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Abstract

Visual storytelling aims to automatically gen-001
erate a coherent story based on a given image002
sequence. Unlike tasks like image captioning,003
visual stories should contain factual descrip-004
tions, worldviews, and human social common-005
sense to put disjointed elements together to006
form a coherent and engaging human-writeable007
story. However, most models mainly focus008
on applying factual information and using tax-009
onomic/lexical external knowledge when at-010
tempting to create stories. This paper intro-011
duces SCO-VIST, a framework representing012
the image sequence as a graph with objects and013
relations that includes human action motivation014
and its social interaction commonsense knowl-015
edge. SCO-VIST then takes this graph repre-016
senting plot points and creates bridges between017
plot points with semantic and occurrence-based018
edge weights. This weighted story graph pro-019
duces the storyline in a sequence of events us-020
ing Floyd-Warshall’s algorithm. Our proposed021
framework produces stories superior across022
multiple metrics in terms of visual grounding,023
coherence, diversity, and humanness, per both024
automatic and human evaluations.025

1 Introduction026

Beyond interpreting the factual content of scenes027

with expressions, like image captioning, Visual028

Storytelling (VST) aims to conduct a human-like029

understanding of the idea of a sequence of images030

and generate more complicated visual scenarios031

with human-like textual expressions (Huang et al.,032

2016). In order to achieve this aim, the AI agent033

is required to model relationships between the im-034

ages while remaining visually grounded, identify035

concepts that are implied (but not explicitly shown)036

in the images, as well as generate coherent, conver-037

sational language resembling how a human would038

tell a story in a social setting.039

Numerous past studies have employed encoder-040

decoder frameworks that first utilise a computer041

vision algorithm to extract image-specific features, 042

which are then fed into a language generation 043

model to decode the story (Gonzalez-Rico and 044

Pineda, 2018; Kim et al., 2018; Jung et al., 2020; 045

Smilevski et al., 2018). Although these methods 046

can yield reasonable stories to some extent, they 047

often lack common sense reasoning, thus produc- 048

ing stories that are "generic" sounding with limited 049

vocabulary, and irrelevant to the images. To alle- 050

viate these issues, more recent approaches adopt 051

content planning methods that try to explicitly pre- 052

dict textual concepts from the images via detecting 053

objects in the image by using external knowledge 054

data sources to identify implicitly related concepts 055

(Chen et al., 2021; Hsu et al., 2020, 2021a; Xu et al., 056

2021). Those external knowledge data sources 057

mainly comprise taxonomic, lexical and physical 058

relations, whereas human-like storytelling tends to 059

use the social-aspect relations of everyday human 060

experiences. Social-interaction relations comment 061

on socially-triggered states and behaviours. It is 062

crucial to gauge people’s intentions and purpose 063

and predict situationally-relevant human reactions 064

and behaviours, which is directly aligned with the 065

aim of human-like storytelling. 066

This paper proposes a new social-interaction 067

commonsense-enhanced VST framework, SCO- 068

VIST, for producing human-like stories by inter- 069

preting socially-triggered situations and reactions. 070

We introduce a three-stage commonsense enhanced 071

framework that attempts to construct a reasonable 072

plot of story events from the given image stream 073

for story decoding. Stage 1 focuses on constructing 074

a story graph representing causal and logical rela- 075

tionships between social interactions and events. 076

Motivated by the idea that captions may already 077

have embedded social commonsense within them, 078

we first generate a caption for each image to liter- 079

ally capture the event depicted in the photo. Ad- 080

ditionally, we further extract commonsense from 081

external data related to social situations, interac- 082
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tions and behavioural responses (i.e. character’s in-083

