

MULTI-MODAL COLLABORATIVE OPTIMIZATION AND EXPANSION NETWORK FOR EVENT-ASSISTED SINGLE-EYE EXPRESSION RECOGNITION

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 In this paper, we proposed a Multi-modal Collaborative Optimization and Ex-
 014 pansion Network (MCO-E Net), to leverage event modalities to resist chal-
 015 lallenges such as low light, high exposure, and high dynamic range in single-eye
 016 expression recognition tasks. The MCO-E Net introduces two innovative de-
 017 signs: Multi-modal Collaborative Optimization Mamba (MCO-Mamba) and Het-
 018 erogeneous Collaborative and Expansion Mixture-of-Experts (HCE-MoE). MCO-
 019 Mamba, building upon Mamba, leverages dual-modal information to jointly op-
 020 timize the model, facilitating collaborative interaction and fusion of modal se-
 021 mantics. This approach encourages the model to balance the learning of both
 022 modalities and harness their respective strengths. HCE-MoE, on the other hand,
 023 employs a dynamic routing mechanism to distribute structurally varied experts
 024 (deep, attention, and focal), fostering collaborative learning of complementary
 025 semantics. This heterogeneous architecture systematically integrates diverse fea-
 026 ture extraction paradigms to comprehensively capture expression semantics. Ex-
 027 tensive experiments demonstrate that our proposed network achieves competitive
 028 performance in the task of single-eye expression recognition, especially under
 029 poor lighting conditions. Anonymous code repository is provided in Appendix A.

1 INTRODUCTION

030 Single-eye Expression Recognition analyzes eye movement patterns via visual sensors. This emerg-
 031 ing technique offers privacy/occlusion advantages over facial recognition (Hickson et al., 2019; Bar-
 032 ros & Sciutti, 2021; Wu et al., 2020a) and benefits applications like driver monitoring and HCI.
 033 However, illumination challenges (low-light/HDR/overexposure) degrade performance. While ex-
 034 isting solutions use infrared (Wu et al., 2020a) or depth sensors (Lee et al., 2020a; Siddiqi et al.,
 035 2014), they fail to capture critical ocular texture details and micro-movements.

036 Event cameras capture spatiotemporal light changes (position, timing, polarity) through asyn-
 037 chronous outputs, excelling in extreme illumination scenarios via ultra-high temporal resolution
 038 to track subtle ocular dynamics. However, event streams exhibit extreme semantic sparsity com-
 039 pared to RGB data, limiting discriminative feature extraction. This inherent sparsity necessitates
 040 leveraging complementary RGB information, while fusing both modalities enhances expression se-
 041 mantics, significant challenges arise from fundamental differences in data generation mechanisms,
 042 spatiotemporal representations, and semantic richness, compounded by the complexity of modeling
 043 long-range temporal dependencies.

044 While SEEN (Zhang et al., 2023a) pioneered RGB–Event fusion through direct addition, and
 045 MSKD (Wang et al., 2024b) introduced cross-modal distillation for knowledge transfer between
 046 RGB and Event modalities, both approaches neglect fine-grained modality alignment. This simple
 047 static fusion mechanism ignores the deep semantic alignment problem between modalities, often
 048 leading to inconsistent semantic representations and limiting the representation ability of the model.
 049 To address this, we explore collaborative modeling of long-sequence Event and RGB data. Recently,
 050 Mamba-based Methods (Zhang et al., 2025; Dong et al., 2024b;a; Liu et al., 2024a) demonstrate su-
 051 perior performance in multimodal semantic collaborative perception and modeling. However, the
 052 direct concatenation of dual-modality semantics still leads to misalignment and inconsistencies in

054 spatiotemporal semantics. Moreover, some methods (Wan et al., 2024; Wang et al., 2024a; Ye et al.,
 055 2025) attempt to adopt an alternating optimization model parameter space to align the semantic dis-
 056 tributions of the two modalities. This is because the ultimate objective of deep models is to fit or
 057 learn the distribution of data. Consequently, the outcome of efficient collaborative modeling between
 058 two modalities is that the two modal distributions learned by the model become aligned. However,
 059 the above mentioned methods (Wan et al., 2024; Wang et al., 2024a; Ye et al., 2025), the two modes
 060 of information remain independent and lack direct participation of modality data in the process of
 061 trying to learn the common distribution.

062 In addition, there are common and unique semantics in the discrimination of different expressions.
 063 The semantic discrimination provided by the eye region alone is very limited. Based on the tradi-
 064 tional single-branch deep model, the unique semantics of different expressions are easily coupled
 065 with each other, thereby reducing the discriminative ability. Mixture of Experts (MoE) (Jacobs et al.,
 066 1991; Shazeer et al., 2017) is a model that combines multiple sub-model experts and a gating mech-
 067 anism to perceive and encode diverse semantic representations from different perspectives, to allevi-
 068 ate the semantic coupling problem of traditional deep models. Conventional MoE implementa-
 069 tions face inherent limitations due to their architecturally homogeneous experts with equivalent repres-
 070 entational capacities. This structural uniformity induces overlapping feature learning across experts,
 071 which undermines their potential for specialization. Recently, HMoE (Wang et al., 2024a) reveals
 072 that such homogeneity constrains models’ ability to address heterogeneous complexity demands.
 073 MFG-HMoE (Chen et al., 2025) introduces modular heterogeneity by grouping experts sharing in-
 074 ternal structures and varying convolution kernel sizes between groups, this approach retains intrinsic
 075 structural uniformity within groups and restricts diversity to a single parameter dimension (kernel
 076 size). However, these methods often suffer from the homogeneity problem among experts, which
 077 means that the abilities of experts may overlap when processing different semantics, resulting in
 078 poor performance of the model when dealing with complex and diverse inputs. Motivated by the
 079 need to overcome these limitations and achieve deeper, more fundamental specialization, we exploit
 080 inherent structural heterogeneity within our Mixture-of-Experts framework. By designing experts
 081 with diverse architectural foundations, we enable the extraction of truly distinct expertise to capture
 082 the varied complexity and multimodal nature of real-world data.

083 To solve the above two issues, we proposed a Multi-modal Collaborative Optimization and Expan-
 084 sion Network (MCO-E Net). The MCO-E Net contains two novel designs: Multi-modal Collab-
 085 orative Optimization Mamba (MCO-Mamba), Heterogeneous Collaborative and Expansion MoE
 086 (HCE-MoE). In MCO-Mamba, based on Mamba, we use two-modal information to jointly opti-
 087 mize the model, and perform collaborative interaction and fusion of modal semantics to drive the
 088 model to balance the learning of two-modal semantics and capture the advantages of both modalities.
 089 In the HCE-MoE, distributes structurally diversified experts (deep, attention and focal) through
 090 a dynamic routing mechanism, enabling collaborative learning of complementary semantics. This
 091 heterogeneous architecture systematically combines diverse feature expertise knowledge extraction
 092 paradigms to capture comprehensive expression semantics. Contributions of this work are as fol-
 093 lows:

- 094 • We design the MCO-Mamba to better align and fuse the Event and RGB modalities in a
 095 collaborative manner.
- 096 • We design the HCE-MoE to enable collaborative learning of complementary visual repre-
 097 sentations.
- 098 • Extensive experiments demonstrate that our MCO-E Net achieves competitive performance
 099 in event-based single-eye expression recognition.

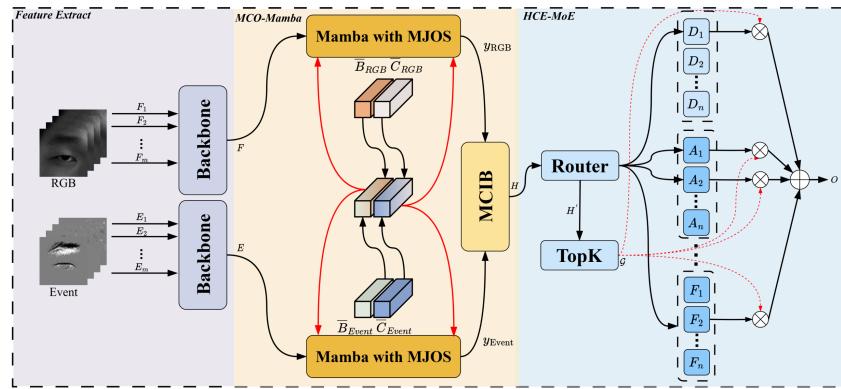
100 2 RELATED WORKS

101 **Expression Recognition.** Current facial expression recognition methods (Zheng et al., 2023; Lee
 102 et al., 2020b; Zhang et al., 2023b; Li et al., 2023; Xu et al., 2025) predominantly rely on RGB data
 103 but exhibit sensitivity to lighting variations and occlusions. Subsequently, MRAN (Lee et al., 2020b)
 104 processes synchronized color, depth, and thermal streams via spatiotemporal attention mechanisms,
 105 while DMD (Li et al., 2023) employs graph-based distillation units to optimize cross-modal inte-
 106 gration. However, these methods face practical challenges such as privacy concerns and hardware
 107 constraints. To relieve these issues, Zhang et al. (2023a) and MSKD (Wang et al., 2024b) are eye

108 expression recognition methods that use event streams to protect privacy and resist the challenges
 109 of poor lighting conditions. Inspired by them (Zhang et al., 2023a; Wang et al., 2024b), we further
 110 design an efficient RGB and event modality collaborative modeling mechanism to mine and fuse the
 111 semantic advantages of the two modalities.

112 **Mamba Framework.** The recently introduced Mamba (Gu & Dao, 2023) architecture, integrating
 113 State Space Models (SSMs) (Gu et al., 2022; 2021b) from control theory (Basar, 2001), combines
 114 fast inference with linear sequence-length scaling, enabling efficient long-range dependency model-
 115 ing. Its vision-specific variants (Zhu et al., 2024; Liu et al., 2024b; Li et al., 2024) and multimodal
 116 extensions (Zhang et al., 2025; Dong et al., 2024b;a; Liu et al., 2024a) demonstrate strengths in
 117 processing heterogeneous data (video, audio, language). However, existing methods rely on di-
 118 rect feature concatenation without addressing modality gaps. Recent works like Sigma (Wan et al.,
 119 2024) (partial SSM parameter exchange), MSFMamba (Gao et al., 2025) (full parameter exchange),
 120 and DepMamba (Ye et al., 2025) (selective parameter sharing) attempt cross-modal alignment but
 121 enforce static fusion strategies, risking modality-specific feature degradation or shared-specific im-
 122 balance. To resolve this, we propose an adaptive coupling mechanism that dynamically balances
 123 modality-shared and modality-specific features during interaction, enabling task-driven cross-modal
 124 fusion.

125 **Mixture-of-Experts (MoE).** The MoE developed by Jacobs et al. (1991), enables specialized com-
 126 ponents to autonomously process segmented data domains and then integrate them uniformly. On
 127 this basis, SMoE (Shazeer et al., 2017) proposed Sparsely-Gated Mixture-of-Experts, which em-
 128 ploys a gating network for expert selection and proposes a Top- K routing strategy, that is, selecting
 129 the K experts with the highest probability. Zhou et al. (2022b) proposed expert choice routing,
 130 change the routing method from selecting top- k experts for each token to selecting top- k tokens for
 131 each expert. Hard MoE (Gross et al., 2017), employing a single decoding layer, demonstrates effi-
 132 cient trainability while achieving competitive performance on large-scale hashtag prediction bench-
 133 marks. HMoE (Wang et al., 2024a) solves the expert homogeneity problem by changing the pa-
 134 rameter dimension size of the expert sub-network, but this modulation mechanism fundamentally
 135 retains the unified structure of the experts. MFG-HMoE (Chen et al., 2025) introduces modular
 136 heterogeneity by grouping experts with identical internal structures within each group and varying
 137 convolution kernel sizes between different groups for super-resolution tasks. Different from these
 138 prior works (Wang et al., 2024a; Chen et al., 2025; Wang & Liu, 2025), we exploit structural het-
 139 erogeneity to design a Mixture-of-Experts that can extract different expertise through experts with
 140 different structures.



153 Figure 1: Overall architecture of our proposed MCO-E Net. The Network contains two novel de-
 154 signs: Multi-modal Collaborative Optimization Mamba (MCO-Mamba) and Heterogeneous Collab-
 155 orative and Expansion Mixture of Experts (HCE-MoE).

3 METHODOLOGY

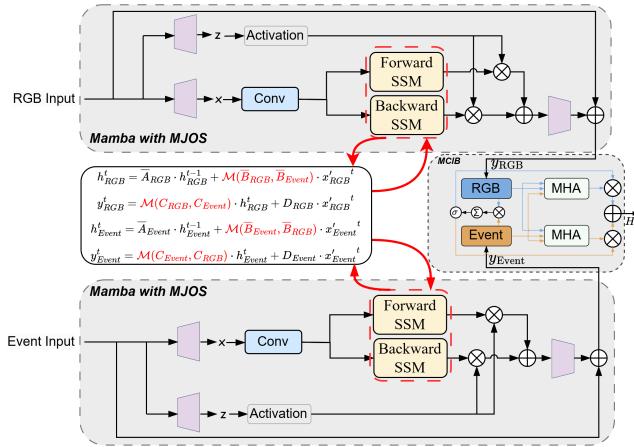
156 **Overview.** Overall architecture of our MCO-E Net is shown in Fig. 1. Input information con-
 157 tains: RGB sequences $F_i \in \mathbb{R}^{H \times W \times C}$, $i = 1, 2, \dots, m$ and Event sequences $E_i \in \mathbb{R}^{H \times W \times B}$, $i =$

162 1, 2, ⋯, m , where H, W, C and B represent height, width, RGB channels and Event channels.
 163 **Firstly**, the RGB sequences and Event sequences are fed into their respective backbones; Each ten-
 164 sor is processed by ResNet-18 for feature extraction, and then all features are concatenated together
 165 to obtain F and $E \in \mathbb{R}^{M \times E}$, E is the feature dimension, M is sequence length. **Next**, features
 166 F and E undergo our MCO-Mamba, jointly optimizing the model and performing collaborative
 167 interaction and fusion of modal semantics. **Finally**, the fused representation from MCO-Mamba
 168 is processed through our HCE-MoE. The HCE-MoE combines diverse feature expertise knowledge
 169 extraction paradigms to capture comprehensive expression semantics.

