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Abstract
Linear L1-regularized models have remained one
of the simplest and most effective tools in data sci-
ence. Over the past decade, screening rules have
risen in popularity as a way to reduce the runtime
for producing the sparse regression weights of L1

models. However, despite the increasing need of
privacy-preserving models for data analysis, to the
best of our knowledge, no differentially private
screening rule exists. In this paper, we develop
the first differentially private screening rule for
linear and logistic regression. In doing so, we
discover difficulties in the task of making a useful
private screening rule due to the amount of noise
added to ensure privacy. We provide theoretical
arguments and experimental evidence that this dif-
ficulty arises from the screening step itself and
not the private optimizer. Based on our results,
we highlight that developing an effective private
L1 screening method is an open problem in the
differential privacy literature.

1. Introduction
With the increasing number of large datasets maintained by
governments and industries, there is an interest in building
sparse regression algorithms which guarantee the privacy of
training data. This would ensure that potentially malicious
actors who gain access to a model trained on personal and
private information would not be able to determine identify-
ing information about individuals in the training dataset.

Differential privacy is a statistical technique which provides
a provable guarantee of the privacy of training data when
building a model. Specifically, given privacy parameters
ϵ and δ and any two datasets D and D′ differing on one
datapoint, an approximately differentially private algorithm
A satisfies P [A(D) ∈ O] ≤ exp{ϵ}P [A(D′) ∈ O] + δ for
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any O ⊆ image(A) (Dwork et al., 2014). Intuitively, this
means that if an adversary has access to the output ofA, they
cannot determine whether or not a specific datapoint was
used in training. Differential privacy is currently the most
effective method to build statistical models on sensitive data
for publication without betraying the privacy of individuals
in the training data (Khanna et al., 2022; Toledo et al., 2016;
Hui Yang & Zhang, 2018). Specifically, it has been shown
that differential privacy can prevent dataset reconstruction
attacks which are possible when models are trained in a
nonprivate framework (Stock et al., 2022).

Currently, there is an interest in sparse differentially private
regression algorithms. Private L1-regularized or constrained
optimizers have been developed. However, due to the addi-
tion of noise, these algorithms are either unable to maintain
the sparsity of the output solution or unable to choose a
good support set for the solution (Kifer et al., 2012; Talwar
et al., 2015; Wang & Zhang, 2020). Other works attempt
to perform private model selection, but they are computa-
tionally inefficient and assume an exact level of sparsity of
the final solution in order to choose a support set prior to
training (Lei et al., 2018; Thakurta & Smith, 2013).

In the nonprivate setting, sparsity on regression weights can
be achieved by using screening rules. Screening rules are
methods which discard features that do not contribute to
a statistical model during training. They are most often
used in L1-regularized or L1-constrained linear and logistic
regression to set the coefficients of unimportant features
to zero during the optimization process. In doing so, they
improve the generalization of a model by counteracting over-
fitting and enable faster convergence. Screening rules have
been used to improve the performance of sparse regression
optimization on numerous datasets over the past decade and
are even included the popular R package glmnet (Wang
et al., 2013; 2014; Raj et al., 2016; Ghaoui et al., 2010; Ol-
brich, 2015; Tibshirani et al., 2012; Friedman et al., 2021).

Unlike the aforementioned approaches for private regres-
sion, screening rules do not require a predetermined support
set or level of sparsity. They efficiently check a mathemati-
cal condition to determine if a feature should be screened
to 0, and are implemented with sparse optimizers during
training to improve the rate of learning and stability. How-
ever, to the best of our knowledge, no differentially private
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screening rule exists.

A differentially private screening rule has the potential to
combat overfitting and help private optimizers focus on
a model’s most important features. However, to the best
of our knowledge, no differentially private screening rule
exists. In this work, we develop and explore a differentially
private screening rule, and we show that it is difficult to
accurately screen features. We provide an analysis of the
private screening rule’s behavior to explain the challenge of
creating an effective differentially private screening rule.

