
Diffusion Actor-Critic with Entropy Regulator

Yinuo Wang1 Likun Wang1 Yuxuan Jiang1 Wenjun Zou1 Tong Liu1

Xujie Song1 Wenxuan Wang1 Liming Xiao2 Jiang Wu2

Jingliang Duan1,2∗ Shengbo Eben Li1∗
1School of Vehicle and Mobility, Tsinghua University

2School of Mechanical Engineering, University of Science and Technology Beijing

Abstract

Reinforcement learning (RL) has proven highly effective in addressing complex
decision-making and control tasks. However, in most traditional RL algorithms, the
policy is typically parameterized as a diagonal Gaussian distribution with learned
mean and variance, which constrains their capability to acquire complex policies.
In response to this problem, we propose an online RL algorithm termed diffusion
actor-critic with entropy regulator (DACER). This algorithm conceptualizes the
reverse process of the diffusion model as a novel policy function and leverages the
capability of the diffusion model to fit multimodal distributions, thereby enhancing
the representational capacity of the policy. Since the distribution of the diffusion
policy lacks an analytical expression, its entropy cannot be determined analytically.
To mitigate this, we propose a method to estimate the entropy of the diffusion
policy utilizing Gaussian mixture model. Building on the estimated entropy, we
can learn a parameter α that modulates the degree of exploration and exploitation.
Parameter α will be employed to adaptively regulate the variance of the added
noise, which is applied to the action output by the diffusion model. Experimental
trials on MuJoCo benchmarks and a multimodal task demonstrate that the DACER
algorithm achieves state-of-the-art (SOTA) performance in most MuJoCo control
tasks while exhibiting a stronger representational capacity of the diffusion policy.

1 Introduction

Recently, deep reinforcement learning (RL) has emerged as an effective method for solving optimal
control problems in the physical world [14, 29, 22, 25]. In most existing RL algorithms, the
policy is parameterized as a deterministic function or a diagonal Gaussian distribution with the
learned mean and variance [31, 32, 16, 10]. However, the theoretically optimal policy may exhibit
strong multimodality, which cannot be well modeled by deterministic or diagonal Gaussian policies
[43, 21, 45]. Restricted policy representation capabilities can make algorithms prone to local optimal
solutions, damaging policy performance. For instance, in situations where two distinct actions in the
same state yield approximately the same Q-value, the Gaussian policy approximates the bimodal
action by maximizing the Q-value. This results in the policy displaying mode-covering behavior,
concentrating high density in the intermediate region between the two patterns, which is inherently
a low-density region with a lower Q-value. Consequently, modeling the policy with a unimodal
Gaussian distribution is likely to significantly impair policy learning.

Lately, the diffusion model has become widely known as a generative model for its powerful ability
to fit multimodal distributions [18, 35, 8]. It learns the original data distribution through the idea of
stepwise addition and removal of noise and has excellent performance in the fields of image [46, 28]
and video generation [9, 3]. The policy network in RL can be seen as a state-conditional generative

∗Corresponding author <duanjl15@163.com> <lishbo@tsinghua.edu.cn>.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

model. Given the ability of diffusion models to fit complex distributions, there is increasing work on
combining RL with diffusion models. Online RL learns policies by interacting with the environment
[16, 32]. Offline RL, also known as batch RL, aims to effectively learn policies from previously
collected data without interacting with the environment [1, 4]. In practical applications, many control
problems have excellent simulators. At this time, using offline RL is not appropriate, as online RL
with interaction capabilities performs better. Therefore, this paper focuses on how the diffusion model
can be combined with online RL.

In this work, we propose diffusion actor-critic with entropy regulator (DACER), a generalized new
approach to combine diffusion policy with online RL. Specifically, we base DACER on the denoising
diffusion probabilistic model (DDPM) [18]. A recent work by He et al. [44] points out that the
representational power of diffusion models stems mainly from the reverse diffusion processes, not
from the forward diffusion processes. Inspired by this work, we reconceptualize the reverse process of
the diffusion model as a novel policy approximator, leveraging its powerful representation capabilities
to enhance the performance of RL algorithms. The optimization objective of this novel policy function
is to maximize the expected Q-value. Maximizing entropy is important for policy exploration in
RL, but the entropy of the diffusion policy is difficult to determine. Therefore, we choose to sample
actions at fixed intervals and use a Gaussian mixture model (GMM) to fit the action distributions.
Subsequently, We can calculate the approximate entropy of the policy in each state. The average of
these entropies is then used as an approximation of the current diffusion policy entropy. Then, we use
the estimated entropy to regulate the degree of exploration and exploitation of diffusion policy.

In summary, the key contributions of this paper are the following: 1) We propose to consider the
reverse process of the diffusion model as a novel policy function. The objective function of the
diffusion policy is to maximize the expected Q-value and thus achieve policy improvement. 2) We
propose a method for estimating the entropy of diffusion policy. The estimated value is utilized
to achieve an adaptive adjustment of the exploration level of the diffusion policy, thus improving
the policy performance. 3) We evaluate the efficiency and generality of our method on the popular
MuJoCo benchmarking. Compared with DDPG [33], TD3 [12], PPO [32], SAC [16], DSAC [11, 10],
and TRPO [31], our approach achieves the SOTA performance. In addition, we demonstrate the
superior representational capacity of our algorithm through a specific multi-goal task. 4) We provide
the DACER code written in JAX to facilitate future researchers to follow our work 1.

Section 2 introduces and summarizes existing approaches to diffusion policy in offline RL and
online RL, pointing out some of their problems. Section 3 provides an introduction to online RL
and diffusion models. Our approach to combining diffusion policy with the mainstream actor-critic
framework, as well as methods to enhance the performance of diffusion policy will be presented in
section 4. The results of the experiments in the MuJoCo environment, the ablation experiments as
well as the multimodality task will be presented in section 5. Section 6 provides the conclusions of
this paper.

2 Related Work

Diffusion Policy in Offline RL Offline RL leverages pre-collected datasets for policy development,
circumventing direct environmental interaction. Current offline RL research utilizing diffusion
models as policy networks primarily adhere to the behavioral cloning framework [7, 26]. Within
this framework, two main objectives emerge: performance enhancement and training efficiency
improvement. For the former, Cheng et al. [6] proposed a Diffusion Policy, casting the policy as a
conditional denoising diffusion process within the action space to accommodate complex multimodal
action distributions. Wang et al. [43] introduced Diffusion-QL, which integrates behavior cloning
via diffusion model loss with Q-learning for policy improvement. Ajay et al. [2] created Decision
Diffusion, incorporating classifier-free guidance into the diffusion model to integrate trajectory
information, such as rewards and constraints. Addressing the latter, Kang et al. [20] developed
efficient diffusion policies (EDP), an evolution of Diffusion-QL. EDP accelerates training by utilizing
initial actions from state-action pairs in the buffer and applying a one-step sample for final action
derivation. Chen et al. [5] proposed a consistency policy that enhances diffusion algorithm efficiency
through one-step action generation from noise during training and inference. Although Diffusion
Policy’s powerful ability to fit multimodal policy distributions can achieve good performance in

1https://github.com/happy-yan/DACER-Diffusion-with-Online-RL

2

offline RL tasks, this method of policy improvement based on behavioral cloning cannot be directly
transferred to online RL. In addition, the biggest challenge facing offline RL, the distribution shift
problem, has not been completely solved. This paper focuses on online RL, moving away from the
framework of behavioral cloning.

