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Abstract

Online contextual reasoning and association across consec-
utive video frames are critical to perceive instances in vi-
sual tracking. However, most current top-performing track-
ers persistently lean on sparse temporal relationships be-
tween reference and search frames via an offline mode. Con-
sequently, they can only interact independently within each
image-pair and establish limited temporal correlations. To
alleviate the above problem, we propose a simple, flexible
and effective video-level tracking pipeline, named ODTrack,
which densely associates the contextual relationships of video
frames in an online token propagation manner. ODTrack re-
ceives video frames of arbitrary length to capture the spatio-
temporal trajectory relationships of an instance, and com-
presses the discrimination features (localization information)
of a target into a token sequence to achieve frame-to-frame
association. This new solution brings the following bene-
fits: 1) the purified token sequences can serve as prompts
for the inference in the next video frame, whereby past in-
formation is leveraged to guide future inference; 2) the com-
plex online update strategies are effectively avoided by the
iterative propagation of token sequences, and thus we can
achieve more efficient model representation and computation.
ODTrack achieves a new SOTA performance on seven bench-
marks, while running at real-time speed. Code and models are
available at https://github.com/GXNU-ZhongLab/ODTrack.

Introduction
Visual tracking aims to uniquely identify and track an object
within a video sequence by using arbitrary target queries. In
the visual world, objects rarely exist in isolation but rather
within a larger and dynamic context. Therefore, visual per-
ception is a complex process that involves interpreting and
understanding the surrounding environment of an object. In
such a situation, equipping a model with the ability to per-
form online contextual reasoning and establish associations
presents a challenge in the field of visual tracking.

Despite this challenge, a significant number of current
tracking methods overlook this problem and instead rely
on the offline image-pair matching to localize instances in
the current frame. As shown in Fig.1(a), these offline meth-
ods(Bertinetto et al. 2016; Li et al. 2019; Chen et al. 2021;
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Figure 1: Comparison of tracking methods. (a) The offline
image level tracking methods(Li et al. 2019; Chen et al.
2021) based on sparse sampling and image-pair matching.
(b) Our online video-level tracking method based on video
sequence sampling and temporal token propagation.

Yan et al. 2021a; Ye et al. 2022; Cui et al. 2022) typically
follow a three-phase process: (i) extracting features by sam-
pling two video frames (i.e., reference and search frames);
(ii) propagating the initial target information from the refer-
ence to the search frame through a matching/fusion module;
and (iii) utilizing a bounding box prediction head to output
the localization results. Most trackers have performed well
under this paradigm, but still exhibit the following draw-
backs: (1) The sampling frames are sparse (i.e., using only
one reference frame and one search frame). Although vi-
sual tracking inherently contains rich temporal data, this
simple sampling strategy falls short in accurately represent-
ing the motion state of an object, posing a significant chal-
lenge for trackers to comprehend dynamic video content,
and (2) The target information is matched offline and lim-
ited to image-pair level, preventing the association of the
targets across video frames. Traditional feature matching/-
fusion methods(Chen et al. 2020; Zhang et al. 2020; Guo
et al. 2021; Xie et al. 2022) focus on the appearance similar-
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ity of object, without considering the property that tracking
instance rely on continuous cross-frame associations.

To incorporate temporal information into the model, some
approaches commonly design online updating techniques,
such as updating templates(Yan et al. 2021a; Cui et al. 2022)
and updating model parameters(Bhat et al. 2019). Despite
being successful, these methods still rely on sparse sampling
frames (i.e., reference, search, and update frames) and do
not effectively explore how information is propagated on-
line across search frames. This inspired us to think: can our
visual tracking algorithm densely associate and perceive an
object in a video streaming context?