170 3.1 MCO-MAMBA

172 As mentioned in Intro. 1, the differences in information generation mechanism, representation form,
 173 and semantic richness between event streams and RGB data sequences lead to a modal semantic
 174 gap between the two modalities; In addition, both modalities exhibit long-sequence characteristics,
 175 which undoubtedly adds challenge to the collaborative modeling of modes. To relieve two sub-
 176 issues, we leverage the advantages of Mamba for long-sequence data modeling to design a multi-
 177 modal joint optimization and interactive representation model, to fully leverage the advantages of
 178 both modalities. To this end, we proposed the Multi-modal Collaborative Optimization Mamba
 179 (MCO-Mamba).

180 Our proposed MCO-Mamba is shown in Fig. 2, which consists of two core components: (i)Multi-
 181 modal Joint Optimization Scheme (MJOS) for Mamba: we jointly optimize Mamba with two modal-
 182 ities of information to improve its modeling of long-sequence information and perception of cross-
 183 modal information, thereby building a semantic bridge between the two modalities. (ii)Multi-modal
 184 Collaborative Interaction Block (MCIB): We further interactively represent and fuse the two modal-
 185 ities to achieve complementary advantages of the two modalities.



201 Figure 2: Architectures of proposed MCO-Mamba. We first jointly optimize the model using Event
 202 and RGB modalities to balance the learning of the two modal distributions; Next, we model the
 203 collaborative interaction between two modalities to leverage their respective strengths.

205 3.1.1 MJOS FOR MAMBA.

207 To efficiently perceive and capture high-quality semantics from long-sequence data, we use Mamba
 208 to encode the semantics of Event streams and RGB sequences. However, Mamba is not good at
 209 collaborative modeling of two-modal semantics. Therefore, some methods (Zhang et al., 2025; Dong
 210 et al., 2024b;a; Liu et al., 2024a) integrate the semantics of Mamba after modeling, but this does not
 211 perceive the role of sequence information in the fusion of modal semantics. Other methods (Wan
 212 et al., 2024; Gao et al., 2025) are to alternately update the time series status information of Mamba.
 213 Although these methods can effectively perceive the temporal semantics of two modalities, they lack
 214 the joint participation of two-modal information. This is not conducive to the balance of two-mode
 215 semantic distribution and the effective capture of semantic meaning in deep models. So, we use
 216 two-modal sequence data to jointly optimize the state information of Mamba. Here, we use SSM

with bidirectional scanning (Zhu et al., 2024) to capture the forward and backward dependencies respectively to ensure that the output of each position can simultaneously refer to the context of the entire sequence. We define it as Multi-modal Joint Optimization Scheme (MJOS) for Mamba.

Specifically, details of our MJOS for Mamba are shown in Appendix Algorithm 1. At different times, we jointly optimize the state equation of Mamba using the RGB modality and Event modality (as shown in Fig. 2), as detailed below:

$$h_{\text{RGB}}^t = \overline{A}_{\text{RGB}} \cdot h_{\text{RGB}}^{t-1} + \underbrace{\mathcal{M}(\overline{B}_{\text{RGB}}, \overline{B}_{\text{Event}})}_{\text{Joint Optimization}} \cdot x'_{\text{RGB}}^t \quad (1)$$

$$y_{\text{RGB}}^t = \underbrace{\mathcal{M}(C_{\text{RGB}}, C_{\text{Event}})}_{\text{Joint Optimization}} \cdot h_{\text{RGB}}^t + D_{\text{RGB}} \cdot x'_{\text{RGB}}^t \quad (2)$$

$$h_{\text{Event}}^t = \overline{A}_{\text{Event}} \cdot h_{\text{Event}}^{t-1} + \underbrace{\mathcal{M}(\overline{B}_{\text{Event}}, \overline{B}_{\text{RGB}})}_{\text{Joint Optimization}} \cdot x'_{\text{Event}}^t \quad (3)$$

$$y_{\text{Event}}^t = \underbrace{\mathcal{M}(C_{\text{Event}}, C_{\text{RGB}})}_{\text{Joint Optimization}} \cdot h_{\text{Event}}^t + D_{\text{Event}} \cdot x'_{\text{Event}}^t \quad (4)$$

Multi-modal joint optimization function \mathcal{M} is defined as:

$$\mathcal{M}(\mathcal{A}, \mathcal{B}) = (W \cdot [\mathcal{A}; \mathcal{B}] + b) \oplus \mathcal{A} \quad (5)$$

where $[\cdot]$ denotes concatenation and \oplus represents element-wise addition. This formulation enables feature concatenation from both modalities followed by learnable projections (W, b) , creating shared parameters that preserve modality-specific characteristics while establishing cross modality associations.

3.1.2 MCIB.

We further introduce the Multi-modal Collaborative Interaction Block (MCIB) to achieve fine-grained semantic alignment and complementary fusion between modalities. As depicted in Fig. 2, MCIB processes input features \mathbf{y}_{RGB} and $\mathbf{y}_{\text{Event}}$ through a cross-attention and projects them into each other’s Query. This enables RGB features to actively retrieve dynamic details from event streams while event features selectively attend to static contextual semantics within RGB data. Following, we take the projection of two modalities as each other’s Query:

$$Q_{\text{RGB}} = W_Q^{\text{RGB}} \mathbf{y}_{\text{Event}}, Q_{\text{Event}} = W_Q^{\text{Event}} \mathbf{y}_{\text{RGB}} \quad (6)$$

$$\mathbf{y}'_{\text{RGB}} = \text{MHA}(\mathbf{y}_{\text{RGB}}), \mathbf{y}'_{\text{Event}} = \text{MHA}(\mathbf{y}_{\text{Event}}) \quad (7)$$

where \mathbf{y}_{RGB} and $\mathbf{y}_{\text{Event}}$ are input features of semantic fusion block, W is learnable linear projection. To adaptively balance modality contributions, we design a gating mechanism:

$$\alpha = \sigma(\sum (\mathbf{y}_{\text{RGB}} \odot \mathbf{y}_{\text{Event}})) \quad (8)$$

$$H = \alpha \cdot \mathbf{y}'_{\text{RGB}} + (1 - \alpha) \cdot \mathbf{y}'_{\text{Event}} \quad (9)$$

where σ denotes the sigmoid function and \odot represents element-wise multiplication. This gating strategy maintains inter-modality equilibrium without introducing additional parameters and avoid biasing towards a certain mode, effectively reducing model complexity while preserving fusion flexibility.

3.2 HCE-MoE

As described in Intro. 1, we try to adopt Mixture-of-Experts (MoE) to dynamically select experts to obtain diverse semantic representations. Unlike conventional MoE, we design Heterogeneous Experts to minimize semantic overlap and maximize diversity. To address the limitations of linear routing in standard MoE (Mustafa et al., 2022), load imbalance, and poor global context modeling, we introduce an Attention-Guided Router inspired by Wu et al. (2024b), dynamically adapting to complex feature relationships. So, we propose the HCE-MoE, which contains: **Router with Attention**, **Deep Expert**, **Attention Expert**, and **Focal Expert**.

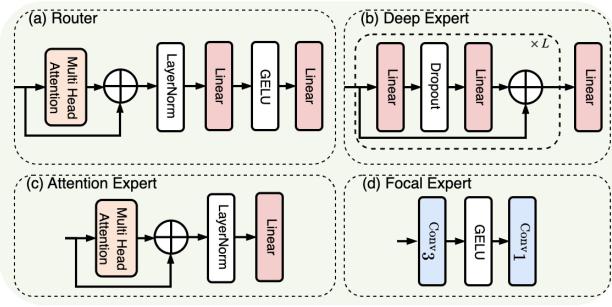


Figure 3: Structure of the proposed HCE-MoE.

3.2.1 ROUTER WITH ATTENTION.

Different from attention router (Wu et al., 2024b; Blecher & Fine, 2023b), we further combine the original features and attention-processed features and add nonlinear representations to improve router capabilities.

$$H' = \mathcal{P}_2(\sigma(\mathcal{P}_1(\mathcal{LN}(\text{MHA}(H) \oplus H)))) \quad (10)$$

$$\mathcal{G} = \{(m_i, h_i)\}_{i=1}^k = \text{TopK}(\text{Softmax}(H')) \quad (11)$$

where $H' \in \mathbb{R}^{N_e}$, N_e is number of experts. $\mathcal{P}_{1/2}$ are linear projections, $\text{MHA}(\cdot)$ denotes multi-head attention, and \mathcal{G} contains selected expert indices m_i with corresponding weights h_i , Top-K takes the first k maximum value operation. Compared with traditional MoE routers (Shazeer et al., 2017; Zhou et al., 2022a), our structure can more carefully model the mapping relationship input to experts through hierarchical processing of $\mathcal{P}_1 \rightarrow \sigma \rightarrow \mathcal{P}_2$, reducing routing confusion. Compared with existing methods of using attention routers (Blecher & Fine, 2023a; Wu et al., 2024a), we combine the output of MHA and the original input, the router can simultaneously utilize the original features without attention processing and the global context of attention output, avoiding information loss while fusing context information.

3.2.2 DEEP EXPERT.

Traditional expert (Zhou et al., 2022b; Wang et al., 2024a) typically employ 1 or 2 layers, shallow networks strive to compose low-level features into high-level semantics, while narrow intermediate layers restrict the model’s ability to handle complex features. So, our deep expert implements progressive feature refinement through L stacked transformation blocks, each of the L layers expands the input dimension to $4 \times$ its original size, creating a high-dimensional space for features. Subsequent compression back to the original dimension ensures compatibility with residual connections while preserving key information:

$$O_D = \mathcal{P}_3(\left(\bigcirc_{l=1}^L [\mathcal{P}_2^{(l)} \circ \mathcal{D}^{(l)} \circ \mathcal{P}_1^{(l)}]\right)(H)) \quad (12)$$

where H is input feature, $\mathcal{P}_1^{(l)} : \mathbb{R}^d \rightarrow \mathbb{R}^{4d}$ expands dimensions, $\mathcal{P}_2^{(l)} : \mathbb{R}^{4d} \rightarrow \mathbb{R}^d$ restore dimensions, $\mathcal{P}_3^{(l)} : \mathbb{R}^d \rightarrow \mathbb{R}^{\mathcal{J}}$, \mathcal{J} is number of expression class, \mathcal{D} denotes dropout, l is $l - th$ layer, L is depth and $\bigcirc_{l=1}^L$ is nested operations from the first layer to the L layer.

3.2.3 ATTENTION EXPERT.

Ordinary experts (Zhou et al., 2022b; Wang et al., 2024a) are usually composed of only fully connected layers, lack explicit sequence modeling capabilities, and are difficult to deal with scenarios that require global context. While deep-oriented architectures excel at hierarchical feature extraction, they lack input-adaptive feature weighting crucial for emotion-varying contexts. To address this, we design attention experts specializing in global contextual reasoning through multi-head self-attention. Each expert introduces MHA internally to enable it to capture dependencies in the input sequence, which is crucial for sequence processing tasks:

$$O_A = \mathcal{P}(\mathcal{LN}(\text{MHA}(H) \oplus H)) \quad (13)$$

324	325	Methods	Metrics(%)		Accuracy under lighting conditions(%)				Accuracy of emotion classification(%)																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																		
326	327	328	329	330	331	332	333	334	335	336	337	338	339	340	341	342	343	344	345	346	347	348	349	350	351	352	353	354	355	356	357	358	359	360	361	362	363	364	365	366	367	368	369	370	371	372	373	374	375	376	377	378	379	380	381	382	383	384	385	386	387	388	389	390	391	392	393	394	395	396	397	398	399	400	401	402	403	404	405	406	407	408	409	410	411	412	413	414	415	416	417	418	419	420	421	422	423	424	425	426	427	428	429	430	431	432	433	434	435	436	437	438	439	440	441	442	443	444	445	446	447	448	449	450	451	452	453	454	455	456	457	458	459	460	461	462	463	464	465	466	467	468	469	470	471	472	473	474	475	476	477	478	479	480	481	482	483	484	485	486	487	488	489	490	491	492	493	494	495	496	497	498	499	500	501	502	503	504	505	506	507	508	509	510	511	512	513	514	515	516	517	518	519	520	521	522	523	524	525	526	527	528	529	530	531	532	533	534	535	536	537	538	539	540	541	542	543	544	545	546	547	548	549	550	551	552	553	554	555	556	557	558	559	560	561	562	563	564	565	566	567	568	569	570	571	572	573	574	575	576	577	578	579	580	581	582	583	584	585	586	587	588	589	590	591	592	593	594	595	596	597	598	599	600	601	602	603	604	605	606	607	608	609	610	611	612	613	614	615	616	617	618	619	620	621	622	623	624	625	626	627	628	629	630	631	632	633	634	635	636	637	638	639	640	641	642	643	644	645	646	647	648	649	650	651	652	653	654	655	656	657	658	659	660	661	662	663	664	665	666	667	668	669	670	671	672	673	674	675	676	677	678	679	680	681	682	683	684	685	686	687	688	689	690	691	692	693	694	695	696	697	698	699	700	701	702	703	704	705	706	707	708	709	710	711	712	713	714	715	716	717	718	719	720	721	722	723	724	725	726	727	728	729	730	731	732	733	734	735	736	737	738	739	740	741	742	743	744	745	746	747	748	749	750	751	752	753	754	755	756	757	758	759	760	761	762	763	764	765	766	767	768	769	770	771	772	773	774	775	776	777	778	779	780	781	782	783	784	785	786	787	788	789	790	791	792	793	794	795	796	797	798	799	800	801	802	803	804	805	806	807	808	809	810	811	812	813	814	815	816	817	818	819	820	821	822	823	824	825	826	827	828	829	830	831	832	833	834	835	836	837	838	839	840	841	842	843	844	845	846	847	848	849	850	851	852	853	854	855	856	857	858	859	860	861	862	863	864	865	866	867	868	869	870	871	872	873	874	875	876	877	878	879	880	881	882	883	884	885	886	887	888	889	890	891	892	893	894	895	896	897	898	899	900	901	902	903	904	905	906	907	908	909	910	911	912	913	914	915	916	917	918	919	920	921	922	923	924	925	926	927	928	929	930	931	932	933	934	935	936	937	938	939	940	941	942	943	944	945	946	947	948	949	950	951	952	953	954	955	956	957	958	959	960	961	962	963	964	965	966	967	968	969	970	971	972	973	974	975	976	977	978	979	980	981	982	983	984	985	986	987	988	989	990	991	992	993	994	995	996	997	998	999	1000	1001	1002	1003	1004	1005	1006	1007	1008	1009	1010	1011	1012	1013	1014	1015	1016	1017	1018	1019	1020	1021	1022	1023	1024	1025	1026	1027	1028	1029	1030	1031	1032	1033	1034	1035	1036	1037	1038	1039	1040	1041	1042	1043	1044	1045	1046	1047	1048	1049	1050	1051	1052	1053	1054	1055	1056	1057	1058	1059	1060	1061	1062	1063	1064	1065	1066	1067	1068	1069	1070	1071	1072	1073	1074	1075	1076	1077	1078	1079	1080	1081	1082	1083	1084	1085	1086	1087	1088	1089	1090	1091	1092	1093	1094	1095	1096	1097	1098	1099	1100	1101	1102	1103	1104	1105	1106	1107	1108	1109	1110	1111	1112	1113	1114	1115	1116	1117	1118	1119	1120	1121	1122	1123	1124	1125	1126	1127	1128	1129	1130	1131	1132	1133	1134	1135	1136	1137	1138	1139	1140	1141	1142	1143	1144	1145	1146	1147	1148	1149	1150	1151	1152	1153	1154	1155	1156	1157	1158	1159	1160	1161	1162	1163	1164	1165	1166	1167	1168	1169	1170	1171	1172	1173	1174	1175	1176	1177	1178	1179	1180	1181	1182	1183	1184	1185	1186	1187	1188	1189	1190	1191	1192	1193	1194	1195	1196	1197	1198	1199	1200	1201	1202	1203	1204	1205	1206	1207	1208	1209	1210	1211	1212	1213	1214	1215	1216	1217	1218	1219	1220	1221	1222	1223	1224	1225	1226	1227	1228	1229	1230	1231	1232	1233	1234	1235	1236	1237	1238	1239	1240	1241	1242	1243	1244	1245	1246	1247	1248	1249	1250	1251	1252	1253	1254	1255	1256	1257	1258	1259	1260	1261	1262	1263	1264	1265	1266	1267	1268	1269	1270	1271	1272	1273	1274	1275	1276	1277	1278	1279	1280	1281	1282	1283	1284	1285	1286	1287	1288	1289	1290	1291	1292	1293	1294	1295	1296	1297	1298	1299	1300	1301	1302	1303	1304	1305	1306	1307	1308	1309	1310	1311	1312	1313	1314	1315	1316	1317	1318	1319	1320	1321	1322	1323	1324	1325	1326	1327	1328	1329	1330	1331	1332	1333	1334	1335	1336	1337	1338	1339	1340	1341	1342	1343	1344	1345	1346	1347	1348	1349	1350	1351	1352	1353	1354	1355	1356	1357	1358	1359	1360	1361	1362	1363	1364	1365	1366	1367	1368	1369	1370	1371	1372	1373	1374	1375	1376	1377	1378	1379	1380	1381	1382	1383	1384	1385	1386	1387	1388	1389	1390	1391	1392	1393	1394	1395	1396	1397	1398	1399	1400	1401	1402	1403	1404	1405	1406	1407	1408	1409	1410	1411	1412	1413	1414	1415	1416	1417	1418	1419	1420	1421	1422	1423	1424	1425	1426	1427	1428	1429	1430	1431	1432	1433	1434	1435	1436	1437	1438	1439	1440	1441	1442	1443	1444	1445	1446	1447	1448	1449	1450	1451	1452	1453	1454	1455	1456	1457	1458	1459	1460	1461	1462	1463	1464	1465	1466	1467	1468	1469	1470	1471	1472	1473	1474	1475	1476	1477	1478	1479	1480	1481	1482	1483	1484	1485	1486	1487	1488	1489	1490	1491	1492	1493	1494	1495	1496	1497	1498	1499	1500	1501	1502	1503	1504	1505	1506	1507	1508	1509	1510	1511	1512	1513	1514	1515	1516	1517	1518	1519	1520	1521	1522	1523	1524	1525	1526	1527	1528	1529	1530	1531	1532	1533	1534	1535	1536	1537	1538	1539	1540	1541	1542	1543	1544	1545	1546	1547	1548	1549	1550	1551	1552	1553	1554	1555	1556	1557	1558	1559	1560	1561	1562	1563	1564	1565	1566	1567	1568	1569	1570	1571	1572	1573	1574	1575	1576	1577	1578	1579	1580	1581	1582	1583	1584	1585	1586	1587	1588	1589	1590	1591	1592	1593	1594	1595	1596	1597	1598	1599	1600	1601	1602	1603	1604	1605	1606	1607	1608	1609	1610	1611	1612	1613	1614	1615	1616	1617	1618	1619	1620	1621	1622	1623	1624	1625	1626	1627	1628	1629	1630	1631	1632	1633	1634	1635	1636	1637	1638	1639	1640	1641	1642	1643	1644	1645	1646	1647	1648	164

378 UAR (Unweighted Average Recall) and WAR (Weighted Average Recall). In addition, the efficiency
 379 analysis is given in the Appendix A.1, more ablation studies are given in the Appendix A.3 , more
 380 details on hyperparameter settings are given in the Appendix A.6.
 381

382 4.1 COMPARISON WITH STATE-OF-THE-ART METHODS 383

384 Since combining RGB and Event in Single-eye expression recognition task is a new strategy, re-
 385 lated work is scarce. Therefore, to prove the performance of our network, our network is com-
 386 pared with RGB-based methods: EMO (Wu et al., 2020b), Eyemotion (Hickson et al., 2017), For-
 387 mer DFER (Zhao & Liu, 2021), R(2+1)D (Tran et al., 2018), 3D Resnet18 (Hara et al., 2018),
 388 Resnet50+GRU (Cho, 2014), Resnet18+ LSTM (Hochreiter & Schmidhuber, 1997) and Event-based
 389 methods: SEEN (Zhang et al., 2023a), MSKD (Wang et al., 2024b) and HI-Net (Han et al., 2025).
 390 In addition, expression recognition methods categorize into eye-based or face-based analysis, as
 391 summarized in Table 1.
 392

393 As shown in Table 1 and Table 3, on the SEE (Zhang et al., 2023a) and DSEE (Wang et al., 2024b)
 394 datasets, our proposed method significantly outperforms the existing SOTA methods in WAR and
 395 UAR. Specifically, on SEE, our method outperforms the SOTA methods by 4.4% and 4.2%, re-
 396 spectively. On DSEE, our method outperforms the SOTA methods by 2.0% and 1.8%, respectively.
 397 In addition, we also show the performance under four different lighting conditions. As shown in
 398 Table 1, our method shows the best accuracy under all lighting conditions. In addition, compared
 399 with SEEN (Zhang et al., 2023a) and HI-Net (Han et al., 2025), our method shows better ability
 400 to capture and emphasize semantic features around the eye or eyebrow region under four lighting
 401 conditions, as shown in Fig. 4.
 402

403 4.2 ABLATION STUDY 404

Methods	WAR	UAR
A. RGB Only	83.5	84.3
B. Event Only	72.6	73.3
C. w/o MCO-Mamba	89.4	90.1
D. MCO-Mamba(w/o MJOS)	89.9	90.5
E. MCO-Mamba(w/o MCIB)	89.8	90.5
F. w/o HCE-MoE	88.9	89.7
G. HCE-MoE (1 type of expert)	89.9	90.5
H. HCE-MoE (2 type of experts)	90.6	91.3
I. Ours	91.3	91.9

411 Table 2: Results produced by combining different components of our proposed network.
 412

413 4.2.1 EFFECTIVENESS OF MULTI-MODALITY SEMANTICS. 414

415 Table. 2 demonstrates the critical advantage of multimodal fusion through controlled experiments:
 416 Exp. A (RGB only) achieves 83.5% WAR while Exp. B (Event only) reaches 72.6% WAR, whereas
 417 our full RGB+Event model attains 91.3% WAR. This significant gain stems from complementary
 418 strengths: event streams capture high-temporal-resolution dynamic details with extreme lighting ro-
 419 bustness, while RGB provides rich spatial-semantic around ocular regions, enabling comprehensive
 420 expression modeling.
 421

422 4.2.2 EFFECTIVENESS OF MCO-MAMBA. 423

424 In proposed MCO-Mamba, we use MJOS (for Mamba) and MCIB block for joint optimization of
 425 model and Multi-modal collaborative modeling, respectively. From the experimental results shown
 426 in C to E of Table. 2, we can analyze the greatest impact on performance is row C. To the removal of
 427 MCO-Mamba, the advantageous semantics of these two modalities cannot be combined, resulting
 428 in performance degradation. D of Table. 2 removes MJOS from MCO-Mamba. This means that the
 429 features extracted by backbone are directly fusion through MCIB block. The lack of parameter joint
 430 optimization strategy leads to significant reduction in model performance. E of Table. 2 is remove
 431 MCIB from MCO-Mamba, change the fusion method to feature addition. The lack of semantic
 432 integration leads to performance degradation in WAR and UAR.
 433

Methods		Metrics(%)		Accuracy under lighting conditions(%)				Accuracy of emotion classification(%)						
		WAR	UAR	Normal	Overexposure	Low-Light	HDR	Happy	Sadness	Anger	Disgust	Surprise	Fear	Neutral
Former DFER	Face	59.7	61.1	58.1	64.2	60.7	58.8	71.1	54.8	67.2	64.3	45.2	42.7	82.6
Former DFER*	Face	50.2	51.1	50.3	50.7	47.3	53.5	63.1	50.7	49.9	48.1	40.8	42.0	62.8
R(2+1)D	Face	45.8	45.0	49.1	45.9	36.6	44.4	52.1	53.5	27.1	62.0	54.7	29.8	35.6
3D Resnet18	Face	53.3	53.8	54.9	55.6	44.2	56.5	62.7	56.5	58.9	50.9	51.5	33.5	62.6
Resnet50 + GRU	Face	71.6	66.3	69.9	70.5	69.3	78.4	66.3	62.2	78.3	75.8	68.5	65.7	84.7
Resnet18 + LSTM	Face	72.2	73.0	71.3	73.1	69.7	79.6	72.3	61.9	78.3	76.8	69.9	66.9	84.8
EMO	Eye	68.0	68.8	67.0	68.2	65.5	76.5	73.7	59.2	70.8	74.2	61.6	61.7	80.2
EMO*	Eye	67.8	68.7	67.4	67.0	63.2	78.6	68.3	64.4	70.7	73.7	62.9	58.6	82.5
Eyemotion	Eye	72.3	73.1	71.3	72.1	69.3	82.0	72.3	66.4	76.9	74.9	70.4	64.9	85.8
Eyemotion*	Eye	71.8	72.7	70.4	70.4	70.1	83.8	71.0	68.2	75.0	74.8	66.8	67.2	86.3
SEEN	Eye	71.9	72.6	70.9	74.8	69.8	75.5	72.2	65.3	78.5	74.9	72.0	61.0	84.2
MSKD	Eye	77.4	77.9	76.1	78.6	75.0	86.2	80.1	73.7	83.8	79.3	75.6	66.8	86.3
HI-Net	Eye	72.4	73.3	71.7	72.5	66.6	86.8	78.0	68.9	68.8	74.3	76.6	58.9	87.5
Ours	Eye	79.4	79.7	79.1	75.2	75.1	96.5	85.5	69.7	81.2	82.2	82.5	70.9	85.9

Table 3: Comparison with SOTA methods on DSSE dataset under UAR, WAR, Normal, Overexposure, Low-Light and HDR. Best results are shown in **bold**, the second best results are shown in underlined. * indicates that the model has not been pre-trained.