Diffusion Policy in Online RL Online RL, characterized by real-time environment interaction,
contrasts with offline RL’s dependence on pre-existing datasets. To date, only two studies have
delved into integrating online RL with diffusion models. Yang et al. [45] pioneered this approach by
proposing action gradient method. This approach achieves policy improvement by updating the action
in the replay buffer through the∇aQ, followed by mimicry learning of the action post-update using a
diffusion model. However, action gradient increased the additional training time. Furthermore, it is
difficult to fully learn both the action gradient and imitation learning steps simultaneously, which
also resulted in suboptimal performance of this method in MuJoCo tasks. Psenka et al. [30] proposed
Q-score matching (QSM), a new methodology for off-policy reinforcement learning that leverages
the score-based structure of diffusion model policies to align with the∇aQ. This approach aims to
overcome the limitations of simple behavior cloning in actor-critic settings by integrating the policy’s
score with the Q-function’s action gradient. However, QSM needs to accurately learn∇aQ in most of
the action space to achieve optimal guidance. This is difficult to accomplish, resulting in suboptimal
performance of QSM.

Our method is motivated to propose a diffusion policy that can be combined with most existing
actor-critic frameworks. We first consider the reverse diffusion process of the diffusion model as a
policy function with strong representational power. Then, we use the entropy estimation method to
balance the exploration and utilization of diffusion policy and improve the performance of the policy.

Comparison with Diffusion-QL Diffusion-QL [43] made a successful attempt by replacing the
diagonal Gaussian policy with a diffusion model. It also guides the updating of the policy by adding
the normalized Q-value in the policy loss term. The main differences between our work and Diffusion-
QL are as follows: 1) Diffusion-QL is still essentially an architecture for imitation learning, and
policy updates are mainly motivated by the imitation learning loss term. 2) Our work adaptively
regulates the standard deviation of random noise in the sampling process a = a+λα ·N (0, I), where
α is a learned parameter, λ is a hyperparameter. This method effectively balances exploration and
exploitation and subsequently enhances the performance of the diffusion policy. Ablation experiments
provide evidence supporting these findings.

3 Preliminaries

3.1 Online Reinforcement Learning

In the conventional framework of RL, interactions between the agent and its environment occur in
sequential discrete time steps. Typically, the environment is modeled as a Markov decision process
(MDP) with continuous states and actions [38]. The environment provides feedback through a
bounded reward function denoted by r(st, at). The likelihood of transitioning to a new state based
on the agent’s action is expressed by the probability p(st+1|st, at). State-action pairs for the current
and next steps are indicated as (s, a) and (s′, a′). The decision-making of an agent at any state st is
guided by a stochastic policy π(at|st), which determines the probability distribution over feasible
actions at that state.

In the realm of online RL, agents engage in real-time learning and decision-making through direct
interactions with their environments. Such interactions are captured within a tuple (st, at, rt, st+1),
representing the transition during each interaction. It is common practice to store these transitions
in an experience replay buffer, symbolized as B. Throughout the training phase, random samples
drawn from B produce batches of data that contribute to a more consistent training process. The
fundamental aim of traditional online RL strategies is to craft a policy that optimizes the expected
total reward:

Jπ = E(si≥t,ai≥t)∼π

[∞∑
i=t

γi−tr(si, ai)
]
, (1)

3

where γ ∈ (0, 1) represents the discount factor. The Q-value for a state-action pair (s, a) is given by

Q(s, a) = Eπ

[∞∑
i=0

γir(si, ai)|s0 = s, a0 = a
]
. (2)

RL typically employs an actor-critic framework [25, 24], which includes both a policy function,
symbolized by π, and a corresponding Q-value function, noted as Qπ . The process of policy iteration
is often used to achieve the optimal policy π∗, cycling through phases of policy evaluation and
enhancement. In the policy evaluation phase, the Q-value Qπ is recalibrated according to the
self-consistency requirements dictated by the Bellman equation:

Qπ(s, a) = r(s, a) + γEs′∼p,a′∼π[Q
π(s′, a′)]. (3)

In the policy improvement phase, an enhanced policy πnew is sought by optimizing current Q-value
Qπold :

πnew = argmax
π

Es∼dπ,a∼π[Q
πold(s, a)]. (4)

In practical applications, neural networks are often used to parameterize both the policy and
value functions, represented by πθ and Qϕ, respectively. These functions are refined through
the application of gradient descent methods aimed at reducing the loss functions for both the

critic, Lq(θ) = E(s,a,s′)∼B

[(
r(s, a) + γEs′∼p,a′∼π[Q

π(s′, a′)]−Qπ
ϕ(s, a)

)2
]

, and the actor,

Lπ(ϕ) = −Es∼dπ,a∼π[Q
πold(s, a)]. These loss functions are structured based on the principles

outlined in (3) and (4).

3.2 Diffusion Models

Diffusion models [34, 18, 36, 37] are highly effective generative tools. They convert data from its
original distribution to a Gaussian noise distribution by gradually adding noise and then reconstruct
the data by gradually removing this noise through a reverse process. This process is typically
described as a continuous Markov chain: the forward process incrementally increases the noise
level, while the reverse process involves a conditional generative model trained to predict the optimal
reverse transitions at each denoising step. Consequently, the model reverses the diffusion sequence to
generate data samples starting from pure noise.

Let us define pθ(x0) :=
∫
pθ(x0:T)dx1:T , where x1, . . . ,xT denote latent variables sharing the

same dimensionality as the data variable x0 ∼ q(x0), where q(x0) means original data distribution.
In a forward diffusion chain, the noise is incrementally introduced to the data x0 ∼ q(x0) across T
steps, adhering to a predetermined variance sequence denoted by βt, described as

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1), q(xt|xt−1) = N (xt;
√
1− βtxt−1, βt). (5)

When T → ∞, xT distributes as an isotropic Gaussian distribution [21]. The reverse diffusion
process of the diffusion model can be represented as

pθ(x0:T) = p(xT)

T∏
t=1

pθ(xt−1|xt), pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)), (6)

where p(xT) = N (xT ;0, I) under the condition that
∏T

t=1(1− βt) ≈ 0.