The answer is affirmative. Unlike conventional ap-
proaches that rely on offline image-pair matching with
sparse sampling frames, this paper proposes ODTrack, a
novel video-level framework for visual tracking that capi-
talizes on video stream modeling. Specifically, we reformu-
late object tracking as a token sequence propagation task
that densely associates the contextual relationships of across
video frames in an auto-regressive manner, as shown in
Fig.1(b). To overcome the limitations of traditional image-
pair sampling strategy and explore the rich temporal depen-
dencies, we extend the model’s input from image-pair to the
level of a video stream. Under this new input paradigm, we
design two simple yet effective temporal token propagation
attention mechanism that captures the spatio-temporal tra-
jectory relationships of the target instance using an online
token propagation manner, thus allowing the processing of
video-level inputs of arbitrary length. Notably, we treat each
video sequence as a continuous sentence, enabling us to em-
ploy language modeling for a comprehensive contextual un-
derstanding of the video content. This novel approach sig-
nificantly distinguishes our tracker from traditional methods
(Yan et al. 2021a; Ye et al. 2022; Cui et al. 2022) and greatly
strengthens its ability to understand the spatio-temporal tra-
jectory of target instance.

The main contributions of this work are as follows.

• We propose a novel video-level tracking pipeline, called
ODTrack. In contrast to existing tracking approaches
based on sparse temporal modeling, we employ a token
sequence propagation paradigm to densely associate con-
textual relationships across video frames.

• We introduce two temporal token propagation attention
mechanisms that compress the discriminative features of
the target into a token sequence. This token sequence
serves as a prompt to guide the inference of future
frames, thus avoiding complex online update strategies.

• Our approach achieves a new state-of-the-art tracking
results on seven visual tracking benchmarks, including
LaSOT, TrackingNet, GOT10K, LaSOText, VOT2020,
TNL2K, and OTB100.

Related Work
Traditional Tracking Framework. The current popular
trackers(Bertinetto et al. 2016; Li et al. 2019; Chen et al.
2021; Ye et al. 2022) are dominated by the Siamese tracking
paradigm, which achieves tracking by image-pair matching.

To improve the accuracy and robustness of trackers, sev-
eral different approaches are proposed, such as prediction
head networks (Li et al. 2018; Chen et al. 2020; Zhang et al.
2020), cross-correlation modules (Han et al. 2021; Liao et al.
2020; Chen et al. 2021), powerful backbone (Chen et al.
2022; Cui et al. 2022) and attention mechanisms (Guo et al.
2021; Yu et al. 2020). In recent years, the introduction of
the transformer (Vaswani et al. 2017) enables trackers (Yan
et al. 2021a; Xie et al. 2022; Cui et al. 2022; Ye et al. 2022)
to explore more powerful and deeper feature interactions, re-
sulting in significant advances in tracking algorithm devel-
opment. However, most of these methods are designed based
on offline mode and sparse image-pair strategy. With this
design paradigm, the tracker struggles to accurately com-
prehend the object’s motion state in the temporal dimension
and can only resort to traditional Siamese similarity for ap-
pearance modeling. In contrast to these approaches, we re-
formulate object tracking as a token sequence propagation
task and aim to extend Siamese tracker to efficiently exploit
target temporal information in an auto-regressive manner.

Temporal Modelling in Visual Tracking. Multi-object
tracking algorithms(Meinhardt et al. 2022; Zeng et al. 2022)
typically involve the recognition and association of individ-
ual objects in a video, making the study of trajectory in-
formation a common practice. However, there exists a rel-
atively limited amount of research exploring the utilization
of spatio-temporal trajectory information in single-object
tracking algorithms.

To explore temporal cues within the Siamese framework,
several online update methods are carefully designed. Up-
dateNet(Zhang et al. 2019) introduces an adaptive updating
strategy, which utilizes a custom network to fuse accumu-
lated templates and generate a weighted updated template
feature for visual tracking. DCF-based trackers(Danelljan
et al. 2019; Bhat et al. 2019; Danelljan, Gool, and Timofte
2020) excel at updating model parameters online using so-
phisticated optimization techniques, thereby improving the
robustness of the tracker. STMTrack(Fu et al. 2021) and
TrDiMP(Wang et al. 2021a) employ attention mechanism to
effectively extract contextual information along the temporal
dimension. STARK(Yan et al. 2021a) and Mixformer(Cui
et al. 2022) specifically design target quality branch for up-
dating template frame, which aids in improving the tracking
results. Recently, there has been a gradual surge in research
attention towards modeling temporal context from various
perspectives. TCTrack (Cao et al. 2022) introduces an on-
line temporal adaptive convolution and an adaptive temporal
transformer that aggregates temporal contexts at two levels
containing feature extraction and similarity map refinement.
VideoTrack (Xie et al. 2023) designs a new tracker based on
video transformer and uses a simple feedforward network to
encode temporal dependencies. ARTrack (Xing et al. 2023)
presents a new time-autoregressive tracker that estimates the
coordinate sequence of an object progressively.

