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Abstract

It is well understood that client-master communication can be a primary bottleneck1

in Federated Learning. In this work, we address this issue with a novel client sub-2

sampling scheme, where we restrict the number of clients allowed to communicate3

their updates back to the master node. In each communication round, all partici-4

pated clients compute their updates, but only the ones with “important” updates5

communicate back to the master. We show that importance can be measured using6

only the norm of the update and give a formula for optimal client participation.7

This formula minimizes the distance between the full update, where all clients8

participate, and our limited update, where the number of participating clients is9

restricted. In addition, we provide a simple algorithm that approximates the optimal10

formula for client participation which only requires secure aggregation and thus11

does not compromise client privacy. We show both theoretically and empirically12

that our approach leads to superior performance for Distributed SGD (DSGD) and13

Federated Averaging (FedAvg) compared to the baseline where participating clients14

are sampled uniformly. Our approach is orthogonal to and compatible with ex-15

isting methods for reducing communication overhead, such as local methods and16

communication compression methods.17

1 Introduction18

We consider the standard cross-device Federated Learning (FL) setting [13], where the objective is of19

the form20

min
x∈Rd

[
f(x) :=

n∑
i=1

wifi(x)

]
, (1)

where x ∈ Rd represents the parameters of a statistical model we aim to find, n is the total number of21

clients, fi : Rd → R is a continuously differentiable local loss function which depends on the data Di22

owned by client i via fi = Eξ∼Di
[f(x, ξ)], and wi ≥ 0 are client weights such that

∑n
i=1 wi = 1.23

We assume the classical FL setup in which a central master (server) orchestrates the training by24

securely aggregating updates from clients without seeing the raw data.25

1.1 Communication as the Bottleneck26

It is well understood that cost of communication can be the primary bottleneck in Federated Learning.27

Indeed, wireless links and other end-user internet connections typically operate at lower rates than28

intra-datacenter or inter-datacenter links and can be potentially expensive and unreliable. Moreover,29

the capacity of the aggregating master and other FL system considerations impose direct or indirect30

constrains on the number of clients that are allowed to participate in each communication round.31

These considerations have led to significant interest in reducing the communication bandwidth of FL32

systems.33
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1.1.1 Local Methods34

One of the most popular strategies is to reduce the frequency of communication and put more35

emphasis on computation. This is usually achieved by asking the devices to perform multiple local36

steps before communicating their updates. A prototype method in this category is the Federated37

Averaging (FedAvg) algorithm [23]. The original work was a heuristic, offering no theoretical38

guarantees, which motivated the community to try to understand the method and various existing and39

new variants theoretically [35, 21, 15, 37, 17, 9].40

1.1.2 Communication Compression41

Another popular approach is to reduce the size of the object (typically gradients) communicated from42

clients to the master. These techniques are usually referred to as gradient/communication compression.43

In this approach, instead of transmitting the full-dimensional gradient/update vector g ∈ Rd, one44

transmits a compressed vector C(g), where C : Rd → Rd is a (possibly random) operator chosen45

such that C(g) can be represented using fewer bits, for instance by using limited bit representation46

(quantization) or by enforcing sparsity (sparsification). A particularly popular class of quantization47

operators is based on random dithering [7, 30]; see [1, 41, 42, 28]. A new variant of random dithering48

developed in [10] offers an exponential improvement on standard dithering. Sparse vectors can be49

obtained by random sparsification techniques that randomly mask the input vectors and preserve a50

constant number of coordinates only [40, 18, 36, 24, 39]. There is also a line of work [10, 3] where a51

combination of sparsification and quantization was proposed to obtain a more aggressive combined52

effect.53

1.2 Related Work54

Importance sampling methods for optimization have been studied extensively in the last few years in55

several contexts, including convex optimization and deep learning. LASVM developed in [5], which is56

an online algorithm that uses importance sampling to train kernelized support vector machines. The57

first importance sampling for randomized coordinate descent methods was proposed in a seminal58

paper in [26]. It was showed in [29] that the proposed sampling is optimal. Later, several extensions59

and improvements followed [33, 20, 6, 27, 2, 38]. Another branch of work studies sample complexity.60

