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ABSTRACT

Multi-task learning (MTL) enables knowledge sharing across tasks but often suf-
fers from gradient conflicts, leading to performance imbalances among tasks. Ex-
isting weighting-based methods attempt to balance the directional conflicts by
striving for the optimal weights computed from gradient or loss information.
However, those indirect weighting operations face a limited balancing effect, as
the gradient’s per-dimensional sensitivities are omitted. Alternatively, gradient
manipulation methods such as PCGrad, GradDrop, etc., directly control the task
gradients to eliminate opposing gradient directions, but their over-aggressive op-
erations potentially harm the gradient properties, leading to suboptimal updates.
They are associated with the issues of over-correction, order dependence, and poor
scalability in high-dimensional task settings. To overcome these limitations, we
propose the Rotation-Based Gradient Balancing (RGB), a novel algorithm that ro-
tates normalized task gradients toward a consensus direction using independently
optimized per-task angle corrections. Unlike projections, rotations provide fine-
grained control that preserves beneficial gradient components, reduces global con-
flicts holistically, and implicitly incorporates loss change information for balanced
optimization. Empirical results demonstrate the effectiveness and consistency of
RGB, achieving state-of-the-art performance in various datasets, where RGB is
the first method on the QM9 dataset with 11 tasks to surpass single-task baselines
on average, and its performance is consistent across various benchmarks ranging
from 3–40 tasks. Moreover, we propose the concept of multi-task equilibrium
relationship that is supported by our empirical experiment and inferring the phe-
nomenon of miss-correction angular error. We also provide the theoretical global
convergence of RGB to Pareto stationary under standard smoothness assumptions.

1 INTRODUCTION

Multi-task learning (MTL) is a learning paradigm that allows a single model to simultaneously
optimize multiple tasks given a set of shared parameters. It promotes knowledge transfer between
tasks to improve the model’s generalization and reduce computational overhead without the need
to train separate redundant models for practical applications. However, MTL might suffer from the
gradient conflict issue, where the task-specific gradients are in opposing directions and improper
aggregation can lead to suboptimal updates, causing performance imbalances in which dominant
tasks overshadow others.

Existing MTL approaches can be broadly categorized into weighting-indirect balancing and
gradient-direct balancing methods to resolve the corresponding issues. The former relies on the
loss or gradient information to compute an optimal weight for gradient aggregation, without directly
altering the task gradients. Methods include MGDA Sener & Koltun (2018), CAGrad Liu et al.
(2021a), NAsh-MTL Navon et al. (2022), Famo Liu et al. (2023), etc. However, dynamic weight-
ing optimization is oriented by first-order information, thus omitting the gradient’s per-dimension
sensitivities, resulting in an ineffective Hessian and potentially sub-optimizing the convergence.

Alternatively, gradient-based methods resolve the gradient conflict or performance imbalance issue
by directly altering the gradient properties. For instance, PCGrad Yu et al. (2020) relies on or-
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thogonal projections to subtract the conflicting component of one task’s gradient from another in
a pairwise and random order before unifying the update direction. GradDrop Chen et al. (2020)
probabilistically drops the gradient signs based on their alignment across tasks to reduce their inter-
ference during backpropagation. GradVac Wang et al. (2020) enhances the multi-task performance
of multilingual models by iteratively adjusting conflicting gradients through pairwise projections
based on cosine similarities relative to exponentially moving averaged historical correlations to mit-
igate negative transfer. RI-PCGrad Meng et al. (2024) integrates rescaling with PCGrad to ensure
the consideration of magnitude information after the projection correction.

Recently, MTL works have been dominated by weighting-indirect balancing methods such as Con-
sMTL Qin et al. (2025b), PIVRG Qin et al. (2025a), Go4Align Shen et al. (2024), BiLB4MTL Xiao
et al. (2025), etc. Although gradient-direct balancing methods are currently less prominent, they
offer several advantages over traditional loss-weighting approaches in multi-task learning. By di-
rectly manipulating gradients rather than merely scaling them with dynamic weights, these methods
provide greater control over training dynamics, allowing for more precise resolution of inter-task
conflicts and reduced destructive interference Zhang et al. (2024). However, existing gradient-direct
balancing methods still face some challenges that can restrict their applicability and performance,
particularly in terms of projection rigor, pairwise adjustment mechanisms, and performance incon-
sistencies.

Most gradient-direct balancing methods face performance inconsistency issues due to their rigorous
correction. For example, in PCGrad, for gradients gi and gj with negative cosine similarity (angles

exceeding 90°), gi is updated as gi ← gi − g⊤
i gj

∥gj∥2 gj , fully removing the conflicting component and
ensuring non-negative alignment. GradDrop might potentially drop important gradient information,
while GradVac alters the gradients only when the current cosine similarity dips below an EMA-
tracked historical average, which can cause delays in adapting to sudden shifts or evolving task
dynamics. This “hard-adjustment” prioritizes geometric orthogonality but overlooks the nuanced
effects on loss reduction. For minor conflicts—where cosine similarity is only marginally nega-
tive—the complete elimination of the opposing component may over-penalize gradients, potentially
discarding beneficial directions that could support overall descent without severely impacting other
tasks.

Furthermore, gradient-direct balancing methods are mainly conducted in a pairwise manner with
random order before aggregation. For T tasks, this requires processing up to

(
T
2

)
pairs, imposing

quadratic computational scaling (e.g., 3 tasks involve 3 pairs; 4 tasks involve 6 pairs), which be-
comes burdensome in high-task regimes. This pairwise focus optimizes local conflicts but neglects
a holistic, global view of the gradient system, potentially missing alignments that could optimize ag-
gregate descent across all tasks. Projections are executed sequentially in a shuffled order to approx-
imate symmetry, yet this introduces order-dependence: earlier adjustments alter subsequent ones,
which may bias the final gradient and introduce variability despite randomization. Such locality can
limit the methods’ ability to resolve complex inter-task interactions, particularly in high-dimensional
task settings and unbalanced datasets where certain tasks dominate.

To overcome these issues, we propose a novel gradient manipulation algorithm, namely RGB
(Rotation-Based Gradient Balancing), that aims to rotate each task’s normalized gradient towards a
consensus direction to minimize global gradient conflicts while taking the loss change information
into consideration. Each task’s gradient is adjusted with its corresponding optimized rotation angle
to achieve the global minimum of conflict between tasks.

Unlike projections or random dropouts, rotations allow fine-grained control via independent per-task
angles α ∈ [0, π/2]T , optimized to minimize a global objective comprising a conflict term (average
pairwise misalignment) and a proximity term (deviation from original gradients). This formulation
considers holistic gradient interactions and incorporates loss change information implicitly through
the consensus direction, enabling more balanced and efficient optimization.

Our contributions are threefold:

• We introduce a novel gradient manipulation algorithm, namely RGB (Rotation-Based Gra-
dient Balancing), a scalable rotation-based method for gradient balancing in MTL that
addresses global conflicts while preserving gradient integrity.
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• We propose the concept of multi-task equilibrium relationship 2.4 that is supported by
our empirical experiment A.8 and inferring the phenomenon of miss-correction angular
error A.9. We also provide the theoretical global convergence of RGB to Pareto stationary
under Lipschitz smoothness and Robbins-Monro stepsize conditions A.6.

• We show the effectiveness and consistency of our method in achieving state-of-the-art per-
formance based on empirical experiments with various datasets. Experiments also include
stress-testing under high-dimensional settings, where RGB is able to deliver superior per-
formance on both QM9 and CelebA datasets with 11 and 40 tasks respectively 3.

2 PRELIMINARIES AND METHODOLOGY

2.1 PARETO OPTIMALITY, COMMON DESCENT DIRECTION, AND PARETO STATIONARITY

Existing direct gradient-balancing method are over-aggressive in making correction for gradient-
conflict in a pairwise manner. The lack of global multi-tasks view might potentially over-looking the
inter-task relationship and distorting the multi-tasks performance. We first begin with the definition
of Pareto optimality, common descent direction and Pareto Stationarity before proposing a novel
concept of multi-task equilibrium relationship and miss-correction phenomena.

Pareto optimality refers to a point at which neither task can be improved without worsening another,
and common descent direction refers to a direction in the unified parameter space that simultane-
ously reduces all task losses. Pareto stationarity regards as a point where no such common descent
direction exists to improve all objectives at once. Their definition are as follows:
Definition 2.1 (Pareto Optimality). A point x∗ ∈ X is called Pareto optimal if there does not exist
another feasible point x ∈ X such that fz(x) ≤ fz(x

∗) for all z ∈ [Z] and F (x) ̸= F (x∗). The set
of all Pareto optimal solutions is called Pareto set, and the corresponding objective vectors {F (x∗)}
are regarded as Pareto front.
Definition 2.2 (Common Descent Direction). A vector v ∈ RD is called a common descent direc-
tion at a point θ if it simultaneously decreases all task losses at θ, i.e.,

⟨∇Li(θ), v⟩ < 0 ∀i ∈ {1, . . . , T}.
Definition 2.3 (Pareto Stationarity). A point x ∈ X is called Pareto stationary if no common descent
direction exists for all objectives at x. Formally, this holds when

range(∇F (x)⊤) ∩
(
−RM

++

)
= ∅,

where ∇F (x) = (∇f1(x),∇f2(x), . . . ,∇fZ(x)) ∈ Rd×M is the Jacobian of F (x), and RM
++

denotes the positive orthant cone. When all fz(x) are strongly convex, every Pareto stationary point
is also Pareto optimal.

