(▷(γi))ϕ(▷(γi)))
(b) If γi+1 = ▷(γi) then set σi ← ϕ(γi)σi+1

4. Return σ0

For general λ′ we note that ∇f(λ′) = −
∑

i c
2
t,iwt,i exp(−λ′ct,i) ≥ −f(λ′). This means that

|∇f(λ)| ≤ 1. Since the length of the interval [1− 1/T, 1] is 1/T this means that the length of the
interval containing acceptable values of λ is at least 1/T .

So we have shown that either λ = ZE ln(ZE) is acceptable or the range of acceptable values of λ is
of length 1/T and lies in [0, ZE ln(ZE)] (which has length ZE ln(ZE)). The ratio of these lengths
is ZET ln(ZE) so interval bisection will find an acceptable value of λ in O(ln(ZET ln(ZE))) =
O(ln(EZT )) steps.

So we have a time complexity O(EK + E ln(EZT )) and we have only added 1 to the regret
(although this additive factor can be made arbitrarily small).

B Efficient implementation proof

We here prove the time complexity of Theorem 5.3. The per-trial time complexity of a direct
implementation of CBA for this set of experts would be O(KN2). We now show how to implement
CBA in a per-trial time of only O(KN ln(N)). To do this first note that we can assume, without loss
of generality, that for all q, x, z ∈ X with x ̸= z we have d(q, x) ̸= d(q, z) since ties can be broken
arbitrarily and balls can be duplicated.

Given x, z ∈ X , a ∈ [K] and t ∈ [T ] we let yt,a(x, z) := wt,i and ỹt,a(x, z) := w̃t,i where i is the
index of the expert corresponding to the ball-action pair with ball: {q ∈ X | d(x, q) ≤ d(x, z)}, and
action a. Given x, z ∈ X let E(x, z) := {q ∈ X | d(x, q) ≥ d(x, z)} . It is straightforward to derive
the following equations for the quantities in CBA at trial t ∈ [T ]. First we have:

∥ct∥1 =
∑

a∈[K]

∑
x∈X

∑
z∈E(x,xt)

yt,a(x, z) .

For all x, z ∈ X and a ∈ [K] we have the following:

• If ∥ct∥1≤1 or z /∈ E(x, xt) then ỹt,a(x, z)=yt,a(x, z).
• If ∥ct∥1 > 1 and z ∈ E(x, xt) then ỹt,a(x, z) = yt,a(x, z)/∥ct∥1.

For all a ∈ [K] we have:
st,a =

∑
x∈X

∑
z∈E(x,xt)

ỹt,a(x, z) .

Finally, for all x, z ∈ X and a ∈ [K] we have the following:

y(t+1),a(x, z) =

{
ỹt,a(x, z) if z /∈ E(x, xt) ,

ỹt,a(x, z) exp(ηe
i
t · r̂t) if z ∈ E(x, xt) .

Hence, to implement CBA we need, for each x ∈ X and a ∈ [K] , a data structure that implicitly
maintains a function h : X → R+ and has the following two subroutines, that take parameters q ∈ X
and p ∈ R+.

1. QUERY(q): Compute
∑

z∈E(x,q) h(z).
2. UPDATE(q, p): Set h(z)← ph(z) for all z ∈ E(x, q).

Now fix x ∈ X and a ∈ [K]. Let h be as above. On each trial t ∈ [T ] and for all z ∈ X , h(z) will
start equal to yt,a(x, z) and change to ỹt,a(x, z) and then y(t+1),a(x, z) by applying the UPDATE
subroutine.
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Algorithm 3 UPDATE(q, p)

1. For all i ∈ [n] ∪ {0} let γi be the ancestor of q at depth i in D
2. Descend D from γ0 to γn−1. When at γi set:

(a) ϕ(◁(γi))← ϕ(γi)ϕ(◁(γi))
(b) ϕ(▷(γi))← ϕ(γi)ϕ(▷(γi))
(c) ϕ(γi)← 1

3. For all i ∈ [n− 1] ∪ {0}, if γi+1 = ◁(γi) then set ϕ(▷(γi))← pϕ(▷(γi))
4. Set ϕ(γn)← pϕ(γn)
5. Climb D from γn−1 to γ0. When at γi set:
ψ(γi)← ψ(◁(γi))ϕ(◁(γi)) + ψ(▷(γi))ϕ(▷(γi))

We now show how to implement these subroutines implicitly in a time of O(ln(N)) as required.
Without loss of generality, assume that N = 2n for some n ∈ N. Our data structure is based on a
balanced binary tree D whose leaves are the elements of X in order of increasing distance from x.
This implies that for any z ∈ X we have that E(x, z) is the set of leaves that do not lie on the left of
z. Given a node v ∈ D we let ⇑(v) be the set of ancestors of v and let ⇓(v) be the set of all z ∈ X
which are descendants of v. For any internal node v let ◁(v) and ▷(v) be the left and right children of
v respectively.