In [25, 43], the authors make a connection with the variance of the gradient estimates of SGD and61

show that the optimal sampling distribution is proportional to the per-sample gradient norm. In terms62

of computation, obtaining this distribution is as hard as the computation of the full gradient, thus63

it is not practical. For simpler problems, one can sample proportionally to the norms of the inputs,64

which can be linked to the Lipschitz constants of the per-sample loss function for linear and logistic65

regression. For instance, it was shown in [11] that static optimal sampling can be constructed even66

for mini-batches and the probability is proportional to these Lipschitz constants under the assumption67

that these constants of the per-sample loss function are known. Unfortunately, importance measures68

such as smoothness of the gradient are often hard to compute/estimate for more complicated models69

such as those arising in deep learning, where most of the importance sampling schemes are based70

on heuristics. A manually designed sampling scheme was proposed in [4]. It was inspired by the71

perceived way that human children learn; in practice, they provide the network with examples of72

increasing difficulty in an arbitrary manner. In a diametrically opposite approach, it is common for73

deep embedding learning to sample hard examples because of the plethora of easy non-informative74

ones [32, 34]. Other approaches use a history of losses for previously seen samples to create the75

sampling distribution and sample either proportionally to the loss or based on the loss ranking [31, 22].76

In [16], the authors propose to sample based on the gradient norm of a small uniformly sampled77

subset of samples.78

In our work, we avoid all the aforementioned problems as our motivation is not to reduce computation,79

which is not the main bottleneck of Federated Learning, but to use importance sampling to decrease80

the number of bits communicated. This, as we show in Section 2, allows us to construct optimal81

adaptive sampling; that is, we do not need to rely on any heuristics, historical losses, or partial82

information.83

2



1.3 Contributions84

In this work, we propose a new approach to addressing the communication bandwidth issues appearing85

in FL. Our approach is based on the observation that in the situation where partial participation86

is desired and a budget on the number of participating clients is applied, careful selection of the87

participating clients can lead to better communication complexity, and hence faster training. In other88

words, we claim that in any given communication round, some clients will have “more informative”89

updates than others and that the training procedure will benefit from capitalizing on this fact by90

ignoring some of the worthless updates.91

In particular, we propose a principled optimal client sampling scheme capable of identifying the most92

informative clients in any given communication round. Our scheme works by minimizing the variance93

of the stochastic gradient produced by the partial participation procedure, which then translates to94

a probable reduction in the number of communication rounds. To the best of our knowledge, this95

approach was not considered before. Moreover, our proposal is orthogonal to and hence combinable96

with existing approaches to communication reduction such as communication compression or local97

updates (Section 3.2).98

Our contributions can be summarized as follows:99

• we propose a novel adaptive partial participation strategy for reducing communication in100

FL that works by a careful selection of the clients that are allowed to communicate their101

updates to the master node in any given communication round;102

• our adaptive client sampling procedure is optimal in the sense that it minimizes the variance103

of the master update;104

• we propose an approximation to our optimal adaptive sampling strategy which only requires105

aggregation, thus allows for secure aggregation and stateless clients;106

• we show theoretically that our approach allows for larger learning rates for Distributed SGD107

and FedAvg algorithms than the baseline which performs uniform client sampling, and as a108

result leads to better communication complexity.109

• we show empirically that the performance of our approach is superior to uniform sampling110

and is close to full participation.111

2 Smart Client Sampling for Reducing Communication112

We now describe our client sampling strategy for reducing the communication bottleneck in Federated113

Learning. Each client i participating in round k computes an update vector Uk
i ∈ Rd. For simplicity114

and ease of exposition, we assume that all clients i ∈ [n] := {1, 2, . . . , n} are available in each round.115

However, we would like to point out that this is not a limiting factor, and all presented theory can be116

easily extended to the case of partial participation with an arbitrary distribution. In our framework,117

only a subset of clients communicates their updates to the master node in each communication round118

in order to reduce the number of transmitted bits.119

In order to provide analysis in this framework, we consider a general partial participation frame-120

work [12], where we assume that the subset of participating clients is determined by an arbitrary121

random set-valued mapping S (a “sampling”) with values in 2[n]. A sampling S is uniquely defined122

by assigning probabilities to all 2n subsets of [n]. With each sampling S we associate a probability123

matrix P ∈ Rn×n defined by Pij := Prob({i, j} ⊆ S). The probability vector associated with S is124

the vector composed of the diagonal entries of P: p = (p1, . . . , pn) ∈ Rn, where pi := Prob(i ∈ S).125

