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Commercial fuel discovery faces a constantly decreasing return of investment due to due to increasingly
tight environmental criteria and reducing potential uses for each new fuel. In this paper, a deep genera-
tive model, termed Latent Interspace Generative Adversarial Network with a Domain of Stacking (LIGANDS),
has been established to screen desired fuel molecules in the large chemical space without setting design
rules manually. A variational autoencoder, a generative adversarial network and a stacking model are
well integrated in LIGANDS through model convergence. Given only the structures of 255 typical high-
energy–density fuels in low data regimes, LIGANDS generated 3461 new fuel molecules with similar
property distribution and improved energy performance as the qualified candidates of next-generation
fuels. To expand and enrich the fuel-relevant chemical space with innovative molecular entities on
demand, in-depth multi-objective imitation on the key properties of target fuel is realized by LIGANDS
through optimizing generative molecular structures and their distribution.

� 2023 Elsevier Ltd. All rights reserved.
1. Introduction

The goal of fuel design is to identify novel structures and opti-
mal composition that can endow desired properties for the discov-
ery of new fuels (Lu et al., 2011; Yalamanchi et al., 2022; Yue et al.,
2016; Zhang and Jia, 2020; Zhang et al., 2018). Classification of
hydrocarbon structures and regression of molecular properties
are simple and efficient strategies for fuel design. Many novel mod-
iversity,
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els were established, e.g., group contribution method (Marrero and
Gani, 2001; Osmont et al., 2006), DFT calculation (Ramakrishnan
et al., 2014; Wheeler et al., 2009) and various machine learning
algorithms (Guo et al., 2017; Han et al., 2021; Hou et al., 2018;
Lehn et al., 2020; Li et al., 2020; Liu et al., 2022a; Liu et al.,
2022c; Schweidtmann et al., 2020), for predicting fuel properties
based on their structures and subsequently directing fuel discov-
ery. In addition to the diversity of fuel molecular structure, the
composition of a fuel is also very complex and with great impor-
tance. Thousands of hydrocarbon substances are usually contained
in a typical liquid fuel, which further complicates fuel design. Many
quantitative composition-property relationships were established
based on a fixed or restricted composition (Heyne et al., 2022;
Shi et al., 2017). Research and development of the fuels in commis-
sion were greatly accelerated by these robust methods.

Currently, commercial fuel discovery faces constantly increased
difficulty and a decreasing return of investment. Because the
required criteria for a new fuel are increasing but the number of
target engines is shrinking, more rational and efficient design of
next-generation fuels is urgently demanded. Both the structures
and composition that maximize the quantitative desiderata should
be searched, which can be viewed as a multi-objective optimiza-
tion problem. However, the chemical space of hydrocarbon fuels
is discrete, large, and unstructured (Kirkpatrick and Ellis, 2004).
For instance, the number of hydrocarbon compounds possessing
carbon atoms of �17 is around 109 (Reymond, 2015), which makes
the optimization extremely challenging. We recently proposed a
deep learning architecture of variational autoencoder (VAE) for
hydrocarbon molecules (Liu et al., 2022b), based on which the dis-
crete molecular structure can be manipulated and optimized on
demand. To obtain the globally optimal solution for fuel design, a
deep generative model based on the VAE should be developed to
navigate the whole chemical space of hydrocarbon, including the
set of all possible compounds and their distribution. It is antici-
pated that both generative molecular structures and their distribu-
tion are effectively and automatically optimized by deep learning
for the rational design of a complex fuel system possessing multi-
ple desired properties.

Herein, we report an integrated deep generative model based
on VAE, generative adversarial network (GAN) and ensemble learn-
ing for de novo fuel design. The applicability of the deep learning
framework is shown to design new hydrocarbon molecules that
imitate target fuel in depth, which will be an important inspiration
source for the discovery of next-generation fuels. Multi-objective
imitation on the structures and their distribution of given fuels
was achieved during model training for generating new qualified
2

fuel molecules. The chemical libraries of targeted new hydrocarbon
compounds optimized for multiple desired fuel properties can be
automatically generated by our deep learning framework.
2. Methods