For further details on the smoothness and gradient conditions to ensure the stability and convergence
of the rotation-based gradient balancing, see Definition A.1 and Assumption A.1 in Appendix. Af-
terward, we define the multi-task equilibrium relationship as 2.4 which will serve as the core to
develop our RGB equation 1.
Definition 2.4 (Multi-task Equilibrium Relationship). Let {ḡi}Ti=1 denote the normalized task gra-
dients and let gadj be the rotated direction. The optimal rotation angles {α∗

i }Ti=1 that minimize the
mean of loss L(α1, . . . , αT ) induce an Multi-task Equilibrium Relationship (MER), characterized
by:

• Maximally reducing global gradient conflicts (global alignment term),

• Minimally distorting global task-specific descent directions (global proximity term),

• Ensuring that the averaged direction v := 1
T

∑
i r

∗
i forms a common descent direction.

As formalized in Lemma A.1 in Appendix, this pairwise cosine bound ensures that no pair of gra-
dients is excessively misaligned, which is crucial for ensuring a proper balance between gradient
alignment and task-specific descent directions. Definition A.2 and Theorem A.2 in Appendix estab-
lishes that when the optimization point is not Pareto stationary, the averaged rotated gradient v serves
as a strict common descent direction, ensuring that all task losses are improved simultaneously.

3
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Figure 1: Phenomenon of over-correction (left), under-correction (center) and global miss-correction
(right). Denoted: All the task’s gradients are normalized in the figure.

Besides, the direct gradient balancing methods alter the task gradient based on the subtraction of
the task-relative projection Yu et al. (2020); Meng et al. (2024); Wang et al. (2020) or drop of the
conflicting gradient Chen et al. (2020) for task-alignment. However, these over-aggressive operating
is likely to distort the task-specific descent directions, and the sequential pairwise locally gradient
adjustment potentially distort the global conflict level in the gradient system. There is a gap between
the previous studies and our definition of the MER 2.4 in terms of global alignment and proximity
term. First, we hypothesize the validity of MER 2.4 as a perfect balance between tasks that result in
a minimum of the mean loss of tasks. Any gradient adjustment deviates from the MER could result
in an imbalance or miss-correction error, sub-optimizing the adjustment and result in unsatisfied
performance. As shown in Figure 1, we fine-grain the angular miss-correction scenario into over-
correction and under-correction. For simplicity, both scenarios are shown in pairwise manner, where
the over-correction happened when the adjusted gradient over-deviated from its theoretical optimal,
vise-versa. The global angular miss-correction refers to the sum of the absolute angular over/under-
correction error for all the adjusted gradients between optimal gradient as MER 2.4. We define the
angular miss-correction, over/under correction error as below.
Definition 2.5 (Miss-Correction Angular Error (MCAE)). Let α∗

i denote the optimal rotation angle
for task i, and α̃i be the approximate solution obtained from different gradient-balancing method.
The miss-correction angular error is defined as

εi := α̃i − α∗
i .

We distinguish two cases:

• εi > 0 (over-correction): rotation exceeds the optimal angle.

• εi < 0 (under-correction): rotation falls short of the optimal angle.
Definition 2.6 (Over-Correction Angular Error (OCAE)). Let α∗

i be the theoretically optimal rota-
tion angle that achieves a balance between gradient alignment and task specificity for task i. An
actual rotation α̃i > α∗

i induces an over-correction, causing gadj = ri(α̃i) to deviate beyond the
optimal point on the alignment–proximity trade-off. This leads to excessive alignment at the cost of
task-specific descent fidelity.
Definition 2.7 (Under-Correction Angular Error (UCAE)). Conversely, if the actual rotation an-
gle α̃i < α∗

i , then gadj = ri(α̃i) remains overly close to its normalized gradient ḡi, insufficiently
reducing gradient conflict. This is termed an under-correction error. The detailed effect of such
over-correction and under-correction can be found in Appendix A.5.
Definition 2.8 (Global Miss-Correction Angular Error (GMAE)). Let εi denote the miss-correction
angular error for task i. We define the global miss-correction angular error (GMAE) and its standard
deviation as

GMAEt :=
1

T

T∑
i=1

|εti|, SD-MAEt :=

√√√√ 1

T

T∑
i=1

(εti −GMAEt)
2
.

A high SD-MAEt implies that some tasks are significantly miscorrected while others are near-
optimal, resulting in learning imbalance and unfairness across tasks. For further details, see the
analysis in Appendix A.5, where we break down the relationship between miss-correction angular
error and the mean task loss.

4
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2.2 ROTATION-BASED GRADIENT BALANCING

Figure 2: Methodology Illustration of Rotation-based Gradient Balancing

According to the definition of MER 2.4, the ideal task balancing condition is the optimum state
between global alignment and global proximity. With this concept, the central of methodology was
designed to optimize the ideal rotation angles {α∗

i }Ti=1 that balance the two competing objectives:
(i) reducing conflicts among gradients by promoting alignment, and (ii) preserving proximity to the
original task gradients so that task-specific information is retained. Afterward, ideal rotation angles
were applied to adjust each task gradient toward a shared exponentially moving average (EMA)
direction before aggregation. This subsection describes the construction of the rotation operator, the
associated optimization objective, and the adaptive procedure that controls the degree of rotation.

Let the shared model parameters be θ ∈ RD and the per-task losses be L1(θ), . . . , LT (θ). For each
task, we compute the gradient gi = ∇θLi(θ) for each task i and normalize it as ḡi = gi

∥gi∥+e , where
e regards as a small number to avoid the denominator become 0. Afterward, the mean direction
of the gradient is computed as yt = 1

T

∑T
i=1 ḡi, where the cumulative yt is adopted to compute

the exponentially moving average (EMA), which serves as the reference direction for the gradient
adjustment. The moving average of the gradient direction is updated as dt = µdt−1+(1−µ) y

∥y∥+e .
Thereafter, it remain essential to define the feasible region for gradient adjustment, in which the
ideal rotation angle {α̃i}Ti=1 can be optimized within a finite number of optimizations. Intuitionally,
the adjustment region is bound from angular of ∠0◦ to 90◦ from ḡi, where the range initial from ḡi
to the state wi closest to the reference direction dt. To ensure that the EMA direction converges
to a stable mean, we present Proposition A.2, which establishes that the EMA update converges to
the smoothed mean direction of the normalized gradients. Then, we compute the normalized vector
orthogonal to their normalized gradient ḡi as wi =

dt−(ḡ⊤
i dt)ḡi

∥dt−(ḡ⊤
i dt)ḡi∥+e

.

Rotation operator After obtaining wi and ḡi, the rotation operator is defined to rotate ḡi toward
the EMA direction dt by optimizing α̃i,∈ [0, π/2] from the objective 1, yielding gadj = ri(α̃i) =
cos α̃i ḡi + sin α̃i wi, where wi is orthogonal to ḡi and aligned with the projection of dt onto the
orthogonal complement of ḡi. This construction ensures that ri(α̃i) interpolates smoothly between
the normalized gradient ḡi (when α̃i = 0) and the reference direction dt (when α̃i = π

2 ). For a
formal proof of the interpolation and orthogonal decomposition properties of the rotation operator,
refer to Proposition A.1 in the Appendix.

Objective for rotation angles Subsequently, our main equation is developed to optimize the opti-
mal rotation angles α̃i, . . . , α̃T by minimizing a loss function that combines two terms:

L(α̃i) =
1

T (T − 1)

∑
i<j

[
1− ri(α̃i)

⊤rj(α̃j)
]

︸ ︷︷ ︸
conflict term

+λ
1

4T

T∑
i=1

∥∥ri(α̃i)− ḡi
∥∥2

︸ ︷︷ ︸
proximity term

. (1)

The conflict term encourages mutual alignment among rotated gradients by minimizing the average
pairwise angular discrepancy, scaled to the [0, 1] interval via the factor 1

2 (since the original range
of 1 − cos θ is [0, 2]). Similarly, the proximity term penalizes deviation from their normalized
task gradient ḡi, and is normalized to the [0, 1] range using a factor of 1

4 (as the squared distance
between two opposite unit vectors reaches a maximum of 4). This normalization ensures that both

5
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terms are balanced on a comparable numerical scale, preventing either from dominating the loss
due to differences in magnitude and promoting fair contribution to the objective. As guaranteed
by Theorem A.1 in Appendix, the rotation objective always has a global minimum, ensuring the
existence of an optimal set of rotation angles.