We say that S is proper if pi > 0 for all i. It is easy to show that b := E [|S|] = Trace (P) =
∑n
i=1 pi,126

and hence b can be seen as the expected number of clients participating in each communication round.127

Given parameters p1, . . . , pn ∈ [0, 1], consider a random set S ⊆ [n] generated as follows: for each128

i ∈ [n], we include i in S with probability pi. This is called independent sampling, since the event129

i ∈ S is independent of j ∈ S for any i 6= j.130

While our client sampling strategy can be adapted to essentially any underlying learning method, we131

give details here for DSGD:132

xk+1 = xk − ηkGk, Gk :=
∑
i∈Sk

wi
pki

Uk
i , (2)
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where Sk ∼ Sk and Uk
i = gki is an unbiased estimator of∇fi(xk). The scaling factor 1

pki
is necessary133

in order to obtain an unbiased estimator of the true update, i.e., ESk

[
Gk
]

=
∑n
i=1 wiU

k
i .134

2.1 Optimal Client Sampling135

We start with a simple observation that the variance of our gradient estimator Gk can be decomposed136

as137

E
[∥∥Gk −∇f(xk)

∥∥2] = E

∥∥∥∥∥Gk −
n∑
i=1

wiU
k
i

∥∥∥∥∥
2
+ E

∥∥∥∥∥
n∑
i=1

wiU
k
i −∇f(xk)

∥∥∥∥∥
2
 .

Note that the second term on the right-hand side is independent of the sampling procedure and138

the first term is zero if every client sends its update (i.e., if pki = 1 for all i). In order to provide139

meaningful results, we restrict the expected number of clients to communicate in each round by140

bounding bk :=
∑n
i=1 p

k
i by some positive integer m ≤ n. This raises the following question: What141

is the sampling procedure that minimizes (3) for any given m? We answer this question using the142

following technical lemma:143

Lemma 1. Let ζ1, ζ2, . . . , ζn be vectors in Rd and w1, w2, . . . , wn be non-negative real numbers144

such that
∑n
i=1 wi = 1. Define ζ̃ :=

∑n
i=1 wiζi. Let S be a proper sampling. If v ∈ Rn is such that145

P− pp> � Diag(p1v1, p2v2, . . . , pnvn), (3)

then146

E

∥∥∥∥∥∑
i∈S

wiζi
pi
− ζ̃

∥∥∥∥∥
2
 ≤ n∑

i=1

w2
i

vi
pi
‖ζi‖2 , (4)

where the expectation is taken over S. Whenever (3) holds, it must be the case that vi ≥ 1− pi.147

It turns out that given probabilities {pi}, among all samplings S satisfying pi = Prob(i ∈ S), the148

independent sampling minimizes the left-hand side of (4). This is due to two nice properties: a) any149

independent sampling admits optimal choice of v, i.e., vi = 1− pi for all i, and b) for independent150

sampling (4) holds as equality. In the context of our method, these properties can be written as151

E

∥∥∥∥∥Gk −
n∑
i=1

wiU
k
i

∥∥∥∥∥
2
 = E

[
n∑
i=1

w2
i

1− pki
pki

∥∥Uk
i

∥∥2] . (5)

It now only remains to find the parameters {pki } defining the optimal independent sampling, i.e., one152

that minimizes (5) subject to the constraints 0 ≤ pki ≤ 1 and bk :=
∑n
i=1 p

k
i ≤ m. It turns out that153

this problem has the following closed-form solution:154

pki =

(m+ l − n)
‖Ũk

i ‖∑l
j=1

∥∥∥Ũk
(j)