A deep generative model, termed Latent Interspace Generative
Adversarial Network with a Domain of Stacking (LIGANDS), has
been established and trained for de novo design of hydrocarbon
fuels with desired properties. As shown in Scheme 1, LIGANDS
integrated a variational autoencoder (VAE), a generative adversar-
ial network (GAN) and a stacking model for deep generative fuel
design. The VAE was used to convert discrete hydrocarbon mole-
cules to and from a real-valued multidimensional continuous vec-
tors, termed Continuous Operable Molecular Entry Specification
(COMES). In the latent space built by the VAE, a GAN was estab-
lished and trained to achieve a Nash equilibrium between the gen-
erator and the discriminator for generative deep learning of target
fuels. Input with COMES in the latent space, the stacking model can
predict corresponding fuel properties accurately based on ensem-
ble learning. TensorFlow (Abadi et al., 2016) was used to construct
the framework of LIGANDS, and the pseudocodes of the model is
presented in Algorithm 1. The notations in this work are described
in Table S1.

The VAE model was first pre-trained on a database containing
319,893 hydrocarbon structures (GDB-13C) for mapping hydrocar-
bon structures to latent vectors. The stacking model was trained on
a self-built database containing 739 fuel molecules and their prop-
erties. To train the full LIGANDS model, several typical high-
energy–density fuels in the training set was converted to latent
vectors by the encoder of the VAE. These vectors were used as
the true data for discriminator learning of GAN. A set of random
vectors sampled from Gaussian distribution were input into the
generator of GAN for generating fake data in the latent space. Fuel
properties of the newly generated fuel molecules were calculated
by the stacking model using COMES as input, which were moni-
tored in each epoch during model training. Once the LIGANDS
training was finished, the generator of GAN was sampled several
times, and the obtained latent vectors were decoded to corre-
sponding Simplified Molecular Input Line Entry System (SMILES)
strings by the decoder. The properties of the as-generated fuel
molecules were also predicted by the stacking model.

Algorithm 1 Training procedure of the LIGANDS model (see
Table S1 in Supplementary Material for nomenclature list).
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Scheme 1. The workflow of deep generative algorithm of LIGANDS by integrating a VAE with encoder and decoder, a GAN with generator and discriminator and a stacking
model with 8 base learners for de novo fuel design.
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2.1. Variational autoencoder (VAE)

A VAE was built and trained to establish a rational latent space
of hydrocarbon compounds, in which any point can be decoded to
a reasonable molecule as shown in Scheme S1. Based on deep
learning, the as-trained VAE can convert a hydrocarbon molecule
(discrete representation) to and from a continuous multidimen-
sional vector, which is similar to our previous work (Liu et al.,
2022b) and that reported by Aspuru-Guzik group (Gómez-
Bombarelli et al., 2018). The continuous multidimensional vectors,
COMES, were used as the descriptor of hydrocarbon molecules.

GDB-13 dataset (Blum and Reymond, 2009) contains the struc-
tures of 977,468,314 organic small molecules. Each molecule con-
tains several of C, H, N, O, S, Cl atoms with a total atom number
of � 13. We screened saturated hydrocarbon molecules from
GDB-13 by a piece of python code. This process ran on a personal
computer (CPU: Intel core i5-8250U, memory: 12 GB) in 30.05 s.
Finally, 319,893 molecular structures containing only C and H ele-
ments without any unsaturated bonds (double and triple bonds)
were obtained, and the database was denoted as GDB-13C. The
VAE was trained on the GDB-13C database (Blum and Reymond,
2009). As shown in Scheme S1, a hydrocarbon molecule is reversi-
bly converted to a unique vector of 192 dimensions.