2. Related Works
Methods to produce private sparse regression weights all
suffer in performance due to the addition of noise. Private
L1 optimizers must add higher levels of noise when run
for more iterations, incentivizing practitioners to run fewer
iterations (Talwar et al., 2015; Wang & Zhang, 2020). How-
ever, running an optimizer for fewer iterations means that
the model will be limited in its learning. On the other hand,
private model selection algorithms are computationally in-
efficient and run prior to training, meaning they are unable
to reap the benefit of any information contained within par-
tially trained coefficients of the weight vector (Lei et al.,
2018; Thakurta & Smith, 2013). Although noise is neces-
sary for privacy, an effective private screening rule would
run with a private optimizer and improve the optimizer’s
performance by setting the coefficients of irrelevant features
to 0. By using the screening rule on the current weight
vector, it can adapt to the optimizer’s updates and screen
features more accurately.

To develop a differentially private screening rule, we adapt
Raj et al.’s rule which is flexible to solving many types of
regression problems (Raj et al., 2016). While other screen-
ing rules exist, they are geometry- and problem-specific
(Ghaoui et al., 2010; Wang et al., 2014; 2013). We utilize
their screening rule for L1-constrained regression to deter-
mine whether it can improve the sparsity of Talwar et al.’s
L1-constrained private Frank-Wolfe algorithm (Raj et al.,
2016; Talwar et al., 2015). To the best of our knowledge,
this is the first work considering a differentially private
screening rule. Although our experiments find that the noise
added to the screening rule overpowers its ability to screen
regression weights correctly, we provide an analysis of this
result to shed insight into the challenge of creating an effec-
tive private screening rule. We believe this work is valuable
as it explores a novel approach to private sparsity and pro-
vides a baseline for the development and implementation of
differentially private screening rules.

Since we use the private Frank-Wolfe algorithm (DP-FW),
we also review it here. DP-FW uses the Frank-Wolfe method
for L1-constrained convex optimization, which chooses a

vertex of the feasible region (scaled L1 ball) which mini-
mizes a linear approximation of the loss function. By doing
this for T iterations with appropriate step sizes, the algo-
rithm satisfies L(w(T ))−minw∗∈C L(w∗) ≤ O( 1

T ) (Frank
et al., 1956; Jaggi, 2013). To privatize the Frank-Wolfe al-
gorithm, Talwar et al. restrict the L∞ norm of datapoints
so they can calculate the exact sensitivity of the gradients.
They then use the exponential mechanism to noisily choose
which component of the weight vector to update (Talwar
et al., 2015).

3. Methods
Raj et al. consider the problem minw∈C f(Xw), where C
is the feasible set of solutions and f is L-smooth and µ-
strongly convex (Raj et al., 2016). They also define x(i)

to be the ith column of the design matrix X and GC(w)
to be the Wolfe gap function, namely maxz∈C(Xw −
Xz)⊤∇f(Xw). Given this information, they prove that
if

|x⊤
(i)∇f(Xw)|+ (Xw)⊤∇f(Xw)

+ L(∥x(i)∥2 + ∥Xw∥2)
√
GC(w)/µ (1)

is less than 0, then w∗
i = 0, where w∗ is the optimal solu-

tion to the optimization problem. Our goal is to determine
the sensitivity of this calculation so we can add an appropri-
ate amount of noise and ensure screening is differentially
private.

We will conduct our analysis for the case where ∥xi∥∞ ≤
1 and C is the λ-scaled L1-ball in Rd. These conditions
are also required by Talwar et al.’s private Frank-Wolfe
algorithm, which we use for L1-constrained optimization in
Section 3.3 (Talwar et al., 2015).

3.1. Sensitivity of Linear Regression

Let u = Xw. For linear regression, f(u) = 1
2n (u −

y)⊤(u− y), implying∇f(u) = 1
n (u− y) and∇2f(u) =

1
nIn. Therefore, from the definitions of Lipschitz smooth-
ness and strong convexity, we can see that f(u) is 1

n -smooth
and 1

n -strongly convex with respect to u.

