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PROVING VIDEO UNDERSTANDING VIA COUNTERFAC-
TUAL VIDEO GENERATION
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Q: What is the trajectory of the harvested corn as it is being transferred from the 
harvester?
A. It arches upwards and floats into the sky.
B. The video does not show the corn being transferred. 
C. It is transferred downwards into a large green trailer.
D. It is sprayed sideways across the field.

Qwen-VL

User

<think>The video clearly shows …… The corn is being expelled from the harvester's 
arm in a horizontal direction towards the trailer, not upwards or in any other 
direction. The trajectory is direct and downward into the trailer, as the corn is 
collected and contained in the trailer.</think>
<answer>C</answer>

<think>Upon analyzing the frames, …… Its trajectory is upwards in an arc before 
falling downwards into the large green trailer. This matches the description given 
in option C …… </think>
<answer>C</answer> GPT-4o

<think> Initially, the video shows a green tractor transferring harvested corn into 
a large green trailer. As the video progresses, the corn is seen being transferred 
in an arc, rising high above the tractor and then curving back down towards the 
trailer.</think>
<answer>A</answer>

DNA-Train-7B
(Ours)

Q: What happens to the pile of rocks the girl is standing on during the video?
A. The rocks are washed away by the ocean waves.
B. The pile of rocks remains the same throughout the video.
C. The rocks change color from grey to green.
D. The rocks multiply and grow into a much larger pile beneath the girl.

Qwen-VL

<think>The video shows the girl standing on a pile of rocks near the ocean. There 
is …… The background of the video does not suggest any unusual effects like rocks 
growing into a larger pile. Given this analysis, the correct answer is that the rocks 
remain the same throughout the video, and the pile of rocks does not change in 
any of the options provided.</think>
<answer>B</answer>

<think>In the video, the girl is standing on a pile of rocks. Throughout the 
video, ……, ruling out option C. The pile of rocks does ……, ruling out option D. The 
rocks don’t …… eliminating option A. Therefore, the most logical conclusion is that 
the pile of rocks remains the same throughout the video.</think>
<answer>B</answer>

GPT-4o

<think> Initially, the girl is standing on a pile of rocks. As she moves her arms, 
there is a sudden transformation where the pile of rocks beneath her grows 
significantly in size and becomes much larger.</think>
<answer>D</answer>

DNA-Train-7B 
(Ours)

video edit partCorrect Answer.Intuitive Answer.

Figure 1: Comparison of MLLMs on counterfactual video QA. Each example shows key frames,
the multiple-choice question, and the models’ reasoning and answers. General models (Qwen-VL,
GPT-4o) rely on language priors, picking plausible but visually incorrect answer. Our DNA-Train-
7B model grounds reasoning in the video and selects the counterintuitive yet correct answer.

ABSTRACT

Multimodal Large Language Models (MLLMs) have made remarkable progress in
video understanding. However, they suffer from a critical vulnerability: an over-
reliance on language priors, which can lead to “visual ungrounded hallucination”,
especially when processing counterfactual videos that defy common sense. This
limitation, stemming from the intrinsic data imbalance between text and video,
is challenging to address due to the substantial cost of generating and annotating
counterfactual data. To address this, we introduce DualityForge, a novel coun-
terfactual data synthesis framework that employs controllable, diffusion-based
video editing to transform real-world videos into counterfactual scenarios. By
embedding structured contextual information into the video editing and QA gen-
eration processes, the framework automatically produces high-quality QA pairs
together with original–edited video pairs for contrastive training. Based on this,
we build DualityVidQA, a large-scale video dataset designed to reduce MLLM
hallucinations. Besides, to fully exploit the contrastive nature of our paired data,
we propose Duality-Normalized Advantage Training (DNA-Train), a two-stage
SFT-RL training regime where the RL phase incorporates ℓ1 normalization of ad-
vantages for each real-counterfactual pair, thereby enabling a more stable and effi-
cient policy optimization. Experiments on DualityVidQA-Test demonstrate that
our method substantially reduces model hallucinations on counterfactual videos,
yielding a relative improvement of 24.0% over the Qwen2.5-VL-7B baseline.
Moreover, our approach achieves significant gains across both hallucination and
general-purpose benchmarks, indicating strong generalization capability. We will
open-source our dataset and code.
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1 INTRODUCTION

Despite the remarkable advances in Multimodal Large Language Models (MLLMs) (Bai et al., 2025;
Zhang et al., 2024c; Zhu et al., 2025a; Team Gemini et al., 2023; Achiam et al., 2023), studies
have revealed a critical vulnerability of them: an over-reliance on language priors at the expense
of genuine visual reasoning. This bias fosters “visual ungrounded hallucination”, in which models
generate responses driven more by learned common sense rather than the actual visual evidence (Li
et al., 2025; Chen et al., 2024b). This issue becomes particularly severe when MLLMs process
videos depicting counterfactual phenomena, as shown in Figure 1. When confronted with contents
that defy such priors—such as an object vanishing or violating physical laws–MLLMs models often
disregard the critical visual anomalies. As a result, they produce narratives that are linguistically
plausible yet inconsistent with the actual events depicted in the video.

Most prior efforts to mitigate hallucinations in MLLMs have focused on modifying textual
data (Chen et al., 2025b; Liu et al., 2024a; Yu et al., 2024), for example, altering video captions,
to rebalance the distribution within the text modality. However, a primary cause of these hallu-
cinations lies in the inherent data imbalance of MLLMs, where the scale and diversity of text far
surpass those of video (Pi et al., 2024; Yao et al., 2025b). To address this, we advocate enhancing
the model’s visual perception through counterfactual data. However, this approach faces two key
bottlenecks: (1) producing scalable counterfactual videos (e.g., with visual effects) is both resource-
and cost-intensive; and (2) generating high-quality QA pairs is hampered by a paradox: the models’
own limited comprehension precludes reliable automatic data collection and annotation, resulting in
a circular dependency that obstructs scalability.

Inspired by the recent advances in AI-Generated Content (AIGC) (OpenAI, 2023; 2024; Agostinelli
et al., 2023), we introduce a novel data synthesis framework DualityForge that leverages control-
lable video editing (Liu et al., 2025; Mao et al., 2025), powered by diffusion models (Ho et al., 2020;
Song et al., 2021), to transform real-world videos into counterfactual scenarios, such as erasing an
object mid-clip to simulate a sudden disappearance. This type of method enables precise control over
the generated events and, critically, embeds structured context (e.g., event type, temporal location)
into the editing process. This embedded context provides MLLMs with explicit cues to comprehend
counterfactual phenomena, facilitating the automated, scalable creation of high-quality QA pairs.
Furthermore, this process naturally yields paired data (original vs. edited videos), enabling an in-
novative contrastive QA training strategy. By requiring the model to provide different answers to
identical questions for each video in a pair, we compel it to ground its reasoning in critical visual
evidence instead of relying on language priors. Building upon this framework, we construct Duali-
tyVidQA, a large-scale video understanding dataset specifically designed to mitigate hallucinations
in MLLMs, comprising 104K samples for SFT, 40K for RL, for a total of 144K training samples.

In terms of training methodology, we propose Duality-Normalized Advantage Training
(DNA-Train), a two-stage regime—Supervised Fine-Tuning (SFT) followed by Reinforcement
Learning (RL)—to mitigate hallucinations while preserving real-world performance. In the initial
SFT stage, a hybrid dataset of real and counterfactual videos is used to enable the model to detect
anomalies without compromising its performance on real videos. The subsequent RL stage further
strengthens this capability. To balance the learning magnitude across different samples and avoid
bias toward real videos, we apply ℓ1 normalization to the advantages for each real–counterfactual
pair during RL, ensuring stable and balanced gradient updates, thereby better aligning with the con-
trastive nature of the training set and improving hallucination mitigation.