Complete algorithm The procedure is summarized in Algorithm 1. Figure 2 illustrates the
overview of RGB, where all gradients with the notation gi in 2 are regarded as normalized gradient
ḡi, where wi is a state that is orthogonal to ḡi and aligned with the reference direction dt. Afterward,
we optimize the objective 1 to approximate the α̃i in a global view of the gradient system based on
the feasible region formed by ḡi and dt before applying them to the rotation operator 2.2 to adjust ḡi
to gadj. Finally, we aggregate all gadj with equal weighting to form a shared descent direction, before
applying it to update the model parameters. The global convergence of Algorithm 1 to a Pareto
stationary point is formally established in Appendix A.3.

Algorithm 1 Rotation-Based Gradient Balancing

1: Inputs: task losses L1, . . . , LT , hyper-parameters (µ, λ, ϵ, update interval, αmin, αmax, kstd)
2: State: θ ∈ RD, EMA direction dt−1

3: Compute task gradients gi = ∇θLi(θ) and normalise gradients ḡi = gi/(∥gi∥+ e)

4: Compute mean direction y = 1
T

∑T
i=1 ḡi

5: Update EMA direction dt = µdt−1 + (1− µ)y/(∥y∥+ e)
6: if t mod update interval = 0 then
7: Compute feasible orthogonal corrections state wi =

dt−(ḡ⊤
i dt)ḡi

∥dt−(ḡ⊤
i dt)ḡi∥+e

8: Initialise αi = 0 and optimize Eq. 1 for αsteps iterations over α ∈ [0, π/2]T ,
where gadj = ri(αi) = cosαi ḡi + sinαi wi

9: Set final rotated gradients ri ← ri(α
⋆
i )/(∥ri(α⋆

i )∥+ e)
10: else
11: No rotation ri ← ḡi
12: end if
13: Compute shared update direction v = 1

T

∑T
i=1 ri, update θ ← θ − ηt v

Adaptive control of alpha steps. The optimization of our equation 1 is based on the stochastic-
gradient descent, where its update interval or number of steps namely αsteps is crucial to representing
the freedom of search. If higher αsteps is allowed, it could increase the risk of over-correction, leading
gadj to over-deviate from its optimal state hypothesized by 2.4. In contrast, lower αsteps increase the
risk of under-correction, leading gadj to under-deviate from its optimal state. The gap between gadj
with optimal state reflects the miss-correction angular error 2.8, potentially distort the task-specific
information or serious trade-off effect, causing the imbalance of multi-task performance. As the veil
of αsteps remained as an obstacle, we attempted to adapt a dynamic αsteps based on the variability of
task losses. Let the current and previous losses be Lt

i and Lt−1
i , respectively. Define the relative loss

change and its standard deviation:

δti =
Lt
i − Lt−1

i

Lt−1
i + e

, st = std
(
δt1, . . . , δ

t
T

)
. (2)

The number of inner iterations is then set adaptively as αt
steps = αmin+(αmax−αmin)

st
st+kstd

where
αmin and αmax bound the search steps and kstd > 0 controls the sensitivity to loss variability.

Remark 2.1. The number of rotation sub-steps αt
steps controls the precision of the approximate

solution α̃t
i. When the per-task loss changes vary significantly (high SD(δt) in Eq. 2), it often

correlates with high SD-MAEt, indicating task imbalance. In this case, increasing αt
steps improves

the approximation of α∗
i for all tasks, thereby reducing both GMAEt and SD-MAEt. This promotes

fair learning by ensuring more uniform correction quality across tasks.
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3 RESULTS AND DISCUSSION

3.1 EVALUATION METRICS

We evaluate our proposed method on several multi-task learning benchmarks, including NYUv2 Sil-
berman et al. (2012), Cityscapes Cordts et al. (2016), QM9 Blum & Reymond (2009), and
CelebA Liu et al. (2015). These datasets cover a range of tasks from computer vision to molec-
ular properties prediction, with task numbers ranging from 3 to 40. To assess performance, we
follow standard practices in multi-task learning. For each task i, we compute the per-task perfor-
mance drop ∆mi% relative to the STL baseline: ∆mi% = 1

Si

∑Si

j=1(−1)δj
Mm,j−Mb,j

Mb,j
× 100,

where Si is the number of metrics for task i, Mb,j is the STL baseline value for metric j, Mm,j

is the value from the MTL method, and δj = 1 if higher values are better for metric j (and 0 oth-
erwise). The overall performance drop is then ∆m% = 1

T

∑T
i=1 ∆mi, where T is the number of

tasks. Lower (more negative) ∆m% indicates better performance relative to STL. We also report
the mean rank (MR) across metrics or tasks, where lower MR signifies superior overall ranking.
MR = 1

T

∑T
i=1

1
Mi

∑Mi

j=1 Ri,j where Mi is the number of metrics for task i, and Ri,j is the rank of
the method on metric j of task i (rank 1 being the best among compared methods).

3.2 RESULTS ON NYUV2, QM9, CITYSCAPES AND CELEBA

The NYUv2 dataset Silberman et al. (2012) comprises 1,449 densely annotated RGB-D images of
indoor scenes, focusing on three pixel-level tasks: 13-class semantic segmentation (measured by
mean Intersection over Union (mIoU) and pixel accuracy), monocular depth estimation (absolute
and relative error), and surface normal prediction (mean and median angle distances, and percent-
ages of pixels within 11.25◦, 22.5◦, and 30◦ thresholds). For NYUv2, we followed the publicly
available ConsMTL implementation to ensure consistency with prior work.

Method
Segmentation Depth Surface Normal

MR ↓ ∆m% ↓
mIoU ↑ Pix Acc ↑ Abs Err ↓ Rel Err ↓ Angle Dist. ↓ Within t◦ ↑

Mean Median 11.25 22.5 30

STL 38.30 63.76 0.6754 0.2780 25.01 19.21 30.14 57.20 69.15 11.89 –
LS Kendall et al. (2018) 39.29 65.33 0.5493 0.2263 28.15 23.96 22.09 47.50 61.08 16.89 5.59
SI Ruder (2017) 38.45 64.27 0.5354 0.2201 27.60 23.37 22.53 48.57 62.32 15.11 4.39
RLW Lin et al. (2021) 37.17 63.77 0.5759 0.2410 28.27 24.18 22.26 47.05 60.62 19.89 7.78
DWA Liu et al. (2019) 39.11 65.31 0.5510 0.2285 27.61 23.18 24.17 50.18 62.39 15.89 3.57
UW Kendall et al. (2018) 36.87 63.17 0.5446 0.2260 27.04 22.61 23.54 49.05 63.65 15.78 4.05
MGDA Sener & Koltun (2018) 30.47 59.90 0.6070 0.2555 24.88 19.45 29.18 56.88 69.36 12.89 1.38
PCGrad Yu et al. (2020) 38.06 64.64 0.5550 0.2325 27.41 22.80 23.86 49.83 63.14 16.33 3.97
GradDrop Chen et al. (2020) 39.39 65.12 0.5455 0.2279 27.48 22.96 23.38 49.44 62.87 15.00 3.58
CAGrad Liu et al. (2021a) 39.79 65.49 0.5486 0.2250 26.31 21.58 25.61 52.36 65.58 11.56 0.20
IMTL-G Liu et al. (2021b) 39.35 65.60 0.5426 0.2256 26.02 21.19 26.20 53.13 66.24 10.89 -0.76
MoCo Fernando et al. (2023) 40.30 66.07 0.5575 0.2135 26.67 21.83 25.61 51.78 64.85 10.67 0.16
Nash-MTL Navon et al. (2022) 40.13 65.93 0.5261 0.2171 25.26 20.08 28.40 55.47 68.15 7.89 -4.04
FAMO Liu et al. (2023) 38.88 64.90 0.5474 0.2194 25.06 19.57 29.21 56.61 68.98 9.44 -4.10
FairGrad Ban & Ji (2024) 39.74 66.01 0.5377 0.2236 24.84 19.60 29.26 56.58 69.16 7.11 -4.66
BiLB4MTL (τ=1) Xiao et al. (2025) 38.04 63.90 0.5402 0.2278 24.70 19.19 29.97 57.44 69.69 8.56 -4.40
Aligned-MTL Senushkin et al. (2023) 40.82 66.33 0.5300 0.2200 25.19 19.71 28.88 56.23 68.54 7.00 -4.93
GO4Align Shen et al. (2024) 40.42 65.37 0.5492 0.2167 24.76 18.94 30.54 57.87 69.84 5.11 -6.08
PIVRG Qin et al. (2025a) 39.90 65.74 0.5365 0.2243 24.30 18.80 30.95 58.26 70.38 3.89 -6.50
ConsMTL Qin et al. (2025b) 40.33 65.32 0.5491 0.2151 24.35 18.80 31.06 58.28 70.31 4.11 -6.72

RGB 41.93 67.56 0.5294 0.2237 24.74 19.30 29.10 56.71 69.42 4.89 -5.92

Table 1: Results on NYUv2. MR values are recomputed using all methods. Lower is better for ↓,
higher for ↑. Our RGB results are averaged over three seeds=0,1,2.