By using the triangle inequality and the fact that the maxi-
mum of a sum is at most the sum of each element’s maxi-
mum, we can bound the sensitivity of Equation 1 for linear
regression by summing the sensitivity of each of its terms.
These calculations are shown below. Assume without loss
of generality that X and X′ differ in their first row for ease
of notation.
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To bound the first term of Equation 1, note that

max
X,X′

∣∣∣〈x(i),∇f(Xw)
〉
−
〈
x′
(i),∇f(X

′w)
〉∣∣∣

=max
X,X′

∣∣∣∣x1i

[
1

n

(
x⊤
1 w − y1

)]
− x′

1i

[
1

n

(
x′⊤

1 w − y1

)]∣∣∣∣
≤2λ

n
,

where the first simplification comes from expanding the
inner products and the second follows directly from the
triangle inequality and restrictions on the feasible set and
norms of the input data. This means that the sensitivity of
the first term for one value of i is 2λ

n . By the sensitivity
principles of vectors, this means that releasing the values
of the first term for all i has L2-sensitivity of 2λ

√
d

n (Dwork
et al., 2014).

For the second term,

max
X,X′

|⟨Xw,∇f(Xw)⟩ − ⟨X′w,∇f(X′w)⟩|

=max
X,X′

∣∣∣∣x⊤
1 w

[
1

n

(
x⊤
1 w − y1

)]
−

x′⊤
1 w

[
1

n

(
x′⊤

1 w − y1
)]∣∣∣∣

≤2λ2

n
,

using the same logic as the previous calculation. This means
its sensitivity is 2λ2

n and its L2-sensitivity is 2λ2
√
d

n .

To find the sensitivity of the third term, we note that the max-
imum of a product is bounded by the product of maximums.
Given this, we find that

max
X,X′

∣∣∣∥∥x(i)

∥∥
2
−
∥∥∥x′

(i)

∥∥∥
2

∣∣∣
≤max

X,X′

√∣∣x2
1i − x′2

1i

∣∣
≤1,

where the first simplification is derived from expanding the
first and noting that the difference of square roots must be
less than or equal to the square root of the absolute value of
the difference in their squared terms. The same logic can be
applied for

max
X,X′

|∥Xw∥2 − ∥X
′w∥2|

≤max
X,X′

√∣∣∣∣(x⊤
1 w

)2 − (
x′⊤

1 w
)2

∣∣∣∣
≤λ.

For the Wolfe gap function,

max
X,X′,z∈C

|⟨Xw −Xz,∇f(Xw)⟩

− ⟨X′w −X′z,∇f(X′w)⟩|

= max
X,X′,z∈C

∣∣∣∣x⊤
1 (w − z)

[
1

n

(
x⊤
1 w − y1

)]
−x′⊤

1 (w − z)

[
1

n

(
x′⊤

1 w − y1

)]∣∣∣∣
≤4λ2

n
.

Plugging in each of these calculations, the L2-sensitivity

of the third term is bounded by 1
n

(√
d+ λ

√
d
)√

4λ2/n
1/n .

This means the total L2-sensitivity of the screening rule is
bounded by

2λ
√
d

n
+

2λ2
√
d

n
+

1

n

(√
d+ λ

√
d
)√

4λ2/n

1/n
. (2)

3.2. Sensitivity of Logistic Regression

For logistic regression, the binary cross-entropy loss is
f(u) = − 1

n

∑
yi log σ(ui) + (1 − yi) log(1 − σ(ui)),

where σ is the element-wise sigmoid function. This implies
∇f(u) = − 1

n (y − σ(u)) and ∇2f(u) = 1
n (σ(u) ⊙ (1 −

σ(u)))In, where ⊙ represents elementwise multiplication.
From these equations we find that the binary cross-entropy
loss is 1

4n -smooth and σ(λ)(1−σ(λ))
n -strongly convex.

The derivation for the sensitivity of Equation 1 for logistic
regression follows the same steps as used for linear regres-
sion in Section 3.1, so we do not show the full calculations
here. The final L2-sensitivity bound derived is

2σ(λ)
√
d

n
+

2λσ(λ)
√
d

n

+
1

4n

(√
d+ λ

√
d
)√

4λσ(λ)/n

σ(λ)(1− σ(λ))/n
. (3)

3.3. Implementing Private Screening

Now that we have calculated the bounds for the L2-
sensitivity of the screening rule in Equation 1, we discuss
how we implemented it into a differentially private regres-
sion training procedure.

