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ABSTRACT

The training and fine-tuning of large language models (LLMs) often involve di-
verse textual data from multiple sources, which poses challenges due to conflicting
gradient directions, hindering optimization and specialization. These challenges
can undermine model generalization across tasks, resulting in reduced down-
stream performance. Recent research suggests that fine-tuning LLMs on carefully
selected, task-specific subsets of data can match or even surpass the performance
of using the entire dataset. Building on these insights, we propose the Ensembles
of Low-Rank Expert Adapters (ELREA) framework to improve the model’s ca-
pability to handle diverse tasks. ELREA clusters the training instructions based
on their gradient directions, representing different areas of expertise and thereby
reducing conflicts during optimization. Expert adapters are then trained on these
clusters, utilizing the low-rank adaptation (LoRA) technique to ensure training ef-
ficiency and model scalability. During inference, ELREA combines predictions
from the most relevant expert adapters based on the input data’s gradient similarity
to the training clusters, ensuring optimal adapter selection for each task. Experi-
ments show that our method outperforms baseline LoRA adapters trained on the
full dataset and other ensemble approaches with similar training and inference
complexity across a range of domain-specific tasks.

1 INTRODUCTION

While general-domain large language models (LLMs) such as GPT-4 (OpenAI, 2022; 2023) and
Llama (Touvron et al., 2023) have shown remarkable efficacy in diverse applications, adapting these
models through supervised fine-tuning to specific domains or tasks remains indispensable for achiev-
ing optimal performance. For example, instruction following requires subtle model adjustments to
specialized datasets that the general pre-training corpus alone cannot provide (Ouyang et al., 2022).
Significant resources have been invested in constructing varied, high-quality datasets tailored for
LLM fine-tuning such as Alpaca (Taori et al., 2023), the Pile (Gao et al., 2021), or Flan (Longpre
et al., 2023). These efforts have fueled the development of specialized models that address complex
tasks across fields such as medical diagnostics (Singhal et al., 2023), financial analytics (Yang et al.,
2023), and scientific decision-making (Zhang et al., 2024b), or to provide reasoning to their results
(Wei et al., 2022), which were tasks once deemed challenging for automated systems.

Nonetheless, fine-tuning LLMs on a comprehensive dataset frequently encounters the issue of con-
flicting gradient directions from varied training data points (Wang et al., 2021; Xia et al., 2024; Chen
et al., 2024). This phenomenon complicates the update process of models, potentially leading to sub-
optimal performance. Wang et al. (2023d) demonstrate that mixing diverse instructional datasets can
sometimes result in less than ideal outcomes compared to fine-tuning on a carefully selected subset
of the data that directly addresses the task at hand. To enhance the relevance of training data to
specific tasks, Xie et al. (2023) have proposed methods like importance resampling, which aligns
the training dataset more closely with the target task distribution. Another innovative approach pro-
posed by Xia et al. (2024), termed targeted instruction tuning, involves selecting a small percentage
(about 5%) of training data that most significantly influences task performance based on the average
gradients of tokens. This method has shown promise, achieving comparable or superior results to
traditional full dataset fine-tuning across various tasks. In addition, Xia et al. (2024) also present
better outcomes in selecting data points based on the gradient norm than sentence embeddings.

Despite these advancements, current data selection techniques for fine-tuning are predominantly
target-driven, relying heavily on specific features of the target task (e.g., n-gram frequency, example
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answer embedding, gradient direction) to guide the selection process. This requirement for task-
specific data features imposes significant limitations when adapting LLMs to new or emerging tasks,
especially when relevant training data or features are unavailable.

To address these challenges, we propose a novel framework, Ensembles of Low-Rank Expert
Adapters (ELREA), which leverages Low-Rank Adaptation (LoRA; Hu et al., 2022; Dettmers et al.,
2023) to create multiple expert adapters. These adapters are trained independently on data groups
with similar gradient directions and their predictions are assembled during inference based on the
gradient features of the input. Specifically, ELREA begins by fine-tuning a base adapter on the full
dataset to capture a wide range of general knowledge. We then evaluate and cluster the gradients of
individual data points relative to their influence on the base adapter, organizing them into similarly
sized groups. On each cluster we continue training a specialized LoRA expert that is initialized from
the base adapter, allowing the training process to maintain a comparable computational burden to
that of a single adapter trained on the entire dataset. During inference, the expert adapters collab-
oratively determine the output by dynamically weighting the adapters according to their alignment
with the clusters’ gradient profile. Compared with conventional Deep Ensembles, such calculation
could be conducted only once at the beginning in the recurrent generation process and re-used in
subsequent passes, causing minimal computational overhead while achieving stronger performance
(Lakshminarayanan et al., 2017; Havasi et al., 2021; Wang et al., 2023a). Unlike previous meth-
ods, ELREA focuses on the task-agnostic setup, i.e., a one-time training effort without the need for
additional task-specific validation data, making it more suitable for real-world deployment of LLMs.

In summary, our contributions are threefold:1

• We introduce Ensembles of Low-Rank Expert Adapters (ELREA), a framework that integrates
efficient parameter adaptation techniques into an ensemble model to address conflicting gradi-
ent directions in LLM fine-tuning.

• By combining gradient features with clustering methods, we create expert adapters specialized
for different gradient profiles, enabling the model to adapt to diverse tasks without relying on
task-specific data features or validation data points.