To evaluate model hallucinations and counterfactual video understanding capabilities, we introduce
DualityVidQA-Test, a challenging benchmark of 600 manually-curated paired samples structured
into 4 fine-grained counterfactual classes. Extensive experiments show our model achieves sig-
nificant performance improvements not only on hallucination (e.g., EventHallusion (Zhang et al.,
2024a)) but also across leading general-purpose video understanding benchmarks (e.g., TempCom-
pass (Liu et al., 2024c), MVBench (Li et al., 2024)), demonstrating its robustness and broad appli-
cability. In summary, the major contributions of our work are as follows:

• We propose DualityForge, the first counterfactual data synthesis framework that leverages
diffusion-based controllable video editing with embedded structured priors to generate precise
counterfactual scenarios, and, built upon it, we introduce DualityVidQA, a large-scale video un-
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derstanding dataset (144K) for training and evaluating hallucinations in MLLMs, featuring paired
videos with contrastive QA to systematically assess and mitigate model hallucinations.

• We introduce DNA-Train, a two-stage regime to compel the model to ground its reasoning in
visual evidence. In addition, it ℓ1-normalizes the advantages for each real–counterfactual pair
during RL, enabling a more stable and efficient policy optimization.

• Extensive experiments demonstrate that our approach achieves significant gains (24.0% on
DualityVidQA-Test) across both hallucination and general benchmarks, indicating strong general-
ization capability and validating principle that generation can effectively enhance understanding.

2 RELATED WORKS

2.1 LANGUAGE PRIOR IN MLLMS

MLLMs inherit strong language priors from LLMs, which can lead to outputs that sound reasonable
but conflict with visual evidence. Training-free contrastive decoding reduces this effect by con-
trasting the original logits with an auxiliary distribution (Li et al., 2022; Chuang et al., 2023), built
via image masking, instruction perturbation, visual augmentation, or cross-modal conversion (Leng
et al., 2024; Wang et al., 2024; Zhu et al., 2025b; Zhang et al., 2025a). However, this approach
requires additional negative views, increases inference costs, is sensitive to hyperparameters, and
does not allow updates to the base model. As a result, performance improvements on video and
other temporal tasks are often unstable. Training-based methods construct specialized datasets (Liu
et al., 2024a; Gunjal et al., 2024; Chen et al., 2025a), but this involves expensive prompting, filter-
ing, annotation, and QA. In contrast, we propose an automated, scalable data synthesis framework
that minimizes manual effort and applies naturally to video.

2.2 VIDEO UNDERSTANDING DATASETS

A large body of datasets support research on video understanding across tasks such as action recog-
nition, temporal localization, retrieval, and question answering. Real-world collections include gen-
eral action and activity corpora (e.g., Kinetics (Kay et al., 2017), ActivityNet (Yu et al., 2019),
EPIC-KITCHENS (Damen et al., 2018)), captioning and retrieval sets (e.g., MSR-VTT (Xu et al.,
2016), WebVid-10M (Bain et al., 2021), HowTo100M (Miech et al., 2019)). However, curating high-
quality video-language annotations is expensive due to spatiotemporal complexity, which constrains
the scale and granularity of labeled corpora. To mitigate these costs, recent studies leverage vision
language models (VLM) to synthesize video language supervision at scale. LLaVA-Hound (Zhang
et al., 2024b) and ShareGPT4Video (Chen et al., 2024a) prompt GPT-4 (Achiam et al., 2023) to gen-
erate instruction–response and question–answer (QA) pairs from videos, and LLaVA-Video (Zhang
et al., 2024d) releases about 170K video–instruction examples via a scalable pipeline. These real
video-based annotation pipelines show limitations in covering rare events, long-range dependencies
and edited counter-commonsense scenarios, while facing category and domain imbalance issues.

2.3 VISUAL REINFORCEMENT LEARNING

Recent studies extend RL from text-only LLMs to multimodal settings to strengthen VLM un-
derstanding. Vision-R1 (Huang et al., 2025) addresses cold-start via a 200K multimodal CoT
corpus and GRPO with strict formatting; R1-VL (Zhang et al., 2025b) introduces StepGRPO for
step-wise rewards that better align intermediate steps with final answers; R1-ShareVL (Yao et al.,
2025a) expands the question space and shares reasoning signals to mitigate sparse rewards. VL-
Rethinker (Wang et al., 2025a) promotes slow thinking via selective replay and rethinking, and
OpenVLThinker (Deng et al., 2025) interleaves SFT with RL to iteratively refine chains of thought.
VLM-R1 (Shen et al., 2025) emphasizes training stability with rule-based objectives to curb reward
hacking; ThinkLiteVL (Wang et al., 2025b) mines hard cases through Monte Carlo Tree Search;
and VisionaryR1 (Xia et al., 2025) encourages grounding with a caption–reason–answer format and
LLM-based caption rewards. Despite these advances, most methods still optimize textual traces
(e.g., CoT tokens) more than visual evidence, which limits robustness—especially against counter-
factual or visually deceptive content. We stress that video understanding is not equivalent to textual
reasoning: it requires discriminating visually plausible from counterfactual cues and aligning deci-
sions with grounded evidence.
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Visual anomalies
CF Video

Real Video Dataset
Q: What is the person in the video 
doing with the flowers?
A: The person is carefully arranging 
a bouquet of orange tulips in a 
clear, square glass vase. 

QAMLLM Caption MLLM
Prompt

QA Generation

DualityVidQA - SFT

CF Video

DualityVidQA - Test

600
Pairs

DualityVidQA - RL

54,879

Real Video

CounterFactual (CF) Video Generation

Image/Video
Edit
Model

20,000
Pairs

Q: How many houses are visible in the distance by the end of the 
video?
A. There is a row of several identical houses.
B. There are no houses visible.
C. There is one house.
D. The house disappears by the end of the video.

Q: How would you describe the visual flow of the splashing lava 
throughout the video?
A. The lava splashes and churns continuously and naturally without 

any interruptions.
B. The lava flow reverses and goes back into the crater.
C. The splashing lava freezes in place for several seconds.
D. The lava splashes and churns, but a portion of it unnaturally 

disappears and reappears towards the end.

video edit partCorrect Answer

50,000

Semantic anomalies

Commonsense anomalies

Counterfactual Contexts

Seed QA

Mask
Generation
Model

MLLM

video edit part

option

brightness
change

object
disappear

object
replacement

uncommon
sense

object
appear

background
change

Figure 2: Overview of the DualityForge framework and DualityVidQA dataset. We begin
with a web-sourced real-video dataset and apply a framework integrating MLLMs, grounding and
segmentation modules, and image/video editing models to synthesize counterfactual (CF) videos
with targeted visual, semantic, and commonsense alterations. Each real-CF video pair is paired
with MLLM-generated questions using carefully designed prompts. The dataset comprises three
splits: DualityVidQA-SFT with real and counterfactual video-QA pairs (54K + 50K) for SFT;
DualityVidQA-RL with 20K shared-question contrastive video-answer pairs (one question, two
real/CF instances) for RL; and DualityVidQA-Test (600 pairs), which shares the same contrastive
structure as DualityVidQA-RL and covers diverse counterfactual categories.