We maintain functions ϕ, ψ : D → R+ such that for all v ∈ D we have:

ψ(v)
∏

v′∈⇑(v)

ϕ(v′) =
∑

z∈⇓(v)

h(z) . (14)

The pseudo-code for the subroutines QUERY and UPDATE are given in Algorithms 2 and 3 respectively.
We now prove their correctness. We first consider the QUERY subroutine with parameter q ∈ X .
From Equation (14) we see that, by (reverse) induction on i ∈ [n] ∪ {0}, we have:

σi
∏

v′∈⇑(γi)\{γi}

ϕ(v′) =
∑

z∈⇓(γi)∩E(x,q)

h(z) .

Since γ0 is the root of D, we have σ0 =
∑

z∈E(x,q) h(z) as required. Now consider the UPDATE

subroutine with parameters q ∈ X and p ∈ R+. Let h be the implicitly maintained function before
the subroutine is called. For Equation (14) to hold after the subroutine is called we need:

ψ(v)
∏

v′∈⇑(v)

ϕ(v′) =
∑

z∈⇓(v)

h′(z) . (15)

where for all z ∈ X we have:
h′(z) := Jz /∈ E(x, q)Kh(z) + Jz ∈ E(x, q)Kph(z) .

We shall now show that Equation (15) does indeed hold after the subroutine is called, which will
complete the proof. To show this we consider each step of the subroutine in turn. After Step 2 we
have (via induction) that:

• For all v ∈ ⇑(q) we have ϕ(v) = 1.
• For all v ∈ D \ ⇑(q) we have:

ψ(v)
∏

v′∈⇑(v)

ϕ(v′) =
∑

z∈⇓(v)

h(z) .

So, since E(x, q) is the set of all z ∈ X that do not lie to the left of q in D we have that, after Step 4
of the algorithm, the following holds:

• For all v ∈ ⇑(q) we have ϕ(v) = 1,
• For all v ∈ D \ ⇑(q) we have:

ψ(v)
∏

v′∈⇑(v)

ϕ(v′) =
∑

z∈⇓(v)

h′(z) .

Hence, by induction, we have that, after Step 5 of the algorithm, it is the case that for all v ∈ ⇑(q) we
have: ψ(v) =

∑
z∈⇓(v) h

′(z) . So since ϕ(v) = 1 for all v ∈ ⇑(q) and Step 5 does not alter ϕ(v) or
ψ(v) for any v ∈ D \ ⇑(q) we have Equation (15). ■
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C Lower bound proof

Proposition C.1. Take any learning algorithm. Given any basis B and any M ∈ N then for any
sequence of disjoint basis elements ⟨Bj | j ∈ [M ]⟩ there exists a sequence of corresponding actions
⟨bj ∈ [K] | j ∈ [M ]⟩ such that an adversary can force:∑

t∈[T ]

∑
j∈[M ]

Jxt ∈ BjKrt,bj −
∑
t∈[T ]

E[rt,at ] ∈ Ω(
√
MKT )

Proof. In this scenario, at each time step, either a single expert (i.e., the basis element containing the
current context xt) is active, making predictions based on its label, or no expert is active, prompting
the learner to abstain and thus incur zero reward or cost.

