
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FLASHRNN: OPTIMIZING TRADITIONAL RNNS ON
MODERN HARDWARE

Anonymous authors
Paper under double-blind review

ABSTRACT

While Transformers and other sequence-parallelizable neural network architec-
tures seem like the current state of the art in sequence modeling, they specifi-
cally lack state-tracking capabilities. These are important for time-series tasks
and logical reasoning. Traditional RNNs like LSTMs and GRUs, as well as mod-
ern variants like sLSTM do have these capabilities at the cost of strictly sequential
processing. While this is often seen as a strong limitation, we show how fast
these networks can get with our hardware-optimization FlashRNN in Triton and
CUDA, optimizing kernels to the register level on modern GPUs. We extend
traditional RNNs with a parallelization variant that processes multiple RNNs of
smaller hidden state in parallel, similar to the head-wise processing in Transform-
ers. To enable flexibility on different GPU variants, we introduce a new optimiza-
tion framework for hardware-internal cache sizes, memory and compute handling.
It models the hardware in a setting using polyhedral-like constraints, including the
notion of divisibility. This speeds up the solution process in our ConstrINT library
for general integer constraint satisfaction problems (integer CSPs). We show that
our kernels can achieve 50x speed-ups over a vanilla PyTorch implementation and
allow 40x larger hidden sizes compared to our Triton implementation. We will
open-source our kernels and the optimization library to boost research in the di-
rection of state-tracking enabled RNNs and sequence modeling.

1 INTRODUCTION

Sequence models are at the core of many applications like time-series modeling, natural language
processing, text, audio and video models, and predictions for physical systems based on ODEs or
PDEs. Vaswani et al. (2017); Degrave et al. (2022); Nearing et al. (2024) While there are modern
sequence-parallelizable architectures like the Transformer (Vaswani et al., 2017), Mamba (Gu &
Dao, 2023) or mLSTM (Beck et al., 2024), these lack the state-tracking capabilities (Merrill et al.,
2024; Merrill & Sabharwal, 2023; Delétang et al., 2023) of traditional RNNs like LSTM (Hochreiter
& Schmidhuber, 1997), GRU (Cho et al., 2014) and sLSTM (Beck et al., 2024).

Traditional RNNs include a recurrent connection or memory mixing, that connects the previous
hidden state in a non-linear way to the current state update and this way mixes the states of different
memory cells. While the sequence has to be processed step by step, computed hidden states and
the recurrent matrix weights can stay cached, enabling a large speed optimization. In this work, we
introduce FlashRNN as a generic hardware-optimized library for these RNN-style architectures.

Our library facilitates research in the direction of state-tracking enabled RNN architectures, in two
ways: Firstly, it enables easier and more efficient use of recent RNN-architectures like sLSTM (Beck
et al., 2024). This includes the notion of block-diagonal recurrent matrices that can speed up net-
works while lowering the number of parameters. Secondly, it can be easily extended to novel RNN-
like architecture variants, as it supports generic state and gate numbers per cell. The LSTM (Hochre-
iter & Schmidhuber, 1997; F.A. Gers, 1999), with its two states and four gates (we consider the cell
update as a fourth ”gate” for simplicity here), can be implemented as easy as a simple Elman-RNN
with one state and one gate (Elman, 1990), or sLSTM with its three states and four gates Beck et al.
(2024).

To realize the shown speed-ups, we fuse the recurrent matrix-multiplication part with the point-wise
activation part, both wrapped in the sequential loop into one kernel. This can be used on different

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

GPUs and with different state/gate variants, as our library optimizes internal memory sizes and
operations automatically based on the models’ hidden sizes and the cache and register sizes of the
hardware.

For the auto-optimization we introduce an integer constraint satisfaction library ConstrINT. With
this library, one can model generic integer CSP problems with equality, inequality and divisibil-
ity constraints as these can model size constraints on modern hardware with specific tensor-core,
register and SRAM memory sizes.

Main CPU

Memory

GPU HBM

GPU SRAM

GPU

Register

R

b xt

ht-1

gt

ht, ct, ...

Rht

P

@

Fused

R

b xt

ht-1

gt

ht, ct, ...

Rht

P

@

Rht

Alternating
Write to HBM

Pointwise Non-Linearity @ Matrix Multiplication
Pointwise AdditionPSequence Loop

Read from HBM
Kernel Boundary

Figure 1: FlashRNN Kernel overview: Left: Basic Memory Hierarchy in modern GPUs. Center:
Fused Kernel (forward) leveraging all caching options for maximal speed. Right: Alternating Ker-
nels (forward) for maximum hidden sizes, with two kernel calls per time step. The colors show the
caching level of the different tensors, the batch dimension is depicted to the right (except for R), the
hidden / gate dimension vertically.

2 RELATED WORK

Hardware-aware algorithms and their open-source implementations of common sequence modeling
primitives have been focused primarily around the Transformer architecture (Vaswani et al., 2017)
and its attention operation because of its ubiquity in language modeling. FlashAttention (Dao et al.,
2022) introduced an IO-aware attention algorithm and CUDA implementation that uses tiling to re-
duce the number of memory reads/writes between GPU high bandwidth memory (HBM) and GPU
on-chip SRAM, and achieves significant memory savings. FlashAttention2 (Dao, 2024) improves
FlashAttention with better work partitioning and the additional parallelization over the sequence di-
mension. FlashAttention3 (Shah et al., 2024) takes advantage of new capabilites, such as asynchrony
and FP8 low precision support of the recent NVIDA Hopper GPU generation.

Recently, novel sequence models taking inspiration of Linear Attention (Katharopoulos et al., 2020)
have shown promising performance compared to Transformer Attention (Beck et al., 2024; Yang
et al., 2024; Dao & Gu, 2024). Yang et al. (2024) provide an hardware-efficient algorithm and
implementation in Triton for Gated Linear Attention that trades off memory movement against par-
allelizability and show that it is faster than FlashAttention2.

Traditional RNNs like LSTMs (Hochreiter & Schmidhuber, 1997) or GRUs (Cho et al., 2014) are
still widely used in many applications, such as for example time series modeling or reinforcement
learning (Nearing et al., 2024; Degrave et al., 2022). Many of these applications rely on optimized
closed-source implementations of these RNN operations such as in the NVIDIA cuDNN 1 library,
which is integrated in PyTorch. Sharvil (2020) provide an open-source alternative in CUDA for
specific LSTM and GRU variants in their HASTE library, which served as inspiration for this work.

1https://developer.nvidia.com/cudnn

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

HASTE is limited in speed due to a sequence of alternating calls of matrix multiplication and point-
wise kernels, as well as its limitation to higher (but slower) precision.

Our work FlashRNN overcomes this limitation by fusing the recurrent matrix multiplication with
the pointwise operations into a single persistent kernel with custom caching of the recurrent weights
in registers. FlashRNN also supports the bfloat16 dtype and block-diagonal recurrent matrices. By
open-sourcing our CUDA and Triton kernels we aim to enable researchers to quickly reach similar
speeds compared to optimized closed source libraries.

3 GENERIC RECURRENT NEURAL NETWORK ARCHITECTURE WITH
MEMORY MIXING

A generic RNN architecture that we aim to optimize has Ns states s(i) ∈ Rd, and Ng gates (or
pre-activations) g(j) ∈ Rd, with d being the embedding dimension or hidden size of the RNN. For
example the LSTM (Hochreiter & Schmidhuber, 1997) has Ns = 2 states and Ng = 4 gates.

Each gate receives an input x(j) ∈ Rd. As learnable parameters, the gates have a recurrent matrix
R(j) ∈ Rd×d that models the dependency on the previous hidden state s

(0)
t−1 and a bias b(j) ∈ Rd.

The state sequence of the RNN is then defined as:

g
(j)
t = x

(j)
t +R(j)s

(0)
t−1 + b(j), (1)

s
(i)
t = P(i)

(
{s(k)t−1}k, {g

(j)
t }j

)
, (2)

with a point-wise / element-wise function P(i) that does not mix different cells along the vector
dimension (unlike the recurrent weight). In Appendix A, we show how this generic formulation
translates to the most common RNN variants.

Usually for these networks, the input is modified with another weight matrix W . We omit this here
as it can be moved outside of the basic kernels. In the common training setting, where the whole
sequence is given as input, the weight matrix W can be applied in parallel to all timesteps before
processing a sequence in the RNN. Our runtime experiments in Section 6.1 show that this operation
has only marginal impact on the overall runtime.

4 GENERIC GRADIENT FOR BACKPROPAGATION THROUGH TIME

In back-propagation through time (Mozer, 1995), the backward pass of this RNN architecture can
be recursively defined as well. The backward pass reads:

δg
(j)
t =

∂P(l)
(
{s(k)t−1}k, {g

(j)
t }j

)
∂g

(j)
t

δs
(l)
t (3)

δs
(i)
t−1 =

∂P(l)
(
{s(k)t−1}k, {g

(j)
t }j

)
∂s

(i)
t−1

δs
(l)
t +

(
R(j)T δg

(j)
t−1 if i = 0

)
(4)

The structure of the gradient shows that, also for the backward pass, we have an alternation of
point-wise operations (left) and matrix multiplication (right).