According to Table 1, RGB with the setting of λ = 0 and αsteps= 5 achieved a compatible result with
PIVRG and ConsMTL on ∆m% (-5.92 vs. -6.50 and -6.72). In particular, our approach excels in
segmentation metrics, suggesting better handling of task-specific features. The lower MR for RGB
implied the consistent of RGB with a stable ranking across the metrics.

The QM9 dataset Blum & Reymond (2009); Ramakrishnan et al. (2014) is a quantum chemistry
benchmark comprising about 134,000 stable organic molecules from the GDB-17 chemical space,
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represented as graphs and associated with 11 quantum chemical properties (geometric, energetic,
electronic, and thermodynamic). Following prior works such as Nash-MTL Navon et al. (2022)
and FAMO Liu et al. (2023), we adopt the neural message passing network (MPNN) architecture
introduced by Gilmer et al. (2017), with a sequence of message passing layers and a Set2Set pool-
ing operator Vinyals et al. (2015). Using the standard PyTorch Geometric implementation Fey &
Lenssen (2019), we split the dataset into 130,831 molecules for training, 10,000 for validation, and
10,000 for testing, and train for 300 epochs. For QM9, we also followed the publicly available
ConsMTL implementation to ensure consistency with prior work.

Method
µ α ϵHOMO ϵLUMO ⟨R2⟩ ZPVE U0 U H G Cv MR ↓ ∆m% ↓

MAE ↓

STL 0.067 0.181 60.57 53.91 0.502 4.53 58.8 64.2 63.8 66.2 0.072 3.91 0.00
LS 0.106 0.325 73.57 89.67 5.19 14.06 143.4 144.2 144.6 140.3 0.128 13.27 177.6
SI 0.309 0.345 149.8 135.7 1.00 4.50 55.3 55.75 55.82 55.27 0.112 10.00 77.8
RLW 0.113 0.340 76.95 92.76 5.86 15.46 156.3 157.1 157.6 153.0 0.137 14.82 203.8
DWA 0.107 0.325 74.06 90.61 5.09 13.99 142.3 143.0 143.4 139.3 0.125 13.00 175.3
UW 0.386 0.425 166.2 155.8 1.06 4.99 66.4 66.78 66.80 66.24 0.122 12.00 108.0
MGDA 0.217 0.368 126.8 104.6 3.22 5.69 88.37 89.4 89.32 88.01 0.120 13.64 120.5
PCGrad 0.106 0.293 75.85 88.33 3.94 9.15 116.36 116.8 117.2 114.5 0.110 11.36 125.7
CAGrad 0.118 0.321 83.51 94.81 3.21 6.93 113.99 114.3 114.5 112.3 0.116 12.73 112.8
IMTL-G 0.136 0.287 98.31 93.96 1.75 5.69 101.4 102.4 102.0 100.1 0.096 11.27 77.2
Nash-MTL 0.102 0.248 82.95 81.89 2.42 5.38 74.5 75.02 75.10 74.16 0.093 8.64 62.0
FAMO 0.150 0.300 94.00 95.20 1.63 4.95 70.82 71.2 71.2 70.3 0.100 10.09 58.5
FairGrad 0.117 0.253 87.57 84.00 2.15 5.07 70.89 71.17 71.21 70.88 0.095 9.00 57.9
ConsMTL 0.115 0.202 82.69 67.58 1.61 3.33 48.84 49.04 49.07 49.63 0.077 4.73 23.2
GO4Align 0.170 0.350 102.4 119.0 1.22 4.94 53.9 54.3 54.3 53.9 0.110 9.45 52.7
BiLB4MTL (τ = σ) 0.230 0.290 123.89 111.95 0.97 3.99 42.73 43.1 43.2 43.1 0.097 7.27 49.5

RGB 0.064 0.190 78.07 77.55 1.09 3.06 32.9 33.4 33.1 33.2 0.065 2.18 -3.7
Adaptive RGB 0.089 0.203 78.23 72.99 1.21 3.42 39.62 39.51 39.54 40.29 0.071 3.27 7.1

Table 2: Results on QM9. All metrics are MAE (lower is better). MR is the mean rank across the
11 metrics; smaller is better. Our results are the average of three seeds= 0,1,2.

Table 2 demonstrates that our RGB method achieves the lowest ∆m% (-3.7) and MR (2.18), out-
performing ConsMTL (23.2) by a significant margin. This suggests our approach is particularly
high-task-count scenarios, reducing variance and improving generalization. On this benchmark, our
RGB method was evaluated with λ = 0 and a fixed step size of 30 as its hyperparameters. Notably,
RGB outperformed single-task learning (STL) on 8 out of the 11 regression tasks, highlighting its
effectiveness in leveraging cross-task information even under the complex multi-task setting. Fur-
thermore, RGB is the first method to achieve a negative ∆m% compared to STL which regarding
the state-of-the-art result, demonstrating that, in general, it surpasses the average single-task base-
line performance. In addition, our adaptive RGB variant was evaluated with λ = 1 and an adaptive
step size schedule. While it achieved a slightly higher MR (3.27), it still delivered strong results,
outperforming STL in most of the tasks and reaching a ∆m% of 7.1. This shows that incorporating
adaptivity into the step size provides stable performance across the 11 quantum chemical properties,
complementing the fixed-step RGB configuration.

The CelebA dataset Liu et al. (2015) and the Cityscapes dataset Cordts et al. (2016) are two widely
used multi-task learning benchmarks. CelebA is a large-scale facial attributes dataset containing
over 200,000 celebrity images, each annotated with 40 binary attributes, which can be formulated
as 40 binary classification tasks. Cityscapes consists of 5,000 high-quality, pixel-level annotated
images of urban street scenes collected from 50 cities, and includes three tasks: semantic segmen-
tation (mIoU), disparity estimation (L1 pixel error), and instance segmentation (MSE). Together,
these datasets provide diverse and challenging scenarios for evaluating multi-task learning methods,
spanning both fine-grained facial attribute recognition and complex scene understanding.

All experiments were conducted based on publicly available implementations. For the CelebA
benchmark, we used the FAMO Liu et al. (2023) codebase, while for the Cityscapes benchmark,
we built on the publicly released Align-MTL Senushkin et al. (2023) codebase to ensure compatibil-
ity with prior work. For CelebA experiments,since existing papers did not release baseline results,
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we re-ran the STL configuration ourselves based on FAMO repository Liu et al. (2023) and used it
as the reference baseline. To ensure fairness, we applied the same training pipeline to all compared
methods, and for consistency, all results reported here correspond to a single run with seed 0.

Cityscapes (3 tasks) CelebA

Method mIoU [%] ↑ L1 [px] ↓ MSE ↓ MR ↓ ∆m% ↓ Method MR ↓ ∆m% ↓

STL 66.73 10.55 0.33 6.33 – STL 17.45 –
Baseline:Uniform 52.98 10.89 0.39 14.67 14.30 LS 9.50 -50.29
RLW 51.26 10.25 0.41 15.67 15.58 SI 12.20 -46.68
DWA 53.15 10.22 0.40 13.67 12.81 RLW 7.98 -49.52
Uncertainty 60.12 9.87 0.33 5.33 1.15 DWA 8.70 -50.78
MGDA 66.72 17.02 0.33 11.00 20.45 UW 8.53 -50.79
MGDA-UB 66.37 18.63 0.32 8.67 25.05 MGDA 14.83 -46.87
GradNorm 57.24 10.29 0.35 11.33 5.94 PCGrad 8.50 -50.46
GradDrop 52.98 10.09 0.40 13.00 12.49 GradDrop 10.05 -48.64
PCGrad 54.06 9.91 0.38 8.67 9.36 CAGrad 8.10 -46.19
GradVac 54.07 10.39 0.40 13.00 12.89 IMTL-G 7.75 -50.14
CAGrad 64.33 10.15 0.34 8.33 0.95 Nash-MTL 9.50 -50.29
IMTL 65.13 11.58 0.32 7.33 3.04 FAMO 9.58 -49.72
Nash-MTL 64.84 11.90 0.37 11.67 9.25 GradVac 8.40 -51.23
Align-MTL 67.06 10.63 0.33 7.33 -0.02 PIVRG 7.53 -51.45
Align-MTL-UB 66.07 10.54 0.32 6.00 -0.35 ConsMTL 6.60 -51.31

RGB 65.05 9.90 0.32 4.67 -1.81 RGB 8.55 -52.10
Adaptive RGB 65.58 10.04 0.329 3.33 -1.66 Adaptive RGB 7.28 -51.44

Table 3: Results on Cityscapes (3 tasks). MR is recomputed as the mean rank across the three task
metrics (mIoU, L1, MSE). Lower is better.