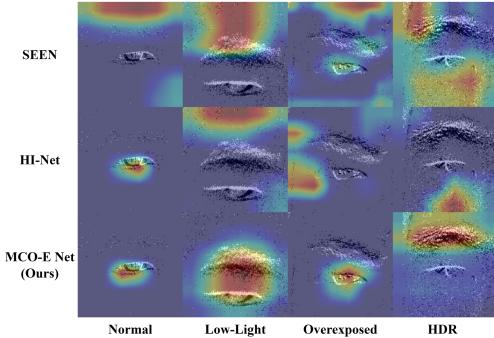


Figure 4: Heatmap visualization of the comparison between our proposed MCO-E Net and SOTA methods

4.2.3 EFFECTIVENESS OF HCE-MoE.

Ablation studies for HCE-MoE (Table 2) confirm its critical role: Replacing HCE-MoE with a fully-connected layer reduced WAR/UAR by 2.4%/2.2%, demonstrating that HCE-MoE decoupling is essential for capturing fine-grained patterns (e.g., edge/texture features). Simplified variants using one expert type (G) or two types (H) consistently underperformed full HCE-MoE, proving heterogeneous expert diversity (Deep/Attention/Focal Experts) reduces feature oversight probability. Visual analysis (Fig. 5) further shows degraded focus in lighting variations without HCE-MoE or MCO-Mamba.

For more ablation studies on MCO-Mamba and HCE-MoE, we have included them in the Appendix A.3.

5 CONCLUSION

In this paper, we proposed a Multi-modal Collaborative Optimization and Expansion Network (MCO-E Net), for the single-eye expression recognition tasks. The MCO-E Net contains two novel designs: Multi-modal Collaborative Optimization Mamba (MCO-Mamba), Heterogeneous Collaborative and Expansion MoE (HCE-MoE). The MCO-Mamba drove the model to balance the learning of two-modal semantics and capture the advantages of both modalities through joint optimization in Mamba. The HCE-MoE systematically combines multiple feature expertise through a heterogeneous architecture, enabling collaborative learning of complementary semantics and capturing comprehensive semantics. Extensive experiments demonstrate that our MCO-E Net achieves competitive performance on the single-eye expression recognition task.

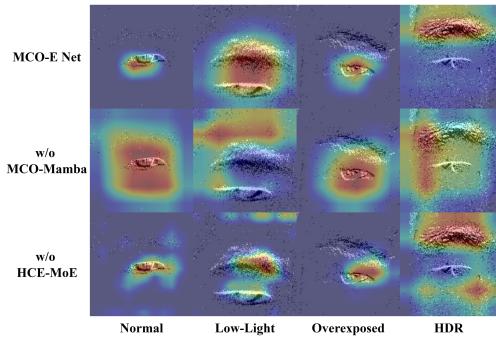


Figure 5: Heatmap visualization of the comparison between our proposed MCO-E Net and removing MCO-Mamba or HCE-MoE

486 REFERENCES
487

488 Shafiq Ahmad, Pietro Morerio, and Alessio Del Bue. Person re-identification without identification
489 via event anonymization, 2023. URL <https://arxiv.org/abs/2308.04402>.

490 Pablo Barros and Alessandra Sciutti. I only have eyes for you: The impact of masks on
491 convolutional-based facial expression recognition, 2021. URL <https://arxiv.org/abs/2104.08353>.

492

493 Tamer Basar. *A New Approach to Linear Filtering and Prediction Problems*, pp. 167–179. 2001.
494 doi: 10.1109/9780470544334.ch9.

495

496 Gal Blecher and Shai Fine. Moeatt: A deep mixture of experts model using attention-based routing
497 gate. In *2023 International Conference on Machine Learning and Applications (ICMLA)*, pp.
498 1018–1024, 2023a. doi: 10.1109/ICMLA58977.2023.00151.

499

500 Gal Blecher and Shai Fine. Moeatt: A deep mixture of experts model using attention-based routing
501 gate. In *2023 International Conference on Machine Learning and Applications (ICMLA)*, pp.
502 1018–1024. IEEE, 2023b.

503 Bowen Chen, Keyan Chen, Mohan Yang, Zhengxia Zou, and Zhenwei Shi. Heterogeneous mixture
504 of experts for remote sensing image super-resolution. *IEEE Geoscience and Remote Sensing
505 Letters*, 22:1–5, 2025. doi: 10.1109/LGRS.2025.3557928.

506

507 Kyunghyun Cho. Learning phrase representations using rnn encoder-decoder for statistical machine
508 translation. *arXiv preprint arXiv:1406.1078*, 2014.

509

510 Hongwei Dong, Shun Na, and Fengye Hu. Hybrid-fusion mamba for multi-task point cloud learning
511 with visual perception sensors. *IEEE Internet of Things Journal*, pp. 1–1, 2024a. doi: 10.1109/
512 JIOT.2024.3512598.

513 Wenhao Dong, Haodong Zhu, Shaohui Lin, Xiaoyan Luo, Yunhang Shen, Xuhui Liu, Juan Zhang,
514 Guodong Guo, and Baochang Zhang. Fusion-mamba for cross-modality object detection, 2024b.
515 URL <https://arxiv.org/abs/2404.09146>.

516

517 Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale.
518 *arXiv preprint arXiv:2010.11929*, 2020.

519

520 Guillermo Gallego, Tobi Delbrück, G. Orchard, Chiara Bartolozzi, Brian Taba, Andrea Censi, Ste-
521 fan Leutenegger, Andrew J. Davison, Jörg Conradt, Kostas Daniilidis, and Davide Scaramuzza.
522 Event-based vision: A survey. *IEEE Transactions on Pattern Analysis and Machine Intelli-
523 gence*, 44:154–180, 2019. URL [https://api.semanticscholar.org/CorpusID:
524 118684904](https://api.semanticscholar.org/CorpusID:118684904).

525

526 Feng Gao, Xuepeng Jin, Xiaowei Zhou, Junyu Dong, and Qian Du. Msfmamba: Multi-scale fea-
527 ture fusion state space model for multi-source remote sensing image classification, 2025. URL
528 <https://arxiv.org/abs/2408.14255>.

529

530 Sam Gross, Marc’Aurelio Ranzato, and Arthur Szlam. Hard mixtures of experts for large scale
531 weakly supervised vision, 2017. URL <https://arxiv.org/abs/1704.06363>.

532

533 Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. *arXiv
534 preprint arXiv:2312.00752*, 2023.

535

536 Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
537 state spaces. *arXiv preprint arXiv:2111.00396*, 2021a.

538

539 Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré. Com-
540 bining recurrent, convolutional, and continuous-time models with linear state-space layers, 2021b.
541 URL <https://arxiv.org/abs/2110.13985>.

542

543 Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
544 state spaces, 2022. URL <https://arxiv.org/abs/2111.00396>.

540 Runduo Han, Xiuping Liu, Yi Zhang, Jun Zhou, Hongchen Tan, and Xin Li. Hierarchical event-
 541 rbg interaction network for single-eye expression recognition. *Information Sciences*, 690:121539,
 542 2025. ISSN 0020-0255. doi: <https://doi.org/10.1016/j.ins.2024.121539>. URL <https://www.sciencedirect.com/science/article/pii/S0020025524014531>.

543

544 Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. Can spatiotemporal 3d cnns retrace the history
 545 of 2d cnns and imagenet? In *Proceedings of the IEEE conference on Computer Vision and Pattern
 546 Recognition*, pp. 6546–6555, 2018.

547

548 Steven Hickson, Nick Dufour, Avneesh Sud, Vivek Kwatra, and Irfan Essa. Eyemotion: Classifying
 549 facial expressions in vr using eye-tracking cameras. *2019 IEEE Winter Conference on Applications
 550 of Computer Vision (WACV)*, pp. 1626–1635, 2017.

551

552 Steven Hickson, Nick Dufour, Avneesh Sud, Vivek Kwatra, and Irfan Essa. Eyemotion: Classifying
 553 facial expressions in vr using eye-tracking cameras. In *2019 IEEE Winter Conference on Applications
 554 of Computer Vision (WACV)*, pp. 1626–1635, 2019. doi: 10.1109/WACV.2019.00178.

555

556 Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. *Neural Computation*, 9(8):
 557 1735–1780, 1997. doi: 10.1162/neco.1997.9.8.1735.

558

559 Shihua Huang, Zhichao Lu, Xiaodong Cun, Yongjun Yu, Xiao Zhou, and Xi Shen. Deim: Detr with
 560 improved matching for fast convergence, 2024. URL <https://arxiv.org/abs/2412.04234>.

561

562 Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton. Adaptive mixtures
 563 of local experts. *Neural Computation*, 3(1):79–87, 1991. doi: 10.1162/neco.1991.3.1.79.

564

565 Jiyoung Lee, Sunok Kim, Seungryong Kim, and Kwanghoon Sohn. Multi-modal recurrent attention
 566 networks for facial expression recognition. *IEEE Transactions on Image Processing*, 29:6977–
 567 6991, 2020a. doi: 10.1109/TIP.2020.2996086.

568

569 Jiyoung Lee, Sunok Kim, Seungryong Kim, and Kwanghoon Sohn. Multi-modal recurrent attention
 570 networks for facial expression recognition. *IEEE Transactions on Image Processing*, 29:6977–
 6991, 2020b.

571

572 Kunchang Li, Xinhao Li, Yi Wang, Yinan He, Yali Wang, Limin Wang, and Yu Qiao. Videomamba:
 573 State space model for efficient video understanding, 2024. URL <https://arxiv.org/abs/2403.06977>.

574

575 Yong Li, Yuanzhi Wang, and Zhen Cui. Decoupled multimodal distilling for emotion recognition.
 576 In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp.
 577 6631–6640, 2023.

578

579 Chang Liu, Xin Ma, Xiaochen Yang, Yuxiang Zhang, and Yanni Dong. Como: Cross-
 580 mamba interaction and offset-guided fusion for multimodal object detection. *arXiv preprint
 581 arXiv:2412.18076*, 2024a.

582

583 Yue Liu, Yunjie Tian, Yuzhong Zhao, Hongtian Yu, Lingxi Xie, Yaowei Wang, Qixiang Ye, Jianbin
 584 Jiao, and Yunfan Liu. Vmamba: Visual state space model, 2024b. URL <https://arxiv.org/abs/2401.10166>.

585

586 Basil Mustafa, Carlos Riquelme, Joan Puigcerver, Rodolphe Jenatton, and Neil Houlsby. Multi-
 587 modal contrastive learning with limoe: the language-image mixture of experts. In S. Koyejo,
 588 S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neu-
 589 ral Information Processing Systems*, volume 35, pp. 9564–9576. Curran Associates, Inc.,
 590 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/3e67e84abf900bb2c7cbd5759bfce62d-Paper-Conference.pdf.

591

592 Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
 593 and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer,
 2017. URL <https://arxiv.org/abs/1701.06538>.

594 Muhammad Hameed Siddiqi, Rahman Ali, Abdul Sattar, Adil Mehmood Khan, and Sungyoung
 595 Lee. Depth camera-based facial expression recognition system using multilayer scheme. *IETE*
 596 *Technical Review*, 31(4):277–286, 2014.

597 Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann LeCun, and Manohar Paluri. A closer
 598 look at spatiotemporal convolutions for action recognition. In *Proceedings of the IEEE conference*
 599 *on Computer Vision and Pattern Recognition*, pp. 6450–6459, 2018.

600 Zifu Wan, Pingping Zhang, Yuhao Wang, Silong Yong, Simon Stepputtis, Katia Sycara, and Yaqi
 601 Xie. Sigma: Siamese mamba network for multi-modal semantic segmentation, 2024. URL
 602 <https://arxiv.org/abs/2404.04256>.

603 An Wang, Xingwu Sun, Ruobing Xie, Shuaipeng Li, Jiaqi Zhu, Zhen Yang, Pinxue Zhao, J. N. Han,
 604 Zhanhui Kang, Di Wang, Naoaki Okazaki, and Cheng zhong Xu. Hmoe: Heterogeneous mixture
 605 of experts for language modeling, 2024a. URL <https://arxiv.org/abs/2408.10681>.

606 Qichang Wang and Ruixia Liu. A new heterogeneous mixture of experts model for deepfake de-
 607 tection. In *International Conference on Computational Visual Media*, 2025. URL <https://api.semanticscholar.org/CorpusID:278366818>.

608 Yang Wang, Haiyang Mei, Qirui Bao, Ziqi Wei, Mike Zheng Shou, Haizhou Li, Bo Dong, and Xin
 609 Yang. Apprenticeship-inspired elegance: Synergistic knowledge distillation empowers spiking
 610 neural networks for efficient single-eye emotion recognition. In Kate Larson (ed.), *Proceed-
 611 ings of the Thirty-Third International Joint Conference on Artificial Intelligence, IJCAI-24*, pp.
 612 3160–3168. International Joint Conferences on Artificial Intelligence Organization, 8 2024b. doi:
 613 10.24963/ijcai.2024/350. URL <https://doi.org/10.24963/ijcai.2024/350>. Main
 614 Track.

615 Hao Wu, Jinghao Feng, Xuejin Tian, Edward Sun, Yunxin Liu, Bo Dong, Fengyuan Xu, and Sheng
 616 Zhong. Emo: real-time emotion recognition from single-eye images for resource-constrained
 617 eyewear devices. In *Proceedings of the 18th International Conference on Mobile Systems, Appli-
 618 cations, and Services*, MobiSys '20, pp. 448–461, New York, NY, USA, 2020a. Associa-
 619 tion for Computing Machinery. ISBN 9781450379540. doi: 10.1145/3386901.3388917. URL
 620 <https://doi.org/10.1145/3386901.3388917>.

621 Hao Wu, Jinghao Feng, Xuejin Tian, Edward Sun, Yunxin Liu, Bo Dong, Fengyuan Xu, and Sheng
 622 Zhong. Emo: Real-time emotion recognition from single-eye images for resource-constrained
 623 eyewear devices. In *Proceedings of the 18th International Conference on Mobile Systems, Appli-
 624 cations, and Services*, pp. 448–461, 2020b.