3 DUALITYVIDQA

3.1 PROBLEM FORMULATION

Our work is motivated by a critical vulnerability in MLLMs: an inclination to favor dominant lan-
guage priors over visual evidence (Leng et al., 2024; Huang et al., 2024). This bias, stemming from
the data imbalance between massive text pre-training and comparatively limited video fine-tuning,
leads to visual ungrounded hallucination. To mitigate this, our goal is to craft a large-scale video
QA dataset comprising videos that depict visually salient counterfactual events. Each video is paired
with questions designed to explicitly probe these anomalies, thereby encouraging the model to an-
chor its reasoning in visual evidence rather than linguistic bias. Formally, let V be a video and
C denote the context embodied in V . Our goal is to identify a counterfactual context C within a
video V . Such a context is defined as one that creates a discrepancy between an answer derived
from common-sense language priors and one derived from the actual visual evidence. We con-
struct a question-answer pair (Q,A) where the question Q specifically probes this context C, and
A = {ai}Ni=1 represents the set of possible answers. To model this discrepancy, we distinguish be-
tween two conditional probabilities P∗ (a | ·) for any agent ∗ ∈ {human,LLM,MLLM}: P∗ (a | Q)
conditioned on the question, and P∗ (a | Q,V ) conditioned on the question and video. Our objective
is to find the most challenging contexts C that reveal an MLLM’s hallucinations. A data sample is
considered effective if it adheres to the following criteria, formalized as an optimization problem:

max
C

D (PMLLM (a | Q,V ) , Phuman (a | Q,V ))

s.t. D (PLLM (a | Q) , Phuman (a | Q)) ≤ ϵ

D (Phuman (a | Q) , Phuman (a | Q,V )) ≥ δ,

(1)

where D is a divergence measure, ϵ and δ are small and large thresholds, respectively.
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However, solving this optimization problem to construct the dataset at scale automatically remains
intractable due to two primary bottlenecks:

1. Data Scarcity. Videos featuring naturally occurring counterfactual contexts C are inherently
scarce and challenging to collect at scale.

2. The Automation Paradox. The MLLMs’ perceptual blindness to these very phenomena pre-
vents us from leveraging them to automate the data collection and annotation, resulting in a
circular dependency that obstructs scalability.

To overcome these bottlenecks, we propose a paradigm shift that reframes the optimization from a
search problem to a synthesis problem. Our approach leverages pre-defined counterfactual context
C with a novel duality: first, it guides controllable diffusion-based video editing to transform a
real-world video into a counterfactual video; second, it serves as a semantic blueprint to ground
an MLLM’s comprehension of the anomaly, unlocking a fully automated and scalable pipeline for
high-quality QA generation, yielding QA pairs that adhere to the following principles:{

D (PMLLM (a | Q,V ) , Phuman (a | Q,V )) ≥ δ

D (PMLLM (a | Q,V, C) , Phuman (a | Q,V )) ≤ ϵ.
(2)

3.2 DUALITYFORCE

We categorize counterfactual context C into three hierarchical levels of increasing complexity. At the
most fundamental level, visual anomalies refer to pixel-wise distortions (e.g., abnormal contrast,
saturation) that degrade visual quality without changing scene semantics. Next, semantic anoma-
lies disrupt object-level logic, introducing temporal inconsistencies such as object disappearance or
substitution. Finally, commonsense anomalies, the most abstract category, encompass violations
of real-world physics and plausibility, including unnatural deformations, impossible movements, or
illogical agent interactions.

Based on the pre-defined C by MLLM, we propose a novel counterfactual data synthesis framework
DualityForce (as shown in Figure 2) that transforms them into a comprehensive counterfactual
dataset via a two-stage framework. The first stage involves employing a video editing model to
embed the context C into a real-world source video, thereby generating the counterfactual video V .
The second stage uses the same context C, which acts as a semantic blueprint, enabling an MLLM
to first generate an “oracle” caption and then self-produce a diverse set of grounded QA pairs (both
multiple-choice and open-ended). Furthermore, we leverage the dual nature of our data (original vs.
edited videos) to construct shared-question contrastive QA pairs. In this setup, the same question
Q is designed to yield different correct answers when applied to the original video (Vori) versus the
edited video (Vedit). This forces the VLM to ground reasoning in actual visual content and detect
subtle changes, rather than relying on prior plausibility. Formally, this is achieved when:

D (PMLLM (a | Q,Vori) , PMLLM (a | Q,Vedit)) ≥ δ (3)

To ensure the quality of our dataset, we implement a rigorous, model-based quality assurance pro-
cess. This process validates the success of the video editing in the first stage and verifies the correct-
ness of the generated QA pairs in the second stage. Built upon it, a large-scale, high-quality video
understanding dataset, DualityVidQA, is constructed and partitioned into three dedicated splits:
DualityVidQA-SFT (104K QA pairs from 25K original/edited video pairs), DualityVidQA-RL (20K
shared-question contrastive video pairs; 40K QA pairs in total), totaling about 144K training QA
pairs, and a human-annotated test set, DualityVidQA-Test (600 pairs). DualityVidQA-Test is further
organized into four primary counter-commonsense scenarios derived from cluster analysis: counter
physical, object/scene deformation, attribute change, and causal reversal. Further implementa-
tion details are available in Appendix A.

4 DNA-TRAIN

Motivated by the dual nature of our dataset, we present DNA-Train, a two-stage regime, SFT+RL,
for mitigating hallucinations without sacrificing real-world performance, which employs a novel
dual advantage normalization strategy to balance gradient updates. The structure of the DNA-Train
is presented in Figure 3.
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Q: What is observed inside the container being filled with liquid 
towards the end of the video?
A. The liquid overflows and spills onto the surface.
B. A small, colorful goldfish is swimming in clear water inside a 

decorative fishbowl.
C. The container is nearly full of amber liquid, with ripples on 

the surface.
D. The container is filled with ice cubes and a slice of lemon.

A
Pa
ir
of
Re
al
Vi
de
o

an
d
CF

Vi
de
o

MLLM
Reward

…

The correct answer is B. A 
small, colorful goldfish is 
swimming in clear water inside 
a decorative fishbowl. In the 
video, as the liquid is poured 
into the glass, a small, 
colorful goldfish becomes ……

The image shows a glass being 
filled with a liquid that 
appears …… There are no 
signs of overflow, fish, ice 
cubes, or lemon slices in the 
image. Therefore, the correct 
answer is: C.

Duality-Normalized Advantage

Normal Advantage

Step0-Step7

Step0-Step7

Step24-Step30

Real Video
Forward

CF Video
Forward

RL Backward

Policy
Gradient

Gradient
weight update

Advantage Strategy

After SFT

Real Video

CF Video

Figure 3: Overview of DNA-Train framework. We first perform SFT on our dual dataset to ini-
tialize the model. During RL, we sample a group of responses for both real and CF videos, compute
their rewards based on task correctness, and calculate the ℓ1 norm of intra-group advantages. Fi-
nally, we normalize the advantages across the dual groups to ensure balanced gradients.

4.1 SUPERVISED FINE-TUNING

Our training begins with a supervised fine-tuning (SFT) stage on DualityVidQA-SFT. The primary
objective is twofold: to instill the ability to recognize the embedded context C in edited videos
(Vedit), while crucially maintaining robust performance on original, real-world videos (Vori). To
prevent the model from developing a bias towards either domain, we employ a balanced sampling
strategy, ensuring each training batch contains an equal number of original and counterfactual sam-
ples. The training objective follows the cross-entropy loss: LSFT = −

∑N
i=1 log pθ(yi|xi), where

(xi, yi) represents the input-output pairs in our dataset, θ denotes the model parameters, and pθ is
the model’s probability distribution over tokens.