• We demonstrate that ELREA outperforms baseline LoRA adapters trained on the full dataset
across various domain-specific applications, as well as other Mixture of Experts (MoE) and
self-consistency methods.

2 PRELIMINARIES

2.1 LANGUAGE MODELS AND PARAMETER-EFFICIENT FINE-TUNING

Decoder-only LMs, pioneered by GPT (Radford et al., 2018), are built upon the decoder compo-
nent of the Transformer architecture (Vaswani et al., 2017) and are among the most prevalent and
thoroughly examined language models today. A pre-trained LM, denoted as M, learns the natural
language patterns on extensive text corpora Dpre-train through an unsupervised next-token-prediction
(NTP) objective, which minimized the negative log likelihood (NLL) of a subsequent token xt in a
length-T sequence x ∈ VT consisting tokens from the vocabulary V based on the preceding context
x<t:

LNTP(x) = −
T∑

t=1

logP (xt|x<t;θM), (1)

where θM are the network parameters of the LM. Originally designed for text completion, the pre-
trained LMs have been enhanced with instruction-following or task-specific capabilities through
targeted fine-tuning (Ouyang et al., 2022; OpenAI, 2022; 2023), expanding their utility across di-
verse applications. The fine-tuning process frequently adopts the NTP objective, utilizing a smaller,
specialized fine-tuning dataset Dft that consists of instruction-response pairs xft = (xinstr,xresp).

Full-parameter fine-tuning of high-performing LMs, which involves calculating ∇θMLNTP(x) and
updating θM accordingly, is often impractical due to computational constraints arising from their
vast number of parameters. To address this issue, parameter-efficient fine-tuning (PEFT) techniques
have been developed (Houlsby et al., 2019; Li & Liang, 2021; He et al., 2022), with LoRA be-
ing a prominent example. LoRA introduces adapter θQ into the LM’s linear layers whose weight

1We are actively working with the legal team to release the code and datasets.
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matrices are, for example, Wi ∈ Rdmodel×dmodel , where i is the layer index and dmodel is the model
dimensionality as defined in (Vaswani et al., 2017). LoRA approximates the weight adjustments
during fine-tuning using a low-rank decomposition ∆Wi ≈ AiB

T
i . Here, Ai,Bi ∈ Rdmodel×r

are rank-r adapter matrices with r ≪ dmodel. During fine-tuning, the original weight matrices Wi

remain frozen, and only the adapter parameters θQ ≜
⋃

i{Ai,Bi} are updated to minimize the
NLL loss: minθQ LNTP(x;θM + θQ). PEFT significantly reduces the computational demands of
fine-tuning by limiting gradient calculations to a smaller set of parameters.

2.2 GRADIENT FEATURE CALCULATION AND DATA SELECTION

Originally introduced by Pruthi et al. (2020) to estimate the impact of individual training examples
on model performance, gradient-based data selection has been further applied to training data selec-
tion (Gou et al., 2023; Xia et al., 2024; Pan et al., 2024; Liu et al., 2024c; Yang et al., 2024). Unlike
methods based on surface-form textual features—which utilize token statistics or sentence embed-
dings as selection criteria (Reimers & Gurevych, 2019; Xie et al., 2023), this approach employs
parameter gradients ∇θ instead. Specifically, when fine-tuning a LoRA adapter Q using stochastic
gradient descent (SGD), the gradient feature g(x) for each sequence x can be computed as

g(x) ∈ R|θQ| = flatten (∇θQLNTP(x)) . (2)

flatten(·) denotes the operation that reshapes matrices into vectors and concatenates them. Using
this expression, we derive the trajectory influence of a training data point xft ∈ Dft, quantified by the
inner product between its gradient feature and that of a task-specific validation data point xvalid. This
inner product is then accumulated across training epochs e, each weighted by the average learning
rate η(e) for that epoch:

∑E
e=1 η

(e)⟨g(xft), g(xvalid)⟩. By leveraging this formulation and adapting
it to the Adam optimizer (§ 3.2), Xia et al. (2024) demonstrate the efficacy of selecting a subset of
training data with the highest influence scores for task-specific fine-tuning, achieving performance
comparable to that obtained using the complete training dataset.

2.3 MIXTURE OF EXPERTS AND ENSEMBLES

Mixture of Experts (MoE) is an architecture that combines multiple expert models or network mod-
ules with a gating network (Szymanski & Lemmon, 1993; Jordan & Jacobs, 1994). In the context of
LLMs, MoE was first adopted by Shen et al. (2023) for instruction-tuning and by Jiang et al. (2024)
for LLM pre-training to reduce inference costs while achieving performance comparable to dense
networks. This idea has been further developed in subsequent works (Zhu et al., 2024; Dai et al.,
2024; Xue et al., 2024).

Upon receiving an input, the MoE’s gating network routes it to the relevant experts, which could
be an entire feed-forward Transformer block (Jiang et al., 2024) or a fine-tuned LoRA adapter (Dou
et al., 2023; Wu et al., 2024) for LMs. Routing could be either dense or sparse, depending on
the fraction of the total experts are activated. The selected experts process the input and provide
their outputs, which are aggregated at the end of the layer or block, typically through weighted
averaging, to produce the final result. This dynamic and selective activation of experts ensures
efficient computation and resource utilization. Mathematically, the output of a mixture of M experts
can be expressed as:

F(x) =

M∑
m=1

λm(x)Em(x);

M∑
m=1

λm(x) = 1,
∣∣{m|λm(x) ̸= 0}Mm=1

∣∣ ≤ M, (3)

where Em is an expert model, and 0 ≤ λm ≤ 1 is its weight predicted by the gating network. Here
we extend the definition of x to any kind of layer input.