The input gradient is equal to the gate gradients, the bias gradient is the sum of the input gradients
and the recurrent weight matrix gradient is the time-wise sum of the outer product of gate gradients
with the state values:

δx
(j)
t = δg

(j)
t (5)

δb(j) =
∑
t

δg
(j)
t (6)

δR(j) =
∑
t

δg
(j)
t s

(0)
t

T
(7)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

4.1 VANISHING AND EXPLODING GRADIENTS AND GRADIENT MODIFICATIONS

For a neural network to be stably trainable, there must not be exploding gradients, also vanishing
gradients should be prohibited for long context sequence modeling (Hochreiter & Schmidhuber,
1997). Still, for the generic structure of Equations 3, there can be exploding components: Firstly,
one or more eigenvalues of the point-wise function Jacobian can be greater than one in magnitude.
This can be mitigated by a proper choice of the point-wise function. Secondly, the combination
of recurrent matrix and gate gradients with the gradient ∂P(0)

∂g
(j)
t

R(j)T could have singular values of

magnitude > 1. This case cannot be excluded directly, as the recurrent matrix consists of train-
able weights with usually unconstrained magnitude. However, for practical training this is rarely a
limitation.

In our library, we implement a simple approach for mitigating this at the cost of additional gradient
noise, clipping the gradient values on a scalar level after each time step. Specifically, we clip the
term containing the recurrent matrix to within a pre-defined magnitude. The gradients can even be
cut to zero, leading to typically worse convergence at the benefit of faster training, as the recurrent
matrix part in Equation 3 is cut to zero for the backward pass.

4.2 HEAD-WISE PARALLELIZATION

When increasing the size of a neural network, typically the width, i.e. the embedding dimension or
hidden size is increased. Vaswani et al. (2017) found that for the attention operation it is beneficial to
linearly project the input embedding vectors into multiple smaller input vectors, the so called heads,
and then perform attention on each of these small vectors in parallel. This parallelization primitive
enables also efficient implementations on GPUs, since each head can be computed in different thread
blocks of the GPU (Dao et al., 2022) in parallel (see also Section 5.1).

Many more recent architectures also rely on this head-wise parallelization primitive (Beck et al.,
2024; Yang et al., 2024; Dao & Gu, 2024), where the embedding or hidden vector of dimension
d is split into Nheads heads of smaller dimension dhead = d/Nhead, each of which is processed
independently inside the sequential part. In FlashRNN, we apply this primitive to traditional RNNs
by dividing the recurrent matrix R into multiple blocks or heads Rhead ∈ Rdhead×dhead rendering
the recurrent matrix R as a block-diagonal matrix.

5 HARDWARE-EFFICIENT IMPLEMENTATION

5.1 GPU-ACCLERATED COMPUTING

Modern compute hardware in the form of GPUs enables massive parallelization and accelerated
matrix multiplication. This means that both point-wise (scalar) operations can be parallelized and
matrix multiplications have good support via BLAS-like libraries (Lawson et al. (1979); Thakkar
et al. (2023)), as used for RNN training workloads as defined above.

Execution Model Specifically, a modern GPU consists of larger computational super-units (i.e.
streaming multiprocessors (SMs)) that have some faster memory attached to them. There are three
levels of memory, the large HBM which allows global random access from all computational units
at the cost of low speed (still fast compared to CPU RAM access), the SRAM which is attached to
one computational super-unit and the registers which are tied to a smallest computational unit (i.e.
thread). One super-unit usually supports up to 1024 threads in parallel (with varying register sizes)
which are typically referred to as a block or thread block. Multiple blocks executed in parallel on
multiple super-units are called the grid. 2 An NVIDIA H100, for example, consists of 132 streaming
multiprocessors, with 256 KB SRAM per SM and a SRAM bandwidth of around 33 TB/s (Spector
et al.), compared to the up to 3 TB/s for access to the 80 GB of HBM. Starting from the NVIDIA
Ampere Architecture and newer, there is hardware acceleration for asynchronous loading and SRAM
interconnection, which we did not utilize in this work. 3 Beyond the memory levels, a computational
super-unit allows for hardware-accelerated matrix multiplication (e.g. via TensorCores, ”wmma”

2https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
3https://resources.nvidia.com/en-us-tensor-core/gtc22-whitepaper-hopper

4

https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://resources.nvidia.com/en-us-tensor-core/gtc22-whitepaper-hopper

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

operation). Typically, it is divided into sub-units (warps) of a certain number of threads (NVIDIA:
32) that act as one for a matrix multiplication. There are certain size limitations for this acceleration,
which have to be considered in the kernel optimization process. For a NVIDIA H100, this means
that only minimal matrices of sizes 32x16x8, 16x16x16 or 8x16x32 can be multiplied for the low-
precision bfloat16 or float16 dtypes, larger matrix multiplications have to be composed of those, by
parallelization along the outer dimensions and summation along the accumulating dimension.

Performance measures The specific limitation of a computational load falls into two regimes:
Being compute-bound or being memory-bound. In the former case, the arithmetic intensity is high,
there are many compute operations per loaded byte and therefore, the main limitation is the compu-
tational part. In the latter case, arithmetic intensity is low and the bottleneck is the memory access
to load inputs and store outputs (Williams et al., 2009). Small operations, like applying an activation
function in parallel are typically memory bound and should be grouped together into a fused kernel.

Fused Kernels To minimize HBM memory accesses, one combines multiple arithmetic operations
in one GPU kernel. A kernel is a set of instructions on the GPU which is executed in parallel on
its parts. Only within the execution of one kernel SRAM and registers are kept and can serve as a
cache. Therefore, for memory-bound operations it is helpful to fuse multiple arithmetic operations
into one kernel to leverage these lower cache levels. While compilers can fuse point-wise operations,
an alternation of both point-wise computations and matrix multiplication is non-trivial.

Algorithm 1 FlashRNN-fused forward pass
All states are tiled along threads (single ALU) in Warps (for e.g. Matrix Multiplication) in a block
(SRAM level, streaming multiprocessor) and blocks in the grid (multiple streaming multiprocessors)
- additionally there can be looping levels where the parallelization is resolved to a simple loop.
Dimensions are: b: batch, t: time, g: gates, s/s′: previous/new state
Require: Recurrent matrix Rgs, inputs xtbg , biases bg
Require: Initial states s0bs

Load Rgs, bg to registers and SRAM
for lb in LB do

Load s0bs to registers
for t ∈ 0..T − 1 do

for Matrix Tiles in Registers do
Calculate and Accumulate Matrix product ytbg =Rgs s

(0)
tbs along s

end for
for Matrix Tiles in SRAM do

Load Matrix Tile of Rgs

Calculate and Accumulate Matrix product ytbg =Rgs s
(0)
tbs along s

end for
Accumulate MatMul results ytbg along s in shared memory (Write, Load and Sum)
if state dimension too big for SRAM then

Accumulate MatMul results ytbg along s in HBM (Write, Grid Sync, Load, Sum)
end if
Sum Gate inputs xtbg with ytbg and biases bg to gates gtbg
Compute Point-wise Function st+1bs′ = P(stbs′ , gtbg) with aligned states s′ and gates g
Write out gates for backward pass and new states to HBM
Grid-Level Sync (for new states to be available across the whole grid)

end for
end for

5.2 FLASHRNN KERNELS

As the RNN operations of Equations 1 and 3 are a sequential alternation between matrix multi-
plication and pointwise non-linearities, there is a simple speed up variant that optimizes these two
primitives separately. Our library implements this variant, in the alternating backend. This enables
arbitrarily large head dimensions (to the limits of HBM GPU memory). Also, a vanilla PyTorch
implementation relying on auto-grads will work in this primitive, but for every time step a separate

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

state is saved for the backward pass, leading to inefficiencies beyond memory accesses. We show
that moving the time-loop into CUDA can already give large speedups over the vanilla PyTorch
implementation.

The downside of the alternating implementation is that there are no I/O optimizations beyond a
single time step. For every time step, the current input and last state, as well as the recurrent matrix
and the biases have to be re-loaded. However, both the recurrent matrix R and the biases remain the
same for the whole time loop and the previous states can stay in memory as they were computed in
the previous time step. Since the structure of the computation remains the same over the time steps,
one can even store most of these values in registers. Registers have the highest memory bandwidth
and, while they can only be used within the lowest computation unit (threads), their total size on a
GPU is comparable to the SRAM (both 256 KB per SM on H100).

To reach the maximum speed, we implement FlashRNN fused kernels that store the recurrent matrix
R and the biases b in registers (and SRAM if register memory is exceeded). The matrix multiplica-
tion results are stored and accumulated in shared memory (or HBM if SRAM sizes are exceeded).
In the forward pass, the computations are mainly tiled along the gate dimension (or the dimension
of the new hidden states). This way, we use the maximum amount of memory along the previous
state dimension. This dimension is the accumulating dimension of the recurrent matrix multiplica-
tion. For the backward pass, the computations are typically tiled along the previous state gradient
dimension, such that the gate dimension, which is accumulated over, is minimally tiled. Algorithm 2
shows a simplified representation of the forward pass in pseudo-code and in Appendix Section B,
this algorithm is shown in more detail.

5.3 TRITON IMPLEMENTATION

With FlashRNN we also implement a Triton4 variant of the fused FlashRNN kernel. Triton is a
domain specific language and compiler for parallel programming that provides a Python-based en-
vironment for writing custom GPU kernels.

For the Triton kernel we parallelize the computation over two dimensions the batch dimension and
the head dimension. See Appendix E for a detailed description of the Triton implementation in
Algorithm 5 of the FlashRNN algorithm. As described in section 4.2 we partition the embedding
dimension into multiple heads and compute each head in parallel in different programs (or thread
blocks) with no synchronization in between these programs. In Triton each program (which corre-
sponds to a thread block in CUDA) will hold its recurrent weight matrix Rhead and bias bhead in
SRAM. In contrast to CUDA, Triton gives no access to registers on the GPU. Therefore, we cannot
apply the custom caching strategy of the fused CUDA kernels and instead rely on Triton for manag-
ing the shared memory and register cache. Additionally, there is no (grid) synchronization between
programs in Triton, which makes it impossible to communicate values between different programs
over HBM. In section 6.1 we find that this poses a limitation on the maximum head dimension of
128 for the forward pass and 64 for the backward pass on a NVIDIA H100 GPU.