4.2 REINFORCEMENT LEARNING

While SFT provides a foundational understanding, it lacks an explicit mechanism to directly penal-
ize hallucinations and reward correct visual grounding. To further sharpen the model’s reasoning,
we introduce a second reinforcement learning (RL) stage. Unlike standard Reinforcement Learning
from Human Feedback (RLHF) (Christiano et al., 2017; Ouyang et al., 2022), which relies on sub-
jective, learned reward models, our task has a verifiable, ground-truth outcome, as the model must
identify the sole correct answer from a list of choices. This singular ground truth makes our prob-
lem a natural fit for the Reinforcement Learning with Verifiable Rewards (RLVR) paradigm (Guo
et al., 2025; Team Kimi et al., 2025), which uses a deterministic verifier R : (q,o) 7→ R to pro-
vide unbiased, ground-truth rewards. Within the RLVR framework, algorithms like GRPO (Shao
et al., 2024) have shown promise but often suffer from instability and entropy collapse on com-
plex, long-chain-of-thought tasks—a common scenario in video QA. The more advanced DAPO
algorithm (Yu et al., 2025) was specifically designed to overcome these limitations with enhance-
ments for stable optimization over long trajectories. Therefore, we build the RL component of the
advantage-normalization strategy upon the robust and scalable DAPO framework. Formally, for
each QA pair (q,a), DAPO samples a group of outputs {oi}Gi=1 with their corresponding rewards
{Ri}Gi=1, and then optimizes the policy via the following objective:

JDAPO(θ) = E(q,a)∼D, {oi}G
i=1∼πθold

(·|q)[
1∑G

i=1 |oi|

G∑
i=1

|oi|∑
t=1

min
(
ri,t(θ)Âi,t, clip

(
ri,t(θ), 1− ϵlow, 1 + ϵhigh

)
Âi,t

)]
,

s.t. 0 <
∣∣{oi | is equivalent(a,oi)}

∣∣ < G

(4)

where

ri,t(θ) =
πθ(oi,t | q, oi, < t)

πθold(oi,t | q, oi, < t)
, Âi,t =

Ri −mean({Ri}Gi=1)

std({Ri}Gi=1)
(5)
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Reward Design. Our RL stage is guided by a dual-component reward signal derived from the
shared-question contrastive QA pairs. The first component is a correctness reward, a binary score
assigned for selecting the single right answer, which forces the model to capture subtle visual in-
formation. This is supplemented by a format reward, which encourages adherence to a prescribed
reasoning structure. Together, these rewards optimize for both factual accuracy and the interpretabil-
ity of the model’s chain-of-thought process.

Duality Advantages Normalization. The gradient of JDAPO(θ) can be expressed1 as:

∇θJDAPO(θ) = E(q,a)∼D, {oi}G
i=1∼πθ(·|q)

[
1∑G

i=1 |oi|

G∑
i=1

|oi|∑
t=1

Âi,t∇θ log πθ(oi,t|q,oi,<t)

]
. (6)

As shown in the equation, the DAPO gradient is modulated by the per-token advantage, Âi,t. We

use the ℓ1 norm of sequence-level advantages, S =
∑

i

∣∣∣Âi

∣∣∣, as a proxy for the total learning signal

magnitude from a group of responses, where Âi is the average of token-level advantages. With
binary rewards, S becomes a simple function of the group’s average accuracy, R:

S = |G|
∑
i∈G

∣∣∣Âi

∣∣∣ = 2

√
(1−R)R, (7)

This formulation reveals a critical property: the learning signal peaks for tasks of intermediate
difficulty (R = 0.5) and diminishes as tasks become trivial or impossible. As shown in Figure 3,
we visualized SR and SCF under real (GR) and counterfactual (GCF ) data. During the initial
phase of training, the inherent accuracy gap between them creates a systematic imbalance in their
learning signals, potentially destabilizing the training process. To counteract this, we introduce
Duality-Normalized Advantage, which normalizes the advantages from each group to guarantee
equal contribution to the gradient update. It computes scaling factors α∗ = Starget/S∗ (where
Starget is the mean of SR and SCF ) and applies them to their respective advantages. This elegant re-
weighting scheme (Â′

∗ = α∗Â∗) guarantees a balanced learning signal across disparate data types,
fostering robust and equitable optimization. Further derivation details are available in Appendix B.

5 EXPERIMENT

5.1 EXPERIMENTAL SETUP

Benchmarks. We evaluate our model’s performance across two categories of benchmarks: those
focused on hallucination detection (DualityVQA-Test and EventHallusion (Zhang et al., 2024a)) and
general video understanding benchmarks, including TempCompass (Liu et al., 2024c), MVBench
(Li et al., 2024), TOMATO (Shangguan et al., 2024), and TVBench (Cores et al., 2024). Crucially,
for DualityVQA-Test, we employ a stricter pairwise accuracy, where a sample is only counted if the
model correctly answers for both the original and edited videos. Frame sampling adheres to each
benchmark’s standard protocol: 16 frames for DualityBench and TOMATO, 64 for TempCompass,
and 8 for MVBench and TVBench.

Implementation Details. We leverage LLamaFactory (Zheng et al., 2024) for SFT and
SWIFT (Zhao et al., 2025) for RL, applying both to the powerful Qwen2.5-VL base model. In
the SFT stage, all models were trained for one epoch with a learning rate of 1 × 10−6 and batch
size of 4, using 8 H200 GPUs for 7B models and 16 for 32B/72B models. The RL stage maintained
the same learning rate but with batch size of 64 and 16 sampled responses per prompt, running for
600, 60, and 20 steps for the 7B, 32B, and 72B models, respectively. For evaluation, we use greedy
decoding (temperature=0) to ensure deterministic outputs.

5.2 EXPERIMENTAL RESULTS

Our analysis in Table 1 highlights a significant and consistent weakness across all evaluated MLLMs:
a dramatic performance drop when moving from real to counterfactual videos. While leading closed-
source models like GPT-4.1 and Gemini-2.5 Pro achieve 92% accuracy on “Real” videos, their per-
formance on “Counterfactual” (CF) content is substantially lower. This gap is most evident in the

1We assume πθold = πθ for simplicity.
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Table 1: Performance comparison of different models on various anomaly categories (where CF
indicates Counterfactual videos) from the DualityVidQA-test set. For each column, bold denotes
the best score and underline denotes the second-best score.

Model Attribute Change Causal Reversal Counter Physical Object/Scene Deformation Overall

Real CF Both Real CF Both Real CF Both Real CF Both Real CF Both

Random 27.3 27.3 9.1 25.3 20.3 5.1 19.0 22.2 2.3 28.9 28.3 5.9 24.2 23.9 4.5

GPT Series
GPT-4o-mini(Hurst et al., 2024) 84.8 51.5 36.4 89.9 58.2 50.0 91.4 53.4 48.9 95.2 62.6 59.9 91.8 57.4 51.9
GPT-4o(Hurst et al., 2024) 87.9 75.8 63.6 93.7 74.7 69.6 91.0 68.3 61.1 94.7 73.8 68.4 92.7 72.1 65.8
GPT-4.1(OpenAI, 2025) 84.8 84.8 69.7 89.2 81.6 73.4 86.4 68.8 59.7 87.2 76.5 65.2 87.3 75.5 65.6

Gemini Series
Gemini-2.5 Flash(Comanici et al., 2025) 75.8 72.7 54.5 88.6 74.1 67.7 89.1 62.0 55.2 92.0 66.8 59.4 89.1 67.3 59.8
Gemini-2.5 Pro(Comanici et al., 2025) 84.8 81.8 69.7 91.8 88.0 80.4 92.8 78.3 73.3 94.1 75.9 71.1 92.5 80.3 74.3

Qwen Series
Qwen2.5-VL-7B(Bai et al., 2025) 87.9 60.6 48.5 88.0 57.0 46.2 93.7 53.8 49.3 93.0 69.5 63.1 91.7 59.9 52.8
Qwen2.5-VL-32B(Bai et al., 2025) 87.9 54.5 45.5 94.3 68.4 63.3 95.5 43.0 39.4 96.8 59.4 56.1 95.2 55.4 51.3
Qwen2.5-VL-72B(Bai et al., 2025) 84.8 60.6 45.5 93.7 71.5 65.2 96.8 52.9 50.7 98.4 67.4 65.8 95.8 62.8 58.9

Other Models
VideoChat2-HD(Li et al., 2024) 21.2 27.3 3.0 27.2 27.2 1.3 20.8 26.7 0.0 29.9 27.8 0.5 25.4 27.2 0.7
LLaVA-Next-Video(Zhang et al., 2024c) 57.6 33.3 9.1 67.1 29.7 13.9 69.2 31.7 16.3 71.1 42.8 21.4 68.6 34.7 16.9
Video-LLaVA-7B(Lin et al., 2023) 54.5 39.4 15.2 56.3 42.4 17.1 71.5 33.5 16.3 58.3 51.3 20.3 62.4 41.7 17.7

Ours
DNA-Train-7B 97.0 72.7 72.7 94.3 74.1 69.0 94.6 83.3 79.2 98.4 82.9 81.3 95.8 80.1 76.8

Table 2: Performance comparison of different models on various benchmarks. For each task, bold
denotes the best score and underline denotes the second-best score.