As shown in Table 3, our RGB variant configured with λ = 1 and a step size of 50 achieves a
∆m% of -1.81 on Cityscapes, while the Adaptive RGB variant, using λ = 0 with an adaptive
step size, further improves performance to the best ∆m% (-1.66) and the lowest MR (3.33). This
demonstrates that our adaptive strategy is particularly effective in balancing the heterogeneous tasks
of semantic segmentation, depth estimation, and surface normal prediction in urban scene under-
standing. Notably, the reduction in MR indicates that our method not only improves absolute task
performance but also consistently achieves a higher relative ranking across all tasks when compared
to prior methods. On the CelebA benchmark, which involves 40 concurrent facial attribute classi-
fication tasks, our RGB variant achieves the best overall ∆m% of -52.10, surpassing all baselines,
while also maintaining a competitive MR of 8.55. The Adaptive RGB variant performs similarly
with a ∆m% of -51.44 and achieves a lower MR of 7.28, underscoring the robustness of our method
under large-scale multi-task settings. These results confirm that our approach not only reduces av-
erage performance degradation but also secures a superior task ranking profile across challenging
benchmarks.

3.3 DISCUSSION

Across all benchmarks, our method consistently achieves state-of-the-art or near-SOTA perfor-
mance, often surpassing PIVRG and ConsMTL in terms of ∆m% and MR. This is attributed to
our novel approach in balancing task-specific and shared parameters while reducing performance
variance, as inspired by the provided works but extended with adaptive stepping and regularization.
The negative ∆m% values indicate generalization benefits from multi-tasking. Furthermore, in the
Appendix, we provide empirical evidence supporting the existence of Multi-task Equilibrium Rela-
tionships (MER) A.8, as well as the phenomena of over-correction and under-correction A.9. The
detailed ablation studies and analysis, including the impact of adaptive step sizes A.7 and gradient
manipulation methods A.8, validate these concepts across multiple datasets.
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A APPENDIX

A.1 PRELIMINARIES

Definition A.1 (Lipschitz-Continuous Gradient). A differentiable function f has a β-Lipschitz gra-
dient if ∥∇f(x)−∇f(y)∥ ≤ β∥x− y∥ for all x, y ∈ RD. This condition ensures that the gradient
does not change too abruptly.
Assumption A.1 (Smoothness and Stepsizes). The following standard conditions are assumed:

(A1) Each task loss Li is bounded from below: infθ Li(θ) > −∞. This prevents the optimisation
process from diverging.

(A2) Each loss has a β-Lipschitz continuous gradient (with the same constant β for all tasks, for
simplicity).

(A3) The stepsizes (ηt) satisfy
∑∞

t=0 ηt =∞ and
∑∞

t=0 η
2
t <∞.

Remark A.1. Assumption (A3) corresponds to the classical Robbins–Monro condition. The first
part ensures that sufficient progress can be made asymptotically, while the second limits the cumu-
lative effect of errors (e.g. due to approximate solutions of the rotation sub-problem), ensuring they
do not overwhelm the optimization process.
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A.2 A FUNDAMENTAL GEOMETRIC BOUND

Lemma A.1 (Feasible Pairwise-Cosine Bound). Let {ui}Ti=1 be unit vectors in RD such that∑T
i=1 ui = 0. Then

max
i̸=j

(
−u⊤

i uj

)
≥ 1

T − 1
.

In words, if a collection of unit vectors balances to zero, then at least one pair must be separated
by a cosine similarity of at most − 1

T−1 . Consequently, any family of unit vectors (common descent
direction) {v} that satisfies v⊤i vj ≥ − 1

T−1 for all i ̸= j obeys

⟨vi, v̄⟩ =
1

T

(
1 +

∑
j ̸=i

v⊤i vj

)
≥ 0, v̄ :=

1

T

T∑
k=1

vk.

That is, under the cosine bound, each vi has a nonnegative alignment with the mean vector v̄.

Proof. Let U = [u1, . . . , uT ] ∈ RD×T and consider its Gram matrix G = U⊤U . G is positive
semidefinite. Since

∑
i ui = 0, it follows that G1 = 0 and because each ∥ui∥ = 1; hence

0 = 1⊤G1 =

T∑
i=1

∥ui∥2 +
∑
i ̸=j

u⊤
i uj = T +

∑
i̸=j

u⊤
i uj .

Dividing both sides by the number of off-diagonal entries, T (T − 1), gives

1

T (T − 1)

∑
i̸=j

u⊤
i uj = −

1

T − 1
.

Thus, the average pairwise cosine is exactly −1/(T − 1), which means that at least one pair must
realise u⊤

i uj ≤ −1/(T − 1), which proves the first statement. The second statement is a direct
algebraic rewrite of the projection formula under the assumed bound.

A.3 EXISTENCE OF OPTIMAL ROTATION ANGLES

Goal. Show that the inner optimisation minα∈[0,π/2]T L(α) is well posed so that a rotation angle
optimal α⋆ always exists.
Theorem A.1 (Existence of a Minimiser). L attains a global minimum in its feasible set; i.e., there
exists α⋆ ∈ [0, π/2]T such that L(α⋆) = minα L(α).

Proof. The feasible set [0, π/2]T is compact (closed and bounded). Each map αi 7→ ri(αi) is
continuous, and all primitives used in L (inner products, norms, finite sums) are continuous. By the
Weierstrass extreme value theorem, any continuous function on a compact set achieves its minimum.
Therefore, L has at least one global minimiser α⋆ ∈ [0, π/2]T .

Remark A.2. The key point is that the optimisation is carried out over a bounded and closed
domain. This prevents ’escape to infinity’ and guarantees that the cost function cannot decrease
indefinitely. Hence, the rotation step of the algorithm is always well-defined.

A.4 A STRICT COMMON DESCENT DIRECTION WHENEVER NON-STATIONARY

Goal. Demonstrate that if θ is not Pareto stationary, the averaged rotated gradient v :=
1
T

∑
i ri(α

⋆
i ) is a descent direction for all tasks simultaneously.

Definition A.2 (Rotation-Adjusted Direction). For the optimal angles α⋆ of Theorem A.1, define

ri := ri(α
⋆
i ), v :=

1

T

T∑
i=1

ri.

Theorem A.2 (Strict Descent When Non-Stationary). If θ is not Pareto stationary, then ⟨gi, v⟩ > 0
for every i = 1, . . . , T ; hence −v is a strict common descent direction.
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Proof. Step 1 – Pairwise-cosine bound for {ri}. Suppose, for contradiction, that there exist p ̸= q
such that r⊤p rq < −1/(T − 1). Then by slightly rotating rp and rq toward the EMA direction
dt, their pairwise cosine increases, while the additional proximity penalty in L is only O(∆α2).
For sufficiently small ∆α, this strictly decreases L, contradicting the optimality of α⋆. Hence,
r⊤i rj ≥ −1/(T − 1) for all pairs.

Step 2 – Positive projection onto v. By Lemma A.1, the pairwise bound implies ⟨ri, v̄⟩ ≥ 0, where
v̄ := v/∥v∥ when v ̸= 0. Since θ is not Pareto stationary, it leaves margin for further alignment.
This strict non-stationarity ensures the inequality is in fact: ⟨ri, v̄⟩ > 0.

Step 3 – Lifting to un-normalised gradients. Since α∗
i < π/2 (the proximity term prevents 90◦

rotations), cosα⋆
i > 0. Observing the decomposition gi = ∥gi∥ḡi and ḡi = cosα⋆

i ri − sinα⋆
i wi,

one finds
⟨gi, v⟩ = ∥gi∥

(
cosα⋆

i ⟨ri, v⟩ − sinα⋆
i ⟨wi, v⟩

)
.

The first term is strictly positive; the second term is O(sinαi) and cannot cancel the positivity of
the first term because |⟨wi, v⟩| ≤ ∥v∥. Hence ⟨gi, v⟩ > 0.

Step 4 – Non-degeneracy of v. If v = 0, Step 2 would give ⟨ri, v̄⟩ undefined, contradicting the
established strict positivity. Therefore v ̸= 0 and −v is a strict common descent direction.

Remark A.3. Intuitively, the optimal rotation ensures that no pair of gradients is “too negatively
aligned,” which in turn forces every rotated direction to have a positive component along the aver-
aged direction v. This alignment then lifts back to the original gradients gi, proving that −v is a
strict common descent direction whenever the point is non-stationary.