Therefore we define T ′ = {t ∈ [T ] |
∑

j∈[M ]Jxt ∈ BjK = 1} as the set of timesteps in which the
learner is going to play. Since the concept of abstention is that our algorithm is not going to pay
anything for the timesteps in which we abstain, we can see that:

∑
t∈[T ]

∑
j∈[M ]

Jxt ∈ BjKrt,bj −
∑
t∈[T ]

E[rt,at ] =
∑
t∈T ′

rt,bj −
∑
t∈T ′

E[rt,at ] ,

For any ball j ∈ [M ], we define Tj = {t ∈ [T ′] | Jxt ∈ BjK}. Following the ideas of Seldin
and Lugosi [2016], for any of the sets Tj we can create a multi-armed bandit instance as the one
described in the lower bound by Auer et al. [2002]. Note that in the lower bound construction, the
abstention arm would be a forehand known suboptimal arm, which results in a lower bound of the
order c

√
(K − 1)T , for the constant c =

√
2−1√

32 ln(4/3)
> 0. Since the presented context xt is chosen

adversarially at each time step, we can ensure that each basis element is activated for |T ′|/M time
steps, obtaining:

∑
j∈[M ]

∑
s∈T ′

j

rs,bj −
∑
s∈T ′

j

E[rs,as ]

 ≥ ∑
j∈[M ]

c
√

(K − 1)|T ′
j |

=
∑

j∈[M ]

c
√
(K − 1)|T ′|/M

= c
√
M(K − 1)|T ′|

As we can choose |T ′| to be any fraction of T, we end up with the desired lower bound of the order
Ω(
√
MKT ), which matches, up to logarithmic factors, the cumulative reward bound presented in

Theorem 5.3.

D Overlapping balls extension

In this section, we present the theorem that allows us to present the results of overlapping balls as
expressed in Section 5.2. Note that Theorem 5.3 is the special case of Theorem D.1 when the balls
are disjoint and uj = 1 for all j ∈ [M ].

Theorem D.1. Let M ∈ N and {(Bj , bj , uj) | j ∈ [M ]} be any sequence such that Bj is a ball,
bj ∈ [K] is an action, and uj ∈ [0, 1] is such that for all x ∈ X we have:∑

j∈[M ]

Jx ∈ BjKuj ≤ 1 .

For all t ∈ [T ] define:
r∗t :=

∑
j∈[M ]

Jxt ∈ BjKujrt,bj ,
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which represents the reward of the policy induced by {(Bj , bj , uj) | j ∈ [M ]} on trial t. The regret
of CBA, with the set of experts given in Section 5.2 and with correctly tuned parameters, is then
bounded by: ∑

t∈[T ]

r∗t −
∑
t∈[T ]

E[rt,at
] ∈ O

√
ln(KN)KT

∑
j∈[M ]

uj

 .

Its per-trial time complexity is:
O(KN ln(N)) .

Proof. Direct from Theorem 3.1 using the experts (with efficient implementation) given in Section
5.2

E The details of the graph bases

This section expands the definition and explanations for the bases we used in the Experiment.
Remember that we refer to any set of experts that correspond to set-action pairs of the form (B, k) ∈
2X × [K] as a basis elements, and a set of basis elements as basis.

E.1 p-seminorm balls on graphs

As we see in Sec. 5.2, the CBA seems to work only for vector data. However, in the following
sections, we explore how our CBA algorithm can be applied to graph data by creating a ball structure
over the graph.

We first introduce the notations of a graph. A graph is a pair of nodes V := [N ] and edges E. An
edge connects two nodes, and we assume that our graph is undirected and weighted. For each edge
{i, j} ∈ E, we denote its weight by cij . For convenience, for each pair of nodes i, j with {i, j} /∈ E,
we define cij = 0.

To form a ball over a graph, a family of metrics we are particularly interested in is given by p-norms
on a given graph G. Let

dp(i, j) :=

 min
u∈RN

ui−uj=1

∑
s,t∈V

cst|us − ut|p
−1/p

. (16)

which is a well-defined metric for p ∈ [1,∞) if the graph is connected and may be defined for p =∞
by taking the appropriate limits. When p = 2 this is the square root of the effective resistance circuit
between nodes i and j which comes from interpreting the graph as an electric circuit where the
edges are unit resistors and the denominator of Equation (16) is the power required to maintain a
unit voltage difference between u and v [Doyle and Snell, 1984]. More generally, dp(i, j)p is known
as p-(effective) resistance [Herbster and Lever, 2009, Alamgir and von Luxburg, 2011, Saito and
Herbster, 2023]. When p ∈ {1, 2,∞} there are natural interpretation of the p-resistance. In the case
of p = 1, we have that the effective is equal to one over the number of edge-disjoint paths between i
and j which is equivalently one over the minimal cut that separates i from j. When p = 2 it is the
effective resistance as discussed above. And finally when p =∞ we have that d∞ is the geodesic
distance (shortest path) between i and j. Note that, interestingly, there are at most 2N distinct balls
for d1; as opposed to the general bound O(N2) on the number of metric balls. This follows since
d1 is an ultrametric. A nice feature of metric balls is that they are ordinal, i.e., we can take an
increasing function of the distance and the distinct are unchanged. The time complexity for each
ball is as follows. For d1 ball, we compute every pair of distance in O(N3) using the Gomory-Hu
tree [Gomory and Hu, 1961]. For d2 ball, it is actually enough to compute the pseudoinverse of graph
Laplacian once, which costs O(N3) [Doyle and Snell, 1984]. For d∞ ball, we can compute every
pair of distance in O(N3) by Floyd–Warshall algorithm [Floyd, 1962].