Nevertheless, the above tracking algorithms still suffer
from the following limitations: (1) The optimization process
is complex, involving the design of specialized loss func-
tions(Bhat et al. 2019), multi-stage training strategies(Yan
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Figure 2: ODTrack Framework Architecture. The ODTrack pipeline takes video clips, consisting of reference and search
frames, of arbitrary length as input. Then, the model utilizes a temporal token propagation attention mechanism to generate a
temporal token for each video frame. These temporal tokens are subsequently propagated to the following frames in an auto-
regressive manner, enabling cross-frame propagation of target trajectory information.

et al. 2021a), and manual update rules(Yan et al. 2021a),
and (2) Although they explore temporal information to some
extent, they fail to investigate how temporal cues propagate
across search frames. In this work, we introduce a new dense
context propagation mechanism from a token propagation
perspective, which offers a solution to circumvent intricate
optimization processes and training strategies. Further, we
propose a new baseline approach, called ODTrack, focused
on unlocking the potential of temporal modeling through the
propagation of target motion/trajectory information.

Approach
We introduce ODTrack, a new video-level framework that
employs token sequence propagation for visual tracking, as
shown in Fig.2. This section first describes the concept of
video-level visual object tracking, followed by the introduc-
tion of temporal token propagation attention mechanism and
how they are trained in a new design paradigm.

Question Formulation
To provide a comprehensive understanding of our ODTrack
framework, it is pertinent to first offer a review of previ-
ously prominent image-pair matching tracking methodolo-
gies(Bertinetto et al. 2016; Chen et al. 2021; Ye et al. 2022).

Given a pair of video frames, i.e., a reference frame
R ∈ R3×Hr×Wr and a search frame S ∈ R3×Hs×Ws ,
the mainstream visual trackers Ψ are formulated as B ←
Ψ : {R,S}, where B denotes the predicted box coordinates
of the current search frame. If Ψ is a conventional convo-
lutional siamese tracker(Li et al. 2019; Chen et al. 2020,
2021), it undergoes three stages, namely feature extraction,
feature fusion, and bounding box prediction. Whereas if Ψ
is a transformer tracker(Ye et al. 2022; Cui et al. 2022; Chen
et al. 2022), it consists solely of a backbone and a prediction
head network, where the backbone integrates the processes

of feature extraction and fusion.
Specifically, the transformer tracker receives a series of

non-overlapping image patches (the resolution of each im-
age patch is p× p) as input. This means that a 2D reference-
search image pair needs to pass through a patch embed-
ding layer to generate multiple 1D image token sequences
{fr ∈ RD×Nr , fs ∈ RD×Ns}, where D is the token dimen-
sion, Nr = HrWr/p

2, and Ns = HsWs/p
2. These 1D im-

age tokens are then concatenated and loaded into a L-layer
transformer encoder for feature extraction and relationship
modeling. Each transformer layer δ contains a multi-head
attention and a multi-layer perceptron. Here, we formulate
the forward process of the lth transformer layer as follows:

f l
rs = δl(f l−1

rs ), l = 1, 2, ..., L (1)

where f l−1
rs denotes the concatenated token sequence of the

reference-search image pair generated from the (l − 1)th

transformer layer, and f l
rs represents the token sequence

generated by the current lth transformer layer.
By adopting the modeling approach mentioned above, we

can construct a concise and elegant tracker to achieve per-
frame tracking. Nevertheless, this modeling approach has a
clear drawback. The created tracker solely focuses on intra-
frame target matching and lacks the ability to establish inter-
frame associations necessary for tracking object across a
video stream. Consequently, this limitation hinders the re-
search of video-level tracking algorithms.