tentions, desires or needs). Each extracted caption084

and commonsense is thus considered a different085

event or plot point, and we connect the plot points086

(nodes) with causal ordering. In stage 2, we con-087

vert the story graph to be weighted by conducting088

a comprehensive analysis on different edge weight089

assignment methods based on semantic similarity090

between nodes and graph learning. Intuitively, this091

weighted story graph reflects the branching space092

of plausible event continuations where the edge093

weights indicate the likelihood of transition be-094

tween connected plot points. Given the weighted095

story graph, the optimal storyline is the path of096

nodes that yields the largest sum of weights from097

the left to the right-most nodes in the graph. There-098

fore, Stage 3 negates the edge weights and employs099

Floyd-Warshall’s shortest path search algorithm to100

extract the optimal sequence of story events which101

is later fed into a Transformer for story genera-102

tion. The main contributions of this research are: 1)103

We introduce a social-interaction commonsense en-104

hanced VST framework that improves understand-105

ing of social situations and characters’ feelings, 2)106

We design a heterogeneous story graph and con-107

duct a comprehensive analysis of the role of node108

and edge construction and learning over the visual109

storytelling dataset, 3) We show that our model110

outperforms state-of-the-art when comparing auto-111

matic metrics, especially when analysing recently112

proposed metrics designed for VST, and 4) For ro-113

bust evaluation, we also conduct human evaluation114

studies and demonstrate that our framework consis-115

tently and significantly outperforms several strong116

baselines.117

2 Related Work118

Earliest works on VST consist of an encoder-119

decoder structure incorporated in an end-to-end120

model (Gonzalez-Rico and Pineda, 2018; Kim121

et al., 2018; Smilevski et al., 2018). Recently, there122

has been increasing interest in reinforcement learn-123

ing architectures which include a reward model124

to evaluate the generated stories (Hu et al., 2020;125

Wang et al., 2018). However, the training process126

of such methods are inherently unstable. Other ap-127

proaches first translate images to semantic scene128

graphs to capture image features and then employ129

Graph Convolutional Networks (GCN) to enrich re-130

gions and object representations (Hong et al., 2020;131

Wang et al., 2020). Instead, we use literal text132

descriptions of images which can better explicitly 133

represent the image contents. 134

To promote more diverse stories, newer works 135

have also used knowledge graphs to assist the story- 136

telling process, allowing for richer stories capable 137

of expressing imaginative concepts that are not ex- 138

plicitly shown in the image scene. Most of these 139

methods involve querying ConceptNet (Speer et al., 140

2017) with detected image objects or predicted key 141

image concepts to find a set of related candidate 142

concepts (Chen et al., 2021; Xu et al., 2021; Yang 143

et al., 2019). While these methods show promising 144

improvements in outputs, ConceptNet mainly com- 145

prises of taxonomic and physical relations, whereas 146

our framework leverages commonsense that are 147

more social-interaction focused and event-centred. 148

Finally, most related to our work, recent studies 149

try to form the story plot by first using external 150

knowledge to connect concepts between images 151

to reason about potential temporal relationships 152

(Hsu et al., 2020, 2021a,b). However, these meth- 153

ods often employ complex network architectures 154

to iteratively predict subsequent events. We alle- 155

viate these complexities and present a simple yet 156

effective approach for storyline construction. 157

3 Method 158

Figure 1 depicts an overview of SCO-VIST’s three 159

stages. The following sections will describe each 160

step in detail. 161

3.1 Stage 1: Story Graph Construction 162

Node Construction The story graph contains 3 163

types of nodes: caption, commonsense and theme 164

nodes. The caption nodes are obtained by using 165

a pre-trained image captioning model to generate 166

a textual description for each image in the photo 167

sequence. That is, given the sequence of 5 images, 168

captions {C1, C2, ...C5} are generated where Ci is 169

the caption for the ith image. The intuition behind 170

using captions is that literal descriptions of an im- 171

age can provide more specific and accurate details 172

about image contents compared to the raw visual 173

features extracted from the image itself. Moreover, 174

this step mimics how a human would tackle the 175

VST task, as one would usually first consider what 176

is visually represented in the image and its context 177

before forming the premise of the story. 178

Next, we specifically focus on generating com- 179

monsense related to social interactions and dy- 180

namic aspects of everyday events. As such, Comet- 181
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Figure 1: SCO-VIST’s proposed framework. In Stage 1, the caption, theme and commonsense nodes are created
and connected with causal ordering to form the story graph. In Stage 2, edge weights are assigned using cosine
similarity or point mutual information and further refined through graph learning. Stage 3 takes the final story graph,
negates the weights and constructs the storyline by finding the shortest path between the left and right-most node.
The storyline is then fed to a Transformer for story generation. The corresponding detailed view of the final story
graph for this example is depicted in Appendix F.

ATOMIC2020 is utilised, a ‘neural knowledge182

model’ trained on the ATOMIC commonsense183

knowledge graph dataset (Hwang et al., 2021)184

which contains information on common human185

everyday experiences and mental states. Given a186

head/source phrase and relation (e.g. eat a cake187

Intent), Comet-ATOMIC2020 is capable of pro-188

ducing a tail phrase on-demand (e.g. celebrate189

birthday). Thus, out of the available 9 social inter-190

action relations that Comet-ATOMIC2020 offers,191

we select 4 relations that primarily focus on causal192

and behavioural relationships: xNeed, xIntent,193

xEffect and xWant. More specifically, the xNeed194

relation indicates what event is needed to happen195

before a following event occurs while the xIntent196

relation indicates a character’s intention before an197

action takes place. Conversely, xEffect are social198

actions that occur after an event while xWant rep-199

resents a character’s postcondition desires after an200

event.201

We append the 4 relation tokens to each caption202

phrase Ci to provide as input for querying Comet-203

ATOMIC2020. Five commonsense inferences are204

generated per relation r, {ckr1, ckr2, ..., ckrn}, result-205

ing in 20 commonsense altogether for each caption.206

The commonsense produced for each caption are207

then grouped into BEFORE and AFTER events. The208

BEFORE events category contains the knowledge ex-209

tracted from the xNeed and xIntent relation while210

the AFTER events contains the xEffect and xWant211

commonsense.212

Finally, the theme nodes contain a sequence213

of concepts that represent the theme depicted in214

each image. We use Clarifai 1, a pretrained object 215

and concept detector model capable of predicting 216

11,000 unique concepts. We extract a sequence of 217

20 concepts for each of the 5 images to create 5 218

theme nodes {T1, T2, T3, T4, T5}. 219

Connecting Nodes Let CKB = 220

{ckr1, ckr2, ..., ckrm} where r ∈ {xNeed, xIntent} 221

be the BEFORE commonsense inferences for 222

caption Ci. Similarly, we denote CKA = 223

{ckr1, ckr2, ..., ckrm} where r ∈ {xEffect, xWant} 224

to be the AFTER commonsense inferences. To 225

construct the story graph, we add directed edges 226

between Ti (the theme node for image i) with 227

the commonsense nodes in CKB . Each node in 228

CKB is then connected to Ci which is further 229

connected to each node in CKA. Finally, each 230

node in CKA is connected with the theme nodes 231

for the next image, Ti+1. Consequently, a directed 232

acyclic graph SG representing the branching space 233

of possible story events for each image stream 234

is constructed as seen in the graph in Stage 1 of 235

Figure 1. 236

3.2 Stage 2: Story Graph Learning 237

This stage conducts an analysis on the importance 238

and role of each node in the story graph by convert- 239

ing SG into a weighted graph, SG,weighted. Two 240

main methods for edge weight assignment based 241

on semantic similarity is experimented with and 242

weights are further refined with graph learning. 243

Cosine Similarity Firstly, we use the cosine sim- 244

1www.clarifai.com
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ilarity between plot points as an indicator of their245

level of association. Given connecting nodes u and246

v which contain words or a phrase denoted by Pu247

and Pv respectively, we convert Pu and Pv to a248

sentence embedding using a pretrained transformer249

model. The cosine similarity score between the250

two embeddings at node u and v is then simply251

assigned to their connecting edge eu,v.252

Pointwise Mutual Information (PMI) The second253

method computes the PMI between each pair of254

words in Pu and Pv where a high PMI implies high255

semantic correlation between words. Formally, the256

PMI between word i in Pu and word j in Pv is:257

PMI(i, j) = log
p(i, j)

p(i)p(j)
(1)258

Here, p(i, j) = #S(i,j)
#S , p(i) = #S(i)