∥∥∥ , if i /∈ Ak,

1, if i ∈ Ak,
(6)

where Ũki := wiU
k
i , and

∥∥∥Ũk(j)∥∥∥ is the j-th largest value in
{∥∥∥Ũki ∥∥∥}n

i=1
, l is the largest integer for155

which 0 < m+ l − n ≤
∑l

i=1‖Ũk
(i)‖∥∥∥Ũk

(l)

∥∥∥ (note that this inequality at least holds for l = n−m+ 1), and156

Ak contains indices i such that
∥∥∥Ũki ∥∥∥ ≥ ∥∥∥Ũk(l+1)

∥∥∥. We summarize this procedure in Algorithm 1.157

2.2 Secure Aggregation158

Note that in the case l = n, the optimal probabilities pki = m
‖Ũk

i ‖∑n
j=1‖Ũk

j ‖
can be computed easily: the159

master aggregates the norm of each update and then sends the sum back to the clients. However, if160

l < n, in order to compute optimal probabilities, the master would need to identify the norm of every161
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Algorithm 1 Optimal Client Sampling (OCS).
1: Input: expected batch size m
2: each client i computes a local update Uk

i (in parallel)
3: each client i sends the norm of its update uki = wi

∥∥Uk
i

∥∥ to the master (in parallel)
4: master computes optimal probabilities pki using equation (6)
5: master broadcasts pki to all clients
6: each client i sends its update wi

pki
Uk
i to the master with probability pki (in parallel)

update and perform partial sorting, which can be computationally expensive and also slightly violates162

the privacy requirements of clients in FL.163

Therefore, we develop an algorithm for approximately solving the problem, which only requires to164

perform aggregation at the master node without compromising privacy of any client. The construction165

of this algorithm is similar to [40]. We first set p̃ki =
m‖Ũk

i ‖∑n
j=1‖Ũk

j ‖
and pki = min{p̃ki , 1}. In an ideal166

situation, this would be sufficient. However, due to the truncation operation, the expected minibatch167

size bk =
∑n
i=1 p

k
i ≤

∑n
i=1

m‖gki ‖∑n
j=1‖gkj ‖

= m can be strictly less than m if p̃ki > 1 holds true for at168

least one i. Hence, we employ an iterative procedure to fix this gap by rescaling the probabilities169

which are smaller than 1, as summarized in Algorithm 2. This algorithm is much easier to implement170

and computationally more efficient on parallel computing architectures. In addition, it only requires a171

secure aggregation procedure on the master, which is essential in privacy preserving FL, and thus it is172

compatible with existing FL software and hardware. We realize that Algorithm 2 brings some extra173

communication costs, but this is not an issue as it only requires to communicate O(jmax) extra floats174

for each client. We pick jmax = O(1), and thus it is negligible for large models of size d.175

Remark 1. We realize that our algorithm requires two communication rounds per optimization round,176

but the first round is negligible due to the minimal number of communicated bits as argued above.177

3 Convergence Guarantees178

In this section, we provide convergence analysis of DSGD and FedAvg with our optimal client sampling179

technique and compare it with full participation and independent uniform sampling of m clients.180

We use standard assumptions [14] and assume throughout that f has a unique minimizer x? with181

f? = f(x?) > −∞. We further assume that f is µ-strongly convex and fi’s are L-smooth and182

convex. Detailed definitions of convexity and smoothness can be found in the Appendix. Note that183

nothing prevents us from extending the results in this section to convex and non-convex cases with a184

similar standard analysis, since our proposed method only affects the aggregation step as described in185

Section 2, which is independent of the strong convexity assumption.186

Assumption 1 (Gradient oracle for DSGD). The stochastic gradient estimator gki = ∇fi(xk) + ξki of187

the local gradient∇fi(xk), for each round k and all i = 1, . . . , n, satisfies188

E
[
ξki
]

= 0 (7)

and189

E
[∥∥ξki ∥∥2 |xki ] ≤M ∥∥∇fi(xk)

∥∥2 + σ2, for some M ≥ 0. (8)

This further implies that E
[
1
n

∑n
i=1 g

k
i | xk

]
= ∇f(xk).190

Assumption 2 (Gradient oracle for FedAvg). The stochastic gradient estimator gi(yki,r) =191