4 Method

In this section, we detail the design of our diffusion actor-critic with entropy regulator (DACER).
First, we consider the reverse diffusion process of the diffusion model as a new policy approximator,
serving as the policy function in RL. Second, We directly optimize the diffusion policy using gradient
descent, whose objective function is to maximize expected Q-values. This feature allows it to be
integrated with mainstream RL algorithms that do not require entropy. However, the diffusion policy

4

learned this way produces overly deterministic actions with poor performance. When attempting
to integrate the maximization entropy RL framework, we find the entropy of the diffusion policy
is difficult to analytically determine. Therefore, we use GMM to approximate the entropy of the
diffusion policy, and then learn a parameter α based on it to adjust the exploration level of diffusion
policy.

4.1 Diffusion Policy Representation

We use the reverse process of a conditional diffusion model as a parametric policy:

πθ(a|s) = pθ(a0:T |s) = p(aT)

T∏
t=1

pθ(at−1|at, s), (7)

where p(aT) = N (0, I), the end sample of the reverse chain, a0, is the action used
for RL evaluation. Generally, pθ(at−1|at, s) could be modeled as a Gaussian distribution
N (at−1;µθ(at, s, t),Σθ(at, s, t)). We choose to parameterize πθ(a|s) like DDPM [18], which
sets Σθ(at, s, t) = βtI to fixed time-dependent constants, and constructs the mean µθ from a noise
prediction model as

µθ(at, s, t) =
1
√
αt

(
at −

βt√
1− ᾱt

ϵθ(at, s, t)

)
, (8)

where αt = 1− βt, ᾱt =
∏t

k=1 αk, and ϵθ is a parametric model.

To obtain an action from DDPM, we need to draw samples from T different Gaussian distributions
sequentially. The sampling process can be reformulated as

at−1 =
1
√
αt

(
at −

βt√
1− ᾱt

ϵθ(at, s, t)

)
+

√
βtϵ, (9)

with the reparametrization trick, where ϵ ∼ N (0, I), t is the reverse timestep from T to 0, aT ∼
N (0, I).

4.2 Diffusion Policy Learning

In integrating diffusion policy with offline RL, policy improvement relies on minimizing the behavior-
cloning term. However, in online RL, without a dataset to imitate, we discarded the behavior-cloning
term and the imitation learning framework. In this study, the policy-learning objective is to maximize
the expected Q-values of the actions generated by the diffusion network given the state:

max
θ

Es∼B,a0∼πθ(·|s) [Qϕ(s,a0)] . (10)

Unlike the traditional reverse diffusion process, our study requires recording the gradient of the whole
process. The gradient of the Q-value function with respect to the action is backpropagated through
the entire diffusion chain.

Policy improvement is introduced above; next, we introduce policy evaluation. The Q-value function
is learned through a conventional approach, which involves minimizing the Bellman operator [13, 25,
38] with the double Q-learning trick [40]. We built two Q-networks Qϕ1

(s,a), Qϕ2
(s,a), and target

network Qϕ
′
1
(s,a), Qϕ

′
2
(s,a). Then we give the objective function of policy evaluation, which is

shown as

min
ϕi

E(s,a,s′)∼B

[((
r(s,a) + γ min

i=1,2
Qϕ

′
i
(s′,a′)

)
−Qϕi

(s,a)

)2
]
, (11)

where a
′

is obtained by inputting the s
′

into the diffusion policy, B means replay buffer. Building on
this, we employ the tricks in DSAC [11, 10] to mitigate the problem of Q-value overestimation.

The diffusion policy we construct can be directly combined with mainstream RL algorithms that do
not require policy entropy. However, training with the above diffusion policy learning method suffers
from overly deterministic policy actions, resulting in poor performance of the final diffusion policy.
In the next section, we will propose entropy estimation to solve this problem and obtain diffusion
policy with SOTA performance.

5

4.3 Diffusion Policy with Entropy

The diffusion policy’s distribution lacks an analytic expression, so we cannot directly determine its
entropy. However, in the same state, we can use multiple samples to obtain a series of actions. By
fitting these action points, we can estimate the action distribution corresponding to the state.

In this paper, we use Gaussian mixture model (GMM) to fit the policy distribution. The GMM forms
a complex probability density function by combining multiple Gaussian distributions, which can be
represented as

f̂(a) =

K∑
k=1

wk · N (a|µk,Σk), (12)

where K is the number of Gaussian distributions, and wk is the mixing weight of the k-th component,
satisfying

∑K
k=1 wk = 1, wk ≥ 0. µk, Σk are the mean and covariance matrices of the k-th Gaussian

distribution, respectively.

For each state, we use a diffusion policy to sample N actions, a1,a2, . . . ,aN ∈ A. The Expectation-
Maximization algorithm is then used to estimate the parameters of the GMM. In the expectation step,
the posterior probability that each data point ai belongs to each component k is computed, denoted as

γ(zi
k) =

wk · N (ai|µk,Σk)∑K
j=1 wj · N (ai|µj ,Σj)

, (13)

where γ(zi
k) denotes that under the current parameter estimates, the observed data ai come from the

k-th component of the probability. In the maximization step, the results of the Eq. (13) calculations
are used to update the parameters and mixing weights for each component:

wk =
1

N

N∑
i=1

γ(zi
k),µk =

∑N
i=1 γ(z

i
k) · ai∑N

i=1 γ(z
i
k)

,Σk =

∑N
i=1 γ(z

i
k)(a

i − µk)(a
i − µk)

T∑N
i=1 γ(z

i
k)

. (14)

Iterative optimization continues until parameter convergence. Based on our experimental experience
in the MuJoCo environments, a general setting of K = 3 provides a better fit to the action distribution.

According to Eq. (12), we can estimate the entropy of the action distribution corresponding to the
state by [19]

Hs ≈ −
K∑

k=1

wk logwk +

K∑
k=1

wk ·
1

2
log

(
(2πe)d|Σk|

)
, (15)

where d is the dimension of action. Then, the mean of the entropy of the actions associated with the
chosen batch of states is used as the estimated entropy Ĥ of the diffusion policy.

Similar to maximizing entropy RL, we learn a parameter α based on the estimated entropy. We
update this parameter using

α← α− βα[Ĥ − H], (16)
whereH is target entropy. Finally, we use a = a+λα ·N (0, I) to adjust the diffusion policy entropy
during training, where λ is a hyperparameter and a is the output of diffusion policy. Additionally, no
noise is added during the evaluation phase. We summarize our implementation in Algorithm 1.