#S and p(j) =259
#S(j)

#S where #S(i) is the number of sentences in the260

corpus that contain word i, #S(i, j) is the number261

of sentences that contain both words and #S is the262

total number of sentences in the corpus. Finally, a263

normalized version of the PMI score is calculated:264

NPMI =
PMI

−log(p(i, j))
(2)265

The final weight assigned to eu,v is the maximum266

NPMI score out of all scores calculated from the267

possible word pair combinations.268

Graph Learning We further refine the cosine or269

PMI-weighted story graph through graph learn-270

ing. Specifically, the weighted graph is fed into271

a Temporal Graph Neural Network (TGCN). Such272

networks combine the advantages of GCNs and273

Recurrent Neural Networks to learn the graph’s274

complex topological structure as well as its tem-275

poral changes. We use an implementation of the276

Gated Graph Convolution Long Short Term Mem-277

ory Layer (Taheri and Berger-Wolf, 2019) which278

encodes the graph and yields embeddings for each279

node. We then extract the 5 embeddings from the280

caption nodes and feed them through the BART281

Transformer (Lewis et al., 2020) to decode the story.282

The TGCN and Transformer are trained end-to-end283

to minimise the cross-entropy loss:284

L(θ) = −
T∑
t=1

log(pθ(y∗t |y∗1, ..., y∗t−1)) (3)285

where θ is the parameters of the model, y∗ is the286

ground-truth story and y∗t denotes the t-th word in287

y∗. Finally, we extract the learnt node embeddings 288

and compute the cosine similarity between the em- 289

beddings of each pair of connected nodes to obtain 290

the edge weight in between. 291

3.3 Stage 3: Storyline and Story Generation 292

Storyline Extraction Given SG,weighted, we con- 293

sider the optimal storyline as the path from the 294

left-most node to the right-most node that pro- 295

duces the highest sum of weights. To find this 296

path, we negate each weight in SG,weighted and add 297

a dummy end node DE which is connected with 298

the right-most nodes in SG,weighted with an edge 299

weight of -99. An example of the final graph is de- 300

picted in Appendix F. Floyd–Warshall’s algorithm 301

(Floyd, 1962) is then adopted to find the shortest 302

path starting from T1 to DE to produce the sto- 303

ryline containing a sequence of events e1, ..., eL 304

taking only the caption and commonsense nodes. 305

Story Generation The last stage consists of de- 306

coding the story. We separate each event ei using 307

a separator token </s>. The events are then fed 308

through BART for story generation which we train 309

with the cross-entropy loss from Equation 3. 310

4 Evaluation Setup2 311

4.1 Data 312

VIST The Visual Storytelling Dataset (VIST) 313

(Huang et al., 2016) consists of 210,819 unique 314

images obtained from Flickr albums. The 315

dataset is split into training/validation/testing with 316

8,031/998/1,011 albums where each album con- 317

tains a set of similar image sequences with each 318

sequence made up of 5 photos. Each album also has 319

5 human written stories where each story is usually 320

comprised of one sentence per image. The unique 321

number of stories in the training, validation and 322

testing set is 40,155, 4,990 and 5,055 respectively. 323

4.2 Baseline Models 324

We compare our model with 6 state-of-the-art base- 325

lines: 1) AREL (Wang et al., 2018), 2) GLACNet 326

(Kim et al., 2018), 3) KG-Story (Hsu et al., 2020), 327

4) ReCo-RL (Hu et al., 2020), 5) PR-VIST (Hsu 328

et al., 2021a), and 6) TAPM (Yu et al., 2021). De- 329

tails of each model is outlined in Appendix E. 330

2Implementation details can be found in Appendix C
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4.3 Ablation Study Models331