∇fi(yki,r) + ξki,r of the local gradient∇fi(yki,r), for each round k, each local step r = 0, . . . , R and192

all i = 1, . . . , n, satisfies193

E
[
ξki,r
]

= 0 (9)
and194

E
[∥∥ξki,r∥∥2 |yki,r] ≤M ∥∥∇fi(yki,r)∥∥2 + σ2, for some M ≥ 0, (10)

where yki,0 = xk and yki,r = yki,r−1 − ηlgi(yki,r), r = 1, · · · , R.195
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Algorithm 2 Approximate Optimal Client Sampling (AOCS).
1: Input: expected batch size m, maximum number of iteration jmax

2: each client i computes an update Uk
i (in parallel)

3: each client i sends the norm of its update uki = wi
∥∥Uk

i

∥∥ to the master (in parallel)
4: master aggregates uk =

∑n
i=1 u

k
i

5: master broadcasts uk to all clients
6: each client i computes pki = min{mu

k
i

uk , 1} (in parallel)
7: for j = 1, · · · , jmax do
8: each client i sends tki = (1, pki ) to the master if pki < 1; else sends tki = (0, 0) (in parallel)
9: master aggregates (Ik, P k) =

∑n
i=1 t

k
i

10: master computes Ck = (m−n+Ik)
Pk

11: master broadcasts Ck to all clients
12: each client i recalibrates pki = min{Ckpki , 1} if pki < 1 (in parallel)
13: if Ck ≤ 1 then
14: break
15: end if
16: end for
17: each clients i sends its update wi

pki
Uk
i to master with probability pki (in parallel)

We also define two quantities, which appear in our convergence guarantees:196

Ri := fi(x
?)− f?i , rk := xk − x?, (11)

where f?i is the functional value of fi at its optimum. Ri represents the mismatch between the local197

and global minimizer, and rk captures the distance of the current point to the minimizer of f .198

Equipped with these assumptions, we are ready to proceed with our convergence guarantees. We start199

with the definition of the improvement factor200

αk :=

E

[∥∥∥∑i∈Sk
wi

pki
Uk
i −

∑n
i=1 wiU

k
i

∥∥∥2]
E

[∥∥∥∑i∈Uk
wi

pUi
Uk
i −

∑n
i=1 wiU

k
i

∥∥∥2] , (12)

where Sk ∼ Sk with pki defined in (6) and Uk ∼ U is an independent uniform sampling with201

pUi = m/n. By construction, αk is less than or equal to one, as Sk minimizes the variance term. In202

addition, αk can reach zero in the case where there are at most m non-zero updates. If αk = 0,203

our method performs as if all updates were communicated. In the worst-case αk = 1, our method204

performs as if we picked m updates uniformly at random, and one cannot do better due to the205

structure of the updates Uk
i . In the following subsections, we analyze specific methods for solving the206

optimization problem (1) under the aforementioned assumptions. The proofs and detailed description207

are deferred to the Appendix.208

Fairness. Based on our sampling strategy, it might be tempting to assume that the obtained solution209

could exhibit fairness issues. In our convergence analysis, we show that this is not the case, as our210

proposed methods converge to the optimal solution. Hence, as long as the original objective has no211

inherent issue with fairness, our methods do not exhibit any fairness issues. Besides, our algorithm212

can be used in conjunction with other “more fair” objectives, e.g., tilted ERM [19].213

3.1 Distributed SGD with Optimal Client Sampling214

We begin with the convergence analysis for DSGD (see (2)) with optimal client sampling.215
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Algorithm 3 FedAvg with Optimal Client Sampling.

1: Input: initial global model x1, global and local step-sizes ηkg , ηkl
2: for each round k = 1, . . . ,K do
3: master broadcasts xk to all clients i ∈ [n]
4: for each client i ∈ [n] (in parallel) do
5: initialize local model yki,0 ← xk

6: for r = 1, . . . , R do
7: compute mini-batch gradient gi(yki,r−1)

8: update yki,r ← yki,r−1 − ηkl gi(yki,r−1)
9: end for

10: compute Uk
i := ∆yki = xk − yki,R

11: compute pki using Algorithm 1 or 2
12: send wi

pki
∆yki to master with probability pki

13: end for
14: master computes ∆xk =

∑
i∈Sk

wi

pki
∆yki

15: master updates global model xk+1 ← xk − ηkg∆xk

16: end for

Theorem 2. Let fi be L-smooth and convex for all i = 1, . . . , n. Let f be µ-strongly convex. Suppose216

that Assumption 1 holds. Choose ηk ∈
(

0, γk

(1+maxi∈[n]{wi}M)L

)
, where217

γk :=
m

αk(n−m) +m
∈
[m
n
, 1
]
, k = 0, . . . ,K − 1.