Since our screening rule requires L1-constrained optimiza-
tion, we employ the private Frank-Wolfe algorithm devel-
oped by Talwar et al. to train regression models (Talwar
et al., 2015). To the best of our knowledge, this is the
only differentially-private algorithm for L1-constrained op-
timization. Additionally, both linear and logistic loss have
Lipschitz constant 1 with respect to the L1 norm, which
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Algorithm 1 L1-Constrained Regression with Screening
Require: Privacy Parameters: ϵ1 > 0, ϵ2 > 0, 0 < δ1 ≤ 1,

0 < δ2 ≤ 1; Constraint: λ > 0; Iterations: T ; Design
Matrix: X ∈ Rn×d where ∥xi∥∞ ≤ 1 for all i ∈
{1, . . . , n}; Target: y; L2-Sensitivity: s; Iterations to
Screen: i.

1: l← Length(i)
2: δiter ← δ2

l+1
3: ϵiter ← ϵ2

2
√

2l log(1/δiter)

4: σ2 ← 2s2 log(1.25/δiter)
ϵ2iter

5: ŵ(0) ← Random Vector in the λ-scaled L1 Ball
6: for t = 1 to T do
7: ŵ(t) ← DP-FW Step

(
ϵ1, δ1, λ, T,X,y, ŵ(t−1)

)
8: if t ∈ i then
9: screen← Equation 1

(
X,y, ŵ(t), λ

)
10: screen← screen+N (0, σ2Id)

11: ŵ
(t)
j ← 0 if screenj < 0 for all j

12: end if
13: end for
14: Output ŵ(T )

satisfies the algorithm’s requirement for L1-Lipschitz loss
functions.

Our algorithm is shown in Algorithm 1, abstracting away
the steps required for the private Frank-Wolfe algorithm.
By using the Gaussian mechanism and the advanced com-
position theorem for approximate differential privacy, the
screening technique in Algorithm 1 is (ϵ2, δ2)-differentially
private (Dwork et al., 2006; 2010). Following this, the ba-
sic composition theorem of approximate differential privacy
guarantees that the results of Algorithm 1 is (ϵ1+ϵ2, δ1+δ2)-
differentially private (Dwork et al., 2006).

4. Experiments
To test whether Algorithm 1 performs well in practice, we
tested how it performed on linear and logistic regression. To
do so, we used the synthetic dataset which Raj et al. used to
test their nonprivate screening algorithm (Raj et al., 2016).
Specifically, we generated 3000 datapoints in R600 from the
standard normal distribution, and scaled the final dataset so
∥xi∥∞ ≤ 1. We set the true weight vector w∗ to be sparse
with 35 entries of +1 and 35 entries of−1. For linear regres-
sion, y = Xw∗, and for logistic regression, y = 1Xw∗>0.
Raj et al. demonstrated that the nonprivate screening rule
listed in Equation 1 performs well on this dataset for linear
regression (Raj et al., 2016). We verified this result, finding
that using the nonprivate Frank-Wolfe optimizer with the
nonprivate screening rule at every iteration produced a final
weight vector in which nonzero components were only at the
locations of nonzero components in the true weight vector
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Figure 1. Testing Algorithm 1 on a synthetic dataset.

and 55% of the true nonzero components were nonzero after
training in both linear and logistic regression. We then ran
the private Algorithm 1 on this dataset for 1000 iterations
with ϵ1 = ϵ2 = 2.5, δ1 = δ2 = 1

6000 , and λ = 5.