E.2 Community detection bases

In this section, we consider only bases formed via a set of subsets (a.k.a clusters) C ⊆ 2[N ]. Each of
these subsets induces K basis elements: one for each action a ∈ [K]. Specifically, the basis element
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β : [N ]→ [K□] corresponding to the pair (C, a) is such that β(x) is equal to a whenever x ∈ C and
equal to □ otherwise. Hence, in this section, we equate a basis with a set of subsets of [N ].

We can compute a basis for a given graph G = (V,E) using community detection algorithms.
Community detection is one of the most well-studied operations for graphs, where the goal is to
find a partition {C1, . . . , Cq} of V (i.e.,

⋃q
i=1 Ci = V and Ci ∩ Cj = ∅ for i ̸= j) so that each Ci

is densely connected internally but sparsely connected to the rest of the graph [Fortunato, 2010].
There are many community detection algorithms, all of which can be used here, but the most popular
algorithm is the Louvain method [Blondel et al., 2008]. We briefly describe how this algorithm works.
The algorithm starts with an initial partition {{v} | v ∈ V } and aggregates the clusters iteratively:
For each v ∈ V , compute the gain when moving v from its current cluster to its neighbors’ clusters
and indeed move it to a cluster with the maximum gain (if the gain is positive). Note that the gain is
evaluated using modularity, i.e., the most popular quality function for community detection [Newman
and Girvan, 2004]. The algorithm repeats this process until no movement is possible. Then the
algorithm aggregates each cluster to a single super node (with appropriate addition of self-loops and
change of edge weights) and repeats the above process on the coarse graph as long as the coarse
graph is updated. Finally, the algorithm outputs the partition of V in which each cluster corresponds
to each super node in the latest coarse graph. Note that it is widely recognized that the Louvain
method works in O(N logN) in practice [Traag, 2015].

To obtain a finer-grained basis, we apply the so-called greedy peeling algorithm for each Ci in the
output of the Louvain method. For Ci ⊆ V and v ∈ Ci, we denote by dCi

(v) the degree of v in
the induced subgraph G[Ci]. For G[Ci], the greedy peeling iteratively removes a node with the
smallest degree in the currently remaining graph and obtains a sequence of node subsets from Ci to a
singleton. Specifically, it works as follows: Set j ← |Ci| and C(j)

i ← Ci. For each j = |Ci|, . . . , 2,
compute vmin ∈ argmin{d

C
(j)
i

(v) | v ∈ C(j)
i } and C(j−1)

i ← C
(j)
i \ {vmin}. Using a sophisticated

data structure, this algorithm runs in linear time [Lanciano et al., 2024].

In summary, our community detection basis is the collection of node subsets {C(j)
i | i = 1, . . . , q, j =

1, . . . , |Ci|} together with {{v} | v ∈ V } for completeness.

E.3 Graph convexity bases

An alternative to metric balls and communities are, for example, (geodesically) convex sets in a
graph. They correspond to the inductive bias that if two nodes prefer the same action, then also the
nodes on a shortest path between the two tend to prefer the same action. Geodesically convex sets are
well-studied [van De Vel, 1993, Pelayo, 2013] and have been recently used in various learning settings
on graphs [Bressan et al., 2021, Thiessen and Gärtner, 2021]. Similarly to convex sets in the Euclidean
space, a setC of nodes is convex if the nodes of any shortest path with endpoints inC are inC, as well.
More formally, the (geodesic) interval I(u, v) = {x ∈ V : x is on a shortest path between u and v}
of two nodes u and v contains all the nodes on a shortest path between them. For a set of node A we
define I(A) = ∪a,b∈AI(a, b) as a shorthand notation for the union of all pairwise intervals in A. A
set A is (geodesically) convex iff I(A) = A and the convex hull conv(A) of a set A is the (unique)
smallest convex set containing A. Note that for u, v ∈ V , I(u, v) and conv({u, v}) are typically
different sets. Indeed, I(u, v) is in general non-convex, as nodes on a shortest path between two
nodes in I(u, v) (except for u, v) are not necessarily contained in I(u, v). As the total number of
convex sets can be exponential in N , e.g., all subsets of a complete subgraph are convex, we consider
the basis consisting of all intervals: I(u, v) for u, v ∈ [N ]. This involvesO(N2) basis elements, each
of size O(N). With a simple modification of the Floyd Warshall [Floyd, 1962] algorithm, computing
the interval basis takes O(N3) time complexity.