Define218

β1 :=

n∑
i=1

w2
i (2L(1 +M)Ri + σ2) and β2 := 2L

n∑
i=1

w2
iRi.

Then, the iterates of DSGD with optimal client sampling (6) satisfy219

E
[∥∥rk+1

∥∥2] ≤ (1− µηk)E
[∥∥rk∥∥2]+ (ηk)2

(
β1
γk
− β2

)
. (13)

Interpretation. In order to understand the results of Theorem 2, we first look at the best and worst220

case scenarios. In the best case scenario, we have γk = 1 for all k. This implies that there is no221

loss of speed comparing to the method with full participation. It is indeed confirmed by our theory222

as our obtained recursion recovers the best-known rate of DSGD in the full participation regime [8].223

Similarly, in the worst case, we have γk = m/n for all k’s, which corresponds to uniform sampling224

with sample size m and our recursion recovers the best-know rate for DSGD in this regime. This is225

expected as (12) implies that each update Uk
i is equivalent, thus we cannot hope for better rate than226

the uniform sampling. In the general scenario, our obtain recursion sits somewhere between full227

and uniform partial participation, where the actual position is determined by γk which capture the228

distribution of updates (here gradients) on clients. For instance, with a larger number of γk’s tending229

to 1, we are closer to full participation regime. Similarly, with more γk’s tending to m/n, we are230

closer to the rate of partial participation.231

3.2 FedAvg with Optimal Client Sampling232

One of the most common approaches to optimization for Federated Learning is Federated Averaging233

(FedAvg) [23], an adaption of local-update to parallel SGD. In FedAvg, each client runs some234

number of SGD steps locally, and then local updates are averaged to form the global update which is235

then used for the global model on the master. Pseudo-code that adapts the standard FedAvg algorithm236

to our framework is given in Algorithm 3.237
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Figure 1: Distributions of the three datasets considered.
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Figure 2: (Dataset 1) validation accuracy and (local) training loss as a function of the number of
communication rounds and the number of bits communicated from clients to the master.

Theorem 3. Assume that fi is L-smooth and µ-strongly convex for all i = 1, . . . , n and Assumption 2238

holds. Let ηk := Rηkl η
k
g be the effective step-size and ηkg ≥

√
γk∑
i w

2
i

, where239

γk :=
m

αk(n−m) +m
∈
[m
n
, 1
]
.

If ηk ≤ 1
8 min

{
1

L(2+M/R) ,
γk

(1+maxi∈[n]{wi}(1+M/R))L

}
, then the iterates of FedAvg (R ≥ 2) with240

optimal client sampling (6) satisfy241

3

8
E
[
(f(xk)− f?)

]
≤ 1

ηk

(
1− µηk

2

)
E
[∥∥rk∥∥2]− 1

ηk
E
[∥∥rk+1

∥∥2]+ ηkβk1 + (ηk)2β2,

where242

βk1 :=
2σ2

γkR

n∑
i=1

w2
i + 4L

(
M

R
+ 1− γk

) n∑
i=1

w2
iRi and β2 := 72L2

(
1 +

M

R

) n∑
i=1

wiRi.