5 Experiments

We evaluate the performance of our method in some control tasks of RL within MuJoCo [39]. The
benchmark tasks utilized in this study are depicted in Fig. 5, including Humanoid-v3, Ant-v3,
HalfCheetah-v3, Walker2d-v3, InvertedDoublePendulum-v3, Hopper-v3, Pusher-v2, and Swimmer-
v3. Moreover, we conducted experiments in a multi-goal task to demonstrate the excellent representa-
tional and exploratory capabilities of our diffusion policy. We also provide ablation studies on the
critical components for better understanding. All baseline algorithms are available in GOPS [42], an
open-source RL solver developed with PyTorch.

Baselines. Our algorithm is compared and evaluated against the six well-known model-free algo-
rithms. These include DDPG [33], TD3 [12], PPO [32], SAC [16], DSAC [11, 10], and TRPO [31].
These baselines have been extensively tested and applied in a series of demanding domains.

6

Algorithm 1 Diffusion Actor-Critic with Entropy Regulator for Online RL

Input: λ, θ, ϕ1, ϕ2, ϕ
′

1, ϕ
′

2, α, βq , βα, βπ , and ρ
for each iteration do

for each sampling step do
Sample a ∼ πθ(·|s) by Eq. (7)
Add noise a = a+ λα · N (0, I)
Get reward r and new state s′

Store a batch of samples (s, a, r, s′) in replay buffer B
end for
for each update step do

Sample data from B
Update critic networks using ϕi ← ϕi − βq∇ϕiLq(ϕi) for i = {1, 2}
Update diffusion policy network using θ ← θ − βπ∇θLπ(θ)
if step mod 10000 == 0 then

Estimate the entropy of diffusion policy Ĥ = Es∼B [Hs]
Update α using Eq. (16)

Update target networks using ϕ′
i = ρϕ′

i + (1− ρ)ϕi for i = {1, 2}
end for

end for

Experimental details. To ensure a fair comparison, we incorporated the diffusion policy as a
policy approximation function within GOPS and implemented DACER with JAX, which improves
training speed by 4-5 times compared to PyTorch while maintaining consistent performance. All
algorithms and tasks use the same three-layer MLP neural network with GeLU [17] or Mish [27]
activation functions, the latter used only for the noise prediction network in the diffusion policy.
Initially, we encode timestep t into 16 dimensions using sinusoidal embedding [41], then merge this
encoded result with the state s and action at during the current denoising step, and input it into
the prediction noise network to generate the output. The impact of the reverse diffusion step size,
T , on the experimental results will be examined in the ablation experiments. T is set to 20 for all
experiments eventually. The Adam [23] optimization method is employed for all parameter updates.
In this paper, the total training step size for all experiments is set at 1.5 million, with the results of all
experiments averaged over five random seeds. The CPU used for the experiment is the AMD Ryzen
Threadripper 3960X 24-Core Processor, and the GPU is NVIDIA GeForce RTX 3090Ti. Taking
Humanoid-v3 as an example, the time taken to train 1.5 million in the JAX framework is 6 hours.
More detailed hyperparameters are provided in Appendix A.2 due to space limits.

Evaluation Protocol. In this paper, we use the same assessment metrics as DSAC. For each seed,
the metric is derived by averaging the highest return values observed during the final 10% of iteration
steps in each run, with evaluations conducted every 15,000 iterations. Each assessment result is the
average of ten episodes. The results from the five seeds are then aggregated to calculate the mean and
standard deviation. Additionally, the training curves in Fig. 1 provide insights into the stability of the
training process.

5.1 Comparative Evaluation

Each algorithm was subjected to five distinct tests, utilizing a variety of consistent random seeds to
ensure robustness in the results. Fig. 1 and Table 1 display the learning curves and performance
strategies, respectively. Our comprehensive findings reveal that across all evaluated tasks, the DACER
algorithm consistently matched or surpassed the performance of all competing benchmark algorithms.
Specifically, in the Humanoid-v3 scenario, our algorithm demonstrated enhancements of 124.7%,
111.1%, 73.1%, 27.3%, 9.8%, and 1131.9% over DDPG, TD3, PPO, SAC, DSAC, and TRPO,
respectively.

5.2 Policy Representation Experiment

In this section, we conduct an experiment to confirm the representation capability of the diffusion
policy. We use an environment called "Multi-goal" [15], as shown in Fig. 2, where the x-axis and

7

0.0 0.3 0.6 0.9 1.2 1.5
Million iterations

0

2000

4000

6000

8000

10000

12000

To
ta

l A
ve

ra
ge

 R
et

ur
n

DACER
DDPG
TD3
PPO
SAC
DSAC
TRPO

(a) Humanoid-v3

0.0 0.3 0.6 0.9 1.2 1.5
Million iterations

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

To
ta

l A
ve

ra
ge

 R
et

ur
n

DACER
DDPG
TD3
PPO
SAC
DSAC
TRPO

(b) Ant-v3

0.0 0.3 0.6 0.9 1.2 1.5
Million iterations

0

2500

5000

7500

10000

12500

15000

17500

To
ta

l A
ve

ra
ge

 R
et

ur
n

DACER
DDPG
TD3
PPO
SAC
DSAC
TRPO

(c) HalfCheetah-v3

0.0 0.3 0.6 0.9 1.2 1.5
Million iterations

0

1000

2000

3000

4000

5000

6000

7000

To
ta

l A
ve

ra
ge

 R
et

ur
n

DACER
DDPG
TD3
PPO
SAC
DSAC
TRPO

(d) Walker2d-v3

0.0 0.3 0.6 0.9 1.2 1.5
Million iterations

0

2000

4000

6000

8000

To
ta

l A
ve

ra
ge

 R
et

ur
n

DACER
DDPG
TD3
PPO
SAC
DSAC
TRPO

(e) Inverted2Pendulum-v3

0.0 0.3 0.6 0.9 1.2 1.5
Million iterations

0

1000

2000

3000

4000

To
ta

l A
ve

ra
ge

 R
et

ur
n

DACER
DDPG
TD3
PPO
SAC
DSAC
TRPO

(f) Hopper-v3

0.0 0.3 0.6 0.9 1.2 1.5
Million iterations

120

100

80

60

40

20

To
ta

l A
ve

ra
ge

 R
et

ur
n

DACER
DDPG
TD3
PPO
SAC
DSAC
TRPO

(g) Pusher-v2

0.0 0.3 0.6 0.9 1.2 1.5
Million iterations

25

0

25

50

75

100

125

150

175

To
ta

l A
ve

ra
ge

 R
et

ur
n

DACER
DDPG
TD3
PPO
SAC
DSAC
TRPO

(h) Swimmer-v3

Figure 1: Training curves on benchmarks. The solid lines represent the mean, while the shaded
regions indicate the 95% confidence interval over five runs. The iteration of PPO and TRPO is
measured by the number of network updates.