A.5 THEORETICAL ANALYSIS

This section develops a theoretical analysis of the proposed RGB method. We begin by analyzing
the structure of the rotation operator, which interpolates between task-specific gradients and a shared
exponential moving average (EMA) direction. This is followed by a first-order analysis showing that
the aggregated update direction v constitutes a descent direction for all tasks under suitable align-
ment. We then introduce the notion of miss-correction angular error, characterizing how deviations
from the optimal rotation angle impact both alignment and proximity objectives. Using a second-
order Taylor expansion, we derive a decomposition of the mean task loss into two components: the
ideal effect of optimally rotated gradients and the deviation caused by miss-correction. This leads to
the definition of the global miss-correction angular error (GMAE), which quantifies fairness imbal-
ance across tasks and motivates the use of adaptive step sizes to minimize its impact.
Proposition A.1 (Rotation Operator Interpolation via Orthogonal Decomposition.). Let ḡi ∈ RD

be a unit vector (e.g., a normalized gradient), and let dt ∈ RD be a reference direction. Define the
component of dt orthogonal to ḡi as w′

i = dt − (ḡ⊤i dt) ḡi, and let

wi =
w′

i

∥w′
i∥+ e

be its normalized form (with ε > 0 for numerical stability). Then, wi is orthogonal to ḡi, i.e.,
ḡ⊤i wi = 0 and ∥wi∥ = 1 (up to ε). For any angle αi ∈ [0, π

2 ], the vector ri(αi) = cosαi ḡi +
sinαi wi satisfies:

1. ∥ri(αi)∥ = 1 (up to the ε regularization),

2. ri(0) = ḡi,

3. ri
(
π
2

)
= wi (i.e. aligned purely with the orthogonal component toward dt).

Proof. Compute the inner product:

ḡ⊤i w
′
i = ḡ⊤i dt − (ḡ⊤i dt) ḡ

⊤
i ḡi = ḡ⊤i dt − (ḡ⊤i dt) (∥ḡi∥2) = ḡ⊤i dt − (ḡ⊤i dt) · 1 = 0.

Thus, w′
i is orthogonal to ḡi, and so is wi. The normalization ensures ∥wi∥ = 1 up to the ε regular-

ization. For the interpolation, since ḡ⊤i wi = 0 and ∥ḡi∥ = ∥wi∥ = 1, we have:

∥ri(αi)∥2 = cos2 αi∥ḡi∥2 + sin2 αi∥wi∥2 + 2 cosαi sinαi(ḡ
⊤
i wi) = cos2 αi + sin2 αi = 1.

13
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When αi = 0, we have ri(0) = cos(0) ḡi + sin(0)wi = ḡi.

When αi =
π
2 , we get ri(π2 ) = cos(π2 ) ḡi + sin(π2 )wi = wi.

Proposition A.2 (EMA Update Converges to Smoothed Mean Direction). Let yt = 1
T

∑T
i=1 ḡi

be the instantaneous mean of normalized gradients, and define the EMA (exponentially moving
average) update

dt = µdt−1 + (1− µ)
yt

∥yt∥+ e
.

Then under standard assumptions (bounded gradients, 0 ≤ µ < 1), dt converges in direction to the
smoothed (infinite-horizon) average of the ḡi’s. In particular, for large t,

dt ≈ (1− µ)

t∑
s=0

µt−s ys
∥ys∥+ e

,

so dt reflects the past mean directions with exponentially decaying weights.

Proof. By unrolling the recurrence:
dt = µdt−1 + (1− µ)qt

where qt := mt/(∥mt∥+ ε). Then

dt = µtd0 + (1− µ)

t∑
s=1

µ t−sqs.

Since d0 is fixed and µt → 0 as t → ∞ (if 0 ≤ µ < 1), the influence of d0 vanishes. Hence for
large t,

dt ≈ (1− µ)

t∑
s=1

µt−sqs

which is a weighted average of past qs with exponentially decaying weights. That proves the claimed
smoothing property.

First-Order Analysis. For a small step size η > 0, the change in the loss of task i’ under the
shared update direction v is given by the first-order Taylor expansion:

Li(θ − ηv) ≈ Li(θ)− η⟨∇θLi, v⟩+O(η2).

Proof. We aim to analyze how task i’s loss Li(θ) changes when the parameters are updated in the
direction v with step size η > 0. Define the scalar function:

f(η) := Li(θ − ηv),

which expresses the task loss as a function of the scalar step size η in direction v.

Step 1: Apply the first-order Taylor expansion. Let f : R → R be differentiable at η = 0.
Then, the first-order Taylor expansion of f around η = 0 is given by:

f(η) ≈ f(0) + f ′(0) η +O(η2),
where O(η2) denotes second- and higher-order terms that vanish faster than η as η → 0.

Step 2: Compute f(0) and f ′(0). We compute:
f(0) = Li(θ − 0 · v) = Li(θ).

To compute the derivative f ′(η), we apply the chain rule:

f ′(η) =
d

dη
Li(θ − ηv) = ∇θLi(θ − ηv)⊤ · d

dη
(θ − ηv).

Since d
dη (θ − ηv) = −v, this simplifies to:

f ′(η) = −∇θLi(θ − ηv)⊤v.

Evaluating at η = 0 gives:

f ′(0) = −∇θLi(θ)
⊤v = −⟨∇θLi(θ), v⟩.

14
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Step 3: Substitute into the Taylor expansion. Now substituting back into the Taylor expansion:

f(η) = Li(θ − ηv) = f(0) + f ′(0) η +O(η2) = Li(θ)− η⟨∇θLi(θ), v⟩+O(η2).

Thus, the first-order approximation of the loss after an update in direction v with small step size η
is:

Li(θ − ηv) ≈ Li(θ)− η⟨∇θLi(θ), v⟩+O(η2),
which completes the proof.

The directional derivative term −⟨∇θLi, v⟩ quantifies how effective the update is in reducing task
i’s loss. Because each rotated gradient r∗i lies between the original ḡi and the shared EMA direction
dt, the resulting v incorporates both task-specific and global descent tendencies. This ensures that
v acts as a compromise direction that enables consistent progress across all tasks in non-stationary
regimes.

Effect of Over-Correction and Under-Correction. LetL(α) be the rotation loss defined in Eq. 1,
and suppose that for each task i, the optimal rotation angle α∗

i is a local minimizer of L in its
coordinate direction. Then,

∂L
∂αi

∣∣∣∣
αi=α∗

i

= 0,
∂2L
∂α2

i

∣∣∣∣
αi=α∗

i

> 0.

Now consider the effect of miss-correction εi = α̃i − α∗
i ̸= 0 on the loss. A Taylor expansion

around α∗
i gives

L(α̃i) = L(α∗
i ) +

1

2
ε2i ·

∂2L
∂α2

i

∣∣∣∣
αi=α∗

i

+O(ε3i ),

which shows that any deviation from α∗
i strictly increases the loss up to second order.

Proof. We wish to analyze how the rotation loss L(α) changes due to a miss-correction angular
error εi := α̃i − α∗

i ̸= 0, where α∗
i is a local minimizer of L with respect to coordinate αi.

Step 1: Define the scalar slice. Since we are focusing on a single coordinate αi, define the scalar
function

f(αi) := L(α∗
1, . . . , α

∗
i−1, αi, α

∗
i+1, . . . , αT ),

which evaluates the global loss by varying only αi, holding the other rotation angles fixed at their
optimal values. Thus, f(αi) is a univariate scalar function that captures how L behaves along the αi

direction.

Step 2: Use Taylor expansion around α∗
i . Because f is assumed twice differentiable near α∗

i ,
the second-order Taylor expansion of f at point α∗

i + εi gives:

f(α∗
i + εi) = f(α∗

i ) + f ′(α∗
i ) · εi +

1

2
f ′′(α∗

i ) · ε2i +O(ε3i ),

where f ′(α∗
i ) and f ′′(α∗

i ) denote the first and second derivatives of f evaluated at α∗
i .

Step 3: Use optimality conditions at α∗
i . Since α∗

i is a local minimizer of f (and hence of L in
coordinate i), we have the standard first- and second-order conditions:

f ′(α∗
i ) = 0, f ′′(α∗

i ) > 0.

These ensure that α∗
i is a strict local minimum of the function f .

Step 4: Simplify the expansion. Substituting these values into the Taylor expansion, we obtain:

f(α∗
i + εi) = f(α∗

i ) +
1

2
f ′′(α∗

i ) · ε2i +O(ε3i ).
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Step 5: Interpret the result. This implies:

L(α̃i) = L(α∗
i ) +

1

2
ε2i ·

∂2L
∂α2

i

∣∣∣∣
αi=α∗

i

+O(ε3i ),

where we identify f(α∗
i + εi) = L(α̃i).

Therefore, any miss-correction angular error leads to a second-order increase in the rotation loss L,
showing that both over-correction and under-correction degrade optimization quality.

More specifically, decompose L into its alignment and proximity terms in Eq. 1.

• If εi > 0 (over-correction), then locally:

∂

∂αi

[
1− r⊤i rj

]
< 0,

∂

∂αi
∥ri − ḡi∥2 > 0.

That is, the alignment improves (conflict decreases), but task specificity degrades.
• If εi < 0 (under-correction), then locally:

∂

∂αi

[
1− r⊤i rj

]
> 0,

∂

∂αi
∥ri − ḡi∥2 < 0.