The recurrent matrix multiply in equation 1 and 3 is implemented with Triton’s matrix multiply
operation tl.dot which gives an interface to the Tensor Core units on GPUs. In Triton minimum
block size of these matrix multiplies is 16x16, which gives a limit on the minimum batch size. In
practice, we enable smaller batch sizes by padding zeros at the cost of efficiency.

5.4 AUTOMATIC TUNING OF TILING AND LOOPING DIMENSIONS

While Algorithm 2 describes the algorithmic behaviour, the tile, block and grid sizes and loop itera-
tions depend on the specific hardware architecture, i.e. the number of computational super-units
(streaming multiprocessors), the SRAM per super-unit, the sizes of matrix-multiplication units,
threads (warps and threads) per super-unit and the number of registers per thread. On NVIDIA
H100s (and most other NVIDIA GPUs), there is a varying amount of registers per thread, depend-
ing on the block size used. The total number of registers on chip per streaming multiprocessor is
physically fixed.

4https://triton-lang.org

6

https://triton-lang.org

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

These physical constraints can now be reformulated as equalities, inequalities and divisibility con-
straints inside an integer constraint satisfaction problem (integer CSP). Typically this optimization is
done via polyhedral constraint optimization in compilers (Baghdadi et al., 2018). For solving these
constraints in FlashRNN, we implement an efficient solver ConstrINT in Python for general integer
CSPs going over large number ranges and including the notion of divisibility constraints, which are
needed to model the minimal matrix sizes.

For more details on the solution algorithm, see Appendix Section C.

6 EXPERIMENTS

In Section 6.1 we benchmark the runtime of our FlashRNN kernels and compare against the LSTM
and Attention implementations provided in PyTorch. In Section 6.2 we measure training time with
FlashRNN kernels on language modeling. Finally, in Section 6.3 we confirm that traditional RNNs
like LSTM and more recent variants like sLSTM implemented in FlashRNN can solve state tracking
problems.

6.1 RUNTIME BENCHMARK

We evaluate the runtime of all backends of our FlashRNN library that implement the LSTM opera-
tion:

• CUDA fused: CUDA implementation that fuses matrix multiplication and pointwise oper-
ations of the LSTM in a single kernel that is persistent over all time iterations.

• CUDA alternating: CUDA implementation that implements the time loop in C++ and
alternates between a matrix multiply kernel and a LSTM pointwise kernel.

• Triton fused: Triton implementation that fuses matrix multiplication and pointwise opera-
tions similar to CUDA fused.

• Vanilla PyTorch: PyTorch implementation of the LSTM operation with our custom back-
ward pass implementation, which is faster than the PyTorch autograd backward pass. We
do not use torch.compile due to very long compile times.

We compare our backends to two references from PyTorch and the haste library (Sharvil, 2020):

• FlashAttention2: PyTorch Attention5 with FlashAttention2 backend. Note that FlashAt-
tention2 is not a recurrent operation and can be parallelized across batch, head, and se-
quence dimension on the GPU. FlashAttention2 does not fall into the category of RNNs,
which FlashRNN aims to speed up, and is not able to solve state tracking tasks. Therefore,
in our benchmarks it should be seen as a widely adopted reference to better interpret the
runtimes instead of a direct baseline that we aim to outperform.

• nn.LSTM: PyTorch LSTM with NVIDIA cuDNN as backend. In contrast to our
FlashRNN LSTM, nn.LSTM also integrates the gate pre-activation computation into the
function call (not kernel call), which we do not (see Section 3). In Section H.4 in the ap-
pendix, we provide a comparison to the combination of a linear layer and our FlashRNN
LSTM kernel with nn.LSTM. Moreover, nn.LSTM does not support multiple heads on the
embedding dimension as described in Section 4.2. nn.LSTM always uses a single head.

• haste: The haste library is an implementation of LSTM and GRU and variations in
CUDA, using alternating kernels between pointwise and matrix multiplication operations.
Its last release was in 2020, with no compilation support for Ampere or later architectures
in the standard setting6. It solely supports float32 and float64 precision and does not have
a multi-head option.

5https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_
dot_product_attention.html

6https://github.com/lmnt-com/haste

7

https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html
https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html
https://github.com/lmnt-com/haste

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Setup. We assess the impact of the input dimensions batch size (B), sequence length (T) and head
dimension (DH) and number of heads (NH). The number of heads together with the head dimension
give the embedding dimension d = NH × DH. Except for PyTorch nn.LSTM we run all runtime
experiments with bfloat16 precision. For nn.LSTM we use float16 precision, since this precision
yielded the fastest runtimes. For every runtime measurement we do 25 warmup iterations and then
report the average across 1000 iterations on NVIDIA H100 GPUs. We use PyTorch 2.4 and with
CUDA version 12.4 for our experiments. Further details and additional experiments can be found in
Section H in the appendix.

Head dimension. We measure the runtime of all of our FlashRNN kernels and our two references
FlashAttention2 and PyTorch nn.LSTM for different head dimensions. We fix the embedding di-
mension d = NH × DH to 768 and vary the head dimension from 16 to 768. We use batch size
16 and sequence length 1024. In Figure 2 we report the runtime of each the forward pass only on
the left and the forward combined with the backward pass. FlashAttention2 does not allow for head
dimension larger than 256, due shared memory limitation. The PyTorch nn.LSTM does not sup-
port multiple heads or blockdiagonal recurrent matrices. Therefore, we only report the runtime for
a single head of dimension 768, including the gate pre-activation computation. At this dimension,
nn.LSTM is about 3 times faster than CUDA fused. The Triton kernels are limited to head dimen-
sion 128 and 64, but are about two times faster than CUDA fused for small head dimensions 16 and
32. The fused CUDA kernels support all head dimensions up to 768 (actually more, see Appendix
Section H.1) and are about two to three times faster than the alternating kernels.

DH=16
NH=48

DH=32
NH=24

DH=64
NH=12

DH=128
NH=6

DH=256
NH=3

DH=768
NH=1

0

5

10

15

Ti
m

e
(m

s)

1.97 1.44
1.99

3.23

OOSM OOSM

3.56
2.9 3.1 3.22 3.62

4.87

7.84 8.12 8.19
8.8

10.47 10.79

150.16 149.71 152.03
146.64

154.16
147.47

0.54 0.18 0.13 0.13 0.13

OOSM

2.01

18.41

Triton fused

CUDA fused

CUDA alternating

Vanilla PyTorch

FlashAttention2

PT nn.LSTM

Haste LSTM fp32

DH=16
NH=48

DH=32
NH=24

DH=64
NH=12

DH=128
NH=6

DH=256
NH=3

DH=768
NH=1

0
5

10

20

30

40

Ti
m

e
(m

s)

3.47 4.1

18.94

OOSM OOSM OOSM

8.22 8.2 8.64 9.02
11.3

13.61

17.88 18.8
20.5

21.66

33.48

26.49

479.64
495.83 500.4

485.64

542.1

484.28

1.7 0.86 0.69 0.66 0.7

OOSM

5.19

43.86

Triton fused

CUDA fused

CUDA alternating

Vanilla PyTorch

FlashAttention2

PT nn.LSTM

Haste LSTM fp32

Figure 2: LSTM Runtime for different head dimensions (DH) and number of heads (NH) on a
NVIDIA H100. Overall embedding dimension is fixed at 768. We use batch size 16 and sequence
length 1024. Left: Forward pass. Right: Forward + backward pass.

Batch size. We measure the runtime of all LSTM kernels while varying the batch size (B) from 2
to 256 at sequence length 1024. Figure 3 shows the results for NH=12 heads with head dimension
DH=64. The CUDA fused backend is optimized for smaller batch sizes and shows a 2x speed
up over the alternating backend for batch sizes up to 32. For larger batch sizes than 128 CUDA
alternating is faster. Figure 4 shows the results for a single head with head dimension DH=768. At
this head dimension CUDA fused is still faster than CUDA alternating up to batch size 32. For larger
batch sizes, CUDA alternating is more than two times faster. Comparing to the PyTorch nn.LSTM,
we find for medium batch sizes from 8 to 64 it is about 2-3 times faster than and CUDA fused and
for larger batch sizes about about 30% faster than CUDA alternating.

Additional Runtime Experiments. In section H.3 in the appendix, we include experiments on
varying sequence lengths. We see the expected linear runtime scaling for our FlashRNN kernels and
validate that the above findings transfer to other sequence lengths. In addition, in section H.4 we
compare the FlashRNN LSTM kernel in combination with a linear layer that computes the gate pre-
activations externally to the PyTorch nn.LSTM baseline which integrates the gate pre-activation

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

B=2 B=8 B=16 B=32 B=64 B=128 B=256
0

5

10

15

Ti
m

e
(m

s)

2.12 2.1 1.99 2.16 2.41
3.08

4.68

2.71 2.77 3.08
3.83

6.22

10.42

20.86

8.01 8.32 8.51
9.06

9.57

11.21

13.77

0.04 0.08 0.13 0.24 0.47
0.93

1.86

Triton fused

CUDA fused

CUDA alternating FlashAttention2

B=2 B=8 B=16 B=32 B=64 B=128 B=256
0
5

10

20

30

40

50

60

Ti
m

e
(m

s)

18.86 18.91 18.82
21.25 22.49

26.62

48.02

7.11 7.01
8.46

11.88

20.66

37.41

74.48

17.23
19.51 20.52

23.25

28.77

37.16

56.89

0.16 0.38 0.69 1.28 2.45
4.75

9.38

Triton fused

CUDA fused

CUDA alternating FlashAttention2

Figure 3: LSTM Runtime for different batch sizes (B) on a NVIDIA H100. We use 12 heads with
head dimension 64 and sequence length 1024. Left: Forward pass. Right: Forward + backward
pass.