Convolutional networks previously showed improved perfor-
mance for string encoding (Nal Kalchbrenner and Blunsom,
2014). Herein, due to the presence of many repetitive chemical
substructures (e.g., functional groups and different cycles), the
string mostly contains several translationally invariant substrings.
Therefore, recurrent neural networks (RNNs) were employed to
encode a string of characters into a vector. A pair of an encoder
RNN and a decoder RNN can perform sequence-to-sequence learn-
ing (Sutskever et al., 2014). In the encoding of SMILES-based text,
4

the subset containing 35 characters was encoded into a vector with
a length of up to 120 characters. Spaces were padded in the short
strings to reach the same length. In the training, the SMILES strings
were canonicalized to avoid undesirably equivalent SMILES repre-
sentation. In the deep network of the VAE, the encoder contained
three 1D convolutional layers and one fully connected layer (the
width was 196). The decoder has three layers of gated recurrent
unit (GRU) networks (Chung et al., 2014), in which the hidden
dimension was 488.
2.2. Fuel property prediction by the stacking model

The small dataset used for training the stacking model was
established in our previous work (Liu et al., 2022c), which contains
739 hydrocarbon molecules and their properties. In the database,
342 samples and their fuel properties were previously collected
by our group (Li et al., 2020), and the other molecules and corre-
sponding properties were obtained from American chemical
abstracts (CA). Six key fuel properties were investigated, including
specific impulse (Isp), density at 25 ℃ (q), boiling point (Tb), flash
points at atmospheric pressure in air (FP), the net heat of combus-
tion (NHOC) and melting point (Tm), which should be given priority
in fuel applications. In our database, part of the fuel properties of
some hydrocarbon compounds are missing. Energy properties
(e.g., specific impulse, heat value) were determined via structure
optimization at the DFT level of B3LYP/6-31G(d, p) by using Gaus-
sian 09. Some physicochemical properties (e.g., density, boiling
point, flash point) were calculated by the group-contribution
method due to its high accuracy, good reliability and low time-
consumption (Marrero and Gani, 2001; Osmont et al., 2008;
Osmont et al., 2006). For training different fuel properties, corre-
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sponding numbers of the samples are summarized in Table S2. The
database mentioned above was used as the training set.

The vectors of COMES generated by VAE were used as the input,
which were directly fed into the learning model for predicting var-
ious fuel properties. As an ensemble learning technique, stacking
was employed to combine multiple regression models in a meta-
regressor (Tang et al., 2015; Wolpert, 1992). The dataset was ran-
domly split into two parts, the testing set (20%) and the training set
(80%). In the procedure of stacking, cross-validation was conducted
for preparing the input data for the second-level regressor to sup-
press overfitting as shown in Scheme S2. In 5 successive rounds,
the dataset has been split into 5 folds. In each round, the first-
level regressors were trained on 4 folds, and then applied to the
remaining 1 fold. The first-level predictions were well stacked,
and then input to the second-level regressor. After model training,
the stacked first-level regressors were fit to the whole dataset.
Thus, the error between the predicted value and the real value
was determined. Finally, the best stacking model can be obtained
via comparison.

2.3. Generative adversarial network (GAN)

In order to realize the function of generative deep learning, a
GAN was built based on the as-developed VAE of hydrocarbon
molecules. A generator and a discriminator were included in the
GAN. In our model, the discriminator constantly improved itself
to judge whether the new molecule generated by the generator
is a qualified fuel based on deep learning in a database of target
fuel structures. And the generator was trained to generate qualified
new molecules to confuse false with true in the discriminator.
Herein, the structures of 255 typical known high-energy–density
fuels were used as the training set.

In GAN, the model of discriminator (D) and the model of gener-
ator (G) were built and jointly trained. Both models were multi-
layer perceptrons (MLP) to make sure that the adversarial
modeling framework can be most straightforward to apply. The
MLP had 2 layers with 1024 neurons and 384 neurons in the first
layer and the second layer, respectively. The G model has a param-
eter of h. An optimal h makes the probability distribution of the
sample generated by model G as close as possible to the probability
distribution of the real data (P). The target is to minimize the mea-
sure of the difference between the two as shown in equation (1).

ĥ ¼ argmin
h

D P;Qhð Þ ð1Þ

The D model possesses a parameter of /. A value function (V) was
defined to determine the optimal / by maximizing V . The value
function was defined in equation (2).

V P;Qh;D/

� � ¼ EP logD/ xð Þ� �þ Eh zð Þ log 1� D/ G zð Þð Þ� �� ð2Þ
The value function was calculated based on cross entropy, in

which the first item corresponds to the real samples and the sec-
ond item corresponds to the generated samples. When more real
samples were classified as true (with the value of 1) and more gen-
erated samples were classified as false (with the value of 0) by D,
the value function of D has the higher value. G and D were jointly
trained in GAN, and their abilities were constantly improved in the
confrontation. It can be described as an optimization problem as
depicted in equation (3).