Model Hallucinations General Video Understanding

EventHallusion DualityVidQA-Test TempCompass MVBench TOMATO TVBench

Closed-source VLMs
GPT-4o(Hurst et al., 2024) 73.3 65.8 73.8 47.8 37.7 35.8

Open-source VLMs (∼ 7B size )
VideoChat2-HD(Li et al., 2024) 20.0 0.7 38.5 51.1 - 34.7
LLaVA-Next-Video(Zhang et al., 2024c) 12.1 16.9 44.7 42.2 20.1 38.2
Video-LLaVA-7B(Lin et al., 2023) 29.7 17.7 49.8 42.5 23.6 33.8
Qwen2.5-VL-7B(Bai et al., 2025) 33.5 52.8 71.4 62.6 26.8 51.7

Ours
DNA-Train-7B 61.3↑ 27.8 76.8↑ 24.0 73.5↑ 2.1 63.8↑ 1.2 32.6↑ 5.8 53.0↑ 1.3

overall results, where even the top-performing model, Gemini-2.5 Pro, drops from 92.5% (Real) to
80.3% (CF). This vulnerability is particularly acute in more challenging scenarios. For instance, in
the “Counter Physical” category, most models struggle. However, our DNA-Train-7B demonstrates
superior resilience, achieving a remarkable 79.2% in this category. As further confirmed in Table 2,
our training methodology yields a dual benefit. First, DNA-Train-7B establishes itself as state-of-
the-art in hallucination detection, achieving a top score of 76.8% on DualityVid-Test and massively
outperforming other open-source models on EventHallusion. Critically, this specialization does not
come at the cost of general video understanding. On the contrary, DNA-Train-7B consistently im-
proves upon its base model (Qwen2.5-VL-7B) across all general benchmarks and remains highly
competitive with, or even superior to, closed-source leaders like GPT-4o on benchmarks such as
MVBench and TVBench. This ability to mitigate hallucinations while preserving broad video un-
derstanding capabilities marks a significant advance.

5.3 ABLATION STUDIES

Ablations on Data Configurations. As shown in Table 3, our ablation study on data configu-
ration clearly demonstrates the necessity of our paired-data approach. Training on a single data
type is markedly detrimental to our core task: using real data alone causes DualityVid-Test per-
formance from the paired-data baseline of 52.8 to 29.0, while counterfactuals alone are even more
damaging, with accuracy collapsing to 13.1. In contrast, the paired-data setting produces a clear
synergistic effect—boosting DualityVid-Test performance to 70.6 and achieving the highest average
improvement (+1.8) on the general video understanding benchmark. Intriguingly, training solely on
counterfactual data improves general understanding (+1.7), suggesting that such data encourages
the model to acquire more robust and generalizable visual representations.
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Table 3: Ablation Study on Different Dataset Configurations.
Setting Hallucinations Avg Impr. General Video Understanding Avg Impr.

EventHallusion DualityVidQA-Test TempCompass MVBench TOMATO TVBench

Base 33.5 52.8 - 71.4 62.6 26.8 51.6 -
Real Data 29.4 29.0 ↓ 7.9 72.4 61.5 23.5 50.9 ↓ 2.1
CF Data 57.5 13.1 ↓ 18.0 70.4 63.7 32.2 52.8 ↑ 1.7
Paired Data 49.0 70.6 ↑ 16.7 73.6 64.2 30.7 51.2 ↑ 1.8

Ablations on Duality-Normalized Advantages. To isolate the effectiveness of our DNA strategy,
we conducted an ablation study comparing it against strong RL baselines (GRPO, DAPO), starting
from the same SFT-trained model. As shown in Table 4, DNA demonstrates clear superiority on the
primary task of hallucination detection with an average improvement of 10.8. Furthermore, DNA
also outperforms DAPO across every single general video understanding benchmark, demonstrating
the effectiveness of our advantage normalization strategy.

Table 4: Ablation Study on Different RL Training Strategies.

Method Hallucinations Avg Impr. General Video Understanding Avg Impr.
EventHallusion DualityVidQA-Test TempCompass MVBench TOMATO TVBench

Base 57.8 58.7 - 72.2 63.7 31.6 51.5 -
GRPO 60.8 74.6 ↑ 9.5 73.5 63.6 32.5 52.6 ↑ 0.8
DAPO 60.6 74.8 ↑ 9.5 73.0 63.0 32.5 52.6 ↑ 0.5
DNA 61.3 76.8 ↑ 10.8 73.5 63.8 32.6 53.0 ↑ 1.0

Ablations on Model Scales. As shown in Table 5, our DNA-Train methodology consistently im-
proves the Qwen2.5-VL model across all evaluated scales. The most substantial gains occur in
hallucination detection, where the full DNA-Train boosts the average score by a substantial 25.9
points for the smallest model variant. Crucially, these gains are achieved without sacrificing general
video understanding; in fact, our method delivers consistent gains on general benchmarks across all
scales. In this process, SFT provides a strong foundation, while the subsequent RL step yields the
largest boosts, particularly on the challenging DualityVid-Test benchmark. The smaller performance
gain observed for the 72B model is primarily attributable to its reduced RL training schedule- 20 op-
timization steps compared to 60 for the 32B and 600 for the 7B -an intentional trade-off necessitated
by computational resource constraints. Additional ablation studies are detailed in the Appendix C.

Table 5: Ablation Study on different model sizes of Qwen2.5-VL.
Type Model Hallucinations Avg Impr. General Video Understanding Avg Impr.

EventHallusion DualityVidQA-Test TempCompass MVBench TOMATO TVBench

7B
Base 33.5 52.8 - 71.4 62.6 26.8 51.6 -

+ SFT 57.8 58.7 ↑ 15.1 72.2 63.7 31.6 51.5 ↑ 1.7
+ SFT+RL 61.3 76.8 ↑ 25.9 73.5 63.8 32.6 53.0 ↑ 2.6

32B
Base 34.0 51.2 - 75.2 61.5 31.0 51.5 -

+ SFT 55.6 60.0 ↑ 15.2 74.1 61.7 33.6 54.3 ↑ 1.1
+ SFT+RL 58.8 60.8 ↑ 17.2 74.2 61.9 34.6 54.7 ↑ 1.4

72B
Base 54.6 58.9 - 77.6 64.8 36.3 55.5 -

+ SFT 64.6 68.3 ↑ 9.7 78.0 65.7 35.7 56.9 ↑ 0.5
+ SFT+RL 65.4 69.4 ↑ 10.7 78.3 65.9 36.5 57.3 ↑ 0.9

6 CONCLUSION

In this work, we address the critical issue of visual hallucinations in MLLMs, which stems from an
over-reliance on language priors when processing visual content. To this end, we introduce Dual-
ityForge, a novel framework that uses controllable video editing to generate a large-scale (144K)
contrastive dataset, DualityVidQA, comprising paired real and counterfactual videos. Building on
this, we propose DNA-Train, a two-stage regime that ℓ1-normalizes advantages per real counter-
factual pair during RL to ensure balanced training and compel the model to ground its reasoning
in visual evidence. Extensive experiments demonstrate that our approach not only significantly re-
duces hallucinations but also boosts performance on general video understanding benchmarks. By
turning “trash” data that defies common sense into a “treasure” for robust training, we pave a new
and promising way towards more reliable and visually-grounded video understanding.
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A DATSET DETAIL

We categorize video anomalies into three levels: Visual anomalies refer to pixel-wise distortions, in-
cluding abnormal contrast, saturation, brightness, blurring, and local distortions, etc., which primar-
ily affect visual quality without explicit semantic alteration. Semantic anomalies involve violations
of scene semantics, such as object disappearance, unexpected object emergence, and object substi-
tution, which result in temporal inconsistencies. Commonsense anomalies capture more abstract
and holistic violations involving spatio-temporal or physical implausibility, such as unnatural de-
formations, implausible object movements, unreasonable interaction and human motion anomalies,
etc.