B=2 B=8 B=16 B=32 B=64 B=128 B=256
0
5

10
15
20
25

40

60

Ti
m

e
(m

s)

3.58 3.6 4.84

14.4 15.66

52.45

104.94

10.73 10.74 11.02 11.1 11.54 12.99
16.82

10.88

2.57 2.01 3.99
7.87

15.65
17.87

15.08
20.16 18.33

23.19

30.03

43.38

70.19

CUDA fused

CUDA alternating

PT nn.LSTM Haste LSTM fp32

B=2 B=8 B=16 B=32 B=64 B=128 B=256
0

20
40
60
80

100

150

200

Ti
m

e
(m

s)

9.51 9.67 13.5

29.6

44.9

111.12

221.88

25.19 25.06 26.59 28.47
33.33

44.46

66.0

25.42

4.98 5.2 9.06
16.51

31.58

44.46
34.35

42.1 43.86
53.19

75.19

113.86

197.65

CUDA fused

CUDA alternating

PT nn.LSTM Haste LSTM fp32

Figure 4: LSTM Runtime for different batch sizes (B) on a NVIDIA H100. We use one head with
head dimension 768 and sequence length 1024. Left: Forward pass. Right: Forward + backward
pass.

computation. We find that the gate pre-activation computation has only marginal impact on the
overall runtime. Finally, in section H.5, we provide all runtime results also for the sLSTM (Beck
et al., 2024).

6.2 LANGUAGE MODELING

Even though we do no expect traditional RNNs to outperform Transformers, the language model-
ing setting serves as an important benchmark for speed on larger scales. Here, we train models at
the 165M parameter scale for a Llama-style Transformer without weight tying, i.e. 12 Transformer
blocks with Pre-LayerNorm and a Swish-Gated MLP after the attention layer. We replace attention
with FlashRNN LSTM and sLSTM layers for a speed comparison. The results show a slowdown of
roughly 25 % over attention for equal head dimensions or 140 % for one RNN head, see Table 6.2
(H100) and Appendix Table I (A100). In our experiments, we also compare to the cuDNN imple-
mentation of LSTM integrated in PyTorch (torch.nn.LSTM). While it’s integration into PyTorch is
considerably faster, there are numerical differences to the FlashRNN implementation. With same
initialization, FlashRNN LSTMs converge faster in our language experiments (both bfloat16 and
float32), even though the differences in a single kernel call are at the expected levels of numerical
precision. This deviation should be investigated further and suggests the use of FlashRNN even for
the established LSTM architecture. We provide an analysis of our kernel precision compared to a

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Model Heads Param. (M) Train Time (h) Median Step (s) Val PPL (val)
LSTM CUDA fused 1 190 9.9 0.535 22.1
LSTM CUDA altern. 1 190 10.8 0.575 21.9
LSTM PT nn.LSTM 1 190 4.5 0.285 25.8
LSTM CUDA fused 12 164 5.9 0.325 22.2
LSTM CUDA altern. 12 164 9.6 0.511 22.1
sLSTM CUDA fused 1 190 10.1 0.543 21.3
sLSTM CUDA altern. 1 190 10.9 0.577 21.4
sLSTM CUDA fused 12 164 6.8 0.342 21.7
sLSTM CUDA altern. 12 164 9.7 0.509 21.8

Transformer 12 162 2.9 0.190 17.9

Table 1: 165M Model training on 15B tokens of SlimPajama on 8xH100s with two gradient accu-
mulation steps.

float64 baseline in section H.6.
For larger models, we expect local batch sizes to be smaller and the effective speed difference for
fused kernels to be higher compared to the alternating version - as measured in Section 6.1.

6.3 STATE TRACKING TASK

To show state tracking capabilities of traditional RNNs in contrast to Transformers and State Space
Models experimentally, we train our implementation on the Parity task and evaluate on longer se-
quences to measure extrapolation capabilities (Zhou et al., 2024). This serves as a litmus test for
state tracking capabilities (Merrill et al., 2024).

Model Transformer Mamba mLSTM Elman GRU LSTM sLSTM
Acc (Ext.) 0.52 0.56 0.54 1.00 1.00 1.00 1.00

Table 2: Parity Task in Sequence Extrapolation: Transformers, State Space Models and mLSTM
fails at this task (close to random chance at 0.5), while traditional recurrent models can learn to
extrapolate. Extrapolation accuracies are averaged over three seeds for the best respective learning
rate.

7 CONCLUSION

The FlashRNN library serves as a fast and extendable implementation of traditional RNNs with a
recurrent connection or memory mixing. It extends RNNs with the multi-head paradigm introduced
by Beck et al. (2024) for sLSTM. FlashRNN provides a speed-up of up to 50x over vanilla PyTorch
implementations of RNNs and may serve as a backbone for future RNN architectures that have a
recurrent connection.

FlashRNN implements two variants, an alternating version switching between point-wise and
matrix-multiplication kernels and a fused implementation - optimizing memory transfers, while
using hardware-optimized matrix-multiplication. The second leads to a further 3-4x speed-up over
the alternating option for small batch sizes. The implementation auto-optimizes its internal sizes
for different cache levels via the ConstrINT library - a custom library solving general integer con-
straint satisfaction problems with equality, inequality and divisibility constraints. This library may
be re-used for other optimization problems regarding cache sizes on hardware platforms and beyond.

We show that with FlashRNN, traditional RNNs are not too far in speed from Transformers in
practice, even though they are not parallelizable along the sequence dimension. In the future, it may
be optimized to leverage asynchronous memory operations and inter-SRAM connections - recent
hardware features that promise further speed ups not realized in this work.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

ETHICS STATEMENT

We use an open dataset (SlimPajama) that uses publicly crawled internet data for Language Model
training. Our implementation speeds up a certain class of Machine Learning models. This may
reduce the environmental impact of the research field, in case these architectures remain important
in future research. Also, it may speed up development of Machine Learning research in the direction
of recurrent sequence modeling with state tracking capabilities. The further implications of these
impacts may or may not be a benefit for society.

REPRODUCIBILITY STATEMENT

We provide the source code for your implementations along with this paper. The detailed training
setup for speed tests is described in Section 6.1. For Language Modeling this setup description is
provided in Appendix Section J and uses the open SlimPajama dataset, for the parity task exper-
iments in Appendix Section K, the training and test data can be synthetically generated using the
mentioned distributions.
The observed deviations in language model training compared to the PyTorch LSTM based on
cuDNN should be further investigated. The results on A100 and H100, as well as across our differ-
ent kernels are within the expected small-scale numerical deviations.
The code will also be released on GitHub including training scripts.

REFERENCES

Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele Del Sozzo, Abdurrahman Akkas,
Yunming Zhang, Patricia Suriana, Shoaib Kamil, and Saman Amarasinghe. Tiramisu: A
Polyhedral Compiler for Expressing Fast and Portable Code, December 2018. URL http:
//arxiv.org/abs/1804.10694. arXiv:1804.10694 [cs].

M. Beck, K. Pöppel, M. Spanring, A. Auer, O. Prudnikova, M. Kopp, G. Klambauer, J. Brandstetter,
and S. Hochreiter. xLSTM: Extended Long Short-Term Memory, May 2024. URL http:
//arxiv.org/abs/2405.04517. arXiv:2405.04517 [cs, stat].

K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio.
Learning phrase representations using RNN encoder–decoder for statistical machine translation.
In Alessandro Moschitti, Bo Pang, and Walter Daelemans (eds.), Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1724–1734, Doha,
Qatar, October 2014. Association for Computational Linguistics. doi: 10.3115/v1/D14-1179.
URL https://aclanthology.org/D14-1179.

T. Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. In
The Twelfth International Conference on Learning Representations, 2024. URL https://
openreview.net/forum?id=mZn2Xyh9Ec.

T. Dao, D. Y. Fu, S. Ermon, A. Rudra, and C. Ré. FlashAttention: Fast and memory-efficient exact
attention with IO-awareness. In Advances in Neural Information Processing Systems (NeurIPS),
2022.

Tri Dao and Albert Gu. Transformers are SSMs: Generalized models and efficient algorithms
through structured state space duality. In Forty-first International Conference on Machine Learn-
ing, 2024. URL https://openreview.net/forum?id=ztn8FCR1td.

J. Degrave, F. Felici, J. Buchli, et al. Magnetic control of tokamak plasmas through deep reinforce-
ment learning. Nature, 602:414–419, 2022. doi: 10.1038/s41586-021-04301-9.

G. Delétang, A. Ruoss, J. Grau-Moya, T. Genewein, L. K. Wenliang, E. Catt, C. Cundy, M. Hutter,
S. Legg, J. Veness, and P. A. Ortega. Neural networks and the chomsky hierarchy. In Eleventh
International Conference on Learning Representations, 2023.

J. L. Elman. Finding Structure in Time. Cognitive Science, 14(2):179–211, March 1990. ISSN 0364-
0213, 1551-6709. doi: 10.1207/s15516709cog1402 1. URL https://onlinelibrary.
wiley.com/doi/10.1207/s15516709cog1402_1.