In this work, we aim to alleviate this challenge and pro-
pose a new design paradigm for video-level tracking algo-
rithms. First, we extend the inputs of the tracking framework
from the image-pair level to the video level for temporal
modeling. Then, we introduce a new temporal token/prompt
T designed to propagate information about the appearance,
spatio-temporal location and trajectory of the target instance
in a video sequence. Formally, we formulate video-level



tracking as follows:

B ← Ψ : {R1, R2, ..., Rk, S1, S2, ..., Sn, T} (2)

where {R1, R2, ..., Rk} denotes the reference frames of
length k, and {S1, S2, ..., Sn} represents the search frames
of length n. Our video-level tracking framework receives
video clip of arbitrary length to model spatio-temporal tra-
jectory relationships of the target object. We describe the
proposed core module in more detail in the next section.

Video-Level Tracking Pipeline
Fig.2 gives an overview of our ODTrack framework. In this
section, our focus lies in constructing a video-level track-
ing pipeline. Theoretically, we model the entire video as a
continuous sequence, and decode the localization of target
frame by frame in an auto-regressive manner. Firstly, we
present a novel video sequence sampling strategy designed
specifically to meet the input requirements of the video-level
model. Subsequently, to capture the spatio-temporal trajec-
tory information of the target instance within the video se-
quences, we introduce two simple yet effective temporal to-
ken propagation attention mechanisms.

Video Sequence Sampling Strategy Most existing track-
ers (Yan et al. 2021a; Cui et al. 2022; Ye et al. 2022) com-
monly sample image-pairs within a short-term interval, such
as 50, 100, or 200 frame intervals. However, this sampling
approach poses a potential limitation as these trackers fail to
capture the long-term motion variations of the tracked ob-
ject, thereby constraining the robustness of tracking algo-
rithms in long-term scenarios.

To obtain richer spatio-temporal trajectory information of
the target instance from long-term video sequences, we de-
viate from the traditional short-term image-pair sampling
method and propose a new video sequence sampling strat-
egy. Specifically, we establish a larger sampling interval and
randomly extract multiple video frames within this interval
to form video clips {R1, R2, ..., Rk, S1, S2, ..., Sn} of any
lengths. Although this sampling approach may seem sim-
plistic, it enables us to approximate the content of the entire
video sequence. This is crucial for video-level modeling.

Temporal Token Propagation Attention Mechanism In-
stead of employing a complex video transformer (Xie et al.
2023) as the foundational framework for encoding video
content, we approach the design from a new perspective by
utilizing a simple 2D transformer architecture, i.e., 2D ViT
(Dosovitskiy et al. 2021).

To construct an elegant instance-level inter-frame corre-
lation mechanism, it is imperative to extend the original 2D
attention operations to extract and integrate video-level fea-
tures. In our approach, we design two temporal token at-
tention mechanisms based on the concept of compression-
propagation, namely concatenated token attention mecha-
nism and separated token attention mechanism, as shown in
Fig.3(left). The core design involves injecting additional in-
formation into the attention operations, such as more video
sequence content and temporal token vectors, enabling them
to extract richer spatio-temporal trajectory information of
the target instance.
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Figure 3: Left: the architecture of temporal token propaga-
tion attention mechanism. Right: illustration of online token
propagation. (a) Original reference-search attention mecha-
nism, (b) and (c) Different variants of the proposed temporal
token propagation attention mechanisms. R is a single refer-
ence frame, R1...k denotes the reference frames of length k,
S represents the current search frame, and T is the temporal
token sequence of current video frames.

In Fig.3(a), the original attention operation commonly
employs an image pair as inputs, where the process of
modeling their relationships can be represented as f =
Attn([R,S]). In this paradigm, the tracker can only engage
in independent interactions within each image pair, estab-
lishing limited temporal correlations. In Fig.3(b), the pro-
posed concatenated token attention mechanism extends the
input to the aforementioned video sequence, enabling dense
modeling of spatio-temporal relationships across frames. In-
spired by the contextual nature of language formed through
concatenation, we apply the concatenation operation to es-
tablish context for video sequences as well. Its formula can
be represented as:

ft = Attn([R1, R2, ..., Rk, St, Tt])

=
∑
s′′t′′

Vs′′t′′ ·
exp⟨qst, ks′′t′′⟩∑
s′t′ exp⟨qst, ks′t′⟩

(3)

Where Tt is the temporal token sequence of tth video frame.
[· · · , · · · ] denotes concatenation among tokens. qst, kst and
vst are spatio-temporal linear projections of the concate-
nated feature tokens.