Figure 1 shows the results of this experiment when we imple-
mented screening after every iteration, every 50th iteration,
and after the last iteration. It is clear that Algorithm 1 is
not able to discriminate between screening true zero and
true nonzero coefficients in any of these cases. Addition-
ally, when private screening is implemented too often, it
screens too many coefficients, and since the Frank-Wolfe
algorithm only updates one coefficient at a time, after a few
iterations, the weight vector is only able to have up to a
few nonzero coefficients which have not been screened to
zero. To identify whether the private Frank-Wolfe algorithm
or the private screening methods were causing these poor
results, we ran the following two experiments:

(A) We tested how well nonprivate screening performed
using the private Frank-Wolfe algorithm with ϵ = 2.5
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Figure 2. Comparing the Wolfe gap function for nonprivate and
private optimization when nonprivate screening is applied at every
iteration.

and δ = 1
6000 . We found that no matter how often we

implemented the screening rule, no coefficients were
screened from the solution.

(B) We tested how well private screening performed using
the nonprivate Frank-Wolfe algorithm with ϵ = 2.5
and δ = 1

6000 . We found that when screening every
50th iteration, the screening rule would produce a final
weight vector with nonzero components in approxi-
mately 10% of the true nonzero components and none
of the true zero components. The results of this experi-
ment when screening every iteration or only at the last
iteration mimicked those found in the respective rows
of Figure 1.

These experiments provide key insights into the results
shown in Figure 1. Experiment A suggests that all of the
screening occurring in Figure 1 arises from noise added to
the screening rule. This is because without the screening’s
noise, no screening occurs. It also implies that the noise
added for private optimization made it more difficult to
screen coefficients, since when we tested completely nonpri-
vate screening (without noisy optimization), the nonprivate
screening rule worked well. Heuristically, this outcome may
arise because noisy weights make the Wolfe gap function
in Equation 1 very large, meaning that it overpowers the
second term, which is the only term that can be negative
and is thus essential to effective screening. We verified that
the Wolfe gap function evaluates to smaller values when
using nonprivate optimization for both linear and logistic
regression. This result can be seen in Figure 2.

Experiment B indicates that the noise added in the private
screening rule makes it much stronger that its nonprivate
counterpart. This is observed by noting that without a noisy
screening rule, screening at every iteration with the nonpri-

vate Frank-Wolfe optimizer would not screen all the true
nonzero components to zero, whereas with the noisy screen-
ing rule, almost all components are screened to zero after
only a few iterations.

5. Discussion
The goal of a differentially private screening rule is to
improve sparse private optimization during training. The
screening rule described in Algorithm 1 is computationally
efficient and able to benefit from the information contained
in partially trained coefficients, unlike private model se-
lection algorithms in prior works. However, the results in
Figure 1 indicate that it is not effective at screening only true
zero coefficients. Given the sensitivities derived in Equa-
tion 2 and Equation 3 and the results in Section 4, we use
this section to discuss the major challenge to developing an
effective differentially private screening rule.

The sensitivities of linear and logistic regression are on
the order of

√
d, so a private screening rule would have to

add noise with a scale of O
(√

d
)

. This is a property of

private sensitivity, and noise with a scale of O
(√

d
)

is also
found in private optimization and private model selection
algorithms. Our results clearly show this noise level is
too large. We also note the sample complexity of non-
private L1 models is known to grow at a O(log d) rate,
seemingly implying that our screening model may not work
well asymptotically.

Though discouraging, our results leave a number of open
questions now that we have identified the difficulty of private
screening rules. 1) Can differentailly private screening rules
be effective in the finite values of d that occur in practice?
2) Can the noise added by screening be reduced to a rate
of O(log d)? 3) How can the concept of a “safe” screening
rule be adapted for differential privacy, since no screening
rule can avoid false-positives when noise is added?

6. Conclusion
In this paper, we are the first to consider differentially pri-
vate screening rules. We attempt to develop such a rule by
modifying a general-purpose nonprivate screening rule, but
when testing our algorithm on a synthetic dataset, we find
that noisy optimization and screening produces poor perfor-
mance. By analyzing how different sources of noise affect
the screening rule’s behavior, we identify the limitations to
our algorithm. We conclude by discussing the challenges
to developing a useful private screening rule. We highlight
that developing an effective differentially private screening
rule is an open problem with the potential to improve the
efficiency and accuracy of high dimensional private regres-
sion.
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