625 Shaohua Wu, Jiangang Luo, Xi Chen, Lingjun Li, Xudong Zhao, Tong Yu, Chao Wang, Yue Wang,
 626 Fei Wang, Weixu Qiao, Houbo He, Zeru Zhang, Zeyu Sun, Junxiong Mao, and Chong Shen. Yuan
 627 2.0-m32: Mixture of experts with attention router, 2024a. URL <https://arxiv.org/abs/2405.17976>.

628 Shaohua Wu, Jiangang Luo, Xi Chen, Lingjun Li, Xudong Zhao, Tong Yu, Chao Wang, Yue Wang,
 629 Fei Wang, Weixu Qiao, et al. Yuan 2.0-m32: Mixture of experts with attention router. *arXiv*
 630 *preprint arXiv:2405.17976*, 2024b.

631 Ming Xu, Tuo Shi, Hao Zhang, Zeyi Liu, and Xiao He. A hierarchical cross-modal spatial fusion
 632 network for multimodal emotion recognition. *IEEE Transactions on Artificial Intelligence*, pp.
 633 1–10, 2025. doi: 10.1109/TAI.2024.3523250.

634 Jiaxin Ye, Junping Zhang, and Hongming Shan. Depmamba: Progressive fusion mamba for multi-
 635 modal depression detection. In *ICASSP 2025 - 2025 IEEE International Conference on Acous-
 636 tics, Speech and Signal Processing (ICASSP)*, pp. 1–5, 2025. doi: 10.1109/ICASSP49660.2025.
 637 10889975.

638 Haiwei Zhang, Jiqing Zhang, Bo Dong, Pieter Peers, Wenwei Wu, Xiaopeng Wei, Felix Heide,
 639 and Xin Yang. In the blink of an eye: Event-based emotion recognition. In *Special Interest
 640 Group on Computer Graphics and Interactive Techniques Conference Conference Proceedings*,
 641 volume 10 of *SIGGRAPH '23*, pp. 1–11. ACM, July 2023a. doi: 10.1145/3588432.3591511.
 642 URL <http://dx.doi.org/10.1145/3588432.3591511>.

648 Haotian Zhang, Keyan Chen, Chenyang Liu, Hao Chen, Zhengxia Zou, and Zhenwei Shi. Cdmamba:
 649 Incorporating local clues into mamba for remote sensing image binary change detection. *IEEE*
 650 *Transactions on Geoscience and Remote Sensing*, 63:1–16, 2025. doi: 10.1109/TGRS.2025.
 651 3545012.

652 Zhicheng Zhang, Lijuan Wang, and Jufeng Yang. Weakly supervised video emotion detection and
 653 prediction via cross-modal temporal erasing network. In *Proceedings of the IEEE/CVF conference*
 654 *on computer vision and pattern recognition*, pp. 18888–18897, 2023b.

655 Sijie Zhao, Hao Chen, Xueliang Zhang, Pengfeng Xiao, Lei Bai, and Wanli Ouyang. Rs-mamba
 656 for large remote sensing image dense prediction. *IEEE Transactions on Geoscience and Remote*
 657 *Sensing*, 62:1–14, 2024. doi: 10.1109/TGRS.2024.3425540.

658 Zengqun Zhao and Qingshan Liu. Former-dfer: Dynamic facial expression recognition transformer.
 659 In *Proceedings of the 29th ACM International Conference on Multimedia*, pp. 1553–1561, 2021.

660 Ce Zheng, Matias Mendieta, and Chen Chen. Poster: A pyramid cross-fusion transformer network
 661 for facial expression recognition, 2023. URL <https://arxiv.org/abs/2204.04083>.

662 Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew Dai, Zhifeng
 663 Chen, Quoc Le, and James Laudon. Mixture-of-experts with expert choice routing, 2022a. URL
 664 <https://arxiv.org/abs/2202.09368>.

665 Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew M Dai, Quoc V
 666 Le, James Laudon, et al. Mixture-of-experts with expert choice routing. *Advances in Neural*
 667 *Information Processing Systems*, 35:7103–7114, 2022b.

668 Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang, Wenyu Liu, and Xinggang Wang. Vision
 669 mamba: Efficient visual representation learning with bidirectional state space model, 2024. URL
 670 <https://arxiv.org/abs/2401.09417>.

671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701

702 **A APPENDIX**
703704
705 Anonymous link to our code repository: <https://anonymous.4open.science/r/MCO-E-Net-459B>
706707
708 **A.1 EFFICIENCY ANALYSIS.**
709710 As shown in Table. 4, our method achieves 91.3% WAR, while attaining the fastest inference speed.
711 This accuracy-speed synergy demonstrates strong potential for real-time applications.
712

Methods	WAR	FLOPs (G)	Time (ms)
Eyemotion (Hickson et al., 2017)	78.8	5.73	17.5
EMO (Wu et al., 2020b)	63.1	0.32	7.1
SEEN (Zhang et al., 2023a)	83.6	0.95	7.2
MSKD (Wang et al., 2024b)	86.2	0.27	6.1
HI-Net (Han et al., 2025)	86.9	11.27	7.4
Ours	91.3	1.77	2.3

721 Table 4: Computational efficiency comparison of eye-based expression recognition methods.
722723
724
725 **A.2 ALGORITHM OF MJOS FOR MAMBA**
726727
728 **Algorithm 1** Process of Mamba with MJOS
729

730 **Input:** sequence \mathbf{E}, \mathbf{F}
Output: sequence $\mathbf{y}_{\text{RGB}}, \mathbf{y}_{\text{Event}}$

731 1: $\mathbf{X}_{\text{RGB}}, \mathbf{Z}_{\text{RGB}} \leftarrow \text{Lin}^{\mathbf{X}_{\text{RGB}}}(\mathbf{F}), \text{Lin}^{\mathbf{Z}_{\text{RGB}}}(\mathbf{F})$
732 2: $\mathbf{X}_{\text{Event}}, \mathbf{Z}_{\text{Event}} \leftarrow \text{Lin}^{\mathbf{X}_{\text{Event}}}(\mathbf{E}), \text{Lin}^{\mathbf{Z}_{\text{Event}}}(\mathbf{E})$
733 3: $\mathbf{X}'_{\text{RGB}}, \mathbf{X}'_{\text{Event}} \leftarrow \text{Conv1d}(\mathbf{X}_{\text{RGB}}), \text{Conv1d}(\mathbf{X}_{\text{Event}})$
734 4: **for** o in {forward,backward} **do**
735 /* Parameter initialization */
736 6: $\mathbf{A}_{\text{RGB}}^o, \mathbf{A}_{\text{Event}}^o \leftarrow \text{Parameter initialization}$
737 7: $\mathbf{B}_{\text{RGB}}^o, \mathbf{B}_{\text{Event}}^o \leftarrow \text{Lin}^{\mathbf{B}_{\text{RGB}}^o}(\mathbf{X}'_{\text{RGB}}), \text{Lin}^{\mathbf{B}_{\text{Event}}^o}(\mathbf{X}'_{\text{Event}})$
738 8: $\mathbf{B}_{\text{Fusion}}^o \leftarrow \text{Concat}(\mathbf{B}_{\text{RGB}}^o, \mathbf{B}_{\text{Event}}^o)$
739 9: $\mathbf{B}'_{\text{RGB}}^o \leftarrow \text{Lin}^{\mathbf{B}'_{\text{RGB}}^o}(\mathbf{B}_{\text{Fusion}}^o) + \mathbf{B}_{\text{RGB}}^o$
740 10: $\mathbf{B}'_{\text{Event}}^o \leftarrow \text{Lin}^{\mathbf{B}'_{\text{Event}}^o}(\mathbf{B}_{\text{Fusion}}^o) + \mathbf{B}_{\text{Event}}^o$
741 11: $\mathbf{C}_{\text{RGB}}^o, \mathbf{C}_{\text{Event}}^o \leftarrow \text{Lin}^{\mathbf{C}_{\text{RGB}}^o}(\mathbf{X}'_{\text{RGB}}), \text{Lin}^{\mathbf{C}_{\text{Event}}^o}(\mathbf{X}'_{\text{Event}})$
742 12: $\mathbf{C}_{\text{Fusion}}^o \leftarrow \text{Concat}(\mathbf{C}_{\text{RGB}}^o, \mathbf{C}_{\text{Event}}^o)$
743 13: $\mathbf{C}'_{\text{RGB}}^o \leftarrow \text{Lin}^{\mathbf{C}'_{\text{RGB}}^o}(\mathbf{C}_{\text{Fusion}}^o) + \mathbf{C}_{\text{RGB}}^o$
744 14: $\mathbf{C}'_{\text{Event}}^o \leftarrow \text{Lin}^{\mathbf{C}'_{\text{Event}}^o}(\mathbf{C}_{\text{Fusion}}^o) + \mathbf{C}_{\text{Event}}^o$
745 15: $\mathbf{D}_{\text{RGB}}^o, \mathbf{D}_{\text{Event}}^o \leftarrow 1$
746 /* Discretize */
747 17: $\Delta_{\text{RGB}}^o \leftarrow \log(1 + \exp(\text{Lin}^{\Delta_{\text{RGB}}^o}(\mathbf{X}'_{\text{RGB}}) + \text{Param}^{\Delta_{\text{RGB}}^o}))$
748 18: $\Delta_{\text{Event}}^o \leftarrow \log(1 + \exp(\text{Lin}^{\Delta_{\text{Event}}^o}(\mathbf{X}'_{\text{Event}}) + \text{Param}^{\Delta_{\text{Event}}^o}))$
749 19: $\bar{\mathbf{A}}_{\text{RGB}}^o, \bar{\mathbf{B}}_{\text{RGB}}^o \leftarrow \text{discretize}(\Delta_{\text{RGB}}^o, \mathbf{A}_{\text{RGB}}^o, \mathbf{B}_{\text{RGB}}^o)$
750 20: $\bar{\mathbf{A}}_{\text{Event}}^o, \bar{\mathbf{B}}_{\text{Event}}^o \leftarrow \text{discretize}(\Delta_{\text{Event}}^o, \mathbf{A}_{\text{Event}}^o, \mathbf{B}_{\text{Event}}^o)$
751 21: /* State Space Model */
752 22: $\mathbf{y}_{\text{RGB}}^o \leftarrow \text{SSM}(\bar{\mathbf{A}}_{\text{RGB}}^o, \bar{\mathbf{B}}_{\text{RGB}}^o, \mathbf{C}_{\text{RGB}}^o, \mathbf{D}_{\text{RGB}}^o)(\mathbf{x}'_{\text{RGB}})$
753 23: $\mathbf{y}_{\text{Event}}^o \leftarrow \text{SSM}(\bar{\mathbf{A}}_{\text{Event}}^o, \bar{\mathbf{B}}_{\text{Event}}^o, \mathbf{C}_{\text{Event}}^o, \mathbf{D}_{\text{Event}}^o)(\mathbf{x}'_{\text{Event}})$
754 24: **end for**
755 25: $\mathbf{y}_{\text{RGB}} \leftarrow \text{Lin}^{\mathbf{y}_{\text{RGB}}}(\mathbf{Z}_{\text{RGB}} \cdot (\mathbf{y}_{\text{RGB}}^{\text{forward}} + \mathbf{y}_{\text{RGB}}^{\text{backward}}))$
756 26: $\mathbf{y}_{\text{Event}} \leftarrow \text{Lin}^{\mathbf{y}_{\text{Event}}}(\mathbf{Z}_{\text{Event}} \cdot (\mathbf{y}_{\text{Event}}^{\text{forward}} + \mathbf{y}_{\text{Event}}^{\text{backward}}))$
757 27: **return** $\mathbf{y}_{\text{RGB}}, \mathbf{y}_{\text{Event}}$

756 Table 5: Results produced by change the number of experts in HCE-MoE
757

Methods	WAR	UAR
A. $N_e = 5$	90.0	90.6
B. $N_e = 10$	89.0	89.7
C. $N_e = 15$	89.5	90.3
D. Ours ($N_e = 8$)	91.3	91.9

763
764 A.3 MORE ABLATION STUDIES765 A.3.1 NUMBER OF EXPERTS IN HCE-MoE.
766

768 Table. 5 demonstrates the impact of varying the number of experts (N_e) in our HCE-MoE architecture on WAR and UAR. While configuration A ($N_e = 5$) achieves metrics of 90.0% WAR and 769 90.6% UAR, increasing the expert count to 10 (configuration B) paradoxically degrades performance to 89.0% WAR and 89.7% UAR. Subsequent expansion to 15 experts (configuration C) 770 yields partial recovery (89.5% WAR, 90.3% UAR), yet still underperforms relative to the baseline. 771 The result demonstrating that intermediate expert counts enable more effective knowledge specialization. 772 This optimal balance suggests that: Insufficient experts limit model capacity for capturing 773 complex pattern variations; Excessive experts introduce parameter complexities, resulting in reduced 774 performance.

775 Table 6: Results produced by change the *Topk* of HCE-MoE
776

Methods	WAR	UAR
A. $k = 1$	89.6	90.3
B. $k = 3$	90.3	90.9
C. $k = 5$	90.4	91.0
D. Ours ($k = 2$)	91.3	91.9

785 **Topk of HCE-MoE.** The experimental results in Table. 6 demonstrate a key balance in expert activation 786 for our HCE-MoE framework. While extending the activation experts from $k = 1$ to $k = 3$ 787 improves recognition accuracy, further upgrading to $k = 5$ yields only marginal gains, suggesting 788 the inherent limitations of indiscriminate expert aggregation. Our configuration with $k = 2$ achieves 789 optimal performance, outperforming both under activated and over activated settings by significant 790 margins.