We also conduct ablation studies to compare differ-332

ent variants of our proposed model:333

• SRL-caption: A story graph is not created and334

the 5 image captions are used as the storyline.335

• SRL-pmi/cosine: The storyline is extracted336

from the story graph using weights obtained337

from the cosine similarity or PMI approach.338

• TGCN/TGCN-SRL: TGCN-cosine/pmi is an339

end-to-end model where the story graph is fed340

to the TGCN and node embeddings are then341

inputted into BART for story decoding. The342

story graph input uses weights obtained from343

either the cosine or PMI approach. TGCN-SRL-344

cosine/pmi further uses the trained TGCN to ex-345

tract the node embeddings and their similarities346

are then used to refine the story graph weights347

for storyline and story generation.348

4.4 Automatic Metrics349

Numerous past literature have shown that tra-350

ditional automatic metrics like BLEU correlate351

poorly with human judgement and are unreliable352

for evaluating VST (Wang et al., 2018; Hsu et al.,353

2019). These metrics mainly focus on comparing n-354

gram similarity between hypothesis and references,355

thus are insufficient for evaluating open-ended text356

generation tasks like storytelling, where there are357

multiple plausible outputs for the same input which358

are not fully reflected in the references. There-359

fore, we focus on metrics specifically designed for360

‘open ended text generation’ which consider the361

plausibility of diverse outputs. The first is RoViST362

(Wang et al., 2022), an unreferenced metric set for363

VST consisting of three scores that target three cri-364

teria: visual grounding (RoViST-VG), coherence365

(RoViST-C) and no redundant repetition of con-366

cepts/words (RoViST-NR). An overall single score367

(RoViST) can be calculated by averaging RoViST-368

VG, C and NR. In addition to RoViST, we consider369

other learnt ‘unreferenced’ metrics such as Perplex-370

ity and the storytelling metric, UNION (Guan and371

Huang, 2020) which assigns a score based on im-372

portant story criteria like coherence, no conflicting373

logic and non-repeating plots. Finally, for com-374

pleteness and maintaining consistency with other375

works, we further compute reference-based metrics376

including the classic ROUGE-L (Lin, 2004), ME-377

TEOR (Banerjee and Lavie, 2005), CIDEr (Vedan-378

tam et al., 2015) and SPICE (Anderson et al., 2016).379

For analysing semantic similarity, the BERT-based 380

metric BLEURT (Sellam et al., 2020) is further 381

adopted as well as the embedding-based metric, 382

MoverScore (Zhao et al., 2019). 383

4.5 Human Evaluation 384

We finally conduct human evaluation studies and 385

create 3 surveys where each survey conducts a pair- 386

wise comparison between our model and a baseline. 387

In the survey, participants are given 100 randomly 388

selected unique photo sequences from the test data 389

(same sequences are used for each survey) and 390

the corresponding generated story from our model 391

and the baseline. They are then asked to choose 392

which of the two stories are better based on 3 cri- 393

teria: 1) Visual Grounding: the generated story 394

must relate to concepts depicted in the image se- 395

quence, 2) Coherence: story sentences need to 396

flow while remaining logical and topically con- 397

sistent, and 3) Non-Redundancy: sentences are 398

diverse and there are no unnatural-sounding repeti- 399

tion of words/phrases in the story. A final question 400

also asks the annotator to choose which story is 401

better out of the two based on their opinion. 15 402

respondents (5 per survey) were recruited where 403

each participant answered 400 questions, resulting 404

in 6000 instances collected in total. 405

5 Results 406

5.1 Overall Performance 407

Table 1 summarises several metrics for the 6 base- 408

lines and for the 7 different variations of SCO- 409

VIST. After filtering out broken images in the test 410

set and missing stories from the baseline mod- 411

els, a sample of 890 albums was used to calculate 412

these metrics. Considering our best model based 413

on the visual storytelling metric RoViST (SRL- 414

pmi), RoViST-VG performs on par with the more 415

recent baselines and significantly outperforms in 416

RoViST-C when considering all our 7 model vari- 417

ants. RoViST-NR however underperforms, but 418

we strongly emphasize that this is most likely at- 419

tributed to the short story lengths which have a 420

lower chance of repeating words as can be seen 421

by KG-Story which has a repetition score of 99.9 422

but average story length of only 32. Furthermore, 423

we note that studies in Wang et al. (2022) empha- 424

sized that humans considered coherence to play 425

the most significant role when judging a story, fol- 426

lowed by visual grounding and non-redundancy. 427

Nevertheless, our models still achieve noticeably 428
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Model RoViST-VG RoViST-C RoViST-NR RoViST (R) SPICE (S) BLEURT (B) MoverScore (M) UNION (U) Perplexity R+S+B+M+U Story Len.

AREL ((Wang et al., 2018)) 66.2 57.1 83.4 68.9 9.0 32.6 55.1 17.1 15.3 182.7 44.8
GLACNet (Kim et al., 2018) 61.6 68.6 95.1 75.1 7.0 33.5 54.9 75.9 24.6 246.3 35.2
KG-Story (Hsu et al., 2020) 58.7 65.1 99.9 74.6 7.2 32.3 54.9 65.8 46.1 234.8 32.3
ReCo-RL (Hu et al., 2020) 67.8 57.3 91.9 72.3 11.2 31.9 55.4 23.8 28.3 194.6 49.3
PR-VIST (Hsu et al., 2021a) 70.0 60.4 96.1 75.5 9.6 31.0 54.7 30.3 42.3 201.1 52.2
TAPM (Yu et al., 2021) 70.3 67.0 90.5 75.9 9.9 33.4 55.6 56.0 18.3 230.8 51.2
SRL-caption 65.2 73.9 91.4 76.8 6.1 31.7 53.3 76.5 16.0 244.5 49.7
SRL-cosine 69.6 72.1 91.9 77.9 11.2 34.6 56.0 78.8 15.1 258.4 48.0
SRL-pmi 70.4 72.8 91.6 78.3 11.5 34.7 56.0 75.9 14.7 256.3 51.2
TGCN-SRL-cosine 70.3 72.3 90.5 77.7 10.9 34.9 56.0 84.0 14.9 263.4 52.3
TGCN-SRL-pmi 69.0 71.9 91.6 77.5 11.2 34.7 56.0 80.6 13.6 259.9 51.5
TGCN-cosine 65.7 75.5 91.8 77.6 9.2 33.9 55.6 84.3 16.5 260.6 39.1
TGCN-pmi 65.7 75.9 91.3 77.6 9.4 33.8 55.7 87.0 15.5 263.4 40.5

Table 1: Automatic metrics and average story length (Story Len.) for the 6 baselines vs. our 7 model variants.