11

http://arxiv.org/abs/1804.10694
http://arxiv.org/abs/1804.10694
http://arxiv.org/abs/2405.04517
http://arxiv.org/abs/2405.04517
https://aclanthology.org/D14-1179
https://openreview.net/forum?id=mZn2Xyh9Ec
https://openreview.net/forum?id=mZn2Xyh9Ec
https://openreview.net/forum?id=ztn8FCR1td
https://onlinelibrary.wiley.com/doi/10.1207/s15516709cog1402_1
https://onlinelibrary.wiley.com/doi/10.1207/s15516709cog1402_1

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

F. Cummins F.A. Gers, J. Schmidhuber. Learning to forget: continual prediction with
LSTM. In 9th International Conference on Artificial Neural Networks: ICANN ’99, vol-
ume 1999, pp. 850–855, Edinburgh, UK, 1999. IEE. ISBN 978-0-85296-721-8. doi:
10.1049/cp:19991218. URL https://digital-library.theiet.org/content/
conferences/10.1049/cp_19991218.

A. Gu and T. Dao. Mamba: Linear-Time Sequence Modeling with Selective State Spaces, December
2023. URL http://arxiv.org/abs/2312.00752. arXiv:2312.00752 [cs].

S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. Neural Computation, 9(8):
1735–1780, November 1997. ISSN 0899-7667, 1530-888X. doi: 10.1162/neco.1997.9.
8.1735. URL https://www.mitpressjournals.org/doi/abs/10.1162/neco.
1997.9.8.1735.

A. Katharopoulos, A. Vyas, N. Pappas, and F. Fleuret. Transformers are rnns: Fast autoregressive
transformers with linear attention. In Proceedings of the International Conference on Machine
Learning (ICML), 2020.

C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic Linear Algebra Subprograms for
Fortran Usage. ACM Transactions on Mathematical Software, 5(3):308–323, September 1979.
ISSN 0098-3500, 1557-7295. doi: 10.1145/355841.355847. URL https://dl.acm.org/
doi/10.1145/355841.355847.

A. K. Mackworth. Consistency in networks of relations. Artificial Intelligence, 8(1):99–118,
February 1977. ISSN 00043702. doi: 10.1016/0004-3702(77)90007-8. URL https://
linkinghub.elsevier.com/retrieve/pii/0004370277900078.

W. Merrill and A. Sabharwal. The Parallelism Tradeoff: Limitations of Log-Precision Transformers.
Transactions of the Association for Computational Linguistics, 11:531–545, 06 2023. ISSN 2307-
387X. doi: 10.1162/tacl a 00562. URL https://doi.org/10.1162/tacl_a_00562.

W. Merrill, J. Petty, and A. Sabharwal. The illusion of state in state-space models. In Forty-first
International Conference on Machine Learning, 2024. URL https://openreview.net/
forum?id=QZgo9JZpLq.

M. Mozer. A focused backpropagation algorithm for temporal pattern recognition. Complex Sys-
tems, 3, 01 1995.

G. Nearing, D. Cohen, V. Dube, M. Gauch, O. Gilon, S. Harrigan, A. Hassidim, D. Klotz, F. Kratzert,
A. Metzger, S. Nevo, F. Pappenberger, C. Prudhomme, G. Shalev, S. Shenzis, T. Y. Tekalign,
D. Weitzner, and Y. M. B. Kosko. Global prediction of extreme floods in ungauged watersheds.
Nature, 627:559–563, 2024. doi: 10.1038/s41586-024-07145-1.

J. Shah, G. Bikshandi, Y. Zhang, V. Thakkar, P. Ramani, and T. Dao. Flashattention-3: Fast and
accurate attention with asynchrony and low-precision, 2024. URL https://arxiv.org/
abs/2407.08608.

N. Sharvil. Haste: a fast, simple, and open rnn library. https://github.com/lmnt-com/
haste/, Jan 2020.

B. Spector, A. Singhal, S. Arora, and C. Ré. GPUs Go Brrr. URL https://hazyresearch.
stanford.edu/blog/2024-05-12-tk.

V. Thakkar, P. Ramani, C. Cecka, A. Shivam, H. Lu, E. Yan, J. Kosaian, M. Hoemmen, H. Wu,
A. Kerr, M. Nicely, D. Merrill, D. Blasig, F. Qiao, P. Majcher, P. Springer, M. Hohnerbach,
J. Wang, and M. Gupta. Cutlass, 1 2023. URL https://github.com/NVIDIA/cutlass/
tree/v3.0.0.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N Gomez, Ł. Kaiser,
and I. Polosukhin. Attention is All you Need. In I. Guyon, U. Von Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

12

https://digital-library.theiet.org/content/conferences/10.1049/cp_19991218
https://digital-library.theiet.org/content/conferences/10.1049/cp_19991218
http://arxiv.org/abs/2312.00752
https://www.mitpressjournals.org/doi/abs/10.1162/neco.1997.9.8.1735
https://www.mitpressjournals.org/doi/abs/10.1162/neco.1997.9.8.1735
https://dl.acm.org/doi/10.1145/355841.355847
https://dl.acm.org/doi/10.1145/355841.355847
https://linkinghub.elsevier.com/retrieve/pii/0004370277900078
https://linkinghub.elsevier.com/retrieve/pii/0004370277900078
https://doi.org/10.1162/tacl_a_00562
https://openreview.net/forum?id=QZgo9JZpLq
https://openreview.net/forum?id=QZgo9JZpLq
https://arxiv.org/abs/2407.08608
https://arxiv.org/abs/2407.08608
https://github.com/lmnt-com/haste/
https://github.com/lmnt-com/haste/
https://hazyresearch.stanford.edu/blog/2024-05-12-tk
https://hazyresearch.stanford.edu/blog/2024-05-12-tk
https://github.com/NVIDIA/cutlass/tree/v3.0.0
https://github.com/NVIDIA/cutlass/tree/v3.0.0
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

S. Williams, A. Waterman, and D. Patterson. Roofline: an insightful visual performance model
for multicore architectures. Communications of the ACM, 52(4):65–76, April 2009. ISSN 0001-
0782, 1557-7317. doi: 10.1145/1498765.1498785. URL https://dl.acm.org/doi/10.
1145/1498765.1498785. Publisher: Association for Computing Machinery (ACM).

S. Yang, B. Wang, Y. Shen, R. Panda, and Y. Kim. Gated linear attention transformers with
hardware-efficient training. In Forty-first International Conference on Machine Learning, 2024.
URL https://openreview.net/forum?id=ia5XvxFUJT.

H. Zhou, A. Bradley, E. Littwin, N. Razin, O. Saremi, J. M. Susskind, S. Bengio, and P. Nakkiran.
What algorithms can transformers learn? a study in length generalization. In The Twelfth Interna-
tional Conference on Learning Representations, 2024. URL https://openreview.net/
forum?id=AssIuHnmHX.

13

https://dl.acm.org/doi/10.1145/1498765.1498785
https://dl.acm.org/doi/10.1145/1498765.1498785
https://openreview.net/forum?id=ia5XvxFUJT
https://openreview.net/forum?id=AssIuHnmHX
https://openreview.net/forum?id=AssIuHnmHX

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A RNN VARIANTS WITH MEMORY MIXING / RECURRENT CONNECTIONS
MODELED IN FLASHRNN

Elman RNNs (Elman, 1990) Number of states: 1, Number of gates: 1

s
(0)
t = tanh

(
g
(0)
t

)
(8)

Here, we omit as well a possible post-processing of the sequence that does not inter-mix states of
different time steps. This can as well be parallelized for offline training.

LSTM (Hochreiter & Schmidhuber, 1997; F.A. Gers, 1999) Number of states: 2, Number of
gates: 4
States: ht = s

(0)
t hidden state, ct = s

(1)
t cell state

Gates: zt = g
(0)
t cell input, ft = g

(1)
t forget gate, it = g

(2)
t input gate, ot = g

(3)
t output gate

ht = σ (ot) tanh (ct) (9)
ct = σ (ft) ct−1 + σ (it) tanh (zt) (10)

GRU (Cho et al., 2014) Number of states: 1, Number of gates: 4 (in the definition of this paper)
States: s(0)t hidden state
Gates: zt = g

(0)
t cell input, rt = g

(1)
t forget gate, nt = g

(2)
t input gate, ot = g

(3)
t output gate Here,

the nt gate is not dependent on the previous state, whereas the gt gate is not dependent on the input.
This behavior can be modeled in FlashRNN as well.

ht = σ (zt)ht−1 + (1− σ (zt)) tanh (nt + σ (rt) tanh(gt)) (11)

sLSTM (Beck et al., 2024) Number of states: 4, Number of gates: 4 States: ht = s
(0)
t hidden

state, ct = s
(1)
t cell state, nt = s

(2)
t normalizer state, mt = s

(3)
t stabilizer state

Gates: zt = g
(0)
t cell input, ftg

(1)
t forget gate, it = g

(2)
t input gate, ot = g

(3)
t output gate

ht = σ (ot)
ct
nt

(12)

ct = exp((log σ (ft) +mt−1 −mt) ct−1 + exp (it −mt) tanh (zt) (13)
nt = exp((log σ (ft) +mt−1 −mt)nt−1 + exp (it −mt) (14)
mt = max (log σ (ft) +mt−1, it) (15)

B FLASHRNN ALGORITHM IN DETAIL

In the following algorithm, Ra,b×(c·d) means this is seen as a matrix tile of size b × (c · d), where
a is an additional outer index (typically time t or states s), which denotes that this is used as a
separate outer dimension. The merged dimension (c · d) is shown merged as it is used in matrix
multiplications, but is split (typically into gates) in the pointwise function. The dimensions are:
t: time, s: states, g: gates, b: batch dimension, d: head dimension (abbreviated from dhead).
For accumulation of the recurrent matrix product there are two matrix dimensions: The dimension
along the previous state s̃ (of total size d) and the dimension along the new gates g̃ of total size
g · d, since for every of the d RNN cells there are g gates. Multiple heads are parallelized either
sequentially or over multiple blocks in the grid BH , but we omit this for clarity here.
Tiling along one axis A happens as an elementary tile size within a warp EA, multiple warps WA

in a thread block, multiple blocks BA within the grid, and sequentially via a loop LA. The total
size has to satisfy SA = EA × WA × BA × LA. The typical elementary size EA usable for
matrix multiplications in bfloat16 is EA ∈ {8, 16, 32} for an outer dimension and EA = 16 for
the accumulating dimension. The number of elementary tiles is TA = SA

EA
= WA × BA × LA.