That is, the rotated direction stays closer to the original gradient, but fails to adequately
reduce gradient interference.

In both cases, the deviation from α∗
i yields a suboptimal compromise between gradient alignment

and proximity, which explains why precise tuning of the rotation angles is crucial for balancing task
objectives.

Global Miss-Correction and Mean Task Loss. Recall that the miss-correction angular error for
task i at iteration t is εti = α̃t

i − α∗
i . Define the deviation in task i’s loss due to miss-correction as

∆t
i := Lt

i − L∗
i (θt),

where L∗
i (θt) denotes the loss that would have been incurred using the optimal rotation angle α∗

i .

As in Definition 2.8, we define the global miss-correction angular error at iteration t as the average
absolute angular deviation across tasks:

GMAEt :=
1

T

T∑
i=1

|εti|.

Assuming the loss is locally smooth with respect to the rotation angle, we approximate the loss
deviation using a second-order Taylor expansion:

∆t
i ≈

1

2
(εti)

2 · ∂
2Li

∂α2
i

∣∣∣∣
αi=α∗

i

.

Summing over all tasks gives a decomposition of the mean task loss:

1

T

T∑
i=1

Lt
i ≈

1

T

T∑
i=1

L∗
i (θt)︸ ︷︷ ︸

Actual Gradient Effect

+
1

2T

T∑
i=1

(εti)
2 · ∂

2Li

∂α2
i

∣∣∣∣
αi=α∗

i︸ ︷︷ ︸
Miss-Correction Deviation

.

This shows that the miss-correction angular error directly contributes to the increase in average task
loss. The more precisely each αi approximates α∗

i , the smaller the miss-correction deviation and the
closer the overall learning process is to the optimal loss trajectory.
Remark A.4. In practice, we cannot compute α∗

i exactly, but reducing the global miss-correction
angular error GMAEt and its variance through alignment and task specificity promotes uniform
convergence across tasks. This motivates the adaptive control of inner steps αt

steps based on loss
variability.
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A.6 GLOBAL CONVERGENCE

We now establish the convergence of the RGB algorithm to a Pareto stationary point.

Goal. Using Theorem A.2 and Assumption A.1, prove that the RGB iterates converge to a Pareto
stationary parameter vector.
Theorem A.3 (Convergence to Pareto Stationarity). Under Assumption A.1, the sequence {θt}t≥0

generated by Algorithm 1 converges to a Pareto stationary point θ⋆.

Proof. Define the Lyapunov (aggregate loss) function Φ(θ) :=
∑T

i=1 Li(θ). By β-smoothness of
each Li,

Φ(θt+1) ≤ Φ(θt)− ηt

T∑
i=1

⟨∇Li(θt), vt⟩+
βT

2
η2t ∥vt∥2. (∗)

Case 1 – θt is not Pareto stationary. Theorem A.2 implies
∑

i⟨∇Li(θt), vt⟩ ≥ ct∥vt∥ with
ct > 0. For sufficiently small ηt < ct/(βT ), the descent term dominates the quadratic error term
in (∗), so Φ(θt+1) < Φ(θt).

Case 2 – θt is Pareto stationary. Then by definition the rotation-adjusted direction vanishes (vt =
0), so the right-hand side of (∗) equals Φ(θt).

Super-martingale argument. Since Φ is lower-bounded (Assumption A.1(A1)) and the stepsizes
satisfy the Robbins-Monro conditions (Assumption A.1(A3)), the Robbins–Siegmund almost-super-
martingale lemma yields

∞∑
t=0

ηt

T∑
i=1

⟨∇Li(θt), vt⟩ <∞, and lim
t→∞

∥vt∥ = 0.

Limit points are Pareto stationary. Let θ∞ be any accumulation point of {θt}. Continuity of
the gradients ∇Li and of the rotation mapping θ 7→ (α⋆(θ), v(θ)) implies ∥v(θ∞)∥ = 0. Sup-
pose θ∞ were not Pareto stationary; then Theorem A.2 would give a strictly positive inner product
⟨∇Li(θ

∞), v(θ∞)⟩ > 0, contradicting v(θ∞) = 0. Therefore every limit point is Pareto stationary.
If Φ is bounded or coercive, then the sequence {θt} cannot wander indefinitely. Since all its limit
points are Pareto stationary, the entire sequence must converge to a single Pareto stationary point
θ⋆.

A.7 ABLATION STUDY: ADAPTIVE-STEP

Figure 3: Comparison of performance across different step sizes (5, 30, 50, and adaptive) on
Cityscapes, QM9, and CelebA.

Discussion. Figure 3 illustrates the impact of different step sizes across three datasets: QM9,
Cityscapes, and CelebA. It can be observed that the optimal step size varies depending on the
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dataset. Specifically, QM9 achieves the best performance at step 30, and CelebA at step 50, while
Cityscapes shows consistent improvements with larger step sizes, with the adaptive step variant
yielding competitive results. The adaptive strategy proves particularly effective for datasets with
more heterogeneous tasks, as it dynamically adjusts the exploration scale rather than relying on a
fixed step size.

This behavior also appears to correlate with task complexity. For instance, CelebA, with 40 concur-
rent classification tasks, benefits from larger or adaptive step sizes that allow broader exploration of
the optimization landscape. QM9, which contains moderately correlated regression tasks, achieves
the best trade-off at step 30. Cityscapes, with three heterogeneous vision tasks, benefits from adap-
tive adjustment, achieving results comparable to fixed steps. This suggests that fixed steps may be
suboptimal when task scales differ.

All ablation experiments were implemented using the publicly available FAMO repository as a base.
Following its training protocol, we employed the STL configuration as the reference baseline and
conducted all evaluations with a single run using seed 0, ensuring consistency across compared
methods.

(a) NYU (b) QM9

(c) CelebA

Figure 4: Mean loss curves across different αsteps values for NYU, QM9, and CelebA.

The mean loss curves observed in Figure 4 exhibit a clear relationship between training progression
and the choice of step size (αsteps). Early in the training process, all step sizes lead to similar
improvements due to the presence of large gradient magnitudes, which dominate the early stages
of optimization. However, as training progresses into the converging regime, differences between
the step sizes become more apparent, and the curves begin to diverge. The divergence in the curves
represents the varying effectiveness of different step sizes in the later stages of training. Models
with well-chosen αsteps are better able to minimize loss, as they more accurately approximate the
optimal rotation during training. This highlights the role of accurate rotations in reducing the global
miss-correction angular error, which is crucial for improving convergence and task balancing.

These observations underscore the difficulty of selecting a fixed, globally optimal step size αsteps
across different datasets. Without prior knowledge of the task structure or the convergence behavior
of the specific dataset, it is unclear which step size is ideal for any given domain. This creates an
inherent challenge in hyperparameter tuning for gradient-based optimization, especially when tran-
sitioning across different datasets. To mitigate this issue, we propose an adaptive-step strategy that
dynamically adjusts αsteps during training. Empirically, we find that this adaptive approach performs
comparably to the original fixed-step RGB method, achieving competitive final mean losses across
multiple datasets. The adaptive-step strategy provides clear advantages in terms of usability. By ad-
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justing αsteps during training, it reduces the need for manual tuning of this hyperparameter, making
the algorithm more robust and user-friendly. This is particularly useful in real-world applications
where the exact characteristics of the data may not be known in advance.

Despite the practical benefits of the adaptive-step approach, it does not consistently recover the
multi-task equilibrium relationships. Specifically, in the later stages of training, where gradient
signals weaken, the adaptive method struggles to identify rotation angles that closely approximate
the ideal optimal angles (α∗

i ). This limitation underscores a fundamental trade-off, while adaptivity
simplifies hyperparameter tuning and enhances usability, it may not always guarantee the optimal
correction of gradient misalignment. This observation emphasizes the balance between usability
and performance, and suggests that future works could focus on further enhancing the adaptivity in
these critical late stages of training.

A.8 ANALYSIS OF MULTI-TASK EQUILIBRIUM RELATIONSHIP FOR GRADIENT DIRECT
BALANCING METHOD BASED ON CELEBA (40 TASKS)

Figure 5: Analysis of Multi-task Equilibrium Relationship for Gradient direct balancing method
based on CelebA (40 tasks)

The statistics of Figure 5 comprises multiple indicators namely:

• ∆m% is computed based on Eq 3.1.
• Avg mean loss refers to the average of tasks mean losses across iteration in such

avg mean loss =
1

N

N∑
t=1

Lt, (3)

where Lt is the recorded mean loss at iteration t.
• Avg pre conflict refer to the average gradient conflict before adjustment. For each iteration
t, cosine similarities are computed among the normalized task gradients {gi}Ti=1 and define

Avg pre conflict =
1

M

∑
(i,j)

1− ⟨gi, gj⟩
2

(4)

with M = T (T − 1)/2 pairs. The reported value is the mean of the Avg pre adjustment
over the phase.