Table 1
Average final return. Computed as the mean of the highest return values observed in the final 10% of iteration
steps per run, with an evaluation interval of 15,000 iterations. The maximum value for each task is bolded. ±

corresponds to standard deviation over five runs.

Task DACER DSAC SAC TD3 DDPG TRPO PPO
Humanoid-v3 11888 ± 244 10829 ± 243 9335 ± 695 5631 ± 435 5291 ± 662 965 ± 555 6869 ± 1563

Ant-v3 9108 ± 103 7086 ± 261 6427 ± 804 6184 ± 486 4549 ± 788 6203 ± 578 6156 ± 185
Halfcheetah-v3 17177 ± 176 17025 ± 157 16573 ± 224 8632 ± 4041 13970 ± 2083 4785 ± 967 5789 ± 2200
Walker2d-v3 6701 ± 62 6424 ± 147 6200 ± 263 5237 ± 335 4095 ± 68 5502 ± 593 4831 ± 637

Inverteddoublependulum-v3 9360 ± 0 9360 ± 0 9360 ± 0 9347 ± 15 9183 ± 9 6259 ± 2065 9356 ± 2
Hopper-v3 4104 ± 49 3660±533 2483 ± 943 3569 ± 455 2644 ± 659 3474 ± 400 2647 ± 482
Pusher-v2 -19 ± 1 -19 ± 1 -20 ± 0 -21 ± 1 -30 ± 6 -23 ± 2 -23 ± 1

Swimmer-v3 152 ± 7 138±6 140 ± 14 134 ± 5 146 ± 4 70 ± 38 130 ± 2

y-axis represent 2D states. In this setup, the agent is represented as a 2D point mass situated on a
7 ∗ 7 plane. The objective for the agent is to navigate towards one of four symmetrically positioned
points: (0, 5), (0,−5), (5, 0), and (−5, 0). Since the goal positions are symmetrically distributed at
the four points, a policy with strong representational capacity should enable the Q-function to learn
the four symmetric peaks across the entire state space. This result reflects the policy’s capacity for
exploration in understanding the environment.

We compare the performance of DACER with DSAC, TD3, and PPO, as shown in Fig. 2. The results
show that DACER’s actions are likely to point to the nearest peak in different states. DACER’s
value function curve shows four symmetrical peaks, aligning with the previous analysis. Compared
to DSAC, our method learns a better policy representation, mainly due to using a diffusion policy
instead of an MLP. In contrast, TD3 and PPO generate more random actions with poorer policy
representation, lacking the symmetrical peaks in their value function curves. Overall, our method
demonstrates superior representational capability.

To demonstrate the powerful multimodality of DACER, we select five points requiring multimodal
policies: (0.5, 0.5), (0.5, -0.5), (-0.5, -0.5), (-0.5, 0.5), and (0, 0). For each point, we sampled 100
trajectories. The trajectories are plotted in Fig. 3. The results show that compared with DSAC,
DACER exhibits strong multimodality. This also explains why only the Q-function of DACER can
learn the nearly perfectly symmetrical four peaks.

5.3 Ablation Study

In this section, we analyze why DACER outperforms all other baseline algorithms on MuJoCo tasks.
We conduct ablation experiments to investigate the impact of the following three aspects on the