To optimize speed internally, we use memory padding to minimize memory bank conflicts and
coalesced memory loading.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Algorithm 2 FlashRNN-fused forward pass
Tiling across blocks should be kept minimal along accumulating dimensions, and can be extended
along parallelizing dimensions (here gate dimension). So ideally BS ≪ BG. Indices b̃, s̃, g̃ are
implicitly updated from loop indices lB , lS , lG incorporating the respective warp/block indices.
Require: Recurrent matrix R⊤ ∈ Rd×(d·g), inputs x ∈ Rt,b×(d·g), biases b ∈ Rd·g

Require: Initial state s(0) ∈ Rs,1,b×d

Require: Tiling dimensions for the grid [BG, BS , BB ∗BH] and block size [32×WG,WS ,WB]
Divide R⊤ into [TS , TG] = [LS ×WS ×BS , LG ×WG ×BG] tiles R⊤

s̃,g̃ ∈ R16×(16 or 32) with
s̃ ∈ {1..TS}, g̃ ∈ {1..TG} along the state (first) and gate (second) dimension
Divide the bias b into [LG ×WG] tiles along the gate dimension as bg̃ ∈ R(16 or 32)

Load tiles R⊤
s̃,g̃, bg̃ from HBM into registers ([LS , LG] / [LG] per warp) and potentially SRAM

across multiple thread blocks [BS , BG, BB]
for lB in {1..LB} do

Load from initial state s(0) a batch tile s
(0)

b̃s̃
for t ∈ 0..T − 1 do

for lG ∈ 1..LG do
Initialize MatMul result y ∈ REB×EG with zero in registers.
for lS ∈ 1..L(reg)

S do
Load state matrix tile s0tb̃s̃ from HBM
Calculate and Accumulate Matrix Product y = y + s0tb̃s̃ R

⊤
s̃g̃ along s̃

end for
if L(reg)

S ≤ LS then
for lS ∈ 1..L(SRAM)

S do
Load state matrix tile s0tb̃s̃ from HBM
Load recurrent matrix tile R⊤

s̃,g̃ from SRAM
Calculate and Accumulate Matrix Product y = y + s0tb̃s̃ R

⊤
s̃g̃ along s̃.

end for
end if
Store MatMul result y in SRAM
Block Level Sync
for wS in 1..WS − 1 do

Load other MatMul result ỹs̃

Accumulate MatMul result y = y + ỹs̃

end for
Block Level Sync
Store MatMul result y in SRAM
if BS ≥ 1 then

Reorder tiling here for coalescing memory access and optimal work partitioning
Store MatMul result y in HBM
Grid Level Sync

end if
Reorder tiling here with in a block for one thread per point-wise op.
Load Gate inputs xtb̃g̃ from HBM
Load MatMul result y from SRAM
Add g = xtb̃g̃ + bg̃ + y
for bs ∈ 2..BS do

Load other MatMul result ỹs̃ from HBM
Add g = g + ỹs̃

end for
Point-wise Update st+1b̃s̃′ = P(stb̃s̃′ , gtb̃g̃) with aligned states s̃′ and gates g̃
Write out gates gtb̃g̃ to HBM for backward pass
Write out new states st+1b̃s̃′ to HBM

end for
Grid-Level Sync (for new states to be available across the whole grid)

end for
end for

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

C CONSTRINT RESOLUTION ALGORITHMS

To model the hardware constraints, we define IntegerVariables, e.g. a variable describing a tiling
size in the FlashRNN algorithm or a constant that defines the total SRAM for one streaming mul-
tiprocessor. These can attain a set of numbers (domain), e.g. initially a large range for a so far
unconstrained tiling size or a certain value for a constant. These variables can be composed to terms
via addition and multiplication, and these terms can be constrained via equalities, inequalities and
divisibility constraints.

Specific resolution variables additionally have a heuristic added that defines the behaviour of iter-
ation for choosing among possible values. If the domain of all resolution variables is reduced to a
single number, this is a solution. The heuristic gives an order of these variables and for each variable,
if smaller or larger values are expected to result in a ”better” solution. This helps optimization as
there might be many possible solutions, but certain ones promise most speed-ups (e.g. using most
TensorCores).
At the lowest level, a term is composed of two IntegerVariables (or intermediate variables), so con-
straints on it propagate down to the two summand or factor IntegerVariables. Equality, Inequality
and Divisibility constraints propagate to the contained terms as well. For example, since all numbers
are strictly positive the upper bound on a sum of two IntegerVariables applies to both the summands
- minus one. Applying the constraints iteratively upwards and downwards in the expression parse
tree until convergence (i.e. no change for any variable) leads to an arc-consistent state, which we
call ”Global ARC-Reduce”. The binary ”ARC-Reduce” algorithm is part of the ”AC-3”, a constraint
satisfaction problem solver for a more general setting (Mackworth, 1977). An arc-consistent state
might still have no solution, it is merely a super-set of all possible solutions. Based on the heuristic
the ConstrINT algorithm applies a depth-first tree search with ”Global ARC-Reduce” application at
each step and backtracking for an empty solution domain. (see also Appendix Section C)

Algorithm 3 ConstrINT Resolution
Require: Input Constants / Variables
Require: Resolution Variables with Heuristic
Require: Equality, Inequality and Divisibility Constraints

Generate intermediate/background variables for terms that propagate constraints
Reach arc consistency via ”Global ARC-Reduce”
if any variable has empty domain |DV | = 0 then

return ”No Solution viable”
end if
Sort values for each Resolution Variable via Heuristic
while any Resolution Variable has domain |DV | > 1 (not fixed) do

Choose Variable via Heuristic, Increase Index Count
if Lowest Order Variable has empty domain then

return ”No Solution viable”
end if
Set Variable Value via Heuristic
Reach arc consistency via Global ARC-Reduce
if any variable has empty domain |DV | = 0 then

Backtrack
end if

end while
return Solution

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Algorithm 4 ConstrINT Global ARC-Reduce
Require: Expression Parse Tree of Constraints and Variables

Status=Not Converged
while Change in Root IntegerVariable or NotConverged do

Propagate Restrictions to SubTerms of Expression
for Sub-Term in Root-Expression do ▷ Top-Down Application of Constraints

Apply Global ARC-Reduce on Sub-Term - Get changes
end for
if any change in values for Sub-Term then ▷ Bottom-Up Application of Constraints

Propagate Restriction from Sub-Terms to Root Variable
Status=Not Converged

else
Status=Converged

end if
end while
return change in Root IntegerVariable

D CONSTRINT KERNEL OPTIMIZATION

First Kernel Call

GPUInfo Kernel

ConstrINT Optimizer

RNN Sizes

(Heads, HeadDim...)

SRAM, Register Sizes...

Compiler NVCC

Kernel Parameters

(Tiling, Register use)

Test Execution

Registers exceed

limits

Executable Kernel

Figure 5: JIT Optimization procedure for first kernel call. RNN parameters and GPU hardware
info are processed by ConstrINT for a feasible kernel parametrization. Since register use cannot
fully be predicted in advance, register use is iteratively optimized with feedback from the compiler.
Subsequently, the kernel is cached as well as the intermediate optimization solutions.

The fused kernel described in Section 5.2 and in more detail in Appendix Section B has certain
external parameters which have to be set correctly for the kernels to be runnable and fast. The main
constraints here are the size limitations of registers and SRAM. For a large hidden or head dimension
d, e.g. d = 768, the recurrent weight matrix for an LSTM has the size 4×768×768×2B ≈ 4MB.
However, for an H100 GPU, the register file size is 256KB and the SRAM / shared memory is up to
228KB per SM / block. Therefore this matrix needs to be sharded over multiple SMs in a coopera-
tive grid group that can synchronize on the grid level. In particular, the different variables defined in
Appendix Section B: EB ,WB , BB , LB , EG,WG, BG, LG, ES ,WS , BS , L

(reg)
S , L(SRAM)

S imply cer-
tain sizes of registers and SRAM via a polynomial function. ConstrINT optimizes these variables to
fit within the boundaries of the hardware and to achieve a reasonable speed, by ordering the variables
and applying a heuristic on their values. For example, the gate dimension g̃ in the forward pass is a
pure parallelization, whereas the state dimension s̃ is accumulated over. Accumulation necessitates
additional memory operations and synchronization that make the execution slower, which is not the
case for the purely parallel dimension. Therefore the BG variable is maximized, while BS is mini-
mized during the constraint satisfaction solution search.
Furthermore, it is a priori not clear how many registers can be used by the kernel for storing ad-

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

ditional variables. Therefore, ConstrINT is used in a feedback loop together with the compiler
performing a binary search for the largest attainable register size.
Given a more detailed understanding of the kernel as shown in Section B, ConstrINT variables can
be fixed to different values for a manual optimization of a specific kernel size. ConstrINT will auto-
matically optimize all other variables using the hardware limits and given heuristics.
An example, where this is used in the standard version is the block size (threads / warps per thread
block). While the maximum could be 1024 on NVIDIA GPUs, we set this manually to a fourth.
This is usually faster, while not restricting the usable memory.