On the other hand, Deep Ensembles utilize a collection of multiple models with identical architec-
ture that are trained independently with different parameter initializations (Lakshminarayanan et al.,
2017; Gleave & Irving, 2022) . During inference, the last-layer predictions of these models, which
could be either pre-activation logits or post-activation probabilities, are averaged to improve the
overall performance. Suppose we have N models {Mn}Nn=1 in the ensemble, the output would be:

Mens(x) =
1

N

N∑
n=1

Mn(x). (4)
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Figure 1: The pipeline of ELREA for fine-tuning and inference. The data points (solid and hollow
circles) do not necessarily have a geometric correspondence to their gradient directions (arrows).

The major differences between MoE and Deep Ensembles are two-fold: 1) MoE uses trainable
gating networks for model selection, while Deep Ensembles average uniform or pre-defined weights;
2) MoE conducts output aggregation within layers or blocks, while Deep Ensembles do so at the end
of the model. Although MoE can achieve finer-grained routing and potentially superior performance
with careful design, Deep Ensembles, as both theoretically and empirically shown, remain the top
approach for robustly improving model performance in value prediction and uncertainty estimation,
albeit at the cost of reduced efficiency (Lakshminarayanan et al., 2017; Garipov et al., 2018; Fort
et al., 2019; Fang et al., 2023; Pitis et al., 2023; Li et al., 2024b). For a more detailed discussion on
MoE and Deep Ensembles in the context of LLMs, please refer to appendix A.

3 METHOD

In this section, we introduce the pipeline of ELREA, designed to enhance the fine-tuning of LLMs
for improved downstream tasks by leveraging a mixture of LoRA experts in a Deep Ensembles
framework. The pipeline, shown in Figure 1, consists of three main steps: 1) full-data adapter
tuning, 2) gradient calculation, and 3) clustering and per-cluster fine-tuning. During inference, we
estimate the similarity between the gradient of test instructions and the cluster instances to determine
the influence of each cluster on the final prediction. The details of each step are elaborated below.

3.1 FULL-DATA ADAPTER TUNING

The first step involves fine-tuning a base LoRA adapter Qbase from the backbone language model M
on the entire fine-tuning dataset Dft for E epochs using the NTP objective (equation 1). This process
captures a broader spectrum of general and task-specific knowledge and enhances the model’s basic
instruction-following abilities. The adapted model checkpoints {M + Q(e)

base}Ee=1, where Q(e)
base de-

notes the adapter checkpoint at the end of training epoch e, along with the corresponding optimizer
states, provide the necessary parameters to calculate the gradient features (Xia et al., 2024).2

3.2 GRADIENT CALCULATION

With Adam optimizer (Kingma & Ba, 2015), which is the most adopted for LM fine-tuning, the
gradient feature g(x) for each sequence x is extended from equation 2 to consider the 1st and 2nd
order momentum terms with decay rates β1 and β2, as derived by Xia et al. (2024):

g
(t)
Adam(x) = η(t) ·m(t)/(

√
v(t) + ϵ);

m(t) = (β1m
(t−1) + (1− β1)g)/(1− βt

1); v
(t) = (β2v

(t−1) + (1− β2)g
2)/(1− βt

2),
(5)

2Here we extend the definition of the addition operator “+” between the backbone model and an adapter to
denote the addition of the weights of the corresponding network layers (Hu et al., 2022).
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where t is the current training step and ϵ is a small constant to prevent division by zero. Each training
instance xft ∈ Dft is then associated with E gradients {g(e)

Adam(xft)}Ee=1, each with the dimensionality
of the number of total parameters in the adapter |θQ|.3

Although |θQ| ≪ |θM|, it is still at a million level scale, which is too large for efficient cluster-
ing or similarity computation. Therefore, we follow Xia et al. (2024) and apply random projection
(Kanerva et al., 2000), which is derived from the Johnson-Lindenstrauss lemma (Johnson & Lin-
denstrauss, 1984) stating that sufficiently high-dimensional data points can be projected into lower-
dimensional space while approximately preserves pairwise distances between the points, to reduce
the dimensionality of the gradient features to dproj ≪ |θQ|.

g′
Adam = RgAdam; R ∈ {−1, 1}dproj×|θQ|; Rij ∼ U({−1, 1}). (6)

For gradient feature clustering, we first average the gradient features of each instance across all
epochs to obtain a single representative feature vector, which is then normalized and projected into
a (dproj − 1)-dimensional hyper-sphere:

δ(x) =
δ′(x)

∥δ′(x)∥
; δ′(x) =

1

E

E∑
e=1

g
′(e)
Adam(x) (7)

as we are only interested in the gradient directions rather than their magnitudes.

ELREA is developed under the assumption that the test distribution is entirely unknown during
fine-tuning. Therefore, for both fine-tuning and test instances, we only consider the gradient of the
instruction (i.e. user-input) tokens xinstr (§ 2.1), excluding the expected system responses even if
they are provided in the training data, which is different from Xia et al. (2024) who construct the
gradients based only on the expected model answers.