ĥ; /̂
� �

¼ argmin
h

argmax
/

V P;Qh;D/

� � ð3Þ

When Nash equilibrium between G and D is achieved, the conver-
gence of the GAN algorithm for the design of target fuels is realized.
In such condition, the generator can convert a randomly input vec-
tor into a new hydrocarbon molecule possessing requisite fuel
5

properties. The discriminator can effectively distinguish whether a
molecule is qualified as the target fuel.
3. Results and discussion

A deep generative algorithm, termed Latent Interspace Genera-
tive Adversarial Network with a Domain of Stacking (LIGANDS),
has been established as shown in Scheme 1. The training procedure
of LIGANDS was described in the section of Methods. Briefly, a
latent space of target hydrocarbon molecules was built by the vari-
ational autoencoder (VAE), in which a real-valued multidimen-
sional vector (COMES) can be reversibly converted to a
reasonable hydrocarbon molecule. In the latent space, a GAN and
a stacking model were built and work collaboratively for generat-
ing new target fuel molecules and predicting their properties,
respectively. After the LIGANDS algorithm was trained and con-
verged on the three databases (hydrocarbon structure database,
target fuel structure database and fuel property database), new
fuel molecules with multiple desired properties have been gener-
ated automatically by LIGANDS.
3.1. Representation of hydrocarbon molecules in latent space by VAE

Firstly, a VAE has been built and trained on a database of hydro-
carbon structures (GDB-13C) to set up a rational latent space of
hydrocarbons as illustrated in Scheme S1. RNNs exhibited superior
capability of learning the context information of SMILES, which is
beneficial to reversible coding and decoding. Therefore, RNNs were
employed in the encoder and decoder. Given a discrete hydrocar-
bon molecule, the encoder of VAE converts the SMILES string to a
continuous vector in the multidimensional latent space, which is
a versatile molecular representation. For a point in the latent space,
the network of the decoder can produce a SMILES string, and a
hydrocarbon molecule with a reasonable structure is generated.

We examined the ability of the VAE for encoding and decoding
hydrocarbon molecules. The statistical data show that 99% of the
molecular structures can be well maintained after coding and
decoding, indicating the good robustness of the model. The perfor-
mance of the as-built latent space to capture structural features of
the hydrocarbon molecules has also been evaluated. Fig. 1a shows
a kernel density estimate (KDE) of each dimension when encoding
319,893 hydrocarbon molecules from GDB-13C. Along each dimen-
sion of the latent space, the distribution of encoded molecules can
be illustrated by KDE. As shown in Fig. 1a, slightly different means
and standard deviations are depicted by the distribution of data
points in each individual dimension. Overall, normal distributions
have been achieved as enforced by the variational regularizer.

Fig. 1b shows the sampling results around decalin. Fig. 1c dis-
plays some molecules that are close to 1-methyladamantane in
the latent space. The numbers labelled near the decoded molecules
are the distance between the molecule and the initial one (decalin
or 1-methyladamantane) in the latent space. New hydrocarbon
molecules with reasonable structures can be sampled in the as-
built latent space. By increasing the distance in the latent space,
the decoded new structures become less similar to the original
ones. Fig. 1d shows the spherical interpolation between two typical
fuel molecules, decalin and JP-10. The sampling points of spherical
interpolation are distributed on a high-dimensional sphere cen-
tered on the targeted molecule in the latent space, which ensures
high-efficiency sampling with a diversity of collection results.
Smooth transitions of molecular structure were realized in the
latent space. In the continuous latent space, interpolation of known
molecules is allowed by following the shortest Euclidean path in
the interspace, and both the stacking model and the GAN of
LIGANDS will work hard for generative fuel design.