E DETAILS ON TRITON IMPLEMENTATION

Algorithm 5 provides details on the Triton implementation. It shows the computation for a single
program or thread block, which computes one head of dimension d and block Bb of the batch
dimension b. We run a grid of (nhead × b

Bb
) of these programs in parallel for FlashRNN forward

pass in Triton. We load the recurrent weights R and biases b only once from HBM to SRAM and
keep them in SRAM throughout the time loop.

On a higher level the main differences to the CUDA implementation in algorithm 2 are that in CUDA
we can use multiple thread blocks for a single head and we can force the kernel to keep the recurrent
weights R in registers instead of SRAM. One can see this difference for example in the kernel
launch grid, which parallelizes only over number of heads and blocks of batch size in Triton, while
it has two more parallelization dimensions in CUDA (see Algorithm 2).

Algorithm 5 Triton FlashRNN Forward Pass

Require: Recurrent weights R(j) ∈ Rd×d, biases b(j) ∈ Rd for gates j and inputs x(j)
t ∈ Rd for

gates j and timesteps t = 1..T ;
Initial states sk0 ∈ Rd

Load R(j) ∈ Rd×d, biases b(j) ∈ Rd

Load initial states s(k)0 ∈ Rd

for timestep t = 1..T do
Load inputs x(j)

t

Compute gate preactivations g(j)
t = x

(j)
t +R(j)s

(0)
t−1 + b(j)

Compute pointwise operations s(i)t = P(i)
(
{s(k)t−1}k, {g

(j)
t }j

)
Store states s(i)t
if Store output gates then

Store gates g(j)
t

end if
s
(i)
t−1 = s

(i)
t

g
(j)
t−1 = g

(j)
t

end for
return States s(i)0:T , gates g(j)

1:T

F ROOFLINE ANALYSIS

As mentioned in Section 5.1, kernel speed is fundamentally limited by two factors: computation and
memory bandwidth. This is usually visualized in the Roofline-Plot, showing the position of a kernel
in terms of its computation throughput and arithmetic intensity. We use NVIDIA NSight Compute,
to analyse this for the alternating and fused FlashRNN LSTM kernel compared to the nn.LSTM
(cuDNN) baseline on a H100-SXM:

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 6: LSTM Kernels in the roofline plot measured with NVIDIA NSight Compute - plotting
arithmetic intensity to the right, computation speed to the top. Alternating kernels show lower
arithmetic intensity and performance than the fused kernels. The fused backward kernel might still
be optimized compared to the nn.LSTM baseline. RNNs in general are still deep in the memory
bound regime of low arithmetic intensity. The peak performance is the scalar performance limit for
float32 FLOPs.

G COMPUTATIONAL COMPLEXITY

Traditional RNNs go over the sequence step by step, while applying a recurrent matrix multiplica-
tion and a pointwise activation function at each step. For the back-propagation in time, all past state
values are usually stored. In this paper, we implement the head-wise notion limiting the recurrent
matrix to a block diagonal form. The computational complexity is therefore: O(T nheads d

2
head),

with head size dhead, nheads the number of heads and T the sequence length. The matrix vector
product at each step is the dominant computational factor (for large head sizes). For inference, the
memory needed is defined by the state of the RNN which is O(nheads dhead)
In contrast, Attention computes a weighted sum over past inputs at each step, with the weight de-
fined by the softmax over scalar products between query and key vectors. This leads to a computa-
tional complexity O(T 2 nheads dhead). The space complexity is O(T nheads dhead) (Vaswani et al.,
2017). In conclusion, RNNs are more compressive, while their computational complexity is higher
when computing only a few steps. For training with BPTT the space complexity of RNNs matches
the one of Attention, as all past states have to be stored.

H ADDITIONAL BENCHMARK EXPERIMENTS

H.1 FUSED KERNEL LIMITS

Since the fused CUDA kernel of FlashRNN is based on keeping the recurrent memory matrix in
registers and shared memory, there is a limit on the maximal head size - corresponding to the size
of the R matrix. As ConstrINT can solve these constraints automatically, there is no additional
overhead other than setting this number and let it check if it works. Here, the hardware limits
become visible - an RTX 3090 and A40 have 128KB of SRAM compared to 192 KB of an A100

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

and 228 KB of an H100 7 8. For the LSTM fused kernels (forward + backward), we get the following
attainable head dimensions (greater than 1280):

• RTX3090: [1280, 1312, 1344, 1440, 1536, 1600, 1632, 1728, 1824]

• A40: [1280, 1312, 1344, 1440, 1536, 1600, 1632, 1728, 1824]

• A100: [1280, 1312, 1344, 1376, 1408, 1440, 1472, 1504, 1536, 1568, 1600, 1632, 1664,
1696, 1728, 1760, 1792, 1824, 1920, 2016, 2080, 2112, 2304]

• H100: [1280, 1312, 1344, 1376, 1408, 1440, 1472, 1504, 1536, 1568, 1600, 1632, 1664,
1696, 1728, 1760, 1792, 1824, 1856, 1888, 1920, 1952, 1984, 2016, 2048, 2080, 2112,
2208, 2240, 2304, 2400, 2496, 2560, 2688]

For larger head sizes the alternating kernels can to be used, since these are not restricted in the head
dimension.

H.2 TORCH.COMPILE BASELINE

Since torch.compile seems to unroll the vanilla PyTorch implementation of our kernels, long
sequence lengths take very long compilation times. Exemplary tests for small sequence length 64
took minutes to compile, while being only about two times faster than the vanilla PyTorch imple-
mentation without torch.compile. For comparison our fused kernels are up to 50 times faster.

H.3 LSTM SEQUENCE LENGTH RUNTIME EXPERIMENTS

We confirm that the findings from Section 6.1 hold true also for varying sequence lengths from 256
to 2048. We fix the batch size to 16 and measure the runtime for 12 heads with head dimension 64
(see Figure 7) and a single head with head dimension 768 (see Figure 8). In these experiments we
see the expected linear scaling of the runtime of all LSTM kernels for increasing sequence lengths.
The previous findings transfer across sequence lengths.

T=256 T=512 T=1024 T=2048
0

5

10

15

Ti
m

e
(m

s)

0.51
1.0

1.99

3.94

0.8
1.57

3.1

6.16

2.31

4.35

8.5

16.57

0.03 0.05 0.13 0.41

Triton fused

CUDA fused

CUDA alternating FlashAttention2

T=256 T=512 T=1024 T=2048
0

5

10

20

30

40

Ti
m

e
(m

s)

4.77

9.49

18.81

38.01

2.15

4.29

8.46

16.71

5.63

10.58

19.41

39.66

0.15 0.29 0.68
1.91

Triton fused

CUDA fused

CUDA alternating FlashAttention2

Figure 7: LSTM Runtime for different sequence lengths (T) on a NVIDIA H100. We use 12 heads
with head dimension 64 and batch size 16. Left: Forward pass. Right: Forward + backward pass.

7https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/
nvidia-ampere-architecture-whitepaper.pdf

8https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

20

https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

T=256 T=512 T=1024 T=2048
0

5

10

15

20

25

Ti
m

e
(m

s)

1.25
2.45

4.86

9.69

2.98

5.63

11.04

21.95

0.52 1.03
2.01

4.03
4.86

9.33

18.54

36.67

CUDA fused

CUDA alternating

PT nn.LSTM Haste LSTM fp32

T=256 T=512 T=1024 T=2048
0
5

10

20

30

40

50

60

70

Ti
m

e
(m

s)

3.5
6.87

13.49

27.02

7.02

13.49

25.9

51.03

1.41 2.69
5.21

10.2411.4

22.14

43.52

85.74

CUDA fused

CUDA alternating

PT nn.LSTM Haste LSTM fp32

Figure 8: LSTM Runtime for different sequence lengths (T) on a NVIDIA H100. We use one head
with head dimension 768 and batch size 16. Left: Forward pass. Right: Forward + backward pass.

H.4 FLASHRNN WITH EXTERNAL GATE PRE-ACTIVATION COMPUTATION

In Figure 9, we compare the kernel runtimes of the CUDA alternating and CUDA fused kernel with
and without the external gate preactivation. w/ Linear denotes with external gate preactivation
computation via a linear layer. The impact of the gate preactivation computation is marginal com-
pared to the overall kernel runtime.

B=8 B=32 B=128
0

5

10

15

20

30

Ti
m

e
(m

s)

4.11

9.53

31.76

4.16

9.74

32.56

10.5
11.22

13.04

10.62
11.4

13.75

2.56
3.98

15.63

CUDA fused

CUDA fused w/ Linear

CUDA alternating

CUDA alternating w/ Linear

PT nn.LSTM

B=8 B=32 B=128
0

20

40

60

80

100

Ti
m

e
(m

s)

13.76

28.78

102.37

13.98

29.45

104.89

24.31
27.6

43.39

24.63
28.44

46.24

4.96
9.04

31.45

CUDA fused

CUDA fused w/ Linear

CUDA alternating

CUDA alternating w/ Linear

PT nn.LSTM

Figure 9: LSTM Runtime for different batch sizes (B) on a NVIDIA H100. We use one head with
head dimension 768. We compare the kernel runtime with and without the gate preactivation matrix
multiplication. Left: Forward pass. Right: Forward + backward pass.