It is worth noting that we introduce a temporal token for
each video frame, with the aim of storing the target trajec-
tory information of the sampled video sequence. In other
words, we compress the current spatio-temporal trajectory
information of the target into a token vector, which is used
to propagate to the subsequent video frames.

Once the target information is extracted by the tempo-
ral token, we propagate the token vector from tth frame to
(t + 1)th frame in an auto-regressive manner, as shown in
Fig.3(right). Firstly, the tth temporal token Tt is added to
the (t + 1)th empty token Tempty , resulting in an update of
the content token Tt+1 for (t + 1)th frame, which is then
propagated as input to the subsequent frames. Formally, the
propagation process is:

Tt+1 = Tt + Tempty

ft+1 = Attn([R1, R2, ..., Rk, St+1, Tt+1])
(4)



Table 1: Comparison of model parameters, FLOPs, and in-
ference speed.

Method Type Resolution Params FLOPs Speed Device

SeqTrack ViT-B 384× 384 89M 148G 11fps 2080Ti
ODTrack ViT-B 384× 384 92M 73G 32fps 2080Ti

In this new design paradigm, we can employ temporal to-
kens as prompts for inferring the next frame, leveraging past
information to guide future inference. Moreover, our model
implicitly propagates appearance, localization, and trajec-
tory information of the target instance through online to-
ken propagation. This significantly improves tracking per-
formance of the video-level framework.

On the other hand, as illustrated in Fig.3(c), the proposed
separated token attention mechanism decomposes attention
operation into three sub-processes: self-information aggre-
gation between reference frames, cross-information aggre-
gation between reference and search frames, and cross-
information aggregation between temporal token and video
sequences. This decomposition improves the computational
efficiency of the model to a certain extent, while the token
propagation aligns with the aforementioned procedures.

Discussions with Online Update. Most previous track-
ing algorithms combine online updating methods to train
a spatio-temporal tracking model, such as adding an extra
score quality branch(Yan et al. 2021a) or an IoU prediction
branch(Danelljan et al. 2019). They typically require com-
plex optimization processes and update decision rules. In
contrast to these methods, we avoid complex online update
strategies by utilizing online iterative propagation of token
sequences, enabling us to achieve more efficient model rep-
resentation and computation.

Prediction Head and Loss Function
For the design of the prediction head network, we employ
conventional classification head and bounding box regres-
sion head to achieve the desired outcome. The classifica-
tion score map R1×Hs

p ×Ws
p , bounding box size R2×Hs

p ×Ws
p ,

and offset size R2×Hs
p ×Ws

p for the prediction are obtained
through three sub-convolutional networks, respectively. We
adopt the focal loss(Lin et al. 2017) as classification loss
Lcls, and the L1 loss and GIoU loss(Rezatofighi et al. 2019)
as regression loss. The total loss L can be formulated as:

L = Lcls + λ1L1 + λ2LGIoU (5)

where λ1 = 5 and λ2 = 2 are the regularization parameters.
Since we use video segments for modeling, the task loss is
computed independently for each video frame, and the final
loss is averaged over the length of the search frames.

Experiments
Implementation Details
Training. We use ViT-Base (Dosovitskiy et al. 2021) model
as the visual encoder, and its parameters are initialized with
MAE(He et al. 2022) pre-training parameters. The training
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Figure 4: AUC scores of different attributes on LaSOT.

data includes LaSOT (Fan et al. 2019), GOT-10k (Huang,
Zhao, and Huang 2021), TrackingNet (Müller et al. 2018),
and COCO (Lin et al. 2014). In terms of input data, we take
the video sequence including three reference frames with
192 × 192 pixels and two search frames with 384 × 384
pixels as the input to the model. We employ the AdamW to
optimize the network parameters with initial learning rate of
1 × 10−5 for the backbone, 1 × 10−4 for the rest, and set
the weight decay to 10−4. We set the training epochs to 300
epochs. 60, 000 image pairs are randomly sampled in each
epoch. The learning rate drops by a factor of 10 after 240
epochs. The model is conducted on a server with two 80GB
Tesla A100 GPUs and set the batch size to be 8.