F Additional experimental results

We thoroughly explored various configurations for the three graphs described in our experimental
setup in Section 6. We run our experiments with an Intel Xeon Gold 6312U processor and 256 GB of
RAM ECC 3200 MHz. Figure 3 displays different settings for the number of nodes in each clique
and noise levels.
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As we compare the computational complexity of each basis in Section E and the main results, the
most intense computational load in the experiments will arise from the calculation of the basis,
which can be seen as an initialization step in our algorithm. The proposed methods have varying
computational complexities, and an arbitrarily complex function can be employed to compute the
basis. Remark that, in the usual complexity comparison among online learning algorithms using
experts, we compare the complexity given the experts. Practically, we use pre-computed bases or
even human experts. Also note that due to the expensive complexity of the p-balls and the convex
sets seen in Section E, we only conduct the LVC for LastFM Asia.

In Figure 4, we present multiple settings for generating the Gaussian graph. Here the title of each
plot is “Foreground x,y; Background x′,y′; k-NN,” which is explained as follows: x represents the
number of nodes in each foreground class, x′ represents the number of nodes in the background class,
y represents the standard deviation of the Gaussians generating the foreground class, y′ represents
the standard deviation of the Gaussian generating the background class, and k represents the number
of nearest neighbors used to generate the graph.

In Figure 5, we present the various labels chosen as noise for the Cora graph. In Figure 2(c), we
presented the averages of all these different configurations. Here, we can see that the main behavior
of the various bases is roughly maintained independently of the different labels chosen to be masked
as background class.

In Figure 6, we present the various labels chosen as noise for the LastFM Asia graph. This graph
comprises nodes representing LastFM users in Asian countries and edges representing mutual follower
connections. Vertex features are extracted based on the artists liked by the users. During this initial
analysis, we arbitrarily chose three out of eighteen possible labels to serve as the background class.
In Figure 2(d), we presented the averages of all these different configurations. Varying the chosen
background classes also produces different results, this is indeed due to the inherent lack of noise in
the dataset. It is nice to see that regardless of the noise labels chosen, the behavior of our algorithm is
always good, showing, as expected, that based on the amount of noise, we can just improve.
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Figure 3: Stochastic Block Model results, dotted lines represent different baselines, while solid lines
are used to represent various results.
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Figure 4: Gaussian graph results, dotted lines represent different baselines, while solid lines are used
to represent various results.

21



Figure 5: Cora results, dotted lines represent different baselines, while solid lines are used to represent
various results
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Figure 6: LastFM Asia results, dotted lines represent different baselines, while solid lines are used to
represent various results
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Impact Statement

Given the theoretical nature of our work, we cannot foresee the shape of positive or negative societal
impacts which this work may have in future.

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: All the claims are supported in the main body.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations and future work are discussed in the introduction and in the
experimental results analysis.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

24



3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We explicitly write the assumptions of all the theoretical claims.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provided the experimental codes.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
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Answer: [Yes]
Justification: We cited the datasets which we use in the experiments. Also, these datasets
are publicly available and widely used in the community.
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
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that is necessary to appreciate the results and make sense of them.
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example, train/test split, initialization, random drawing of some parameter, or overall
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error
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the experiments?
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
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Answer: [Yes]
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
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Answer: [Yes]
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• The answer NA means that there is no societal impact of the work performed.
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• Examples of negative societal impacts include potential malicious or unintended uses
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(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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to particular applications, let alone deployments. However, if there is a direct path to
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to point out that an improvement in the quality of generative models could be used to
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from (intentional or unintentional) misuse of the technology.
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We used the datasets that are widely used in the community.
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
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Answer: [NA]
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asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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