791 A.3.2 DISCUSSION OF MCO-MAMBA
792793 Table 7: Results produced by different SSM matrix Interaction of our proposed MCO-Mamba.
794

Methods	WAR	UAR
A. MCO-Mamba (A)	90.2	90.8
B. MCO-Mamba (B)	90.2	90.8
C. MCO-Mamba (C)	90.1	90.7
D. MCO-Mamba (D)	89.8	90.5
E. MCO-Mamba (A, B)	89.9	90.6
F. MCO-Mamba (A, C)	90.2	90.9
G. MCO-Mamba (A, D)	89.5	90.2
H. MCO-Mamba (B, D)	89.8	90.4
I. MCO-Mamba (C, D)	90.1	90.7
J. MCO-Mamba (A, B, C, D)	90.0	90.6
K. MCO-Mamba (B, C)	91.3	91.9

808 To verify the effectiveness of MCO-Mamba, we designed experiments from three perspectives: pa-
809 rameter sharing, selection of interactive parameters, and exchange of parameters.

810 **Parameter sharing.** As mentioned in related work, static interaction strategies (such as simple
 811 parameter sharing or exchanging) that force a unified feature space tend to weaken modality-
 812 specific features and cause an imbalance between modality-shared and modality-specific features.
 813 To demonstrate that the static strategy that only sharing parameters between modalities affects
 814 modality-specific representations, we designed experiments A to D of Table. 7. A to D respectively
 815 indicate that the Multi-modal Joint Optimization Scheme (MJOS) is removed in our MCO-Mamba,
 816 and only a single parameter matrix A , B , C or D is shared. From the results, we can see that
 817 the performance drops dramatically. This is because the shared SSM parameter matrix affects the
 818 modality-specific representation, resulting in an imbalance in the representation between modalities.

819 **Selection of interactive parameters.** To validate our choice of interacting B and C , we designed
 820 experiments E to I of Table. 7, which represent interactive operations \mathcal{M} on different parameter
 821 matrices. From the analysis E to I of Table. 7, we can see that the performance has dropped
 822 significantly due to the A and D . A interacts between two modalities, resulting in unstable state
 823 transitions. D is a residual term, and interacting with D will affect the introduction of original
 824 information.

825 **Exchange of parameters.** As shown in row J of Table. 7, we exchange all SSM parameters of
 826 the two modalities. The observed performance degradation stems from the oversimplified exchange
 827 mechanism undermining the critical modal-sharing features, which are essential for maintaining
 828 synergistic coupling between multi-modality.

829 A.3.3 DISCUSSION OF HCE-MOE

830 Table 8: Results produced by change the router

831 Methods	832 WAR	833 UAR
834 A. MLP	88.9	89.7
835 B. Deep experts Only.	90.2	90.9
836 C. Attention Experts Only	89.9	90.6
837 D. Focal Experts Only	89.9	90.5
838 E. Ours	91.3	91.9

840 The ablation study on router architectures as shown in Table. 8, where we designed four experiment
 841 A to D : A is to exchange HCE-MoE for MLP; B is to keep only Deep expert in HCE-MoE; C
 842 is to keep only Attention Experts in HCE-MoE; B is to keep only Focal Experts in HCE-MoE.
 843 our proposed routing mechanism E achieves state-of-the-art performance. The MLP baseline (A)
 844 produces the weakest results, and our designed expert show clear advantages: the Deep Expert (B)
 845 achieves 90.2% WAR, slightly better than the Attention Expert (C) and Focal Expert (D), indicating
 846 that the deep expert provides slightly greater discriminative power for this task.

847 A.4 ORTHOGONAL LOSS

848 In order to verify the effectiveness of the Orthogonal Loss we used in HCE-MoE, we recorded the
 849 proportion of the expert’s activation and the proportion of the weight in the experiment.

850 Fig. 6 demonstrates a remarkably consistent equilibrium in our Heterogeneous Collaborative and
 851 Expansion Mixture-of-Experts (HCE-MoE). In the activation landscape (left), all three expert types
 852 maintain near-identical utilization rates across 200 training epochs, with trajectories strictly bound
 853 within 5% deviation from the theoretical equipartition line (30%). The inter-expert fluctuation range
 854 remains confined below 2% at any sampled epoch (e.g., epoch 100: Focal 31.2%, Attention 29.8%,
 855 Deep 30.1%).

856 This equilibrium extends to parameter allocation, where the weight distribution (right) forms in-
 857 variant proportional bands: Focal (blue, baseline), Attention (red, middle), and Deep (green, upper)
 858 experts perpetually occupy fixed 33.3%~0.5% partitions of the total parametric resources. The perfect
 859 superimposition of weight boundaries at all epochs confirms an explicit anti-collapse mechanism, as
 860 neither specialist dominates nor diminishes in representational capacity.

861 As evidenced by the t-SNE projection in Fig. 7, the distinct spatial segregation among features, rep-
 862 resented by blue circles (Focal), green crosses (Attention), and red diamonds (Deep), demonstrates

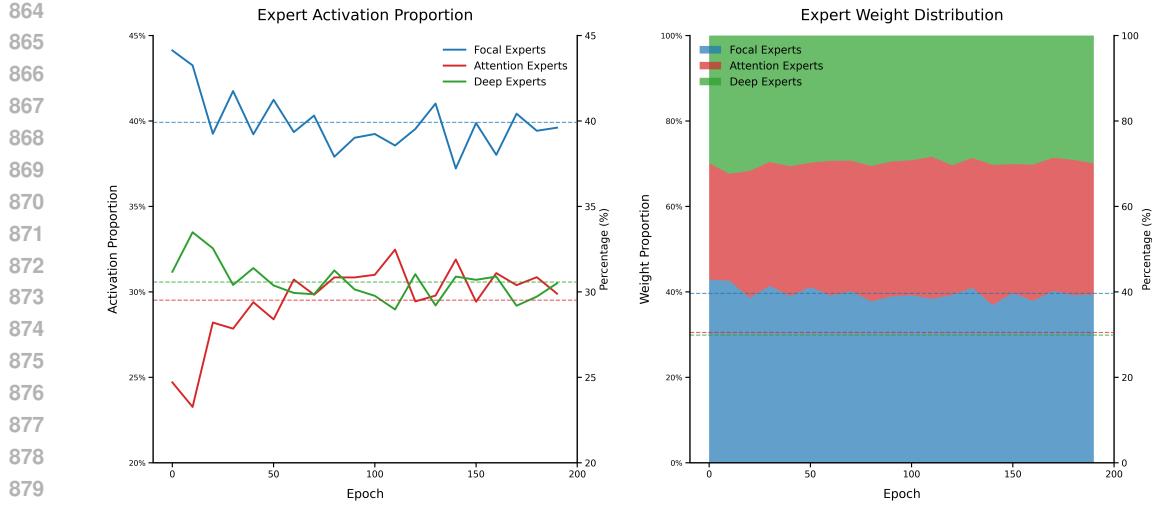


Figure 6: Activation percentage of different experts during training.

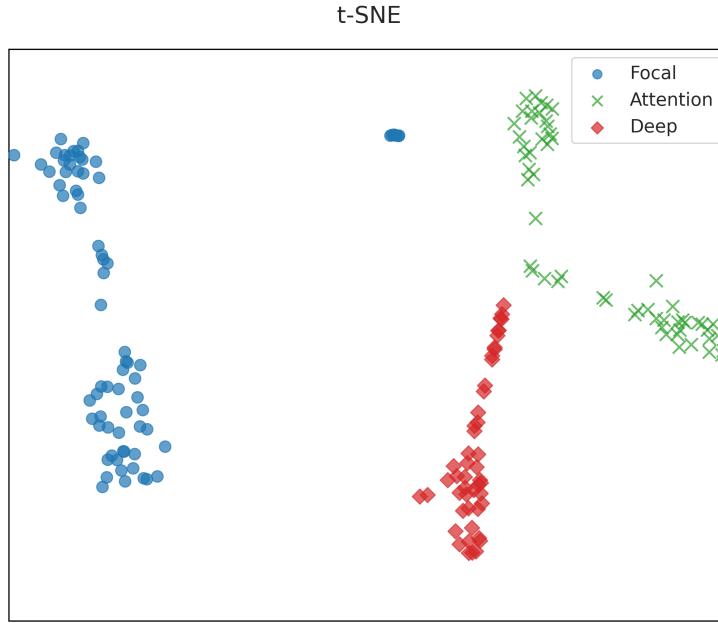


Figure 7: t-SNE of features extracted by different experts.

fundamental divergence in representational space across expert types. The Focal experts concentrate within a dense low-variance cluster. In contrast, Attention experts exhibit deliberate dispersion across the central band. The Deep experts vertically stratify along high-dimensional boundaries.

Spatial isolation of clusters confirms orthogonal knowledge extraction, where collectively enabling complementary representation learning without collision.

A.5 VISUAL COMPARISON OF MCO-E NET AND OTHER SOTA METHODS

As shown in Fig. 8, our method demonstrates superior capability in capturing and emphasizing semantic features around eye or eyebrow regions across four lighting conditions when compared with SEEN (Zhang et al., 2023a) and HI-Net (Han et al., 2025). This focused perception enhances expression classification accuracy.

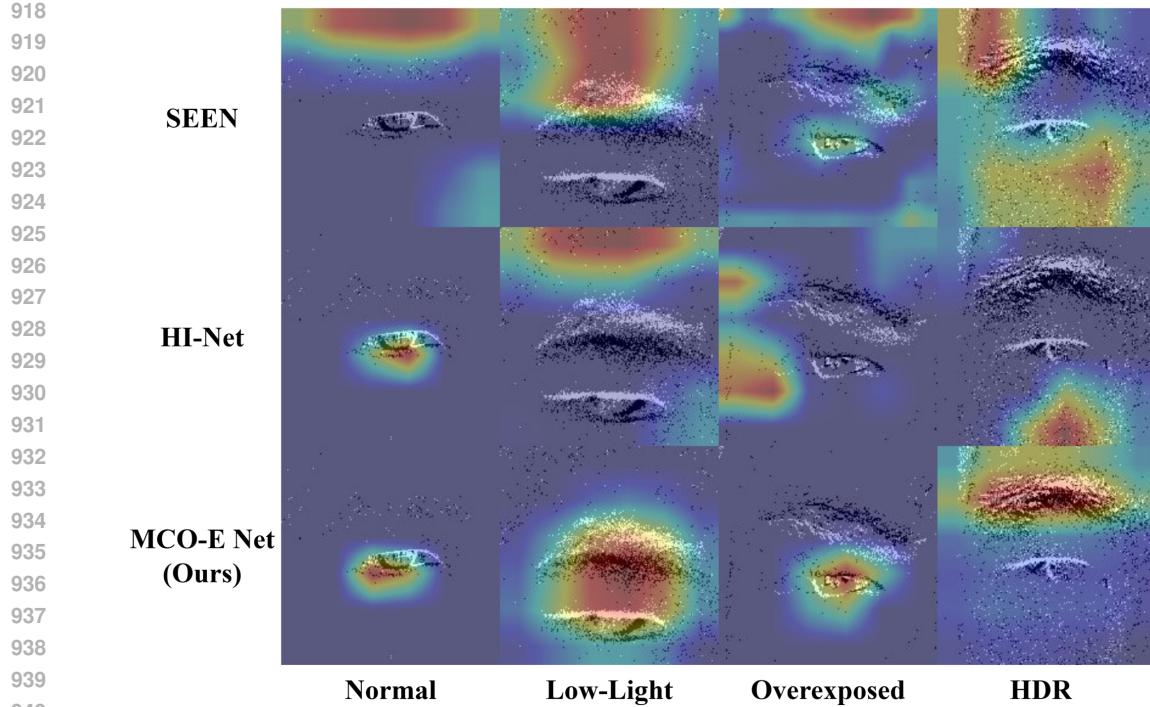


Figure 8: Heatmap visualization of the comparison between our proposed MCO-E Net and SOTA methods

Overall, experimental results confirm that our proposed network performance breakthrough (91.3% and 91.9% in WAR and UAR) is attributed to two core innovations: MCO-Mamba enabling dynamic cross modality parameter interaction and semantic fusion, and HCE-MoE can to cover feature space and make predictions by constructing multiple heterogeneous expert for the single-eye expression recognition task.

A.6 IMPLEMENTATION DETAILS.

We trained our network for 200 epochs with batch size of 64 on a NVIDIA GeForce RTX 2080Ti GPU. We set event channels B to 3, number of experts N_e to 8 and $TopK$ to 2. We set the number of input frames/tensors m to 2. We implemented MCO-E Net in PyTorch. We trained AdamW with a weight decay 0.001, and the learning rate was set to 0.0003.

A.7 EVENT CAMERA

Event cameras (Gallego et al., 2019) detect pixel-level changes in scene reflectance with microsecond-level latency and temporal precision, significantly reducing redundant data. These characteristics enable distinct advantages including microsecond response times ($\approx 1 \mu\text{s}$), exceptional dynamic range (up to 140 dB), and energy-efficient operation. Event generation occurs exclusively when logarithmic intensity changes at individual pixels surpass a predefined threshold.

$$\mathcal{E}_i = \{(x_i, y_i, t_i, p_i)\}, i = 1, \dots, n \quad (18)$$

Here, \mathcal{E}_i denotes the i -th event, where (x_i, y_i) represents pixel coordinates, t_i specifies the timestamp with microsecond precision, and $p_i \in \{\pm 1\}$ indicates polarity. The polarity p is determined by the direction of brightness change: $p = +1$ corresponds to brightness increase, and $p = -1$ to brightness decrease at the pixel location.