• Avg post conflict refer to the average gradient conflict after adjustment. It is computed in
the same manner as avg pre conflict, but using the adjusted gradients gadj instead of the
raw normalized task gradient {gi}Ti=1

• Avg proximity representd the mean of the proximity term, which defined as the squared
distance between rotated and original gradients

Pt =
1

T

T∑
i=1

∥ri − gi∥2

4
, Avg proximity =

1

N

N∑
t=1

Pt. (5)

• Global Conflict Score, represents the degree of task conflict and the equation as below.
GlobalConflictScore = 1−Softmax(Avg pre Conflict−Avg post conflict) (6)

• Global Proximity Score, represents the degree of task specific information retention, where
equation as below.

GlobalProximityScore = Softmax(Avg proximity) (7)

• Balancing Score, represents the balance between the task conflict and the retention of task-
specific information, where the equation as below.

BalancingScore = GlobalConflictScore+GlobalProximityScore (8)
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Discussion. In this section, we attempt to analyze the impact of direct gradient manipulating
against the global gradient system, where the CelebA dataset with 40 tasks is suggested as our
major experimental environment for high-dimensional task setting. Existing gradient-direct balanc-
ing methods such as GradDrop Chen et al. (2020), GradVac Wang et al. (2020), and PCGrad Yu
et al. (2020) are serving as the benchmarks for better understanding the effect of different operating
against the gradient properties. Based on the Figure 5, we noticed that the pre-gradient’s conflicts
are different across tasks, thus we subtract the pre-conflict with post-conflict to obtain the improve-
ment of task alignment. Afterward, we softmax normalize and inverse the task alignment score into
global conflict score based on Eq. 6,in which the scoring implied that the lower the global conflict
score, the more align between mulitple tasks.

In addition, the average proximity implied the retention of the average task-specific information
after the gradient manipulation. The multi-task equilibrium relationship 2.4 suggested that the ideal
multi-task balance state exists at which the global conflict is minimal, given that the distortion of
task-specific information is minimal. Therefore, we compute the average proximity score based
on Eq. 5 before softmax normalizing across methods to test their relative performance across task
balancing methods. Finally, we aggregate both global conflict with proximity score as the balancing
score in which the lower of the balancing score, the better task alignment with lower distortion of
task-specific information.

According to Figure 5, GradDrop randomly neglects of the gradient dimension does not directly
contribute to the reduction of conflict, while its highest proximity score suggesting a potential harm
to distort the task-specific information, reasonably result in the lowest result of ∆m%. The balancing
score of GradVac and PCGrad fall below average across methods suggesting the phenomenon of
miss-correction error 2.4, specifically over-correction 2.6 as the global conflict score is the lowest
but associated with higher proximity score, indicate higher deviation of adjusted gradient from its
normal gradient, thus obtain a moderate result of ∆m%. For RGB, the global conflict score is
deteriorating along with the increment of αsteps, while the global proximity score is increasing up to
a moderate state. Although a trade-off happened between both scoring, but the aggregated balancing
score is decreasing and yielding an steady increase of ∆m%. The empirical result supported the
existence of MER 2.4 where the state of minimal conflict and task-specific distortion might yield a
better decrement of task’s mean loss.

A.9 ABLATION STUDY: OVER-CORRECTION AND UNDER-CORRECTION

Analysis of Over-Correction and Under-Correction Based on Mean Loss. As shown in Fig-
ure 4, the best performance for NYUv2 is achieved with αsteps = 5, which corresponds to the lowest
mean loss. This suggests that this step size closely approximates the optimal rotation, minimizing
miss-correction. In contrast, αsteps = 50 results in a higher mean loss, indicating over-correction
of the gradients. A larger step size like 50 likely causes excessive adjustments to the rotation, mis-
aligning the estimated and optimal rotation angles and hindering model learning.

For CelebA, the optimal performance is observed at αsteps = 50. Here, the larger step size better
facilitates convergence to the optimal rotation. On the other hand, a step size of 5 leads to under-
correction, reflected in a higher mean loss. The small step size fails to sufficiently adjust the rotation,
resulting in a larger angular error and slower convergence.

For QM9, the curves for αsteps = 30 and αsteps = 50 are nearly aligned, suggesting that the optimal
step size lies somewhere between them. The αsteps = 5 case again underperforms, confirming that
smaller step sizes lead to under-correction. The results for αsteps = 30 indicate that the ideal step
size for this dataset is larger than 5 but may not need to be as large as 50.

Analysis of Over-Correction and Under-Correction Based on Conflict and Proximity. Figure
5 illustrates the results for the CelebA dataset, showing that the RGB method with a step size of 50
achieves the best results overall. As the step size increases from 5 to 50, we observe an improvement
in ∆m% along with a decrease in the average mean loss.

For αsteps = 5, the global proximity score is the lowest among the three step sizes, indicating
better task specificity preservation. However, this comes at the cost of the highest gradient conflict,
reflecting poor gradient alignment. This suggests under-correction, where the small step size fails to
sufficiently reduce gradient conflict, preventing proper alignment with the task-specific direction.
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In contrast, for αsteps = 50, both the global conflict score and the global proximity score are lower
than those for smaller step sizes. This indicates that a larger step size strikes a better balance between
gradient alignment and task specificity for CelebA, leading to improved optimization and conver-
gence. Thus, αsteps = 5 represents under-correction, while αsteps = 50 appears to better balance
gradient alignment with task specificity, achieving superior performance.

Next, we compare our RGB method with step sizes 5, 30, and 50 to other methods such as Grad-
Drop Chen et al. (2020), GradVac Wang et al. (2020), and PCGrad Yu et al. (2020). GradDrop
exhibits the highest global conflict and global proximity scores, suggesting poor gradient alignment
and a failure to preserve task specificity. This aligns with the definition of over-correction, where
the method induces excessive gradient adjustment, causing misalignment with the task-specific di-
rection.

GradVac and PCGrad, while showing better gradient alignment (as evidenced by lower global con-
flict scores), still exhibit high global proximity scores. This suggests that these methods over-correct
the gradients, excessively aligning them at the cost of task-specific optimization. A high global prox-
imity score alongside low global conflict indicates that these methods make overly large corrections,
moving too far from the task-specific direction and harming performance.

A.10 THE CONVERGENCE ANALYSIS BASED ON TOY EXPERIMENT

Figure 6: Visualization of optimization trajectories on a toy 2-task problem. Each subplot corre-
sponds to a different multi-task learning (MTL) method: PCGrad, CAGrad, MGDA, Nash-MTL,
FAMO (γ = 0.0), and our proposed RGB. The axes denote the per-task losses ℓ1 and ℓ2, and the
Pareto front is illustrated in dark gray. Compared to prior gradient manipulation methods, RGB
drives the optimization closer to the Pareto front while maintaining stable convergence. All experi-
ments were implemented using the publicly released FAMO repository and executed for 20000 steps
under identical settings.

As shown, PCGrad and CAGrad exhibit similar tendencies: their trajectories fail to reach the Pareto
front from all initialization points. MGDA improves upon this by driving all trajectories onto the
front, but the converged points are scattered. In contrast, Nash-MTL and FAMO achieve smooth
convergence with trajectories neatly landing on the front. Our proposed RGB method also con-
verges cleanly to the front. Importantly, RGB is a gradient-based method, yet it achieves stable and
consistent convergence comparable to weighting-based methods.

A.11 EXPERIMENT DETAIL

Method
µ α ϵHOMO ϵLUMO ⟨R2⟩ ZPVE U0 U H G Cv ∆m% ↓

MAE ↓

RGB 0.064 0.190 78.07 77.55 1.094 3.063 32.88 33.35 33.10 33.24 0.065 -3.7
± stderr ±0.024 ±0.019 ±6.04 ±3.84 ±0.140 ±0.346 ±4.41 ±4.23 ±4.57 ±4.25 ±0.013 ±8.28

Table 4: Results on QM9. All metrics are MAE (lower is better). Results are averaged over four
random seeds= 0,1,2,3.
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Method
Segmentation Depth Surface Normal

∆m% ↓
mIoU ↑ Pix Acc ↑ Abs Err ↓ Rel Err ↓ Angle Dist. ↓ Within t◦ ↑

Mean Median 11.25 22.5 30

RGB 41.93 67.56 0.529 0.224 24.74 19.30 29.11 56.72 69.43 -5.92
± stderr ±0.42 ±0.28 ±0.013 ±0.0056 ±0.20 ±0.31 ±0.52 ±0.65 ±0.50 ±0.63

Table 5: Results on NYUv2. Hierarchical headers. Lower is better for ↓, higher for ↑. Our results
are the average of three seeds = 0,1,2.

Method mIoU [%] ↑ L1 [px] ↓ MSE ↓ ∆m% ↓

RGB 65.06 9.90 0.325 -1.81
± stderr ±0.24 ±0.039 ±0.00046 ±0.17

Table 6: Results on Cityscapes (3 tasks). Lower is better for ↓, higher for ↑. Results are averaged
over three random seeds=0,1,2
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