3.3 CLUSTERING AND PER-CLUSTER FINE-TUNING

We then cluster the training gradient features {δ(xft, instr)|xft, instr ∈ Dft} into K clusters using
the BIRCH algorithm (Zhang et al., 1996). The BIRCH algorithm is well-suited for large, high-
dimensional datasets and demonstrates robustness against outliers. To reduce computational de-
mands, we randomly select 5,000 data points from Dft for model fitting. This sample size adequately
represents the feature distribution, and we use the resulting model to cluster all gradient features.
Preliminary experiments show that the clustering algorithm is robust, i.e., it consistently produces
identical or similar clusters when different random seeds are used. As BIRCH does not ensure bal-
anced clusters, we reapply it to clusters exceeding five times the size of the smallest cluster. We
iterate this process up to three times, each iteration targeting fewer clusters. Initially targeting 5
clusters, this method typically yields between 8 (after two iterations) and 10 (after three iterations)
training clusters {Dc}Cc=1, where C denotes the final number of clusters.

Within each cluster Dc, we proceed with LoRA fine-tuning from the base checkpoint Q(E)
base, extend-

ing for several more epochs at a reduced learning rate utilizing the same NTP objective. This results
in a collection of C LoRA expert adapters {Qc}Cc=1. Theoretically, each cluster contains training
instances with similar gradient directions, which likely exert analogous effects on the model’s be-
havior. Fine-tuning with clustered data aims to direct the model towards a more precise update path,
thereby potentially enhancing the model’s (i.e., M+Qc) performance on specific task types which
are unidentified during fine-tuning.

3.4 ROUTING AND INFERENCE

To route an input instruction to appropriate expert adapters, we calculate the cosine similarity be-
tween the gradient of the instruction δtest ≜ δ(xtest, instr) and the centroid of the gradients within each
cluster δ̄′c =

1
|Dc|

∑
xi∈Dc

δ(xi,instr). The normalized form of δ̄c is given by:

δ̄c =
δ̄′c

∥δ̄′c∥
; δ̄′c =

1

|Dc|
∑

xi∈Dc

δ(xi,instr). (8)

3We use the same rank for all adapters, so we do not emphasize the difference of adapters here.
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Here, the cosine similarity simply becomes the inner product of these two normalized vectors:
cos(δtest, δ̄c) = ⟨δt, δ̄c⟩. When the projection dimensionality dproj is high, the similarity may suffer
from the curse of dimensionality, where the gaps between the similarities to different cluster cen-
troids may become too small. To address this issue, we standardize the cosine similarities across
clusters before employing a SoftMax function on the standardized similarities cos′(δtest, δ̄c) across
clusters to determine their respective weights:

wc =
exp(cos′(δtest, δ̄c))∑C

c′=1 exp(cos
′(δtest, δ̄c′))

; cos′(δtest, δ̄c) =
cos(δtest, δ̄c)− µtest

σtest
, (9)

where µtest and σtest are the mean and standard deviation of the cosine similarities across clusters.

Besides the cluster-specific adapters {Qc}Cc=1, we also incorporate the base adapter Qbase during
inference to leverage the general knowledge captured from the entire dataset. This is particu-
larly crucial when the test instruction diverges significantly from all training instances, indicated
by maxc{cos(δtest, δ̄c)} < τ , where τ is some threshold. We quantify the influence of the base
adapter as wbase = 1 −maxc{cos(δtest, δ̄c)}. Therefore, we assemble C + 1 adapters during infer-
ence, with the final prediction for the next token being the ArgMax of the weighted sum of output
logits from each adapter:

x̂t = argmax
xt

(
wbase(M+Qbase)(xt|x<t) +

C∑
c=1

wc(M+Qc)(xt|x<t)

)
, (10)

which is a combination of equation 3 and equation 4. xt is categorical, while M(xt|x<t) denotes the
output pre-activation logit of categorical token xt given the context tokens x<t from the language
model M. In equation 10 we get x̂t, we append it to the context tokens x<t+1 = (x<t, x̂t) for all
adapters in the ensemble and repeat the process until the end of the sequence is reached. As we are
not dealing with probabilities here, the weights do not need to sum to 1, i.e. wbase +

∑C
c=1 wc ̸= 1.

Unlike the LoRA MoE approaches (§ 2.3), which utilizes a gating network for layer-wise routing
with predictions aggregated post-layer, ELREA resembles Deep Ensembles in its routing and ag-
gregation strategy but uses LoRA adapters as ensemble components, and hence the name.

4 EXPERIMENTAL SETUP

Datasets We conducted experiments across two distinct evaluation categories: 1) general language
understanding and reasoning, and 2) mathematical reasoning. For the first category, following Xia
et al. (2024), we employ Flan V2 (Longpre et al., 2023), CoT (Wei et al., 2022), Dolly-15k (Conover
et al., 2023), and OpenAssistant Conversations (Köpf et al., 2023) for fine-tuning, and MMLU
(Hendrycks et al., 2021a) and BIG-bench Hard (BBH; bench authors, 2023; Suzgun et al., 2023)
to test model performance. The training and test datasets have no distribution overlap, making this
setup suitable for evaluating the model’s generalization capabilities. For the mathematical reason-
ing category, we develop the MATH-Combined dataset by integrating existing resources including
GSM8k (Cobbe et al., 2021), MathQA (Amini et al., 2019), SVAMP (Patel et al., 2021), and MATH
(Hendrycks et al., 2021b) into a uniform format analogous to MATH. MATH-Combined utilizes in-
domain test points, offering insights into selecting task-specific data for effective fine-tuning. Please
refer to appendix B for dataset details and processing; and Table 4 for the statistics.