Inference. To align with the training setting, we incorpo-
rate three reference frames at equal intervals into our tracker
during the inference phase. Concurrently, search frames and
temporal token vectors are input frame-by-frame. Further,
we conduct comparative experiments in model parameters,
FLOPs and inference speed, as shown in Tab.1. The pro-
posed ODTrack is tested on a 2080Ti, and it runs at 32 fps.

Comparison with the SOTA
GOT10K. GOT10K is a large-scale tracking dataset that
contains more than 10,000 video sequences. The GOT10K
benchmark proposes a protocol, which the trackers only use
its training set for training. We follow the protocol to train
our framework. As shown in Tab.2, the proposed method
outperforms previous trackers and exhibits very competitive
performance (77.0% AO) when compared to the previous
best-performing tracker ARTrack (75.5% AO). These results
demonstrate that one benefit of our ODTrack comes from
the video-level sample strategy, which is design to release
the potential of video-level modeling framework.

LaSOT. LaSOT is a large-scale long-term tracking bench-
mark that includes 1120 sequences for training and 280 se-
quences for testing. As shown in Tab.2, compared to most
other tracking algorithms, our ODTrack-B achieves a new
state-of-the-art result. For example, compared with the latest
ARTrack, our method achieves 0.6%, 1.5%, and 1.5% gains
in terms of AUC, PNorm and P score, respectively. Further-



Table 2: Comparison with state-of-the-arts on four popular benchmarks: GOT10K, LaSOT, TrackingNet, and LaSOText. Where
∗ denotes for trackers only trained on GOT10K. The best two results are highlighted in red and blue, respectively.

Method GOT10K∗ LaSOT TrackingNet LaSOText

AO SR0.5 SR0.75 AUC PNorm P AUC PNorm P AUC PNorm P

SiamFC (Bertinetto et al. 2016) 34.8 35.3 9.8 33.6 42.0 33.9 57.1 66.3 53.3 23.0 31.1 26.9
ATOM (Danelljan et al. 2019) 55.6 63.4 40.2 51.5 57.6 50.5 70.3 77.1 64.8 37.6 45.9 43.0
SiamPRN++ (Li et al. 2019) 51.7 61.6 32.5 49.6 56.9 49.1 73.3 80.0 69.4 34.0 41.6 39.6
DiMP (Bhat et al. 2019) 61.1 71.7 49.2 56.9 65.0 56.7 74.0 80.1 68.7 39.2 47.6 45.1
SiamRCNN (Voigtlaender et al. 2020) 64.9 72.8 59.7 64.8 72.2 - 81.2 85.4 80.0 - - -
Ocean (Zhang et al. 2020) 61.1 72.1 47.3 56.0 65.1 56.6 - - - - - -
STMTrack (Fu et al. 2021) 64.2 73.7 57.5 60.6 69.3 63.3 80.3 85.1 76.7 - - -
TrDiMP (Wang et al. 2021a) 67.1 77.7 58.3 63.9 - 61.4 78.4 83.3 73.1 - - -
TransT (Chen et al. 2021) 67.1 76.8 60.9 64.9 73.8 69.0 81.4 86.7 80.3 - - -
Stark (Yan et al. 2021a) 68.8 78.1 64.1 67.1 77.0 - 82.0 86.9 - - - -
SBT-B (Xie et al. 2022) 69.9 80.4 63.6 65.9 - 70.0 - - - - - -
Mixformer (Cui et al. 2022) 70.7 80.0 67.8 69.2 78.7 74.7 83.1 88.1 81.6 - - -
TransInMo (Guo et al. 2022) - - - 65.7 76.0 70.7 81.7 - - - - -
OSTrack (Ye et al. 2022) 73.7 83.2 70.8 71.1 81.1 77.6 83.9 88.5 83.2 50.5 61.3 57.6
AiATrack (Gao et al. 2022) 69.6 80.0 63.2 69.0 79.4 73.8 82.7 87.8 80.4 47.7 55.6 55.4
SeqTrack (Chen et al. 2023) 74.5 84.3 71.4 71.5 81.1 77.8 83.9 88.8 83.6 50.5 61.6 57.5
GRM (Gao, Zhou, and Zhang 2023) 73.4 82.9 70.4 69.9 79.3 75.8 84.0 88.7 83.3 - - -
VideoTrack (Xie et al. 2023) 72.9 81.9 69.8 70.2 - 76.4 83.8 88.7 83.1 - - -
ARTrack (Xing et al. 2023) 75.5 84.3 74.3 72.6 81.7 79.1 85.1 89.1 84.8 51.9 62.0 58.5
ODTrack-B 77.0 87.9 75.1 73.2 83.2 80.6 85.1 90.1 84.9 52.4 63.9 60.1
ODTrack-L 78.2 87.2 77.3 74.0 84.2 82.3 86.1 91.0 86.7 53.9 65.4 61.7