8

6 4 2 0 2 4 6
x

6

4

2

0

2

4

6

y

0.
1

0.1

0.1

0.
1

0.
2

0.2

0.2

0.
2

0.2

0.3

0.3

0.3

0.3

0.3

0.5

0.5

0.5

0.5

0.5

0.6

0.6

0.6

0.6

0.7

0.7
0.7

0.7

0.8

0.8 0.8

0.8

0.9

0.9

0.9

0.9

1.0

1.0

1.0

1.0

1.2

1.2

1.2

1.2

1.3

1.3

1.3

1.3

1.4

1.4

1.4

1.4

1.5

1.5

1.5

1.5

1.6

1.6

1.6

1.
6

1.
7

1.7

1.7

1.
7

1.9

1.9

1.
9

1.9

2.0

2.0 2.0

2.0

2.1

2.1

2.1

2.1

6 4 2 0 2 4 6
x

6

4

2

0

2

4

6

y

0.
1

0.1

0.1

0.
1

0.
2

0.2

0.2

0.
2

0.2

0.3

0.3

0.3

0.3

0.3

0.5

0.5

0.5

0.5

0.5

0.6

0.6

0.6

0.6

0.7

0.7
0.7

0.7

0.8

0.8 0.8

0.8

0.9

0.9

0.9

0.9

1.0

1.0

1.0

1.0

1.2

1.2

1.2

1.2

1.3

1.3

1.3

1.3

1.4

1.4

1.4

1.4

1.5

1.5

1.5

1.5

1.6

1.6

1.6

1.
6

1.
7

1.7

1.7

1.
7

1.9

1.9

1.
9

1.9

2.0

2.0 2.0

2.0

2.1

2.1

2.1

2.1

6 4 2 0 2 4 6
x

6

4

2

0

2

4

6

y

0.
1

0.1

0.1

0.
1

0.
2

0.2

0.2

0.
2

0.2

0.3

0.3

0.3

0.3

0.3

0.5

0.5

0.5

0.5

0.5

0.6

0.6

0.6

0.6

0.7

0.7
0.7

0.7

0.8

0.8 0.8

0.8

0.9

0.9

0.9

0.9

1.0

1.0

1.0

1.0

1.2

1.2

1.2

1.2

1.3

1.3

1.3

1.3

1.4

1.4

1.4

1.4

1.5

1.5

1.5

1.5

1.6

1.6

1.6

1.
6

1.
7

1.7

1.7

1.
7

1.9

1.9

1.
9

1.9

2.0

2.0 2.0

2.0

2.1

2.1

2.1

2.1

6 4 2 0 2 4 6
x

6

4

2

0

2

4

6

y

0.
1

0.1

0.1

0.
1

0.
2

0.2

0.2

0.
2

0.2

0.3

0.3

0.3

0.3

0.3

0.5
0.5

0.5

0.5

0.5

0.6

0.6

0.6

0.6

0.7

0.7
0.7

0.7

0.8

0.8 0.8

0.8

0.9

0.9

0.9

0.9

1.0

1.0

1.0

1.0

1.2

1.2

1.2

1.2

1.3

1.3

1.3

1.3

1.4

1.4

1.4

1.4

1.5

1.5

1.5

1.5

1.6

1.6

1.6

1.
6

1.
7

1.7

1.7

1.
7

1.9

1.9

1.
9

1.9

2.0

2.0 2.0

2.0

2.1

2.1

2.1

2.1

6 4 2 0 2 4 6x 6
4

2
0

2
4

6

y

35
30
25
20
15
10
5

0

Va
lu

e
Fu

nc
tio

n

(a) DACER

6 4 2 0 2 4 6x 6
4

2
0

2
4

6

y

60
50
40
30
20
10
0

Va
lu

e
Fu

nc
tio

n

(b) DSAC

x

6 4 2 0 2 4 6

y

6
4

2
0

2
4

6

Va
lu

e
Fu

nc
tio

n

300

200

100

0

(c) TD3

x

6 4 2 0 2 4 6

y

6
4

2
0

2
4

6

Va
lu

e
Fu

nc
tio

n

0.49

0.48

0.47

0.46

0.45

(d) PPO

Figure 2: Policy representation comparison of different policies on a multimodal environment.
The first row exhibits the policy distribution. The length of the red arrowheads denotes the size of the
action vector, and the direction of the red arrowheads denotes the direction of actions. The second
row shows the value function of each state point.

Figure 3: Multi-goal multimodal experiments. We selected 5 points that require multimodal
policies: (0, 0), (-0.5, 0.5), (0.5, 0.5), (0.5, -0.5), (-0.5, -0.5), and sampled 100 trajectories for each
point. The top row shows the experimental results of DACER, another shows the experimental results
of DSAC.

performance of the diffusion policy: 1) whether adding Gaussian noise to the final output action of
the diffusion policy; 2) whether the standard deviation of the added Gaussian noise can be adaptively
adjusted by estimated entropy; 3) different reverse diffusion step size T .

Only Q-learning. In section 4.2, we propose a method using the reverse diffusion process as
a policy approximator, which can be combined with the non-maximizing entropy RL algorithm.
However, the diffusion policy trained without entropy exhibits poor exploratory properties, leading to
suboptimal performance. Using Walker2d-v3 as an example, we compared the training curves of this
method with the DACER algorithm, as shown in Fig. 4(a).

Fixed and linear decay noise factor. In order to verify that using the estimated entropy to adaptively
adjust the noise factor plays an important role in the final performance, we conducted the following
two experiments in the Walker2d-v3 task: 1) Fixed noise factor to 0.1; 2) The noise factor starts

9

from 0.27 and linearly decreases to 0.1 during the training process. These two values were chosen
because the starting and ending noise factor for adaptive tuning in this setting is about in this range.
As shown in Fig. 4(b), our method of adaptively adjusting the noise factor based on the estimated
entropy achieves the best performance.

Diffusion steps. We further examined the performance of the diffusion policy as the number of
diffusion timesteps T varied. We used the Walker2d-v3 task to plot training curves for T = 10, 20,
and 30, as shown in Fig. 4(c). Experimental results indicate that a larger number of diffusion
steps does not necessarily lead to better performance. Excessive diffusion steps can cause gradient
explosion, significantly reducing the performance of diffusion policy. After balancing performance
and computational efficiency, we selected 20 diffusion steps for all experiments.

0.0 0.3 0.6 0.9 1.2 1.5
Million iterations

0

1000

2000

3000

4000

5000

6000

7000

To
ta

l A
ve

ra
ge

 R
et

ur
n

DACER
DAC

(a) Ablation for the entropy
regulator mechanism.

0.0 0.3 0.6 0.9 1.2 1.5
Million iterations

0

1000

2000

3000

4000

5000

6000

7000

To
ta

l A
ve

ra
ge

 R
et

ur
n

DACER
DACER with fixed noise 0.1
DACER with linear decay noise

(b) Ablation for the noise factor
modulation mechanism.

0.0 0.3 0.6 0.9 1.2 1.5
Million iterations

0

1000

2000

3000

4000

5000

6000

7000

To
ta

l A
ve

ra
ge

 R
et

ur
n

T10
T20
T30

(c) Ablation for the different
diffusion steps.

Figure 4: Ablation experiment curves. (a) DAC stands for not using the entropy regulator. DACER’s
performance on Walker2d-v3 is far better than DAC. (b) Adaptive tuning of the noise factor based on
the estimated entropy achieved the best performance compared to fixing the noise factor or using
the adaptive tuning method with initial, end values followed by a linear decay method. (c) The best
performance was achieved with diffusion steps equal to 20, in addition to the instability of the training
process when equal to 30.

6 Conclusion

In this study, we propose the diffusion actor-critic with entropy regulator (DACER) algorithm, a
novel RL method designed to overcome the limitations of traditional RL methods that use diagonal
Gaussian distributions for policy parameterization. By utilizing the inverse process of the diffusion
model, DACER effectively handles multimodal distributions, enabling the creation of more complex
policies and improving policy performance. A significant challenge arises from the lack of analytical
expressions to determine the entropy of a diffusion strategy. To address this, we employ GMM to
estimate entropy, thereby facilitating the learning of a key parameter, α, which adjusts the exploration-
exploitation balance by regulating the noise variance in the action output. Empirical tests on the
MuJoCo benchmark and a multimodal task show the superior performance of DACER.

7 Acknowledgements

This study is supported by National Key R&D Program of China with 2022YFB2502901, and
Tsinghua University Initiative Scientific Research Program.

10

References
[1] Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An optimistic perspective

on offline reinforcement learning. In International Conference on Machine Learning, pages
104–114. PMLR, 2020.

[2] Anurag Ajay, Yilun Du, Abhi Gupta, Joshua Tenenbaum, Tommi Jaakkola, and Pulkit Agrawal.
Is conditional generative modeling all you need for decision-making? The Eleventh International
Conference on Learning Representations, 2023.

[3] Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Do-
minik Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion:
Scaling latent video diffusion models to large datasets. arXiv preprint arXiv:2311.15127, 2023.

[4] David Brandfonbrener, Will Whitney, Rajesh Ranganath, and Joan Bruna. Offline rl without
off-policy evaluation. Advances in Neural Information Processing Systems, 34:4933–4946,
2021.

[5] Yuhui Chen, Haoran Li, and Dongbin Zhao. Boosting continuous control with consistency
policy. arXiv preprint arXiv:2310.06343, 2023.

[6] Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and
Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. arXiv preprint
arXiv:2303.04137, 2023.

[7] Felipe Codevilla, Eder Santana, Antonio M López, and Adrien Gaidon. Exploring the limitations
of behavior cloning for autonomous driving. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 9329–9338, 2019.