better performance than the baselines when com-429

paring the overall RoViST metric with SRL-pmi430

considered as the best model as it achieved a good431

balance of high scores across RoViST-VG, C and432

NR.433

Although classic automatic metrics are known434

to correlate poorly with human judgement for VST,435

it is still noteworthy to analyse them in conjunc-436

tion with RoViST. Hence, ROUGE-L, METEOR437

and CIDEr are shown in Table 4 of Appendix D438

where we observe that SRL-pmi resulted in lower439

scores. This could be due to our model using knowl-440

edge from COMET-Atomic2020 to enrich lexical441

diversity which results in lower performance in442

n-gram matching between the generated and ref-443

erence stories. However, SRL-pmi still outper-444

forms the baselines when comparing less classic445

metrics like SPICE which focuses on semantic446

propositional content, BLEURT which is based447

on semantic meaning and slightly on MoverScore448

which compares distances of word embeddings be-449

tween reference and hypothesis stories. The un-450

referenced metrics for evaluating open-ended text451

generation, Perplexity and UNION also show sig-452

nificant improvements. Most noticeably, UNION453

which scores based on coherence, conflicting logic454

and chaotic scenes is able to reach an upper bound455

score of 87.0 with TGCN-pmi.456

Finally, to gain a better overview of the overall457

performance, we sum RoViST, SPICE, BLEURT,458

MoverScore, and UNION and present the scores in459

the R+S+B+M+U column. When comparing the460

sum, the best performing models were the TGCN461

methods with TGCN-SRL-cosine and TGCN-pmi462

producing the highest scores.463

5.2 Ablation Study464

To analyse the effect of the storyline extraction465

stage and different edge weight assignment meth-466

ods, an ablation study was conducted to com-467

pare the 7 different variations described in Section468

4.3. We first compare just using the 5 captions 469

(SRL-caption) as the storyline versus extracting 470

the storyline from the commonsense story graph 471

(SRL-cosine/pmi, TGCN-SRL-cosine/pmi). Sur- 472

prisingly, competitive RoViST-C and NR scores 473

was achieved from SRL-caption but underperforms 474

substantially in the VG criteria. Additionally, 475

SPICE, BLEURT, MoverScore, UNION and Per- 476

plexity were considerably worse. This implies that 477

captions alone have sufficient commonsense em- 478

bedded in them and can be useful features for gen- 479

erating plausible stories. However, the VG aspect 480

can be further enhanced by exploiting extra social 481

commonsense from external data. 482

Moreover, the TGCN-cosine/pmi approach con- 483

sisting of the end-to-end model with a TGCN com- 484

bined with the Transformer evidently produces 485

lower RoViST-VG and NR compared to the SRL 486

methods. SPICE, BLEURT, MoverScore and Per- 487

plexity scores were also mostly less optimal. This 488

suggests that feeding the node embeddings into the 489

Transformer for story decoding is not as good as ex- 490

tracting the storyline and explicitly using the words 491

as input which can provide more fine-grained de- 492

tails about the image contents for generating richer 493

stories. However, TGCN-cosine/pmi noticeably 494

yielded the best RoViST-C scores out of the 7 meth- 495

ods (> 75). This could be attributed to the shorter 496

outputs as it is often easier to stay coherent with 497

shorter generic sentences. 498

Finally, it is interesting to note that higher 499

UNION scores were obtained for all TGCN meth- 500

ods when compared to not using the TGCN. It is 501

hypothesised that incorporating learnt temporal in- 502

formation in the node embeddings implicitly via 503

TGCN training perhaps resulted in more logical 504

stories, thus improving the UNION score. 505

5.3 Visualising Diversity 506

We visualise the number of distinct unigrams, 507

nouns, verbs and adjectives outputted by SRL-pmi 508
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versus the 6 baselines. Figure 2 illustrates that our509

model can produce significantly more unigrams510

overall especially when comparing nouns, suggest-511

ing that leveraging social interaction commonsense512

and the captions can generate richer and diverse513

sentences with more novel expressions.514

Figure 2: Count of unique unigrams for different part-
of-speech (POS) tags for SRL-pmi vs. the 6 baselines.