Following Ahmad et al. (2023), we also convert the asynchronous event data into a voxel grid. The event sequence is represented as E_1, E_2, \dots, E_m , where the dimension of each event tensor

972 $E_i \in \mathbb{R}^{H \times W \times B}$. In the event tensor E_i , the spatio-temporal coordinates, $x_k \in H$, $y_k \in W$,
 973 $t_b \in (B - 1)$, lie on a voxel grid such that $x_k \in \{1, 2, \dots, H\}$, $y_k \in \{1, 2, \dots, W\}$, and $t_b \in$
 974 $\{t_0, t_0 + \Delta t, \dots, t_0 + (B - 1) \Delta t\}$, where t_0 is the first time stamp, Δt is the bin size, and $B - 1$ is
 975 the number of temporal bins and W, H are the sensor width and height.
 976

977 A.8 STATE SPACE MODEL (SSM)

979 Mamba (Gu & Dao, 2023) demonstrates superior capability in modeling complex sequential de-
 980 pendencies through its structured State Space Model (SSM) architecture. This innovation renders
 981 it particularly effective for long-sequence processing tasks, where conventional Transformer mod-
 982 els (Dosovitskiy, 2020; Huang et al., 2024) face limitations due to their quadratic computational
 983 complexity. Unlike Transformer-based approaches, Mamba exhibits linear computational complex-
 984 ity scaling with sequence length, offering superior computational efficiency for extended sequences.
 985 Therefore, here we introduce the construction process of SSM.

986 State Space Models (SSMs) (Gu et al., 2021a; Gu & Dao, 2023) are control-theoretic frameworks
 987 that formalize dynamical systems for sequential data processing. Originally derived from linear
 988 system theory, these models employ state transitions and observation equations to capture temporal
 989 dependencies in discrete sequences:

$$990 \quad \begin{aligned} h'(t) &= \mathbf{A}h(t) + \mathbf{B}x(t), \\ 991 \quad y(t) &= \mathbf{C}h(t) + \mathbf{D}x(t). \end{aligned} \quad (19)$$

993 SSM is defined by four parameters $(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})$, where \mathbf{A} is the state matrix, \mathbf{B} is the input matrix,
 994 \mathbf{C} is the output matrix and \mathbf{D} is the feedforward matrix.

995 **Discretization.** The continuous parameters A and B undergo discretization through transformation
 996 methods using the timescale parameter Δ , yielding discrete counterparts $\bar{\mathbf{A}}$ and $\bar{\mathbf{B}}$. This process
 997 can be implemented with numerical integration techniques, particularly through the zero-order hold
 998 (ZOH) method formalized in equation (20):
 999

$$1000 \quad \begin{aligned} \bar{\mathbf{A}} &= \exp(\Delta \mathbf{A}), \\ 1001 \quad \bar{\mathbf{B}} &= (\Delta \mathbf{A})^{-1}(\exp(\Delta \mathbf{A}) - \mathbf{I}) \cdot \Delta \mathbf{B}. \end{aligned} \quad (20)$$

1003 The discretization process maps continuous-time parameters $(\Delta, \mathbf{A}, \mathbf{B},$
 1004 $\mathbf{C}, \mathbf{D})$ to their discrete counterparts $(\bar{\mathbf{A}}, \bar{\mathbf{B}}, \mathbf{C}, \mathbf{D})$. Following discretization, the differential equa-
 1005 tion of SSM can be expressed as follows:

$$1006 \quad \begin{aligned} h_t &= \bar{\mathbf{A}}h_{t-1} + \bar{\mathbf{B}}x_t, \\ 1007 \quad y_t &= \mathbf{C}h_t + \mathbf{D}x_t. \end{aligned} \quad (21)$$

1009 In addition, the unidirectional SSM designed by Mamba (Gu & Dao, 2023) can only process se-
 1010 quences in one direction, while visual tasks require contextual information. Therefore, many meth-
 1011 ods (Zhu et al., 2024; Wan et al., 2024; Zhao et al., 2024) use SSM with bidirectional scanning to
 1012 capture global dependencies and overall semantics more accurately.
 1013

1014 A.9 VISUALIZATION

1016 The color distribution of the heat map reveals the complex relationship between emotional expres-
 1017 sion and eye dynamic characteristics as shown in Fig. 9. Under normal lighting conditions, anger and
 1018 disgust show highly similar eyelid edge activation patterns, but the former extends more significantly
 1019 in the triangular high heat area at the outer corner of the eye, suggesting that the model may capture
 1020 the subtle boundary between the two emotions. The pupil area of the happiness emotion maintains
 1021 a stable annular thermal envelope in all types of lighting, and the yellow ring structure around the
 1022 eye is in sharp contrast to the red pupil of the surprised emotion. It is particularly noteworthy that
 1023 the heat map of the neutral state shows a unique diffusion characteristic under overexposure con-
 1024 ditions. The uniform distribution of light blue around the eyes contrasts with the fragmented response
 1025 of other emotions in the same lighting, indicating that the model has established an independent
 lighting invariant representation for the emotion-deficient state.

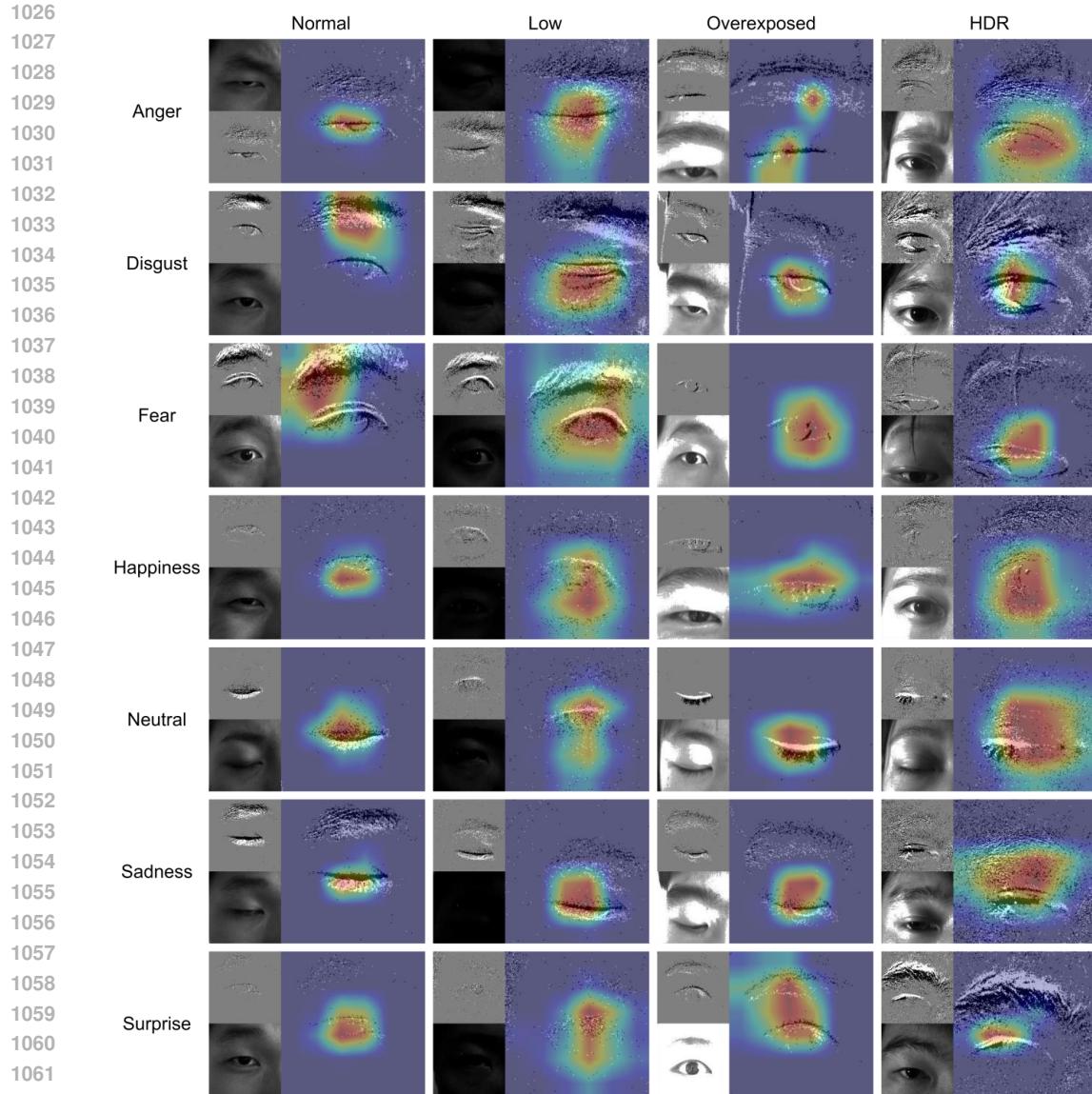


Figure 9: Heat Map Visualization of our proposed MCO-E Net

The thermal shift phenomenon caused by low-light environment reveals the adaptive mechanism of the model. The high response area of the inner corner of the eye for fear and sadness spreads toward the glabella in low light. This migration pattern may reflect the model's compensation strategy for the loss of eye details - maintaining the ability to distinguish emotions by tracking a wider range of muscle group movements. The performance of the HDR channel is particularly prominent. Separate high thermal cores are observed in the middle and lower eyelids in anger, while surprise shows synchronous activation of the pupil center and upper eyelid. This hierarchical response feature suggests that the model adopts differentiated feature fusion strategies under different lighting conditions.

Fig. 9 shows that the model is most robust in encoding happiness and surprise. In the full range of illumination from low light to HDR, the annular thermal structure of happiness remains intact, while the pupil high thermal area of surprise always occupies the visual center. In contrast, the thermal diffusion of the neutral state under overexposure conditions increases compared to normal illumination, but the low-temperature uniform distribution pattern of the periocular muscles remains recognizable, indicating that the model's judgment of the baseline state relies on the overall distribu-

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
tion characteristics rather than local hot spots. These observations together confirm that the feature fusion mechanism in the design effectively balances local details and global information.

A.10 LIMITATIONS

While MCO-E Net achieves SOTA performance (WAR and UAR on SEE and DSEE datasets), its computational efficiency presents opportunities for optimization toward edge deployment. The bidirectional state-space modeling in MCO-Mamba necessitates dual-sequence processing for RGB and event modalities, leading to quadratic complexity growth relative to input sequence length. our design contributes to 1.77 GFLOPs, which may challenge resource-constrained devices like AR headsets or embedded systems.

These architectural trade-offs were justified by significant accuracy gains under challenging lighting conditions. Future work could explore hardware-aware neural architecture search to balance computational efficiency and latency.

Notably, our model still outperforms prior works in speed-accuracy trade-offs, and the limitations primarily reflect inherent challenges in fusing long-range spatiotemporal modalities rather than algorithmic deficiencies.

A.11 STATEMENT

A.11.1 ETHICS STATEMENT

We have adhered to the ICLR Code of Ethics in all stages of this research, including paper submission, reviewing, and discussion. Our study does not involve human subjects, and we have complied with all relevant legal and ethical guidelines. There are no conflicts of interest, sponsorship concerns, or biases in our work. We are committed to maintaining research integrity and transparency throughout the process.

A.11.2 REPRODUCIBILITY STATEMENT

We have taken steps to ensure the reproducibility of our work. The source code for the models and algorithms used in this paper is available in the supplementary materials. All datasets used in the experiments are described in detail, with processing steps outlined in the appendix. Our methods and results can be independently verified by following the instructions in these materials.

A.11.3 THE USE OF LARGE LANGUAGE MODELS (LLMs)

No large language models (LLMs) were utilized in the ideation, writing, or analysis of this research. All conceptualization, research design, data collection, analysis, and manuscript preparation were carried out independently by the authors, without the assistance of any automated language generation tools or AI models. The content of this paper is solely the result of the authors' original work and intellectual contributions.

REFERENCES

Shafiq Ahmad, Pietro Morerio, and Alessio Del Bue. Person re-identification without identification via event anonymization, 2023. URL <https://arxiv.org/abs/2308.04402>.

Pablo Barros and Alessandra Sciutti. I only have eyes for you: The impact of masks on convolutional-based facial expression recognition, 2021. URL <https://arxiv.org/abs/2104.08353>.

Tamer Basar. *A New Approach to Linear Filtering and Prediction Problems*, pp. 167–179. 2001. doi: 10.1109/9780470544334.ch9.

Gal Blecher and Shai Fine. Moeatt: A deep mixture of experts model using attention-based routing gate. In *2023 International Conference on Machine Learning and Applications (ICMLA)*, pp. 1018–1024, 2023a. doi: 10.1109/ICMLA58977.2023.00151.

1134 Gal Blecher and Shai Fine. Moeatt: A deep mixture of experts model using attention-based routing
 1135 gate. In *2023 International Conference on Machine Learning and Applications (ICMLA)*, pp.
 1136 1018–1024. IEEE, 2023b.

1137 Bowen Chen, Keyan Chen, Mohan Yang, Zhengxia Zou, and Zhenwei Shi. Heterogeneous mixture
 1138 of experts for remote sensing image super-resolution. *IEEE Geoscience and Remote Sensing
 1139 Letters*, 22:1–5, 2025. doi: 10.1109/LGRS.2025.3557928.

1140 Kyunghyun Cho. Learning phrase representations using rnn encoder-decoder for statistical machine
 1141 translation. *arXiv preprint arXiv:1406.1078*, 2014.

1142 Hongwei Dong, Shun Na, and Fengye Hu. Hybrid-fusion mamba for multi-task point cloud learning
 1143 with visual perception sensors. *IEEE Internet of Things Journal*, pp. 1–1, 2024a. doi: 10.1109/
 1144 JIOT.2024.3512598.

1145 Wenhao Dong, Haodong Zhu, Shaohui Lin, Xiaoyan Luo, Yunhang Shen, Xuhui Liu, Juan Zhang,
 1146 Guodong Guo, and Baochang Zhang. Fusion-mamba for cross-modality object detection, 2024b.
 1147 URL <https://arxiv.org/abs/2404.09146>.