Grounding DINO + SAM

MLLM

FLUXMLLM “A person holding an 
almost full glass of beer”

Video
Pipeline 1

Pipeline 3

Pipeline 2 “man”

“remove the man”

Figure A.1: Overview of Counterfactual video edit framework. There are 3 pipeline are shown: 1.
Visual Anomaly: we use opencv to edit the video in pixel-level. 2. Semantic Anomaly: we use
VACE to edit the video in object-level. 3. Common Sense Anomaly: we use MLLM to generate the
edit instruction, then use FLUX-Kontext to edit the first frame to end frame, finally use VACE to
interpolate the video.

A.1 DUALITYFORGE

Table A.1: Definitions of video anomaly categories.

Category Definition

Visual Pixel-wise distortions that primarily affect visual quality without explicit
semantic alteration. These include abnormal contrast, saturation, bright-
ness, blurring, and local distortions.

Semantic Violations of scene semantics, such as object disappearance, unexpected
object emergence, and object substitution, resulting in temporal inconsis-
tencies.

Commonsense Abstract and holistic violations involving spatio-temporal or physical im-
plausibility (e.g., unnatural deformations, implausible object movements,
unreasonable interactions, and human motion anomalies).

Video Source. To improve video-editing quality and dataset diversity, we adopt two widely used
public datasets Pexels (Corran, 2022) and OpenVid (Nan et al., 2024) which are commonly em-
ployed in video-generation research. From OpenVid, we randomly sample 3,000 videos from each
of the 20 most populated categories, yielding a candidate pool of 61,591 clips. From Pexels, we
additionally sample 36,333 clips, for a total of 97,924 videos.

Visual anomalies. We employ OpenCV to synthesize visual anomalies within the video data. We
divide visual anomalies into entire-frame level, region level, and object level. To introduce anoma-
lies, we randomly select a temporally consistent segment in which to insert visual perturbations. At
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the object level, we first extract all noun entities present in the video and randomly select one ob-
ject. Then we utilize Grounding DINO(Liu et al., 2024b) and SAM(Ravi et al., 2024) to localize the
position of the selected object, on which the visual anomaly synthesis operation is performed.

Semantic anomalies. We categorize semantic anomalies to include both the temporal instability
of entities (e.g., unexpected appearance, disappearance, or substitution) and appearance-level ab-
normalities (such as unreadable text or blurred faces). To enable controlled injection of anomalies
into the video while keeping the other part unchanged, we utilize the advanced video editing model,
VACE(Jiang et al., 2025), to edit the specific area in the video.

Common sense anomalies. We categorize anomalies that contradict common sense into the follow-
ing types: violations of physical laws, causal inconsistencies, material abnormalities, and abnormal
human movements. To introduce the first three types of anomalies into videos, we first employ a
Multimodal Large Language Model (MLLM) to analyze the visual elements within an image and
generate an editing instruction targeting the anomaly. Next, we use FLUX-Kontext(Batifol et al.,
2025) to edit the image according to this instruction. After validating the edited image, we create a
video by performing frame interpolation with VACE using the original and edited image pair.

Finally, we collect a total of 133, 168 videos with anomalies. The statistics of video types are shown
in Table A.2. This takes around 40k GPU hours on NVIDIA H20 GPUs.

Table A.2: Video dataset type statistics
Type Count

color 27353
replacement 9961
appearance 6092
disappear 5016
common sense 86746
All 133168

A.2 DUALITYVIDQA

Training Data Construction. To enhance VLM counter-commonsense reasoning while preserving
general VideoQA performance, we adopt a two-stage training framework: Supervised Fine-Tuning
(SFT) and Reinforcement Learning (RL). For each stage, we curate a tailored dataset to support its
specific training objective. We conducted two rounds of data curation to ensure optimal training
quality. In our first round, we constructed initial datasets for both SFT and RL stages. We generated
200k QA pairs from 80k videos. After analyzing the training performance, we observed that samples
with zero reward were predominantly associated with failed video edits where no meaningful visual
changes were created. Thus, we use the first stage trained model to filterout around 30% of the
samples with zero reward and low-quality video. This insight led us to create a refined dataset
through the following process:

Table A.3: Question type frequency statistics
QA Type Real Video Counterfactual Video

Multiple Choice 12210 10224
Open-Ended 42669 39776

All 54879 50000

(1) SFT data construction through two stages: dense captioning and question-answer (QA) genera-
tion. During dense captioning, a red box is used to indicate the anomaly region, and video editing
metadata is provided to the model to generate detailed, high-coverage captions under controlled
conditions. The detailed prompt is Dense Caption Prompt Template.During QA generation, we
followed LLaVA-Video, categorizing questions into 16 types and using GPT-5 and Gemini 2.5 Pro
to generate questions and answers based on video content and dense captions. To ensure diversity

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table A.4: 16 Question type frequency statistics with descriptions
QA Type Real Video Counterfactual Video Description

Attribute Change 1436 8674 Questions about changes in attributes of objects or char-
acters between scenes or frames.

Binary 2009 1009 Involves yes or no questions related to the video content.
Camera Direction 1601 4887 Tests understanding of the camera’s movement or shoot-

ing direction within the video.
Causal 737 216 Focuses on explaining actions/events, determining inten-

tions of actions or causes for events.
Count 363 438 Tests ability to count instances of objects, people, or ac-

tions.
Description Human 15360 4324 Involves describing actions or attributes of people.
Description Object 8450 4404 Assesses ability to describe attributes of objects.
Description Scene 19067 8317 Assesses ability to describe the major scene of the video.
Fine-grain Action Understanding 811 1303 Creates questions challenging comprehension of subtle

actions.
Non-Existent Actions with Existent Scene Depictions 29 113 Tests ability to identify actions that did not occur despite

related scene elements being present.
Object Direction 420 3374 Tests understanding of the movement or facing direction

of objects within the video.
Plot Understanding 981 151 Challenges ability to interpret the plot in the video.
Spatial 2074 8641 Tests ability to perceive spatial relationships between ob-

served instances in a video scene.
Speed 221 998 Involves estimating or comparing the speed of moving

objects or actions.
Temporal 768 2789 Designed to assess reasoning about temporal relation-

ships between actions/events.
Time Order Understanding 552 362 Tests comprehension of the chronological order of events

or actions in the video.

All 54879 50000 Aggregate counts for all question types.

and stability, we sampled 5,000 examples from LLaVA-Video’s 170k dataset as a pool, randomly
selecting three same-category examples at each generation step as in-context references to main-
tain stylistic consistency and content diversity. Finally, we curated 25K real videos and 25K edited
videos, generating 100K QA pairs with an 8:2 ratio of open-ended to multiple-choice items. Then
we use GPT-4o to classify each QA into question types based on the LLaVA-Video taxonomy. The
qa detail statistics are shown in Table A.4 and Table A.3. The examples of SFT QA are shown in
Figure A.2.