Model and Fine-Tuning Our primary experiments involve fine-tuning the Gemma-2b model
(Gemma Team, 2024b), specifically gemma-1.1-2b-it4, by applying rank-8 LoRA adapters
to all linear layers, modifying about 0.39% of the total model parameters. For both dataset cate-
gories, we fine-tune the base adapter Qbase for 2 epochs using the Adam optimizer, with an initial
learning rate of 5× 10−5 that linearly decays to zero. Cluster-wise adapters Qc are initialized from
Qbase and fine-tuned for the same duration with a slightly reduced learning rate of 2× 10−5. These
hyperparameters are fixed since we assume no access to additional task-specific validation data. The
maximum token sequence length during training is 2,048, with a batch size equals to 16 sequences
distributed across the GPUs. Following Xia et al. (2024), we set the gradient projection dimension-
ality for clustering dproj to 8,192, which we show leads to the best model performance. Please refer
to appendices C and D for additional details.

4Available at https://huggingface.co/google/gemma-1.1-2b-it.
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Inference and Evaluation Since the test set is out of the fine-tuning distribution for the general
reasoning and understanding category, we use up to three in-context examples from the validation
subset of BBH and five from MMLU. For the mathematical reasoning category, we employ a zero-
shot setup. During inference, we limit the maximum instruction sequence length to 1,200 tokens
and the response length to 848 tokens for MATH-Combined and BBH. For MMLU, the instruction
length is increased to 1,800 tokens and the response length to 248 tokens. We reduce the number of
in-context examples until the instruction length falls within the specified limits. We employ greedy
decoding at zero temperature and maximize the batch size feasible under operational constraints.
For MATH-Combined, we leverage existing code from Hendrycks et al. (2021b) for parsing results
and assessing accuracy.5 For MMLU and BBH, we develop regular expressions to parse outputs and
calculate exact-match accuracy metrics. It is worth noting that although we use Gemma-2b as the
backbone model M, we do not adhere to the experimental setup or evaluation protocol described in
(Gemma Team, 2024b). Consequently, our reported results may differ from theirs.

Baselines The baseline model, M+Qbase, is fine-tuned on the entire dataset, serving as a general
reference point for comparison. M +Qdataset represents adapters fine-tuned and applied separately
to each subset of MATH-Combined. For the backbone-only category, we directly evaluate the per-
formance of the backbone model M. To compare with the MoE setup, we include three baselines:
MoE Routing, MoE Merging, and MoLE. MoE Routing implements layer-level routing using the
same weights as ELREA. MoE Merging averages the expert network parameters based on the expert
weights before processing the input. Mixture of LoRA Experts (MoLE, Wu et al., 2024) applies a
layer-wise gating function to dynamically predict expert weights based on the layer inputs. From the
ensembling family, we consider Self-Consistency and LoRA Ensembles. Self-Consistency (Wang
et al., 2023b) uses M+Qbase as the base model, performing five inference passes per instance with
a temperature of 1. The final prediction is determined through majority voting. LoRA Ensembles
(Wang et al., 2023a) independently fine-tunes three additional adapters, aside from Qbase, under the
same setup and averages predictions across all four models. To investigate the efficacy of gradient-
based features, we have the Instruction Embedding baseline, which substitutes instruction gradients
with sentence embeddings from a pre-trained model for data clustering and instance routing.

Additionally, we include Random Cluster and Uniform Weights as ablation study baselines. Ran-
dom Cluster maintains the same cluster numbers and sizes as ELREA but assigns cluster members
randomly from the Dft, which preserves the distribution characteristics of Dft and positions it as an
approximate Deep Ensembles baseline with equivalent training effort to ELREA. On the other hand,
Uniform Weights assigns equal weights to all clusters to verify the effectiveness of the cluster-wise
adapter routing mechanism. Please refer to appendix E for baseline details.

5 RESULTS AND DISCUSSION

Main Results Table 1 presents the test set accuracy across various MATH-Combined subsets,
along with the micro-averaged results. ELREA consistently outperforms baseline methods on most
sub-datasets by an observable margin, with only occasional dips in performance. On average, EL-
REA achieves performance gains of 9.67% and 3.56% over M+Qbase at ranks r = 8 and r = 64,
respectively, without leveraging additional training data or external knowledge sources. Table 2 fur-
ther highlights the robustness of ELREA in general language understanding and reasoning tasks,
even under test conditions that diverge from those used during fine-tuning. This finding aligns with
the results reported by Xia et al. (2024). A comparison between M + Qdataset and M + Qbase re-
veals that the former does not consistently outperform the latter. This observation suggests that a
generalized approach to knowledge extraction across similar tasks (as illustrated in Figure 4) can
sometimes be more effective than relying solely on dataset-specific expertise.