[8] Florinel-Alin Croitoru, Vlad Hondru, Radu Tudor Ionescu, and Mubarak Shah. Diffusion
models in vision: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2023.

[9] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis.
Advances in Neural Information Processing Systems, 34:8780–8794, 2021.

[10] Jingliang Duan, Yang Guan, Shengbo Eben Li, Yangang Ren, Qi Sun, and Bo Cheng. Distribu-
tional soft actor-critic: Off-policy reinforcement learning for addressing value estimation errors.
IEEE Transactions on Neural Networks and Learning Systems, 33(11):6584–6598, 2021.

[11] Jingliang Duan, Wenxuan Wang, Liming Xiao, Jiaxin Gao, and Shengbo Eben Li. Dsac-t:
Distributional soft actor-critic with three refinements. arXiv preprint arXiv:2310.05858, 2023.

[12] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In International Conference on Machine Learning, pages 1587–1596.
PMLR, 2018.

[13] Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning
without exploration. In International Conference on Machine Learning, pages 2052–2062.
PMLR, 2019.

[14] Yang Guan, Yangang Ren, Qi Sun, Shengbo Eben Li, Haitong Ma, Jingliang Duan, Yifan Dai,
and Bo Cheng. Integrated decision and control: Toward interpretable and computationally
efficient driving intelligence. IEEE Transactions on Cybernetics, 53(2):859–873, 2022.

[15] Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning
with deep energy-based policies. In International Conference on Machine Learning, pages
1352–1361. PMLR, 2017.

[16] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In International
Conference on Machine Learning, pages 1861–1870. PMLR, 2018.

[17] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

11

[18] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in Neural Information Processing Systems, 33:6840–6851, 2020.

[19] Marco F Huber, Tim Bailey, Hugh Durrant-Whyte, and Uwe D Hanebeck. On entropy ap-
proximation for gaussian mixture random vectors. In 2008 IEEE International Conference on
Multisensor Fusion and Integration for Intelligent Systems, pages 181–188. IEEE, 2008.

[20] Bingyi Kang, Xiao Ma, Chao Du, Tianyu Pang, and Shuicheng Yan. Efficient diffusion policies
for offline reinforcement learning. Conference and Workshop on Neural Information Processing
Systems, 2023.

[21] Bingyi Kang, Xiao Ma, Chao Du, Tianyu Pang, and Shuicheng Yan. Efficient diffusion policies
for offline reinforcement learning. Advances in Neural Information Processing Systems, 36,
2024.

[22] Elia Kaufmann, Leonard Bauersfeld, Antonio Loquercio, Matthias Müller, Vladlen Koltun, and
Davide Scaramuzza. Champion-level drone racing using deep reinforcement learning. Nature,
620(7976):982–987, 2023.

[23] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[24] Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Advances in Neural Information
Processing Systems, 12, 1999.

[25] S Eben Li. Reinforcement Learning for Sequential Decision and Optimal Control. Springer
Verlag, Singapore, 2023.

[26] Abdoulaye O Ly and Moulay Akhloufi. Learning to drive by imitation: An overview of deep
behavior cloning methods. IEEE Transactions on Intelligent Vehicles, 6(2):195–209, 2020.

[27] Diganta Misra. Mish: A self regularized non-monotonic activation function. arXiv preprint
arXiv:1908.08681, 2019.

[28] William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 4195–4205, 2023.

[29] Baiyu Peng, Qi Sun, Shengbo Eben Li, Dongsuk Kum, Yuming Yin, Junqing Wei, and Tianyu
Gu. End-to-end autonomous driving through dueling double deep q-network. Automotive
Innovation, 4:328–337, 2021.

[30] Michael Psenka, Alejandro Escontrela, Pieter Abbeel, and Yi Ma. Learning a diffusion model
policy from rewards via q-score matching. arXiv preprint arXiv:2312.11752, 2023.

[31] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International Conference on Machine Learning, pages 1889–1897.
PMLR, 2015.

[32] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[33] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In International Conference on Machine Learning,
pages 387–395. PMLR, 2014.

[34] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-
vised learning using nonequilibrium thermodynamics. In International Conference on Machine
Learning, pages 2256–2265. PMLR, 2015.

[35] Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon. Maximum likelihood training of
score-based diffusion models. Advances in Neural Information Processing Systems, 34:1415–
1428, 2021.

[36] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data
distribution. Advances in Neural Information Processing Systems, 32, 2019.

12

[37] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. arXiv
preprint arXiv:2011.13456, 2020.

[38] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

[39] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In Intelligent Robots and Systems, 2012.

[40] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double
q-learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

[41] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information
Processing Systems, 30, 2017.

[42] Wenxuan Wang, Yuhang Zhang, Jiaxin Gao, Yuxuan Jiang, Yujie Yang, Zhilong Zheng, Wenjun
Zou, Jie Li, Congsheng Zhang, Wenhan Cao, et al. Gops: A general optimal control prob-
lem solver for autonomous driving and industrial control applications. Communications in
Transportation Research, 3:100096, 2023.

[43] Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive
policy class for offline reinforcement learning. The Eleventh International Conference on
Learning Representations, 2023.

[44] Saining Xie Xinlei Chen, Zhuang Liu and Kaiming He. Deconstructing denoising diffusion
models for self-supervised learning. arXiv preprint arXiv:2401.14404, 2024.

[45] Long Yang, Zhixiong Huang, Fenghao Lei, Yucun Zhong, Yiming Yang, Cong Fang, Shiting
Wen, Binbin Zhou, and Zhouchen Lin. Policy representation via diffusion probability model for
reinforcement learning. arXiv preprint arXiv:2305.13122, 2023.

[46] Ruihan Yang, Prakhar Srivastava, and Stephan Mandt. Diffusion probabilistic modeling for
video generation. Entropy, 25(10):1469, 2023.

13

A Environmental Details

A.1 Experimental Environment Introduction

The benchmark tasks utilized in this study are depicted in Fig. 5, including Humanoid-v3, Ant-v3,
HalfCheetah-v3, Walker2d-v3, InvertedDoublePendulum-v3, Hopper-v3, Pusher-v2, and Swimmer-
v3.

Figure 5: Simulation tasks. (a) Humanoid-v3:(s × a) ∈ R376 × R17. (b) Ant-v3: (s × a) ∈
R111 × R8. (c) HalfCheetah-v3 : (s× a) ∈ R17 × R6. (d) Walker2d-v3: (s× a) ∈ R17 × R6. (e)
InvertedDoublePendulum-v3: (s×a) ∈ R6×R1. (f) Hopper-v3: (s×a) ∈ R11×R3. (g) Pusher-v2:
(s× a) ∈ R23 × R7. (h) Swimmer-v3: (s× a) ∈ R8 × R2.