5.4 Qualitative Analysis515

To evaluate our model qualitatively, we show ex-516

amples of generated stories from SRL-pmi ver-517

sus the 5 baselines. Figure 4 illustrates that our518

model generates stories that are clearly more visu-519

ally grounded. For instance, ReCo-RL in the first520

example mentions several irrelevant phrases like521

‘lot of fun’ while KG-Story incorrectly mentions522

‘gave another speech’ in the last sentence. On con-523

trary, our model’s stories are more detailed and less524

generic such as the phrase, ‘ready to go on his mis-525

sion’ and ‘sights and sounds of the enemy’, thus526

highlighting the effectiveness of using captions and527

social commonsense to capture events depicted and528

implied by the images. By not solely relying on529

visual features and using literal descriptions and530

commonsense to construct storylines as input, our531

stories are also consequently more coherent and532

natural-sounding. Taking the last sentence from533

AREL in the second story as an example, ‘This534

is the view from the top of the mountain’ sounds535

abrupt and is unrelated to the previous generated536

sentences. Conversely, our story is capable of cap-537

turing the changes between images while maintain-538

ing a strong focus on the topic of ‘wine tasting’.539

5.5 Human Evaluation: Pairwise Comparison540

Table 2 reports the results of the pairwise compari-541

son between SRL-pmi with AREL, ReCo-RL and542

PR-VIST. The last column (’Agree’) represents543

results from the Fleiss’ kappa test used to assess544

inter-rater consistency (Fleiss, 1971). Agreement 545

scores in the range [0.21, 0.40], [0.41, 0.60] and 546

[0.61, 0.80] means fair, moderate and strong agree- 547

ment between multiple annotators respectively. 548

When analysing all stories (‘All Stories’ sub- 549

table), our generated stories evidently outperform 550

the baselines by a large margin. All percentages 551

in the first column are over 63%, indicating that 552

the majority of annotators selected our story to be 553

better across all criteria. Moreover, when compar- 554

ing the ‘Overall’ criteria which asked evaluators to 555

choose the better story, over 78% of the responses 556

reported our stories to be better with the Fleiss’ 557

kappa test result showing a moderate to strong level 558

of agreement between annotators. We believe the 559

higher votes for the visual grounding criteria for 560

our model is due to our method incorporating rele- 561

vant social-interaction commonsense. Additionally, 562

our constructed storyline is able to reflect the causal 563

events implied by the image stream, resulting in 564

improved story coherence and less repetition. 565

5.6 Human Evaluation: Story Categories 566

We analyse the human evaluation results by cate- 567

gorising the stories into ‘event-based’ and ‘object- 568

based’. Event-based stories refer to image streams 569

that focus on people performing actions and there is 570

a clear transition of events between images. Object- 571

based consists of images that mostly picture land- 572

scapes and objects. Such instances have no clear 573

event in the image, and thus require more imagi- 574

nation when creating the story. An example of an 575

event-based story is the top sequence in Figure 3 576

where we can clearly see a man taking a photo and 577

a girl running and sliding across the sand. Con- 578

versely, the second example is object-based as a 579

majority of the images depict scenery and build- 580

ings. It is harder to generate a story from this input 581

as the first 4 images are extremely similar while 582

the last image is totally different. 583

Observing the last two sub-tables of Table 2, the 584

first baseline AREL shows lower percentages and 585

ties for object versus event-based stories. As AREL 586

purely relies on generating stories from the visual 587

features, it fails to create coherent output partic- 588

ularly when consecutive images are similar. We 589

qualitatively analyse this in Figure 3 where AREL’s 590

story for the object-based example contains more 591

monotonous sentences (‘This is a picture of a city) 592

and obvious repetition between consecutive sen- 593

tences. On contrary, our model can generate a more 594
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All Stories Event-based Object-based
Criteria Ours AREL Tie Agree Ours AREL Tie Agree Ours AREL Tie Agree

Visual Grounding 88.0% 6.6% 5.4% 0.64 86.5% 8.5% 5% 0.60 96.9% 2.5% 0.6% 0.71
Coherence 90.0% 4.8% 5.2% 0.70 88.2% 5.3% 6.5% 0.66 93.8% 3.7% 2.5% 0.82
Non-Redundancy 83.6% 3.0% 13.4% 0.56 82.4% 3.2% 14.4% 0.54 86.3% 2.4% 11.3% 0.60
Overall 93.4% 4.4% 2.2% 0.78 91.8% 5.3% 2.9% 0.74 96.9% 2.5% 0.6% 0.88
Criteria Ours ReCo-RL Tie Agree Ours ReCo-RL Tie Agree Ours ReCo-RL Tie Agree

Visual Grounding 82.2% 10.0% 7.8% 0.49 82.3% 10.6% 7.1% 0.49 81.9% 8.7% 9.4% 0.48
Coherence 93.4% 4.2% 2.4% 0.78 94.7% 3.8% 1.5% 0.81 90.6% 5% 4.4% 0.70
Non-Redundancy 71.6% 11.0% 17.4% 0.30 72.3% 12.4% 15.3% 0.31 70.0% 8.1% 21.9% 0.28
Overall 92.2% 5.0% 2.8% 0.75 93.8% 4.1% 2.1% 0.79 88.8% 6.8% 4.4% 0.66
Criteria Ours PR-VIST Tie Agree Ours PR-VIST Tie Agree Ours PR-VIST Tie Agree

Visual Grounding 78.8 % 17.2 % 4.0 % 0.52 79.1% 16.2% 4.7% 0.52 78.1% 19.4% 2.5% 0.52
Coherence 77.8% 18.4% 3.8 % 0.44 79.4% 17.9% 2.7% 0.47 74.4% 19.3% 6.3% 0.35
Non-Redundancy 63.0% 24.6% 12.4% 0.28 64.4% 22.4% 13.2% 0.29 60.0% 29.4% 10.6% 0.23
Overall 78.0% 16.4% 5.6% 0.46 78.5% 16.2% 5.3% 0.48 76.9% 16.8% 6.3% 0.43

Table 2: Pairwise comparison between SRL-pmi with AREL, ReCo-RL and PR-VIST across the visual grounding,
coherence, and non-redundancy criteria for all stories (500 instances) and when separated into event-based (340
instances) and object-based (160 instances) story categories. The ‘Agree’ column shows the Fleiss’ Kappa results.

Figure 3: AREL vs. SRL-pmi for an event and object-
based story. Blue words indicate concepts implicitly or
explicitly used in the generated story while red repre-
sents irrelevant concepts. Underlined words in the story
represent concepts relevant to the image stream.

visually grounded and coherent story by utilising595

the storyline. While this example shows several596

useful concepts in the storyline that are not used in597

the generated story (‘nativity scene’, ‘roman struc-598

ture’), concepts such as ‘tall’, ‘take picture’, and599

‘tourists’ (highlighted in blue) did help in produc-600

ing phrases related to these concepts, resulting in601

a story containing more interesting, diverse and602

relevant words. Furthermore, while there are error603

cases where the storyline contains irrelevant infor-604

mation such as the red words in the event-based605

example, this information was not included in the606

generated output. This is perhaps due to the ad-607

vantages of the encoder-decoder cross-attentional 608

mechanism of BART which allows the model to 609

learn to select the more useful parts of the storyline. 610

Examining ReCo-RL, only the grounding and 611

non-redundancy aspect received lower votes for 612

object versus event-based instances. Compared to 613

AREL, its better performance may be due to its 614

framework incorporating RL rewards to directly 615

align the outputs more to a human story in terms of 616

the 3 criteria. PR-VIST however which first builds 617

a storyline like ours, outperforms AREL and ReCo- 618

RL and further, even yields slightly more votes 619

for object-based stories compared to its propor- 620

tion of votes received for event-based stories, thus 621

highlighting the effectiveness of storyline and con- 622

tent planning. Despite PR-VIST’s improvements, 623

our approach and storyline construction method is 624

evidently superior and substantially outperforms 625

PR-VIST in all aspects across the 2 categories. 626

6 Conclusion 627

In this paper, we presented SCO-VIST, a multi- 628

stage novel framework for visual storytelling that 629

utilises social-interaction knowledge for enhanc- 630

ing commonsense reasoning in stories. We design 631

a heterogeneous story graph with causal ordering 632

that connects captions and commonsense extracted 633

from external sources and employ shortest path 634

algorithms to find the optimal storyline for story 635

generation. Extensive experiments on the bench- 636

mark dataset, analysis of automatic metrics and 637

human evaluations demonstrate that SCO-VIST 638

outperforms existing baselines and is capable of 639

generating diverse stories that are highly coherent 640

with strong visual grounding. 641
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Limitations642