Fig. 1. Sampling results from the VAE. (a) KDE of each latent dimension of the encoder. (b) Distribution of the as-sampled molecules near decalin in the latent space. The
distance of a molecule from the original query was expressed by the radius to the center of the circle. (c) Some molecules that were sampled near the location of 1-
methyladamantane in the latent space. The values below the molecules are the distance in the latent space from the decoded molecule to 1-methyladamantane. H atoms
were omitted for clear observation. (d) Slerp interpolation between decalin and JP-10 in the latent space by six steps of equal distance.

Table 1
The errors for predicting different
fuel properties by the stacking
model.

Property MAE R2

Tm 5.8 0.98
Tb 11.6 0.88
FP 2.5 0.99
q 0.04 0.96
NHOC 0.16 0.94
Isp 0.70 0.94
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3.2. Predicting fuel properties by ensemble learning

In order to collect sufficient data for efficient machine learning,
multiple sources of fuel properties were combined, including
experimental data, DFT calculation results, the data calculated by
group contribution method, and the data predicted by software.
Due to the presence of some systematic differences among various
data from different sources, high robustness of the model is
required, which can be effectively achieved by ensemble learning
(Liu et al., 2022c; Zhou, 2012). Ensemble learning was imple-
mented in LIGANDS for predicting fuel properties as illustrated in
Scheme 1. In this stacking model, multiple base learners work
cooperatively, including support bagging, vector machine (SVM),
extremely randomized trees, random forest, light gradient boost-
ing machine, voting, histogram-based gradient boosting, and lin-
ear, as shown in Table S3. The final regressor was set to be the
simple and efficient learner of linear. The other learners were opti-
mally stacked in the first-level regressor. The errors (MAE and R2)
for predicting different fuel properties by the stacking model are
summarized in Table 1. The stacking model exhibited superior
accuracy for calculating all six properties of fuel, especially the
energy property (R2 > 94%), compared with the common single
learners (Hou et al., 2018; Li et al., 2020).

3.3. Generating target fuel molecules by GAN

A usable GAN should be a convergent algorithm (Goodfellow
et al., 2014). When the discriminator reaches to perfection by opti-
mizing D at each step, gradient descent of KL qhkp½ � should be tech-
nically achieved with respect to h. However, in practice, most GANs
are tending to be highly unstable. Based on Eq. (1), sufficient gra-
dient can not be provided for G to learn well. In the early learning,
6

G performs poor, D can reject the newly generated samples with
high confidence. Because these samples are clearly different from
the original target data. The Nash equilibrium is hardly realized,
the GAN generally underfits. Our GAN in the latent space of hydro-
carbon molecules was also hardly trained to reach convergence.
Initially, the generator gave degenerate distributions, and the sup-
port don’t generally overlap with the distribution of the true high-
energy–density fuels. The overfitting of the discriminator prevents
the evolution of the generator, leading to unstable behaviors of the
GAN.

We tried many methods to help the GAN converge (Karras et al.,
2018; Salimans et al., 2016). For our system, two strategies of add-
ing noises was found to be beneficial to the convergence of the
GAN, in which noises were added into the label (Salimans et al.,
2016) and both real and synthetic data (Sønderby et al., 2016).
The noises make the discriminator’s job more complex, which pre-
vents the extreme inference behavior of the discriminator. Thus,
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the discriminator gives small gradient signal to the generator, and
reinforce correct behavior of the generator in the training.

3.3.1. One-sided label smoothing
The technique of label smoothing replaces the target of 0 or 1

for a discriminator with a smoothed value, e.g., 0.1 or 0.9
(Salimans et al., 2016; Szegedy et al., 2015). Vulnerability of the
model (neural network) to adversarial examples can be reduced
(Warde-Farley and Goodfellow, 2016). The positive and negative
classification targets are replaced by (1-a) and b, respectively. pdata
is the unknown data’s probability distribution, and pmodel is the
estimate of the distribution by the generator. The optimal discrim-
inator can be described in equation (4).

D xð Þ ¼ 1� að Þpdata xð Þ þ bpmodel xð Þ
pdata xð Þ þ pmodel xð Þ ð4Þ

In some areas, pmodel is large and pdata is approximately zero. In
such condition, erroneous data from pmodel have little or no incen-
tive to move nearer to the training data. Thus, it becomes problem-
atic to present pmodel in the numerator. Therefore, the negative
labels were still set to 0, the positive labels were smoothed to (1-
a). The label targets of the real samples were replaced by a value
of slightly less than 1, such as 0.9, which prevents the extreme
inference behavior of the discriminator. One-sided label smoothing
prevents the extreme inference behavior of the discriminator and
encourages it to estimate soft probability. In such condition, the
discriminator does not reduce its classification accuracy, but only
reduce its confidence in the true category.