more, Fig.4 shows the results of attribute evaluation, demon-
strating that our tracker outperforms other tracking methods
on multiple challenge attributes. These results show that the
token propagation mechanism helps the model to learn tra-
jectory information about the target instance and greatly im-
proves target localization in long-term tracking scenarios.

TrackingNet. TrackingNet is a large-scale short-term
dataset that provides a test set with 511 video sequences.
As reported in Tab.2, compared with the high-preformance
tracker SeqTrack, our method achieves good tracking results
that outperform 1.2%, 1.3%, and 1.3% in terms of success,
normalized precision and precision score, respectively. This
demonstrates that our ODTrack exhibits strong generaliza-
tion capabilities.

LaSOText. LaSOText is the extended version of LaSOT,
which comprises 150 long-term video sequences. As re-
ported in Tab.2, our method achieves the good tracking re-
sults that outperform most compared trackers. For example,
our tracker gets a AUC of 52.4%, PNorm score of 63.9%,
and P score of 60.1%, outperforming the ARTrack by 0.5%,
1.9%, and 1.6%, respectively. There results meet our expec-
tation that video-level modeling has more stable object lo-
calization capabilities in complex scenarios.

VOT2020. VOT2020(Kristan, Leonardis, and et.al 2020)
contains 60 challenging sequences, and it uses binary seg-
mentation masks as the groundtruth. We use Alpha-Refine
(Yan et al. 2021b) as a post-processing network for ODTrack
to predict segmentation masks. As shown in Tab.3, our
ODTrack-B and -L achieve the best results with EAO of
58.1% and 60.5% on mask evaluations, respectively.

TNL2K and OTB100. We evaluate our tracker on
TNL2K(Wang et al. 2021b) and OTB100(Wu, Lim, and
Yang 2015) benchmarks. They include 700 and 100 video

Table 3: State-of-the-art comparison on VOT2020.

Method EAO (↑) Accuracy (↑) Robustness (↑)
SiamMask 0.321 0.624 0.648
Ocean 0.430 0.693 0.754
D3S 0.439 0.699 0.769
SuperDiMP 0.305 0.492 0.745
AlphaRef 0.482 0.754 0.777
STARK 0.505 0.759 0.819
SBT 0.515 0.752 0.825
Mixformer 0.535 0.761 0.854
SeqTrack-B 0.522 - -
ODTrack-B 0.581 0.764 0.877
ODTrack-L 0.605 0.761 0.902

sequences, respectively. These results in Tab.5 show that the
ODTrack-B and -L achieve the best performance on TNL2K
and OTB100 benchmarks, demonstrating the effectiveness
of the temporal token propagation attention mechanism.

Ablation Study
Importance of token propagation. To investigate the ef-
fect of token propagation in Eq.4, we perform experiments
whether propagating temporal token in Tab.4(a). w/o To-
ken denotes the experiment employing video-level sampling
strategy without token propagation. From the second and
third rows, it can be observed that the absence of the to-
ken propagation mechanism leads to a decrease in the AUC
score by 1.2%. This result indicates that token propagation
plays a crucial role in cross-frame target association.