1148 Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale.
 1149 *arXiv preprint arXiv:2010.11929*, 2020.

1150 Guillermo Gallego, Tobi Delbrück, G. Orchard, Chiara Bartolozzi, Brian Taba, Andrea Censi, Ste-
 1151 fan Leutenegger, Andrew J. Davison, Jörg Conradt, Kostas Daniilidis, and Davide Scaramuzza.
 1152 Event-based vision: A survey. *IEEE Transactions on Pattern Analysis and Machine Intelli-
 1153 gence*, 44:154–180, 2019. URL [https://api.semanticscholar.org/CorpusID:
 1154 118684904](https://api.semanticscholar.org/CorpusID:118684904).

1155 Feng Gao, Xuepeng Jin, Xiaowei Zhou, Junyu Dong, and Qian Du. Msfmamba: Multi-scale fea-
 1156 ture fusion state space model for multi-source remote sensing image classification, 2025. URL
 1157 <https://arxiv.org/abs/2408.14255>.

1158 Sam Gross, Marc’Aurelio Ranzato, and Arthur Szlam. Hard mixtures of experts for large scale
 1159 weakly supervised vision, 2017. URL <https://arxiv.org/abs/1704.06363>.

1160 Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. *arXiv
 1161 preprint arXiv:2312.00752*, 2023.

1162 Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
 1163 state spaces. *arXiv preprint arXiv:2111.00396*, 2021a.

1164 Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré. Com-
 1165 bining recurrent, convolutional, and continuous-time models with linear state-space layers, 2021b.
 1166 URL <https://arxiv.org/abs/2110.13985>.

1167 Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
 1168 state spaces, 2022. URL <https://arxiv.org/abs/2111.00396>.

1169 Runduo Han, Xiuping Liu, Yi Zhang, Jun Zhou, Hongchen Tan, and Xin Li. Hierarchical event-
 1170 rgb interaction network for single-eye expression recognition. *Information Sciences*, 690:121539,
 1171 2025. ISSN 0020-0255. doi: <https://doi.org/10.1016/j.ins.2024.121539>. URL <https://www.sciencedirect.com/science/article/pii/S0020025524014531>.

1172 Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. Can spatiotemporal 3d cnns retrace the history
 1173 of 2d cnns and imagenet? In *Proceedings of the IEEE conference on Computer Vision and Pattern
 1174 Recognition*, pp. 6546–6555, 2018.

1175 Steven Hickson, Nick Dufour, Avneesh Sud, Vivek Kwatra, and Irfan Essa. Eyemotion: Classifying
 1176 facial expressions in vr using eye-tracking cameras. *2019 IEEE Winter Conference on Appli-
 1177 cations of Computer Vision (WACV)*, pp. 1626–1635, 2017.

1178 Steven Hickson, Nick Dufour, Avneesh Sud, Vivek Kwatra, and Irfan Essa. Eyemotion: Classifying
 1179 facial expressions in vr using eye-tracking cameras. In *2019 IEEE Winter Conference on Appli-
 1180 cations of Computer Vision (WACV)*, pp. 1626–1635, 2019. doi: 10.1109/WACV.2019.00178.

1188 Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. *Neural Computation*, 9(8):
 1189 1735–1780, 1997. doi: 10.1162/neco.1997.9.8.1735.

1190

1191 Shihua Huang, Zhichao Lu, Xiaodong Cun, Yongjun Yu, Xiao Zhou, and Xi Shen. Deim: Detr with
 1192 improved matching for fast convergence, 2024. URL <https://arxiv.org/abs/2412.04234>.

1193

1194 Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton. Adaptive mixtures
 1195 of local experts. *Neural Computation*, 3(1):79–87, 1991. doi: 10.1162/neco.1991.3.1.79.

1196

1197 Jiyoung Lee, Sunok Kim, Seungryong Kim, and Kwanghoon Sohn. Multi-modal recurrent attention
 1198 networks for facial expression recognition. *IEEE Transactions on Image Processing*, 29:6977–
 1199 6991, 2020a. doi: 10.1109/TIP.2020.2996086.

1200

1201 Jiyoung Lee, Sunok Kim, Seungryong Kim, and Kwanghoon Sohn. Multi-modal recurrent attention
 1202 networks for facial expression recognition. *IEEE Transactions on Image Processing*, 29:6977–
 1203 6991, 2020b.

1204

1205 Kunchang Li, Xinhao Li, Yi Wang, Yinan He, Yali Wang, Limin Wang, and Yu Qiao. Videomamba:
 1206 State space model for efficient video understanding, 2024. URL <https://arxiv.org/abs/2403.06977>.

1207

1208 Yong Li, Yuanzhi Wang, and Zhen Cui. Decoupled multimodal distilling for emotion recognition.
 1209 In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp.
 6631–6640, 2023.

1210

1211 Chang Liu, Xin Ma, Xiaochen Yang, Yuxiang Zhang, and Yanni Dong. Como: Cross-
 1212 mamba interaction and offset-guided fusion for multimodal object detection. *arXiv preprint*
arXiv:2412.18076, 2024a.

1213

1214 Yue Liu, Yunjie Tian, Yuzhong Zhao, Hongtian Yu, Lingxi Xie, Yaowei Wang, Qixiang Ye, Jianbin
 1215 Jiao, and Yunfan Liu. Vmamba: Visual state space model, 2024b. URL <https://arxiv.org/abs/2401.10166>.

1216

1217 Basil Mustafa, Carlos Riquelme, Joan Puigcerver, Rodolphe Jenatton, and Neil Houlsby. Multi-
 1218 modal contrastive learning with limoe: the language-image mixture of experts. In S. Koyejo,
 1219 S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neu-
 1220 ral Information Processing Systems*, volume 35, pp. 9564–9576. Curran Associates, Inc.,
 1221 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/3e67e84abf900bb2c7cbd5759bfce62d-Paper-Conference.pdf.

1222

1223 Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
 1224 and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer,
 1225 2017. URL <https://arxiv.org/abs/1701.06538>.

1226

1227 Muhammad Hameed Siddiqi, Rahman Ali, Abdul Sattar, Adil Mehmood Khan, and Sungyoung
 1228 Lee. Depth camera-based facial expression recognition system using multilayer scheme. *IETE
 1229 Technical Review*, 31(4):277–286, 2014.

1230

1231 Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann LeCun, and Manohar Paluri. A closer
 1232 look at spatiotemporal convolutions for action recognition. In *Proceedings of the IEEE conference
 1233 on Computer Vision and Pattern Recognition*, pp. 6450–6459, 2018.

1234

1235 Zifu Wan, Pingping Zhang, Yuhao Wang, Silong Yong, Simon Stepputtis, Katia Sycara, and Yaqi
 1236 Xie. Sigma: Siamese mamba network for multi-modal semantic segmentation, 2024. URL
<https://arxiv.org/abs/2404.04256>.

1237

1238 An Wang, Xingwu Sun, Ruobing Xie, Shuaipeng Li, Jiaqi Zhu, Zhen Yang, Pinxue Zhao, J. N. Han,
 1239 Zhanhui Kang, Di Wang, Naoaki Okazaki, and Cheng zhong Xu. Hmoe: Heterogeneous mixture
 1240 of experts for language modeling, 2024a. URL <https://arxiv.org/abs/2408.10681>.

1241

Qichang Wang and Ruixia Liu. A new heterogeneous mixture of experts model for deepfake de-
 1242 tection. In *International Conference on Computational Visual Media*, 2025. URL <https://api.semanticscholar.org/CorpusID:278366818>.

1242 Yang Wang, Haiyang Mei, Qirui Bao, Ziqi Wei, Mike Zheng Shou, Haizhou Li, Bo Dong, and Xin
 1243 Yang. Apprenticeship-inspired elegance: Synergistic knowledge distillation empowers spiking
 1244 neural networks for efficient single-eye emotion recognition. In Kate Larson (ed.), *Proceed-
 1245 ings of the Thirty-Third International Joint Conference on Artificial Intelligence, IJCAI-24*, pp.
 1246 3160–3168. International Joint Conferences on Artificial Intelligence Organization, 8 2024b. doi:
 1247 10.24963/ijcai.2024/350. URL <https://doi.org/10.24963/ijcai.2024/350>. Main
 1248 Track.

1249 Hao Wu, Jinghao Feng, Xuejin Tian, Edward Sun, Yunxin Liu, Bo Dong, Fengyuan Xu, and Sheng
 1250 Zhong. Emo: real-time emotion recognition from single-eye images for resource-constrained
 1251 eyewear devices. In *Proceedings of the 18th International Conference on Mobile Systems, Ap-
 1252 plications, and Services*, MobiSys '20, pp. 448–461, New York, NY, USA, 2020a. Associa-
 1253 tion for Computing Machinery. ISBN 9781450379540. doi: 10.1145/3386901.3388917. URL
 1254 <https://doi.org/10.1145/3386901.3388917>.

1255 Hao Wu, Jinghao Feng, Xuejin Tian, Edward Sun, Yunxin Liu, Bo Dong, Fengyuan Xu, and Sheng
 1256 Zhong. Emo: Real-time emotion recognition from single-eye images for resource-constrained
 1257 eyewear devices. In *Proceedings of the 18th International Conference on Mobile Systems, Ap-
 1258 plications, and Services*, pp. 448–461, 2020b.

1259 Shaohua Wu, Jiangang Luo, Xi Chen, Lingjun Li, Xudong Zhao, Tong Yu, Chao Wang, Yue Wang,
 1260 Fei Wang, Weixu Qiao, Houbo He, Zeru Zhang, Zeyu Sun, Junxiong Mao, and Chong Shen. Yuan
 1261 2.0-m32: Mixture of experts with attention router, 2024a. URL <https://arxiv.org/abs/2405.17976>.

1262 Shaohua Wu, Jiangang Luo, Xi Chen, Lingjun Li, Xudong Zhao, Tong Yu, Chao Wang, Yue Wang,
 1263 Fei Wang, Weixu Qiao, et al. Yuan 2.0-m32: Mixture of experts with attention router. *arXiv
 1264 preprint arXiv:2405.17976*, 2024b.

1265 Ming Xu, Tuo Shi, Hao Zhang, Zeyi Liu, and Xiao He. A hierarchical cross-modal spatial fusion
 1266 network for multimodal emotion recognition. *IEEE Transactions on Artificial Intelligence*, pp.
 1267 1–10, 2025. doi: 10.1109/TAI.2024.3523250.

1268 Jiaxin Ye, Junping Zhang, and Hongming Shan. Depmamba: Progressive fusion mamba for multi-
 1269 modal depression detection. In *ICASSP 2025 - 2025 IEEE International Conference on Acous-
 1270 tics, Speech and Signal Processing (ICASSP)*, pp. 1–5, 2025. doi: 10.1109/ICASSP49660.2025.
 1271 10889975.

1272 Haiwei Zhang, Jiqing Zhang, Bo Dong, Pieter Peers, Wenwei Wu, Xiaopeng Wei, Felix Heide,
 1273 and Xin Yang. In the blink of an eye: Event-based emotion recognition. In *Special Interest
 1274 Group on Computer Graphics and Interactive Techniques Conference Conference Proceedings*,
 1275 volume 10 of *SIGGRAPH '23*, pp. 1–11. ACM, July 2023a. doi: 10.1145/3588432.3591511.
 1276 URL <http://dx.doi.org/10.1145/3588432.3591511>.

1277 Haotian Zhang, Keyan Chen, Chenyang Liu, Hao Chen, Zhengxia Zou, and Zhenwei Shi. Cdmamba:
 1278 Incorporating local clues into mamba for remote sensing image binary change detection. *IEEE
 1279 Transactions on Geoscience and Remote Sensing*, 63:1–16, 2025. doi: 10.1109/TGRS.2025.
 1280 3545012.

1281 Zhicheng Zhang, Lijuan Wang, and Jufeng Yang. Weakly supervised video emotion detection and
 1282 prediction via cross-modal temporal erasing network. In *Proceedings of the IEEE/CVF conference
 1283 on computer vision and pattern recognition*, pp. 18888–18897, 2023b.

1284 Sijie Zhao, Hao Chen, Xueliang Zhang, Pengfeng Xiao, Lei Bai, and Wanli Ouyang. Rs-mamba
 1285 for large remote sensing image dense prediction. *IEEE Transactions on Geoscience and Remote
 1286 Sensing*, 62:1–14, 2024. doi: 10.1109/TGRS.2024.3425540.

1287 Zengqun Zhao and Qingshan Liu. Former-dfer: Dynamic facial expression recognition transformer.
 1288 In *Proceedings of the 29th ACM International Conference on Multimedia*, pp. 1553–1561, 2021.

1289 Ce Zheng, Matias Mendieta, and Chen Chen. Poster: A pyramid cross-fusion transformer network
 1290 for facial expression recognition, 2023. URL <https://arxiv.org/abs/2204.04083>.

1291

1296 Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew Dai, Zhifeng
1297 Chen, Quoc Le, and James Laudon. Mixture-of-experts with expert choice routing, 2022a. URL
1298 <https://arxiv.org/abs/2202.09368>.

1299 Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew M Dai, Quoc V
1300 Le, James Laudon, et al. Mixture-of-experts with expert choice routing. *Advances in Neural*
1301 *Information Processing Systems*, 35:7103–7114, 2022b.

1302

1303 Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang, Wenyu Liu, and Xinggang Wang. Vision
1304 mamba: Efficient visual representation learning with bidirectional state space model, 2024. URL
1305 <https://arxiv.org/abs/2401.09417>.

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349