Interpretation. Similar to DSGD, the convergence guarantees of FedAvg with optimal client sam-243

pling (Algorithm 3) sits somewhere between the performances of those with full and uniform partial244

participations, where the actual position is again determined by the distribution of updates which245

directly impact αk’s that are linked to γk’s. In the edge cases, i.e. γk = 1 (best case) or γk = m/n246

(worst case), we recover the state-of-the-art complexity guarantees provided in [15] in both regimes.247

Note that our results are slightly more general, as [15] assumes M = 0 and wi = 1/n.248

4 Experiments249

In this section, we empirically evaluate our optimal client sampling method, comparing it with 1) the250

baseline where participating clients are sampled uniformly from available clients in each round and251

2) full participation where all available clients participate. We simulate the cross-device FL setting252

and train our models using TensorFlow Federated (TFF)1. For all three methods, we report validation253

accuracy and (local) training loss (vertical axis) as a function of the number of communication254

rounds and the number of bits communicated from clients to the master (horizontal axis). Each figure255

displays the mean performance with standard error over 5 independent runs. For a fair comparison,256

we use the same random seed for the three compared methods in a single run and vary random seeds257

across different runs.258

Setup. We conclude an evaluation on FedAvg where we extend the TFF implementation of FedAvg2259

to fit our framework. For the model, we use the two-layer Convolutional Neural Network (CNN)260

1https://github.com/tensorflow/federated
2https://github.com/tensorflow/federated/tree/master/tensorflow_federated/python/

examples/simple_fedavg
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Figure 3: (Dataset 2) validation accuracy and (local) training loss as a function of the number of
communication rounds and the number of bits communicated from clients to the master.
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Figure 4: (Dataset 3) validation accuracy and (local) training loss as a function of the number of
communication rounds and the number of bits communicated from clients to the master.

provided in the implementation. The default dataset is Federated EMNIST with only digits, but as this261

is a well-balanced dataset with mostly the same quality data on each client, we modify it by removing262

some clients or some of their training images, in order to better simulate conditions in which our263

proposed methods bring significant theoretical improvements. As a result, we produce 3 unbalanced264

datasets as summarized in Figure 1, on which we train the CNN model. For validation, we use the265

unchanged validation set in the Federated EMNIST dataset, which consists of 40, 832 validation266

images. In each communication round of FedAvg, n = 32 clients are sampled uniformly from the267

client pool, each of which then performs several SGD steps on its local training images for 1 epoch268

with batch size 20. For partial participation, the expected number of clients allowed to communicate269

their updates back to the master is set to m = 3 for all the experiments. We use constant step sizes,270

where we set ηg = 1 and tune ηl from the set of values {2−1, 2−2, 2−3, 2−4, 2−5} using a holdout271

set. We implement our sampling procedure using Algorithm 2, as this supports stateless clients and272

secure aggregation. We include extra communication costs in our results, where we set jmax = 4.273

More details of the hyper-parameters that we use can be found in the Appendix.274

Results and Discussions. As predicted by our theory, the performance of FedAvg with our proposed275

optimal client sampling strategy is in between the performances of that with full and uniform partial276

participation. Figures 2, 3 and 4 (red curves: optimal sampling; blue curves: uniform sampling; green277

curves: full participation) show that, for all three datasets, the optimal sampling strategy performs278

slightly worse than but is still competitive with the full participation strategy in terms of the number279

of communication rounds – it almost reached the performance of full participation while only less280

than 10% of the available clients communicate their updates back to the master. Note that the uniform281

sampling strategy performs significantly worse, which indicates that a careful choice of sampling282

probabilities can go a long way towards closing the gap between the performance of naive uniform283

sampling and full participation.284

More importantly, and this was the main motivation of our work, our optimal sampling strategy is285

significantly better than both the uniform sampling and full participation strategies when we compare286

validation accuracy as a function of the number of bits communicated from clients to the master.287

For instance, in case of Dataset 1 (Figure 2), while our optimal sampling approach reached around288

85% validation accuracy after 26 × 108 communicated bits, neither the full nor the uniform sampling289

strategies are able to exceed 40% validation accuracy within the same communication budget. Indeed,290

to reach the same 85% validation accuracy, full participation approach needs to communicate more291

than 29 × 108 bits, i.e., 8× more, and uniform sampling approach needs to communicate about the292

same number of bits as full participation or even more. The results for Datasets 2 and 3 are of a293

similar qualitative nature, showing that these conclusions are robust across the datasets considered.294

In the Appendix, we include additional figures which show the current best validation accuracy as a295

function of the number of communication rounds and the number of bits communicated from clients296

to the master.297
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