The MoE Routing and Merging frameworks, despite relying on pre-computed routing weights, still
exhibit improvements over the baseline, which can be attributed to the ensemble effect of the ex-
perts. In contrast, the MoLE baseline, which employs a trainable router, consistently underperforms
compared to M+Qbase. We hypothesize that the presence of multiple LoRA experts, each applied
to a broad range of linear layers (appendix C), may lead to a large and complex scope of routing
functions that is challenging to optimize. Consequently, the system likely converges to a suboptimal

5Available at https://github.com/hendrycks/math.
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Table 1: Comparison of test set accuracies (in %) across various MATH-Combined subsets, along
with the micro-average. Gray rows indicate the primary baseline; blue rows highlight ELREA.

LoRA Rank Methods MATH GSM8k SVAMP MathQA Average(a)

Gemma-2b

r = 8

M+Qbase 9.2 22.1 46.07 16.83 18.61
M+Qdataset 7.3 25.7 45.00 16.73 19.01 (+ 0.40)
MoE Routing 9.2 22.7 48.21 16.23 18.79 (+ 0.18)
MoE Merging 9.1 23.1 48.21 15.73 18.73 (+ 0.12)
MoLE 8.8 21.6 46.43 15.53 17.99 (− 0.62)
LoRA Ensembles 9.3 24.7 47.50 16.73 19.55 (+ 0.94)
Self-Consistency 5.9 14.3 44.64 10.32 13.12 (− 5.49)
Instruction Embedding 9.8 24.1 46.79 16.83 19.46 (+ 0.85)
ELREA 9.1 25.9 49.64 18.04 20.41 (+ 1.80)

Random Cluster 9.1 25.1 48.21 18.84 20.30 (+ 1.69)
Uniform Weights 9.6 25.2 47.50 18.04 20.16 (+ 1.55)

r = 64

M+Qbase 10.8 32.7 55.36 27.56 26.39
M+Qdataset 10.8 33.0 52.14 27.66 26.24 (− 0.15)
MoE Routing 11.7 31.9 60.36 26.95 26.66 (+ 0.27)
MoE Merging 11.4 32.0 60.36 26.85 26.57 (+ 0.18)
MoLE 10.7 31.7 56.07 25.35 25.49 (− 0.90)
LoRA Ensembles 12.1 31.8 60.00 28.06 27.06 (+ 0.67)
Self-Consistency 9.3 28.5 60.36 21.84 23.34 (− 3.05)
Instruction Embedding 11.2 31.7 60.71 28.46 26.94 (+ 0.55)
ELREA 12.5 32.6 57.86 28.36 27.33 (+ 0.94)

Random Cluster 11.5 32.8 59.64 27.05 26.87 (+ 0.48)
Uniform Weights 11.4 31.5 60.00 27.15 26.48 (+ 0.24)

Gemma2-9b

r = 8
M+Qbase 37.9 78.7 84.64 50.30 58.11
ELREA 37.4 78.6 86.43 52.00 58.60 (+ 0.49)

r = 64
M+Qbase 37.4 81.3 86.07 57.82 61.17
ELREA 36.8 80.7 87.50 59.32 61.38 (+ 0.21)

(a) The number in parentheses indicates the improvement over the corresponding baseline M+Qbase.

Table 2: Comparison of test set exact-match accuracy (in %) on BBH and MMLU, and the macro-
averaged result. We also include the backbone M for reference.

LoRA Rank Methods BBH MMLU Macro Average

N/A Backbone M(a) 9.17 9.12 9.15

r = 8

M+Qbase 27.20 33.73 30.47
MoE Routing 27.46 (+ 0.26) 34.21 (+ 0.48) 30.84 (+ 0.37)
MoE Merging 27.13 (− 0.07) 33.98 (+ 0.25) 30.36 (+ 0.09)
MoLE 26.40 (− 0.80) 34.19 (+ 0.46) 30.30 (− 0.17)
Self-Consistency 23.74 (− 3.46) 32.88 (− 0.85) 28.31 (− 2.16)
Instruction Embedding 26.50 (− 0.70) 34.76 (+ 1.03) 30.63 (+ 0.16)
ELREA 28.03 (+ 0.83) 34.84 (+ 1.11) 31.44 (+ 0.97)

Random Cluster 27.72 (+ 0.52) 34.56 (+ 0.83) 31.14 (+ 0.67)
Uniform Weights 27.32 (+ 0.12) 34.33 (+ 0.60) 30.83 (+ 0.36)

(a) A large portion of responses are unparsable, leading to an accuracy lower than random guess.

solution, overfitting the training data while sacrificing model generalization. A more sophisticated
network design or a refined training strategy may be necessary for MoLE to achieve better results.

Conversely, the classical LoRA Ensembles setup, despite its higher computational cost, demon-
strates robustness by consistently outperforming M + Qbase. This . These findings align with our
discussion in § 2.3 and underscore the effectiveness of ELREA’ ensemble approach. The Self-
Consistency method, however, delivers poorer results due to significant variance in outcomes across
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Table 3: The performance of ELREA with different clustering methods. The results use Gemma-2b
backbone, LoRA rank r = 64, and number of clusters C = 10.