3.3.2. Instance noise
Another origin of the instability of our GAN is the fact that p and

qh are concentrated distributions, and the support does not overlap.
The distribution of high-energy–density fuels (p) is assumed to
concentrate around or even on a low-dimensional manifold.
Herein, qh is manifold-like and degenerate by construction. Before
the convergence is reached, p and qh were separated by several Ds
perfectly, which violates a condition for the convergence proof.
This problem has been remedied by adding instance noise to both
newly generated molecules and the true samples of high-energy–
density fuels. Then, the divergence can be minimized as shown
in equation (5).
Fig. 2. The changes of loss values of the generator

7

dr qh;pð Þ ¼ KL pr � qhkpr � p½ � ð5Þ

where pr � qh denotes the convolution of qh with a noise distribution
of pr. The trick of instance noise is related to the strategy of one-
sided label noise, but no bias is introduced in the optimal discrim-
inator. During training, the noise level is annealed, which allows us
to safely optimize D in each iteration until convergence. Finally, the
generator was well trained and the discriminator was unable to dis-
tinguish the artificial data from the real data. Then, the convergence
of our GAN model was achieved.

The loss changes of the generator and the discriminator during
training are shown in Fig. 2. The loss of discriminator dropped
quickly in the initial 100 epochs, and then decreased slowly and
oscillated slightly. In comparison, the loss of generator also rapidly
declined in the first 100 epochs, which was well maintained for
another 500 epochs and quickly increased with large fluctuations
by further increasing the epochs. As a form of regularisation, early
stopping at 600 epoch prevented the discriminator from overfit-
ting. Some fluctuations were present because each batch of mole-
cules was randomly sampled from the latent space by the
generator during the training process. On the whole, both the gen-
erator and the discriminator finally converged. The structures of
the new molecules generated by the generator gradually approxi-
mated the batch of the target fuel. Both the discrimination and
generation of high-energy–density fuels with high precision have
been realized by LIGANDS.
3.4. The performance of LIGANDS for de novo design of high-energy–
density fuels

Fig. 3 displays the original samples and the new samples in
high-dimensional vector space during training. Principal compo-
nent analysis (PCA) dimensionality reduction was applied. The blue
points indicate the high-energy–density fuels in the training set
(real data). The green points display the new molecules produced
by the LIGANDS model (generated data). At interaction 100, the
green dots gathered in a remote place away from the blue dots.
It indicates that the molecules generated by LIGANDS can not well
simulate the real samples. With the increase of iterations, the
green dots gradually distributed in between the blue dots, illustrat-
ing the convergence of the model during training. At interaction
and the discriminator with increasing epoch.



Fig. 3. Convergence of the LIGANDS model. Changes between the original samples and the newly generated data during training are shown. The vector representations of the
fuel molecules were reduced to 2 dimensions by PCA for the molecules in the training set and the newly generated molecules.
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700, the distribution of green dots and blue dots can not be distin-
guished, demonstrating the good generating ability of LIGANDS for
de novo design of target fuel molecules.

Generative deep learning on hydrocarbon fuels is very difficult
due to the discrete and complex molecular structures (Zhang
et al., 2016). For the SMILES string of a fuel molecule, even one
character is altered, the whole will be changed from a legal struc-
ture to an illegal structure, or to another molecule. Based on a par-
tially generated sequence, it is very difficult to judge the score of
the fully generated sequence. Above problem has been solved by
the proper integration of GAN with VAE. Based on robust coding
and decoding by the VAE, local information reconstruction is effi-
ciently realized to generate new fuel molecules approaching the
target.

rh KL PghkPr
� �� 2JS PghkPr

� �� ���
h¼h0

ð6Þ

Value function of the generator can be described by equation (6)
(Arjovsky and Bottou, 2017). In our LIGANDS model, the generator
samples a vector from a low-dimensional (64 dimensions) random
distribution, and then generates a high-dimensional (192 dimen-
sions) sample through a neural network. The support of Pr and Pg
is a low-dimensional manifold in a high-dimensional space. There-
fore, the probability is 1 that the measure of the overlapping part
between Pr and Pg is 0. Under such condition, the JS divergence is
a fixed value (log2) without any gradient (Arjovsky and Bottou,
2017). As depicted in equation (6), the optimization of the genera-
tor is to minimize the KL divergence between two distributions.
The problem is that KL divergence is not a symmetrical measure.