H.5 SLSTM RUNTIME EXPERIMENTS

In Figures 10, 11, 12, 13 and 14, we show the results of the experiments from Section 6.1 for the
sLSTM (Beck et al., 2024).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

NH=48
DH=16

NH=24
DH=32

NH=12
DH=64

NH=6
DH=128

NH=3
DH=256

NH=1
DH=768

0

5

10

15

Ti
m

e
(m

s)

2.33
1.6

2.14

3.85

OOSM OOSM

3.29
2.78 2.92 3.06

3.5

4.53

8.32 8.13 8.29

9.45 9.57

11.05

244.55 247.49 252.62 246.9

231.06

245.93

Triton fused

CUDA fused

CUDA alternating

Vanilla PyTorch

NH=48
DH=16

NH=24
DH=32

NH=12
DH=64

NH=6
DH=128

NH=3
DH=256

NH=1
DH=768

0

5

10

15

20

25

Ti
m

e
(m

s)

4.5
5.58

23.71

OOSM OOSM OOSM

9.98
9.0 9.4 9.86

10.75

15.7

20.46
19.41

21.11
23.24

24.84

27.7

661.41 669.35 671.38 682.8
656.45

701.46

Triton fused

CUDA fused

CUDA alternating

Vanilla PyTorch

Figure 10: sLSTM Runtime for different head dimensions (DH) and number of heads (NH) on a
NVIDIA H100. Overall embedding dimension is fixed at 768. We use batch size 16 and sequence
length 1024. Left: Forward pass. Right: Forward + backward pass.

B=2 B=8 B=16 B=32 B=64 B=128 B=256
0

5

10

15

Ti
m

e
(m

s)

2.27 2.25 2.13 2.3 2.58
3.32

4.95

2.76 2.61 2.91
3.72

5.94

10.47

20.86

7.8
8.26 8.62

9.09
9.82

11.13

14.49

Triton fused CUDA fused CUDA alternating

B=2 B=8 B=16 B=32 B=64 B=128 B=256
0

10

20

30

40

50

60

70

Ti
m

e
(m

s)

23.69 23.76 23.63 24.99
27.07

35.67

65.86

7.59 7.45
9.32

13.33

23.25

43.12

85.6

18.71 20.25 21.71
24.14

28.79

39.16

62.73

Triton fused CUDA fused CUDA alternating

Figure 11: sLSTM Runtime for different batch sizes (B) on a NVIDIA H100, at 12 heads with head
dimension 64 and sequence length 1024. Left: Forward pass. Right: Forward + backward pass.

B=2 B=8 B=16 B=32 B=64 B=128 B=256
0

10

20

30

40

50

60

Ti
m

e
(m

s)

3.44 3.47 4.54

14.47 15.55

29.35

58.8

10.39 10.68 11.22 11.54 11.82
13.25

17.15

CUDA fused CUDA alternating

B=2 B=8 B=16 B=32 B=64 B=128 B=256
0

20

40

60

80

100

120

150

200

Ti
m

e
(m

s)

10.11 10.15
14.43

30.87

46.76

91.75

183.31

24.87 26.09 27.09
31.03 34.63

46.3

70.23

CUDA fused CUDA alternating

Figure 12: sLSTM Runtime for different batch sizes (B) on a NVIDIA H100, at one head with head
dimension 768 and sequence length 1024. Left: Forward pass. Right: Forward + backward pass.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

T=256 T=512 T=1024 T=2048
0

5

10

15

20

Ti
m

e
(m

s)

0.55
1.07

2.13

4.22

0.76
1.48

2.92

5.78

2.26

4.3

8.36

16.6

Triton fused CUDA fused CUDA alternating

T=256 T=512 T=1024 T=2048
0

10

20

30

40

Ti
m

e
(m

s)

5.99

11.85

23.59

46.85

2.39

4.77

9.48

18.45

5.72

10.72

20.7

40.58

Triton fused CUDA fused CUDA alternating

Figure 13: sLSTM Runtime for different sequence lengths (T) on a NVIDIA H100. We use 12 heads
with head dimension 64 and batch size 16. Left: Forward pass. Right: Forward + backward pass.

T=256 T=512 T=1024 T=2048
0

5

10

15

20

Ti
m

e
(m

s)

1.17

2.3

4.54

9.02

2.95

5.6

11.0

21.58

CUDA fused CUDA alternating

T=256 T=512 T=1024 T=2048
0

10

20

30

40

50
Ti

m
e

(m
s)

3.67

7.22

14.29

28.06

7.28

13.68

26.99

51.91

CUDA fused CUDA alternating

Figure 14: sLSTM Runtime for different sequence lengths (T) on a NVIDIA H100. We use one
head with head dimension 768 and batch size 16. Left: Forward pass. Right: Forward + backward
pass.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

H.6 NUMERICAL ERROR ANALYSIS

0 100 200 300 400 500
Time Step

0.000

0.005

0.010

0.015

0.020
A

bs
ol

ut
e

E
rr

or

LSTM Hidden State Error

50th percentile

90th percentile

100th percentile

mean

Figure 15: Numerical error of the CUDA fused kernel in bfloat16 compared to a vanilla PyTorch
baseline in float64 over the sequence length. For an RNN, one would assume an accumulation of
errors over multiple steps.

In Figure 15, we plot the numerical deviations in the LSTM hidden states (i.e. the outputs) over
time. We compare our CUDA fused kernel in bfloat16 (the default setting) to our vanilla PyTorch
implementation in float64. For this experiment we use a single example with sequence length 512
and a single head with head dimension 768. We use a random normal distribution to generate the
weights, biases and inputs.

We plot the 50th, 90th and 100th percentiles of the absolute errors of the LSTM hidden state output
per timestep. Percentiles are computed over the head dimension of 768.

There exist maximum deviations of about 0.01, but this error stabilizes over time.

I LANGUAGE MODEL TRAINING ON A100S

Model Heads Param. (M) Train Time (h) Median Step (s) Val PPL (val)
LSTM CUDA fused 1 190 15.4 1.699 22.1
LSTM CUDA altern. 1 190 15.1 1.685 22.1
LSTM PT nn.LSTM 1 190 6.6 0.730 25.9
sLSTM CUDA fused 1 190 15.3 1.707 21.3
sLSTM CUDA altern. 1 190 15.6 1.720 21.3
LSTM CUDA fused 12 164 7.8 0.820 22.3
LSTM CUDA altern. 12 164 7.7 0.809 22.3
sLSTM CUDA fused 12 164 8.0 0.865 21.7
sLSTM CUDA altern. 12 164 8.0 0.852 21.7

Transformer 12 162 6.3 0.688 18.0

Table 3: 165M Model training on 15B tokens of SlimPajama on 8xA100s.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

J LANGUAGE TRAINING DETAILS

All models are roughly at 165 M parameter scale, that means 12 Transformer blocks (post-up pro-
jection), with a swish-gated MLP and embedding dimension 768. The Transformer uses RoPE
embeddings, whereas the other models do not use any additional positional information. We train
with context length 1024 and a global batch size of 512, resulting in roughly 30 k training steps for
15 B tokens of the SlimPajama dataset. We use the GPT-2 tokenizer and learning rate 1e-3 with lin-
ear warmup over 750 steps and cosine decay to 1e-4 over 30k steps. We use PyTorch in version 2.4.0
and CUDA 12.1 for A100 and 12.4 for H100s. The training uses PyTorch FSDP in the NO SHARD
setting (DDP) with Automated Mixed Precision using bfloat16 and float32 for accumulations.
For the A100 experiments, we use one node of eight A100-SXM (80GB) GPUs and a local batch
size of 64. For H100-SXM we reduce the local batch size to 32 and use 2 gradient accumulation
steps due to OutOfMemory errors, even though they have the same HBM size (80 GB).
For the language model trainings, we see more spikes in the training step times for FlashRNN mod-
els compared to the PyTorch implementations, which should be investigated further.

K EXPERIMENTAL DETAILS PARITY TASK IN SEQUENCE EXTRAPOLATION

For the parity task we train on the parity task with varying training sequence lengths up to 40. For
the reported validation, we evaluate on sequence lengths between 40 and 256. Sequence lengths are
uniformly sampled in the respective ranges. We train on three seeds for learning rates {1e-2, 1e-3,
1e-4} and choose best learning rates. We train for up to 100k steps with batch size 256 with linear
warmup of 10k and cosine decay to 10 % of the peak learning rate. Elman networks and LSTM
cannot reach 100 % accuracy on sequence extrapolation for the smallest learning rate. All models
reach low losses and high accuracies on the training set.

25

	Introduction
	Related work
	Generic Recurrent Neural Network architecture with memory mixing
	Generic gradient for backpropagation through time
	Vanishing and Exploding gradients and Gradient Modifications
	Head-wise parallelization

	Hardware-Efficient Implementation
	GPU-acclerated computing
	FlashRNN kernels
	Triton Implementation
	Automatic tuning of tiling and looping dimensions

	Experiments
	Runtime Benchmark
	Language Modeling
	State Tracking Task

	Conclusion
	RNN variants with memory mixing / recurrent connections modeled in FlashRNN
	FlashRNN Algorithm in detail
	ConstrINT resolution algorithms
	ConstrINT kernel optimization
	Details on Triton Implementation
	Roofline Analysis
	Computational Complexity
	Additional Benchmark Experiments
	Fused Kernel Limits
	torch.compile baseline
	LSTM Sequence Length Runtime Experiments
	FlashRNN with External Gate Pre-Activation Computation
	sLSTM Runtime Experiments
	Numerical Error Analysis

	Language Model Training on A100s
	Language Training Details
	Experimental Details Parity Task in Sequence Extrapolation