(2) RL data construction centers on creating shared-question counterfactual QA pairs: for each
real and edited video pair, we design the same question and identical answer candidates, but the
correct answer differs between the two videos. This forces the VLM to ground reasoning in actual
visual content and detect subtle changes, rather than relying on prior plausibility. We construct
the RL dataset using Gemini2.5-Pro, which generates counterfactual QA pairs from video captions
by identifying visual differences. The prompting strategy follows the Counterfactual Video QA
Prompt Template. In total, we curate 20K counterfactual QA pairs as the RL training dataset. The
examples of RL QA are shown in Figure A.3.

Table A.5: Counterfactual video category statistics in DualityVidQA-Test
Tag Count

causal reversal 158
counter physical 221
object/scene deformation 187
attribute change 33
All 599

(3) Test Set. We construct a high-quality test set, DualityVidQA-Test, to evaluate counter-
commonsense reasoning. Firstly, we sample around 2000 pairs from our paired video pool. Then,
we employ Gemini 2.5 Pro to generate candidate based on video content and dense captions. The
prompt is RL Question Generation Prompt. The we employ 3 human annotators and 3 expert
reviewers to filter and refine the generated QA pairs, ensuring each question is valid, unambiguous,
and answerable based on the video content.

The final test set consists of 600 real-counterfactual video pairs, each with a shared question and
options but different answers. We then cluster the test set into 12 categories, then manually clus-
ter them into 4 major categories: counter physical, object/scene deformation, causal reversal, and
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attribute change. The statistics of counterfactual video categories are shown in Table A.5. The
examples of test QA are shown in Figure A.4.

Q: What visual change happens to the rice paddies later in the video?
  A. They are harvested and become bare brown immediately
  B. Livestock enter and graze across the fields
  C. The video is normal; nothing unusual changes
  D. Their surfaces turn smooth white and ripple like waves

C. The video is normal; nothing unusual changes

Real Video

Q: What is the person using to stir the contents of the pot?

The person is using a light-colored wooden spoon to stir the liquid in the pot.

Real Video

Q: What are the two women in the background doing?
A. Playing with a dog
B. Exercising
C. Waiting for a bus
D. Sitting on a bench

D. Sitting on a bench

Real Video

Q: What visual change happens to the rice paddies later in the video?
A. They are harvested and become bare brown immediately
B. Livestock enter and graze across the fields
C. The video is normal; nothing unusual changes
D. Their surfaces turn smooth white and ripple like waves

D. Their surfaces turn smooth white and ripple like waves

The water erupts upward at high speed in a near-vertical plume, bright white and foamy against the blue sky. The 
column has a tapered, rocket-like profile: wider at the base where it meets the sea and narrowing toward the top as it 
climbs. It shows little sideward drift, maintaining a mostly straight, skyward trajectory that dwarfs the gentle swells 
around it.

Q: At the beginning of the clip, how does the woman operate the chest press machine?

From 0 to about 1.3 seconds, she sits back against the machine’s pad, grips both handles, and pushes them straight 
forward in a smooth, controlled motion. The pace is steady with no jerky movements, and the press follows a typical 
chest-press path from near the torso outward.

Q: Describe the motion and shape of the water feature that appears in the background.

CounterFactual Video

CounterFactual Video

CounterFactual Video

Figure A.2: Examples of DualityVidQA-SFT. We show the real video and counterfactual video pair
and the question and answer pair generated based on the counterfactual video.

CounterFactual Video

Real Video

B. Some of the large rocks begin to float upwards into the air.

Real Video Answer

CF Video Answer

D. The large rocks remain stationary in the stream bed throughout the video.

Q: What change, if any, occurs to the large rocks in the stream during the video?
A. The large rocks are washed away downstream by the current.
B. Some of the large rocks begin to float upwards into the air.
C. The large rocks change color from grey to green.
D. The large rocks remain stationary in the stream bed throughout the video.

Figure A.3: Examples of DualityVidQA-RL. We show the real video and counterfactual video pair
and the generated question and answer.

Q: What is the boy in the plaid shirt doing in the background while the girl in the 
orange dress is inflating her balloon?
A. He is talking to the girl in the white shirt
B. He is playing with a green balloon on the ground.
C. He is not visible at first, but then suddenly appears holding a purple balloon.
D. He is twisting a purple balloon into a shape.

causal reversal Q: What happens to the lanterns in the video?
A. Some of the lanterns float up into the sky.
B. The lanterns are hanging from balconies and are on boats on the water.
C. People are seen releasing the lanterns into the sky.
D. The lanterns fall into the river.

counter physical

Q: What is notable about the attire of the man standing in front of the BMW logo?
A. He is wearing a plain black suit with no logos on it.
B. He is not wearing a suit jacket, only a dress shirt and tie.
C. A glowing BMW logo badge appears on the chest of his suit.
D. The BMW logo is embroidered on the cuff of his sleeve.

attribute change

Q: What is the spatial relationship and movement pattern of the 
celestial objects, other than the spaceship, seen in the video?
A. Multiple asteroids move in a square or box-like path around a 

central pink planet.
B. A stationary nebula is visible in the background, which the 

spaceship moves away from.
C. A single planet spins rapidly while multiple moons orbit it in a 

circular path.
D. A black hole is shown pulling in surrounding stars and debris.

object/scene deformation

Real

CounterFact

Real

CounterFact

Real

CounterFact

Real

CounterFact

Figure A.4: Examples of DualityVidQA-Test. We show the real video and counterfactual video pair
and the generated question. Answers for the counterfactual video are shown in red, and answers for
the real video are shown in green.
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A.3 PROMPT TEMPLATE

A.3.1 DENSE CAPTION PROMPT TEMPLATE

Dense Caption Prompt Template

You are a professional video understanding and visual anomaly detection expert. Please generate a
description for the given video.
Given [num frames] uniformly sampled frames from the video (total duration approximately
[video duration] seconds), the time periods are [time list], please generate a detailed de-
scription in chronological order.
I will use a red box to figure out the anomaly region.

• anomaly type: [anomaly type]

• region type: [region type]

• region name: [region name]

• anomaly start time(s): [anomaly start time]

• anomaly end time(s): [anomaly end time]

Please pay special attention to the following points:

1. Describe in detail the important objects, actions, and relationships in each time period of
the video, following chronological order, and merge the same content to ensure the dense
caption is efficient and clear.

2. Carefully analyze and point out any visual anomalies, such as:

• Unnatural changes in object appearance (distortion, warping, blurring, etc.)
• Perspective distortion or geometric deformation in specific regions
• Discontinuities or unnatural transitions in object edges
• Abnormal changes in texture or color
• Unnatural changes in lighting effects
• Anomalous behavior in specific regions of the video (e.g., lens, objects)

3. For each detected anomaly, please specify in detail:

• The exact time period when the anomaly appears
• The specific region or object affected by the anomaly
• You need to convert the anomaly parameters into natural language descriptions (do not

output values like ’saturation factor is xx’, and do not output specific region coordi-
nates).

4. If there are other anomalies, such as blurring, missing content, unrecognizable scenes, etc.,
please clearly point them out in the relevant paragraphs.
But don’t need mention red box in the description.

The output format should be JSON, including the following content:

{
"spatial_location": "[region_name]",
"merged_timestamps": ["[0.0s - ...]", "[... - ...]"],
"dense_captions": [

"[0.0s - ...]: ...",
"[... - ...]: ...",
"...",
"[... - video_end_time]: ..."