When Pg(x) ? 0 and Pr(x) ? 1, Pg xð Þlog Pg xð Þ
Pr xð Þ ? 0, the contribution

to KL PgkPr
� �

tends to zero. If the generator fails to generate real
samples, the punishment is small. When Pg(x) ? 1 and Pr(x) ? 0,

Pg xð Þlog Pg xð Þ
Pr xð Þ ?+1, the contribution to KL PgkPr

� �
tends to positive

infinity. If the generator generates an unrealistic sample, the pun-
8

ishment is huge. The punishment for the above two errors of the
generator is different. In such situation, the generator would rather
generate some repeated but safe samples than give diversified
ones. This will give rise to a serious decline in the diversity of gen-
erated fuel molecules, that is, collapse mode (Arjovsky et al., 2017).
In addition, because of the low diversity, the discriminator is prone
to overfitting, which leads to the limited ability to identify only
part of the true samples.

Herein, the addition of instance noise (Sønderby et al., 2016)
solved the problem that JS divergence has no gradient and model
cannot be optimized. Instance noise made the low dimensional
manifolds mapped by neural networks diffuse to the entire high
dimensional space, forcing them to produce an unneglectable over-
lap. Then, JS divergence generated meaningful gradients to draw
two low dimensional manifolds closer until they almost coincide.
The collapse mode was avoided by one-sided label smoothing
(Salimans et al., 2016), which helped the discriminator better
counterwork the generator in training LIGANDS. It does not
encourage the discriminator to select the incorrect class in the
training set, but reduces the confidence in the correct class. Com-
pared with a regularizer, one-sided label smoothing effectively
avoided the misclassification problem caused by high regulariza-
tion coefficient. In order to make the generation results of the gen-
erator more stable, in addition to improving its diversity, we also
applied different update rules for the generator and discriminator
(Heusel et al., 2017). The generator and the discriminator were
updated at the same frequency, but trained with different learning
rates (a ratio of 1:3) to stabilize the gradient of the generator. Thus,
efficient generative deep learning was achieved for fuel design. In
the as-developed LIGANDS model, discriminator learned compre-
hensive fuel characteristics and eliminated overconfidence in clas-
sification to properly guide the generator. Meanwhile, the
generator was endowed with high diversity, good stability and
high accuracy for generating new target fuel molecules.



Fig. 5. Molecular structures of 16 new hydrocarbon molecules generated by
LIGANDS. H atoms were omitted for clear observation.
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Given 255 hydrocarbon structures as the input, LIGANDS finally
generated 3461 qualified new fuel molecules. The statistical results
of carbon number and unsaturation for the 3461 new hydrocarbon
molecules are shown in Figs. S1 and S2, respectively. The carbon
numbers of these molecules are mainly distributed from 11 to
15, of which 48.9% contain 13 carbon atoms. The unsaturation of
most molecules are 2–5, of which 91.8% are 3–4.

The fuel properties of those hydrocarbon molecules were pre-
dicted by the stacking model. The violin plots in Fig. 4 compare
the property distributions of newmolecules generated by LIGANDS
at different epochs and those of the original fuel molecules.
Numerical characteristics of the property data for the generated
molecules are clearly visualized. The changes of density and mass
calorific value of the generated fuel molecules with the increase of
epoch during training are shown in Figs. S3 and S4, respectively.
The density, specific impulse and heat value of the as-generated
hydrocarbon molecules were constantly increased during training
for pursuing high energy density. Meanwhile, the flash point of
those molecules was kept at a high value of around 90℃. The prob-
ability density curves of the properties for different batches of the
generated molecules were significantly changed during training. At
a middle epoch of 500, the property distributions of the newly gen-
erated molecules were similar to those of the original high-energy–
density fuels. And the median values of density, heat value, specific
impulse and flash point for the new molecules were comparable to
or even higher than those of the original ones. The results demon-
strate the strong deep learning capability of LIGANDS for genera-
tive fuel design.