Benchmark Scope and Annotation Due to the643

lack of a high-quality visual storytelling dataset,644

most recent studies on visual story generation use645

only one publicly available dataset, VIST. The646

dataset size is large enough but the dataset used647

in most visual storytelling research publications,648

including this study, was limited in scope. The649

VIST consists of images from Flickr, which is an650

image/video-based social media platform and in-651

cludes mostly personal images that captures peo-652

ple’s daily lives or events. In addition, each Flickr653

album has 5 human written stories where each story654

is usually comprised of one sentence per image.655

Those human annotators are not the Flickr album656

owner and hence the gold standard annotations by657

annotators may not be perfectly matched with the658

intention of the original Flickr album. Future work659

should investigate how to mitigate this issue by660

establishing a new visual storytelling dataset via661

adopting the image album descriptions from the662

original authors, and providing better instructions663

for human annotators that map generated stories to664

objects/relations of images.665

Adaptability to Low-Resource Languages666

Moreover, our model pipeline requires a pre-trained667

image captioning model in the first stage, which668

may not be available for low-resource languages669

that have relatively less data available for training670

natural language processing systems. The met-671

rics used for evaluation are also only capable of672

judging English-written language. Nevertheless,673

our pipeline can be reproduced and future study674

should consider re-running experiments on other675

languages once models and data become available.676
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Model RoViST-VG RoViST-C RoViST-NR RoViST UNION SPICE Story Len.

CLIP-SRL-pmi 69.6 71.1 91.1 77.3 68.5 10.8 49.5
BLIP-SRL-pmi 70.8 69.8 90.5 77.0 72.1 11.3 51.2
VIST-SRL-pmi 72.0 74.1 90.6 78.9 82.5 12.5 57.6

Table 3: RoViST, UNION, and SPICE scores recorded when using different captioning models. All models are
implemented using the SRL-pmi SCO-VIST variant.

A Qualitative Analysis874

Figure 4 presents two example stories for our SRL-875

pmi model versus 6 visual storytelling baseline876

models: AREL, GLACNet, KG-Story, ReCo-RL,877

PR-VIST and TAPM.878

Figure 4: Generated stories for our SRL-pmi model
versus the 6 baselines models. Blue/red words represent
concepts relevant/irrelevant to the image sequence.

B Caption Ablation Study879

We conduct a preliminary ablation study to exam-880

ine the performance of the stories when using dif-881

ferent captioning models. For the experiments in882

the main paper, we utilised ClipCap (Mokady et al.,883

2021) to generate the image captions. For this884

experiment, we additionally consider the BLIP cap-885

tioning model (Li et al., 2022) which outperforms886

ClipCap on COCO captions (Chen et al., 2015).887

We also consider using the human-written captions888

which are provided as part of the VIST dataset. 889

Note that for this experiment, we implement the 890

SRL-pmi SCO-VIST variant for all models. More- 891

over, all models were trained on a substantially 892

smaller dataset size (26939 instances for training, 893

3354 for validation and 3385 for testing) compared 894

to the dataset used to retrieve the results in the 895

main paper as ground-truth descriptions from VIST 896

were only available for approximately half of the 897

data. The CLIPCap and BLIP captions achieve a 898

BLEU-1 score of 13.7 and 17.5 respectively when 899

evaluated against the ground-truth VIST captions. 900

Figure 5: An example of a storyline and matching story
generated using the SRL-pmi approach with different
pre-trained image captioning models. Underlined words
in the storyline are the image captions and blue words
are visually relevant concepts to the image sequence.

The RoViST, UNION and SPICE scores us- 901
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ing each captioning method is displayed in Table902