Methods MATH GSM8k SVAMP MathQA Average

ELREA 12.5 32.6 57.86 28.36 27.33
BIRCH w/ 256-d PCA 10.3 32.1 60.00 26.95 26.27
K-means(a) 10.7 32.9 58.93 28.46 27.00
K-means w/o grad norm (equation 7)(a) 10.8 32.3 58.21 27.56 26.51

(a) Both use 256-d PCA for dimensionality reduction. Otherwise the gradient outliers result in multiple
clusters with few data points.
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Figure 2: Average weight distribution across clusters for different datasets and LoRA ranks. Only
relative values matter. “M-C” represents MATH-Combined.

runs, especially at higher sampling temperatures. The Instruction Embedding baseline also falls
short of ELREA, highlighting the critical role of a refined gradient profile in achieving optimal
expertise extraction and routing.

When Gemma2-9b is used as the underlying architecture, ELREA still continues to outperform the
base adapter, although with a narrower margin. The advanced capabilities of Gemma2-9b in cap-
turing task-specific knowledge, even without explicit fine-tuning, appear to diminish the advantages
of ELREA (Gemma Team, 2024a). It suggests that ELREA is more beneficial when the backbone
model is less tailored to the task or when the fine-tuning dataset is more diverse and complex.

Ablation Studies An examination of Tables 1 and 2 shows that the gradient-based clustering
method consistently outperforms the random approach. This underscores the effectiveness of
gradient-based clustering in isolating in-domain, task-specific data for fine-tuning. However, the
advantage of ELREA over the Random Cluster is not always prominent. This is understandable,
considering that Random Cluster approximates Deep Ensembles, a very strong baseline that suffi-
ciently exploits the training data. The inferior performance of the Uniform Weights baseline high-
lights the importance of a properly designed routing mechanism in ELREA. Figure 2 illustrates the
average weight distribution across clusters. We observe that, for the in-domain MATH-Combined
test set, the experts are more evenly activated across different data points. In contrast, the BBH and
MMLU datasets exhibit a skewed distribution favoring one or two clusters with significantly higher
average weights. In these latter cases, the test distribution accounts for only a small portion of the
training data, likely dominated by a few clusters. This may also explain why the LESS method
introduced by Xia et al. (2024) can outperform the baseline using fewer training data.

As noted by Xia et al. (2024), the dimensionality of the gradient projection dproj significantly influ-
ences the performance of training-test similarity matching. Figure 3a demonstrates a similar pattern
for ELREA. When dproj is reduced from 8,192 to 512, there is a noticeable decline in ELREA’
exact-match accuracy. This reduction compromises the model’s ability to retain task-specific, fine-
grained information, as random projection is more likely to omit essential features, resulting in
diminished performance. Furthermore, an interesting observation on the BBH dataset reveals that
ELREA underperforms compared to the base adapter at a projection dimensionality of 512, and
even more so in comparison to the Random Cluster. Additionally, Table 3 shows that using PCA
for dimensionality reduction, instead of selecting a smaller dproj, also hurts performance. Similarly,
using k-means for clustering degrades performance. This further underscores the importance of pre-
serving representative gradient features for effective data clustering and matching, highlighting that
failure to do so significantly impairs model performance.
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Figure 3: Effects of gradient projection dimensionality and selection of top-k experts during infer-
ence on model performance.

Additionally, Figure 3b demonstrates that ELREA’ performance improves with the number of top-k
experts selected during inference. This suggests that the model benefits from incorporating a diverse
set of experts, even when the contribution of some experts is relatively minor. While selecting fewer
experts can lead to more efficient inference, a trade-off must be carefully considered to balance
performance with computational cost.

6 CONCLUSION

We introduced Ensembles of Low-Rank Expert Adapters (ELREA), a framework designed to ad-
dress the challenge of conflicting gradient directions during the fine-tuning of LLMs across diverse
datasets. ELREA develops multiple LoRA expert adapters, each optimized for a specific data clus-
ter with similar gradient profiles. These adapters collaboratively generate predictions by dynami-
cally adjusting their contributions based on the input’s gradient characteristics, effectively resolving
gradient conflicts without the need for task-specific data features or validation sets. Our approach,
which requires only a single training session, enhances the adaptability of models to new or evolving
tasks and outperforms traditional LoRA adapters and other ensemble techniques across a variety of
applications. Ablation studies confirm that both the ensemble structure and the gradient-based clus-
tering and routing mechanisms are integral to ELREA’s effectiveness. These findings underscore
the framework’s potential for efficient and scalable application of LLMs in practical settings.

LIMITATIONS

Compared to MoE approaches, ELREA incurs higher computational overhead during inference due
to the activation of multiple expert adapters. In our implementation, we duplicate the input instance
across the batch dimension and feed each copy to a distinct expert adapter. This strategy reduces
inference time at the cost of increased memory consumption, as demonstrated in appendix G. Ad-
vanced techniques like FLoRA (Wen & Chaudhuri, 2024) may alleviate this issue by adjusting the
adapter architecture to reduce matrix multiplication operations; however, we leave this optimization
for future work. Due to the constraint of our computational resources, we focus on smaller-scale
backbone LLMs and expert adapters in our experiments. The performance gains of ELREA over
the primary baseline M+Qbase diminish when the backbone LLM is already strong or well-adapted
to the target task. This observation suggests that the utility of ELREA may be limited in scenarios
where the backbone LLM is large or the target task closely aligns with pretraining data. There-
fore, ELREA may be more beneficial when the backbone LLM has limitations in size or when the
target task significantly differs from the pretraining materials. Experimentally, we conducted only
preliminary hyperparameter tuning for both ELREA and the baseline models. Except for a few
configurations, we did not thoroughly explore the impact of different clustering or routing methods
on the performance of ELREA. Investigating these aspects could provide valuable insights and is
an interesting direction for future work.
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A RELATED WORKS: MIXTURE OF EXPERTS AND DEEP ENSEMBLES FOR
LANGUAGE MODELS