Fig. 5 displays 16 new molecules with distinctive structures
generated by LIGANDS. H atoms were omitted in the ball-and-
stick model for a better observation of the spatial structure of
the carbon skeleton. Those hydrocarbon structures are new,
unique and complex as designed by LIGANDS. Typical fuel prop-
erties of these molecules, including density (q), flash point (FP),
melting point (Tm), specific impulse (Isp), boiling point (Tb), the
Fig. 4. Violin plots of various fuel properties for the molecules from the original dataset and the newly generated ones by LIGANDS. The highest and lowest points of the
outline represent the maximum and minimum values. The side shape represents the cumulative probability density distribution. The inner small black bar represents the 1/4
quantile, and the white dot in the middle represents the median. The inner black line represents the 95% confidence interval.
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net heat of combustion (NHOC), and SA score were predicted by
the stacking model in LIGANDS. For comparison, the methods of
group contribution and DFT were also employed to calculate the
values of q, Tm, FP, Tb, NHOC and Isp for each hydrocarbon
molecule.

In Fig. 6, the values (q, Tm, FP, Tb, NHOC and Isp of the 16 mole-
cules) calculated by group contribution and DFT methods (red cir-
cles) and predicted by ensemble learning (black crosses) are
compared. Compared with our previous regression results by a sin-
gle neural network (Li et al., 2020), the accuracy for predicting the
properties of unlabeled hydrocarbon molecules have been greatly
improved by ensemble learning. The results verify that our stack-
ing model possesses a good generalization ability. It can be con-
cluded that LIGANDS not only automatically generates desirable
Fig. 6. Comparison of the fuel properties calculated by DFT and group contribution (s re
the references to colour in this figure legend, the reader is referred to the web version o

10
new fuel molecules, but also accurately predicts their fuel
properties.

The new molecules generated by LIGANDS possess certain out-
standing fuel properties (high density, high flash point, and large
specific impulse), meanwhile their other properties are compara-
ble to those of traditional quadricyclane (QC) and JP-10. The syn-
thetic accessibility (SA) scores of the new hydrocarbon molecules
were also predicted by LIGANDS, and the results are summarized
in Fig. S5. The SA scores of QC and JP-10 are also shown for easy
comparison. However, all new molecules generated by LIGANDS
exhibit higher SA scores than those of QC and JP-10. It indicates
that the newmolecules have lower synthetic accessibility. The syn-
thesis of these molecules will be more complex. In the future, syn-
d circles) and predicted by machine learning (�black crosses). (For interpretation of
f this article.)
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thetic accessibility should be considered by the model for a more
robust fuel design.
4. Conclusions

In summary, an artificial intelligence of generative deep learn-
ing termed LIGANDS has been devised and executed for de novo
fuel design with multiple desired properties. In LIGANDS, a VAE
of hydrocarbon molecules is established to reversibly represent
discrete molecular structures in the mathematic form. The VAE
also builds a rational latent space of hydrocarbons, in which a
GAN generates new desired fuel structures and a stacking model
predicts corresponding fuel properties. Based on the multi-
objective imitation of the targeted fuel molecules, LIGANDS can
generate well-distributed new fuel molecules with comparable
and even improved properties. In our proof-of-concept study, the
results of generative deep learning demonstrate that LIGANDS is
efficient and robust for de novo design of next-generation hydro-
carbon fuels. In the latent space, all competitive candidates of a
given targeted fuel can be automatically and rigorously proposed
by LIGANDS. Based on a specific demand, different batches of
hydrocarbon molecules meeting the criteria will be efficiently gen-
erated by LIGANDS for rational fuel design in the future. In addi-
tion, the methodology of generative deep learning based on VAE,
ensemble learning and GAN can be easily extended to many other
fields for more broad applications, e.g., drug, protein, lubricants,
additives, and explosives.
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