Different token propagation methods. We conduct ex-
periments to validate the effectiveness of two proposed to-



Table 4: Ablation Studies of different token propagation designs on LaSOT benchmark.

(a) Comparison on propagation method

Method AUC PNorm P

Baseline 70.1 80.2 76.9
w/o Token 71.0 81.1 78.0
Separate 72.2 82.3 79.2
Concatenation 72.8 83.0 80.3

(b) Comparison on video sequence length

Sequence Length AUC PNorm P

2 72.8 83.0 80.3
3 73.1 83.0 80.4
4 72.5 82.9 79.9
5 72.0 82.1 79.3

(c) Comparison on sampling range

Sample Range AUC PNorm P

200 72.8 83.0 80.3
400 73.1 83.5 80.6
800 73.0 83.3 80.4

1200 73.0 83.1 80.1

Table 5: Comparison with state-of-the-art methods on TNL2K and OTB100 benchmarks in AUC score.

ATOM Ocean DiMP TransT TransInMo OSTrack SBT Mixformer SeqTrack-B ARTrack ODTrack-B ODTrack-L
TNL2K 40.1 38.4 44.7 50.7 52.0 55.9 - - 56.4 59.8 60.9 61.7
OTB100 66.3 68.4 68.4 69.6 71.1 - 70.9 70.0 - - 72.3 72.4

#861#724#593#111

#62 #130 #293#211

Ground Truth ODTrack-B SeqTrack OSTrack Mixformer

Figure 5: Qualitative comparison results of our tracker with
other three SOTA trackers on LaSOT benchmark.

ken propagation methods in the video-level tracking frame-
work in Tab.4(a). We can be observe that both the sepa-
rate and concatenation methods achieve significant perfor-
mance improvements, with the concatenation method show-
ing slightly better results. This demonstrates the effective-
ness of both attention mechanisms.

The length of search video-clip. As shown in Tab.4(b),
we ablate the impact of search video sequence length on
the tracking performance. When the length of video clip
increases from 2 to 3, the AUC metric improves by 0.3%.
However, continuous increment in sequence length does not
lead to performance improvement, indicating that overly
long search video clips impose a learning burden on the
model. Hence, we should opt for an appropriate the length
of search video clip.

The sampling range. To validate the impact of sampling
range on algorithm performance, we conduct experiments
on the sampling range of video frames in Tab.4(c). When
the sampling range is expanded from 200 to 1200, there is a
noticeable improvement in performance on the AUC metric,
indicating that the video-level framework can learn target
trajectory information from a larger sampling range.

Visualization and Limitation
Visualization. To intuitively show the effectiveness of the
proposed method, especially in complex scenarios including
similar distractors, we visualize the tracking results of our
ODTrack and three advanced trackers on LaSOT dataset. As
shown in Fig.5, due to its ability to densely propagate tra-
jectory information of the target, our tracker far outperforms

#1 #407#245#170 #470 #628

#188#165#132#92#66#1

Figure 6: The attention map of temporal token attention op-
eration.

the latest tracker SeqTrack on these sequences.
Furthermore, we visualize the attention map of temporal

token attention operation, as shown in Fig.6. We can observe
that the temporal token continuously propagate and attend
to motion trajectory information of object, which aids our
tracker in accurately localizing target instance.

Limitation. This work models the entire video as a se-
quence and decode the localization of instance frame by
frame in an auto-regressive manner. Despite achieving re-
markable results, our video-level modeling method is a
global approximation due to constraints in GPU resources,
and we are still unable to construct the framework in a cost-
effective manner. A promising solution would involve im-
proving the computational complexity and lightweight mod-
eling of the transformer.

Conclusion
In this work, we present ODTrack, a new video-level frame-
work for visual object tracking. We reformulate visual track-
ing as a token propagation task that densely associates the
contextual relationships of across video frames in an auto-
regressive manner. Furthermore, we propose a video se-
quence sampling strategy and two temporal token propa-
gation attention mechanisms, enabling the proposed frame-
work to simplify video-level spatio-temporal modeling and
avoid intricate online update strategies. Extensive experi-
ments show that our ODTrack achieves promising results on
seven tracking benchmarks. We hope that this work inspires
further research in video-level tracking modeling.
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