A.2 Training Details on MuJoCo tasks

Mujoco [39] is a simulation engine primarily designed for research in RL and robotics. It provides a
versatile, physics-based platform for developing and testing various RL algorithms. Core features of
Mujoco include a highly efficient physics engine, realistic modeling of dynamic systems, and support
for complex articulated robots. Currently, it is one of the most recognized benchmark environments
for RL and continuous control.

The hyperparameters of all baseline algorithms are shown in Table 2. Moreover, the hyperparameters
of the DACER in the MuJoCo task are shown in Table 3.

B Limitation and Future Work

In this study, we propose using GMM to estimate the entropy of the diffusion policy and, based on
this estimate, learn a parameter α to balance exploration and exploitation. However, the process of
estimating entropy requires a large number of samples and takes a long time (about 40 ms). Therefore,
we estimate the entropy of diffusion policy every 10,000 iterations to reduce the impact on training
time. But, this approach prevents perfect integration with maximizing entropy RL. In future work, we
will avoid using batch-size data to estimate entropy and find a balance between estimation accuracy
and computational efficiency so as to better combine our method with maximizing entropy RL.

C Positive and Negative Social Impact

In this paper, we propose DACER, an online RL algorithm that uses the reverse diffusion process
as a policy approximator. Diffusion policy has powerful multimodal representation capabilities,
making it widely applicable in complex environments such as automated manufacturing, autonomous

14

TABLE 2
DETAILED HYPERPARAMETERS.

Hyperparameters Value
Shared

Replay buffer capacity 1000000
Buffer warm-up size 30000
Batch size 256
Initial alpha α 0.272
Action bound [−1, 1]
Hidden layers in critic network [256, 256, 256]
Hidden layers in actor network [256, 256, 256]
Activation in critic network GeLU
Activation in actor network GeLU
Optimizer Adam (β1 = 0.9, β2 = 0.999)
Actor learning rate 1e−4
Critic learning rate 1e−4
Discount factor (γ) 0.99
Policy update interval 2
Target smoothing coefficient (ρ) 0.005
Reward scale 0.2

Maximum-entropy framework
Learning rate of α 3e−4
Expected entropy (H) H = −dim(A)

Deterministic policy
Exploration noise ϵ ∼ N (0, 0.12)

Off-policy
Replay buffer size 1× 106

Sample batch size 20
On-policy

Sample batch size 2000
Replay batch size 2000

driving, and industrial control. However, DACER could also enhance the exploratory capabilities and
operational efficiency of military AI, potentially posing threats to citizen privacy and security.

15

TABLE 3
ALGORITHM HYPERPARAMETER

Parameter Setting
Replay buffer capacity 1000000
Buffer warm-up size 30000
Buffer warm-up size (Humanoid, HalfCheetah) 200000
Batch size 256
Discount γ 0.99
Initial alpha α 0.27
Target network soft-update rate ρ 0.005
Network update times per iteration 1
Action bound [−1, 1]
Reward scale 0.2
Hidden layers in noise prediction network [256, 256, 256]
Hidden layers in noise prediction network (Humanoid) [512, 512, 512]
Hidden layers in critic network [256, 256, 256]
Activations in critic network GeLU
Activations in actor network Mish
Policy act distribution TanhGauss
Policy min log std -20
Policy max log std 0.5
Policy delay update 2
Number of Gaussian distributions for mixing 3
Number of action samples in entropy estimation 200
Alpha delay update 10000
Noise scale λ 0.1
Noise scale λ (Humanoid, HalfCheetah) 0.15
Optimizer Adam
Actor learning rate 1 · 10−4

Critic learning rate 1 · 10−4

Alpha learning rate 3 · 10−2

Target entropy −0.9 · dim(A)

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In both the abstract and the introduction we give a formulation of the contri-
bution points. These include considering the reverse diffusion process as a novel policy
approximator, proposing a Gaussian mixture model method to estimate the entropy of the
diffusion policy and learning a parameter α for the regulation of the policy exploration level,
and open-sourcing the code. Experimental results in eight MuJoCo environments as well
as one multimodal environment demonstrate the good performance of our method and the
strong characterization capability of the diffusion policy.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

16

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In Section B of the appendix, we acknowledge the limitations of our method-
ology, estimating entropy requires a considerable amount of time, making it difficult to
perfectly integrate this method with maximum entropy RL. However, in future work, we
will improve the estimation efficiency by reducing the number of states used for estimation.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

17

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: First, in Section 4.3, we provide pseudo-code for the algorithm 1 of diffusion
actor-critic with entropy regulator (DACER). Second, in Section 5, we provide details of the
experimental environment setup. Finally, among the two tables in the Appendix A.2, we
give details of the hyperparameter configuration.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: All the reproductions of the experimental results of the baseline algorithms can
be obtained by running the general optimal control problem solver (GOPS). And GOPS can
be searched on github. We provide the PyTorch code for DACER as a function approximator
in GOPS. Besides, we have implemented the DACER algorithm in JAX.
Regarding the DACER algorithm, we give an implementation of all the core parts, but the
complete training code we will open source after the review.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

18

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: In Appendix A.2, we give the design of all hyperparameters, including opti-
mizer selection, learning rate, neural network configuration, and so on.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All results of this experiment came from in 5 random seeds. In Section 5, we
mention the specific way of evaluation and the fact that all results are presented as mean ±
standard deviation. Regarding the training curves, the solid lines represent the mean, while
the shaded regions indicate the 95% confidence interval over five runs.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

19

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In Section 5, we provide the CPU and GPU models used for training, which
are Xeon(R) Platinum 8352V and NVIDIA GeForce RTX 4090, respectively. We take the
example of training 1.5 million Humanoid-v3, and the time required to train it in the JAX
framework is about 7 hours.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We made sure the code was anonymous.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: In Appendix C, we discuss the potential positive and negative social impacts
of our work.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate

20

https://neurips.cc/public/EthicsGuidelines

to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We used the GOPS solver for training and cited the corresponding paper.
This open-source code library is licensed under the Apache-2.0 license. Copyright © 2022
Intelligent Driving Laboratory (iDLab). All rights reserved.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

21

paperswithcode.com/datasets

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

22

	Introduction
	Related Work
	Preliminaries
	Online Reinforcement Learning
	Diffusion Models

	Method
	Diffusion Policy Representation
	Diffusion Policy Learning
	Diffusion Policy with Entropy

	Experiments
	Comparative Evaluation
	Policy Representation Experiment
	Ablation Study

	Conclusion
	Acknowledgements
	Environmental Details
	Experimental Environment Introduction
	Training Details on MuJoCo tasks

	Limitation and Future Work
	Positive and Negative Social Impact