]
}
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A.3.2 COUNTERFACTUAL VIDEO QA GENERATION PROMPT TEMPLATE

Counterfactual Video Multiple Choice and Open-Ended Question Generation Prompt

Task Given a detailed description that summarizes the content of the generate-video, generate
question-answer pairs to build LLM training data.
Reference Examples: Here is one question dimension and its explanation and example question-
answer pairs for reference:
Question Type: [question type]
Example 1:

## caption-1: [Video description]
## question-1: [Question text]
## answer-1: [Answer text]

Example 2:

## caption-2: [Video description]
## question-2: [Question text]
## answer-2: [Answer text]

Example 3:

## caption-3: [Video description]
## question-3: [Question text]
## answer-3: [Answer text]

You need to generate similar question-answer pairs like the examples.
Guidelines For Question Generation:

• Please formulate questions using only objectively observable information, without presup-
posing or emphasizing any abnormal, strange, or logically impossible phenomena in the
questions themselves.

• The questions should be neutral and natural, while the answers may accurately describe the
observed phenomena.

• Each multiple-choice question should have 4 options (A, B, C, D), with only one correct
answer.

• The answer must be correct with respect to the video visual content.

• For abnormal object/event questions, include an option stating “The video is normal” as a
distractor.

• Generate 1-4 question-answer pairs.

• Do not mention people’s reactions to abnormal phenomena.

• For open-ended questions, provide detailed descriptions including speed and direction of
actions/camera movements.

Input: Dense Caption: [dense caption]
Output Format: Your output should be formatted as a JSON file:
For Multiple Choice Questions:

[{
"Question": "<question-1>",
"Options": ["<option-0>", "<option-1>",

"<option-2>", "<option-3>"],
"Answer": "index of correct option"

}]

For Open-Ended Questions:

[{
"Question": "<question-1>",
"Answer": "<a detailed answer-1>"

}]
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A.3.3 REAL VIDEO PROMPT TEMPLATE

Real Video Multiple Choice and Open-Ended Question Generation Prompt

Task: Given a detailed description that summarizes the content of video, generate question-answer
pairs to build LLM training data.
Reference Examples:
Question Type: [question type]
For Multiple Choice:

## caption-1: [Video description]
## question-1: [Question text]
## options-1: [A. Option1, B. Option2, C. Option3, D. Option4]
## answer-1: [Correct answer]

For Open-Ended:

## caption-1: [Video description]
## question-1: [Question text]
## answer-1: [Detailed answer]

You need to generate similar question-answer pairs like the examples.
Guidelines For Question Generation:
For Multiple Choice Questions:

• Generate appropriate multiple-choice question-answer pairs based on the description

• Each question should have 4 options (A, B, C, D)

• Only one option should be correct

• Other options should be plausible distractors

• Distractor options must be reasonable, relevant to the question, and not obviously wrong

For Open-Ended Questions:
• Generate appropriate question-answer pairs based on the description

• Answers should be detailed and comprehensive

General Guidelines:
• Generate 1-4 question-answer pairs

• Questions should focus on observable content in the video

• Maintain natural and objective question formulation

Output Format:
For Multiple Choice Questions:

[{
"Question": "<question-1>",
"Options": ["<option-0>", "<option-1>",

"<option-2>", "<option-3>"],
"Answer": "index of correct option"

}]

For Open-Ended Questions:

[{
"Question": "<question-1>",
"Answer": "<a detailed answer-1>"

}]
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A.3.4 COUNTERFACTUAL VIDEO QA PROMPT TEMPLATE

RL Question Generation Prompt

Task: Given two captions — TRUE CAPTION (original video description) and MOCK CAPTION
(edited video description after applying an edit instruction) — design a question that can be answered
differently for the TRUE and MOCK videos. The goal is to produce high-quality, dimension-specific
question-answer pairs for training multimodal models.
Reference Example:
TRUE CAPTION: The man places a cake on the table and lights the candles. MOCK CAPTION:
The man places a cake on the table without lighting any candles. Edit Instruction: Remove the candle
lighting action.
Question: What does the man do with the cake after placing it on the table? Answer for TRUE: He
lights the candles on the cake. Answer for MOCK: He leaves the cake as it is without lighting candles.
Wrong Answers: [“He cuts the cake into slices”, “He puts the cake back into the oven”]
Guidelines for Question Generation:
Core Requirements:

• Base questions strictly on differences between the TRUE and MOCK videos.

• Do not refer to or mention captions directly in the question.

• No timestamps or meta-information in the question.

• Use the provided edit instruction as a design hint.

• Questions must belong to one of the predefined task dimensions.

• If no suitable question for the chosen dimension, output an empty question string.

• Wrong answers must be incorrect for both videos, but still plausible.

• Generate answers for each video independently without inferring from the other.

Available Dimensions: Refer to the predefined TASK EXAMPLES set for dimensions and descrip-
tions.
Output Format: The result must be valid JSON with the following structure:

{
"dimension": "<task dimension>",
"question": "<generated question>",
"answers_for_true_caption": ["<answer based on TRUE CAPTION>"],
"answers_for_mock_caption": ["<answer based on MOCK CAPTION>"],
"wrong_answers": ["<wrong answer 1>", "<wrong answer 2>", ...]

}

B DERIVATION

Here we show the derivation of Eq 7.

We consider the case where the reward values Ri are binary, i.e.,

Ri ∈ {0, 1}. (8)

Let |G| be the size of the group, and let

R =
1

|G|
∑
i∈G

Ri (9)

denote the accuracy of the group (i.e., the fraction of correct responses).

Standard Deviation of rewards.

std({Ri}Gi=1) =

√
R · |G| · (1−R)2 + (1−R) · |G| · (0−R)2

|G|

=

√
R · (1−R)

(10)
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Following Eq 5, the magnitude of the advantage is therefore:

|Âi| =


1−R√
R·(1−R)

, if ri = 1,

R√
R·(1−R)

, if ri = 0.
(11)

Sum of ℓ1 norm. The sum of ℓ1 norm of Âi over the group is:

S =
1

|G|
∑
i∈G

|Âi| =
1

|G|

[
|G| ·R · 1−R√

R · (1−R)
+ |G| · (1−R) · R√

R · (1−R)

]

= 2

√
R · (1−R)

(12)

C SUPPLEMENTAL EXPERIMENTS

Table C.1: Effect of model type.
Model Stage Hallucinations Avg Impr. General Video Understanding Avg Impr.

EventHallusion DualityBench TempCompass MVBench TOMATO TVBench

Qwen2.5vl 7B
Base 33.5 52.8 - 71.4 62.6 26.8 51.6 -
+SFT 57.8 58.7 ↑ 15.1 72.2 63.7 31.6 51.5 ↑ 1.7

+SFT+RL 61.3 76.8 ↑ 25.9 73.5 63.8 32.6 53.0 ↑ 2.6

LLaVA-Next-Video
Base 12.1 16.9 - 44.7 42.2 20.1 38.2 -
+SFT 53.3 57.2 ↑ 35.7 51.9 45.3 22.6 36.3 ↑ 2.7

+SFT+RL 51.9 67.6 ↑ 42.0 52.9 46.8 21.4 38.7 ↑ 3.7

Influence of Different Model Architectures. We conducted experiments on two open-source
MLLMs, namely LLaVA-Next-Video(Zhang et al., 2024c) and Qwen2.5-VL as summarized in Ta-
ble C.1. The results indicate that, after training on DualityVidQA with our DNA-Train, both mod-
els consistently outperform their baseline versions across the evaluated metrics. On the Qwen2.5-VL
7B model, the application of DNA Train results in average performance improvements of 25.9 and
2.6 compared with the baseline on hallucination and general benchmarks, respectively. Similarly,
on LLaVA-Next-Video, which starts from a lower baseline, the performance gain is 42.0 and 3.7
on hallucination and general benchmarks. These results indicate that our DNA-Train method not
only enhances counterfactual reasoning ability significantly, especially on DualityBench, but also
improves general video understanding performance across different model architectures, demon-
strating its robustness and broad applicability.

D USE OF LLMS

We utilized large language models (LLMs) to assist in refining the phrasing of certain sentences in
this manuscript. Their use was limited to improving clarity and readability; all ideas, analyses, and
conclusions are our own.
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