3. Firstly, it is evident that using human-written903

captions in the story graph creation process re-904

sults in a higher RoViST-VG, RoViST-C and Ro-905

ViST score overall as observed by VIST-SRL-pmi.906

UNION and SPICE were also considerably higher,907

suggesting better captions lead to better stories908

and SCO-VIST’s outputs can be perhaps further909

improved with a stronger pre-trained captioning910

model. However for this study, we did find that911

using the BLIP captions produces a similar over-912

all RoViST score. Neverthless, BLIP-SRL-pmi did913

yield greater RoViST-VG, UNION and SPICE com-914

pared to CLIP-SRL-pmi. The higher RoViST-VG915

score could imply that the caption quality influ-916

ences the visual grounding aspect the most. This917

is reasonable as an incorrect caption could cause918

irrelevant concepts to be generated in the storyline,919

which can directly negatively impact the visual920

grounding score (RoViST-VG).921

To highlight a specific example, we further con-922

duct a qualitative analysis in Figure 5 to assess923

how the caption quality can affect the generated924

storylines and stories. Taking CLIP-SRL-pmi for925

instance, the incorrect captions ‘tourists looking at926

the christmas tree’ and ‘a woman prays in front’ re-927

sults in irrelevant concepts mentioned in the story928

such as ‘church’ and ‘snow’. Conversely, using929

more detailed and accurate captions as depicted in930

BLIP-SRL-pmi and VIST-SRL-pmi clearly results931

in better storylines which in turn, translates to more932

visually grounding and detailed stories.933

C Implementation Details934

To generate the image captions for Stage 1, we935

use a pre-trained image captioning model called936

ClipCap (Mokady et al., 2021). For commonsense937

generation, we use the ‘comet_atomic2020_bart’938

implementation of Comet-ATOMIC2020 (Hwang939

et al., 2021). Sentence embeddings of the nodes940

are then obtained with a Sentence Transformer us-941

ing the ‘all-mpnet-base-v2’ model (Reimers and942

Gurevych, 2019) which outputs embeddings of size943

768. Since some generated commonsense were944

found to be duplicated or similar, these similar or945

identical commonsense were filtered out based on if946

the sentence embedding cosine similarity score be-947

tween the two phrases exceeded a threshold of 0.50948

for each of the BEFORE and AFTER events produced949

by each caption. In Stage 2, the temporal GCN950

used to learn the node embeddings consisted of 1951

layer and the chosen output dimension of the em- 952

beddings was 768. Furthermore, the Transformer 953

model used to take in the 5 caption nodes to de- 954

code the story utilised the ‘bart-base’ configura- 955

tion of the BART Transformer model (Lewis et al., 956

2020). This model was trained with a learning rate 957

of 0.00001. In Stage 3, the story decoder using the 958

storyline as input employed the ‘bart-large’ con- 959

figuration and was trained with a learning rate of 960

0.00002. For all BART models, we initialise with 961

the pretrained weights and finetune them on our 962

VST task. All experiments also used a batch size of 963

8, weight decay of 0.00001, learning rate decay of 964

0.95 scheduled to decrease after every epoch and 965

the Adam optimizer (Kingma and Ba, 2015). Early 966

stopping was further employed to stop training af- 967

ter 3 consecutive epochs of no improvement on the 968

validation set. At inference, we decode the story 969

with nucleus sampling using the recommended val- 970

ues of p = 0.9 and temperature = 0.9 (Holtzman 971

et al., 2019). All training of models was conducted 972

using a Nvidia Tesla v100 16GB GPU which took 973

approximately 15 hours to train. 974

D Story Generation Results for N-gram 975

Metrics 976

ROUGE-L, METEOR and CIDEr results for the 6 977

state-of-the-art baselines versus our proposed SRL- 978

pmi and TGCN-SRL-cosine variant of SCO-VIST. 979

Model ROUGE-L METEOR CIDEr

AREL 29.9 35.2 9.1
GLACNet 27.2 33.5 4.4
KG-Story 25.2 31.5 3.8
ReCo-RL 29.3 35.9 11.9
PR-VIST 26.1 31.4 7.6
TAPM 21.7 27.0 4.5
SRL-pmi 22.1 27.5 5.9

Table 4: Classic n-gram metrics for our top model, SRL-
pmi vs. the 6 baselines.

E Baseline Models 980

A brief description of each baseline model is as 981

follows: 982

1. AREL (Wang et al., 2018) adopts an inverse 983

reinforcement learning (RL) approach trained 984

in an adversarial manner with a CNN-based 985

reward model. 986
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2. GLACNet (Kim et al., 2018) is another end-987

to-end model that combines both local and988

global attention mechanisms on the image fea-989

tures.990

3. KG-Story (Hsu et al., 2020) attempts to en-991

rich stories by leveraging external knowledge992

bases like Visual Genome (Krishna et al.,993

2017) and OpenIE (Pal et al., 2016). For story994

generation, a Transformer model is used.995

4. ReCo-RL (Hu et al., 2020) proposes another996

RL method with composite rewards designed997

to target the relevance, coherence and expres-998

siveness criteria of VST.999

5. PR-VIST (Hsu et al., 2021a) is a newer model1000

where similar to ours, attempts to link nouns1001

together with verb relations extracted from Vi-1002

sual Genome and VIST to form a story graph.1003

The optimal storyline is then extracted using1004

UHop (Chen et al., 2019).1005

6. TAPM (Yu et al., 2021) introduces an auxil-1006

iary training task to harmonise the language1007

generator and visual encoder before optimis-1008

ing the target objective. The task proposes1009

to minimise the ‘sequential coherence loss’1010

which aims to enforce text representations1011

to predict surrounding visual representations1012

within a closed neighbourhood.1013

Note that this is not the end of the Appendix1014

section. The following page includes Appendix1015

F, G, and H.1016

14



Figure 6: Final story graph generated from Stage 3 with red arrows indicating the optimal extracted storyline.

F Story Graph 1017

Figure 6 shows the final directed story graph generated from Stage 2 with the additional dummy end 1018

node added in Stage 3. Grey and blue nodes are theme and caption nodes respectively. Yellow nodes 1019

are commonsense nodes from the BEFORE events group generated by the xNeed and xIntent relation 1020

while red nodes are the AFTER events commonsense nodes from the xWant and xEffect relation. Due to 1021

limited space, only the nodes corresponding to image 1, 2 and 5 are visualised and dotted lines are used 1022

to indicate nodes in the graph that are not displayed. The red highlighted arrows show the shortest path 1023

found by Floyd Warshall’s algorithm where the caption nodes and commonsense nodes are taken in order 1024

to use as the storyline. For simplicity, edge weights are also not shown. 1025

G Human Evaluation Survey 1026

Figure 7 shows the survey instructions used in the human evaluation study and the format of the survey 1027

questions. The 15 participants recruited were volunteers from a variety of age groups (20-60 years old), 1028

occupation and gender (8 female, 7 male). All participants were proficient in English with at least a 1029

university education level. Note that we modified and used similar instructions from the study proposed 1030

in Wang et al. (2022). It is also emphasised that annotators do not know which model generated which 1031

story as for each example, we randomly swap the order of the baseline story and SCO-VIST’s story to be 1032

presented as Story A and Story B. 1033

Figure 7: Survey instructions and form format for the human evaluation study.
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H Event-based versus Object-based Stories1034

Figure 8 contains examples of more generated outputs from our SRL-pmi model versus AREL for event-1035

based and object-based stories as described in Section 5.6 of the paper. Here, blue words in the storyline1036

indicate concepts implicitly or explicitly used in the generated story while red words represent irrelevant1037

or not useful concepts in the storyline. The underlined words in the generated story represent concepts1038

relevant to the image stream.1039

Figure 8: AREL versus our SRL-pmi model for event-based and object-based stories.
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