Mixture of Experts (MoE) have gained popularity in the field of LLM pre-training (Fedus et al.,
2022; Jiang et al., 2024; Dai et al., 2024; Zhong et al., 2024) and fine-tuning (Gou et al., 2023; Shen
et al., 2023; Luo et al., 2024; Zhou et al., 2024; Li et al., 2024a; Yang et al., 2024) as an approach
to maintain model performance while reducing computational cost during inference. In LLM fine-
tuning with MoE, the most frequent setup involves using each LoRA adapter, or simply a linear layer,
as an expert, and employing a routing mechanism to select the most relevant adapters for each input
token. The expert networks can be placed in parallel at different levels of the network modules (Cai
et al., 2024), such as the feed-forward layers after multi-head attention (Dou et al., 2023; Diao et al.,
2023; Li et al., 2024a), the linear layer within the attention block (Gou et al., 2023; Zhu et al., 2023;
Luo et al., 2024; Tian et al., 2024), the Transformer block (Gao et al., 2024), or a combination of
the above (Zadouri et al., 2024; Wu et al., 2024). In terms of routing, most works rely on trainable
gating networks to predict the weights for each expert (Wang et al., 2023c; Li et al., 2024a; Wu
et al., 2024; Chen et al., 2024; Liu et al., 2024a; Luo et al., 2024; Zadouri et al., 2024). Other studies
leverage domain information or task-specific features to guide the routing process (Huang et al.,
2024; Muqeeth et al., 2024; Liu et al., 2024b; Li et al., 2024a; Shen et al., 2024). Among these, the
works most similar to ELREA are Gou et al. (2023), Zhou et al. (2024), and Yang et al. (2024),
which use textual or gradient-based features to guide the routing process. Specifically, Gou et al.
(2023) propose MoCLE, which first clusters the instruction embeddings using K-means and then
trains a gating network to predict the top-k cluster assignments for each token. Zhou et al. (2024)
design a task-wise decorrelation loss to encourage the router to learn oriented weight combinations
of adapters tailored to homogeneous tasks. Yang et al. (2024) route an input token to the expert that
generates gradients not conflicting with the average gradient of the entire sequence.

Researchers have also explored the potential of applying Deep Ensembles to LLM pre-training and
fine-tuning (Havasi et al., 2021; Tran et al., 2022; Cha et al., 2021; Liu et al., 2022; Gleave & Irving,
2022; Chronopoulou et al., 2023; Wang et al., 2023a; Jiang et al., 2023; Chen et al., 2023; Lu et al.,
2024), as well as to related modules such as reward model learning (Coste et al., 2024; Zhang et al.,
2024a; Ahmed et al., 2024) for reinforcement learning from human feedback (RLHF; Ouyang et al.,
2022). Conventional Deep Ensemble methods train multiple models, or multiple LoRA adapters in
the context of LLMs, on similarly distributed data and then average the predictions of these models
to make the final prediction (Wang et al., 2023a; Coste et al., 2024). Another line, often referred
to as “fusion”, trains multiple models on heterogeneous data and then fuses the predictions of these
models to make the final prediction (Jiang et al., 2023; Chen et al., 2023; Lu et al., 2024; Wang et al.,
2024). Such works often do not impose any constraints on the model architectures, and the key to
their success lies in how to select and combine the results from different models. For example, Jiang
et al. (2023) propose a pairwise comparison method to effectively discern subtle differences be-
tween candidate outputs and enhance ranking performance for reward modeling. Wang et al. (2024)
address the scenario of solving a task that requires different expertise scattered across multiple mod-
els and propose a fusion method based on k-nearest neighbors classifiers and a graph shortest path
analogy to effectively combine the results of different models and achieve better performance.

B DATASETS

To evaluate the effectiveness of ELREA, we conducted experiments across two distinct categories:
1) general language understanding and reasoning, and 2) mathematical reasoning. Each category
utilizes its own dedicated training and evaluation datasets, as detailed in Table 4.

General Language Understanding and Reasoning For the first category, we followed the
methodologies outlined in Xia et al. (2024) and Wang et al. (2023d). We employed a diverse com-
bination of datasets for fine-tuning our model:

• Flan V2 (Longpre et al., 2023): This comprehensive collection encompasses over 1,800 NLP
tasks, combining numerous existing datasets with various data augmentations. The tasks cover
a wide range of NLP problems, including question answering, summarization, translation, and
sentiment analysis.
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• Chain-of-Thought (CoT) (Wei et al., 2022; Longpre et al., 2023): A subset of the Flan V2
collection, the CoT dataset includes tasks annotated with chain-of-thought reasoning steps. It
emphasizes the model’s ability to generate intermediate reasoning processes, enhancing perfor-
mance on complex tasks that require multi-step reasoning.

• Dolly-15k (Conover et al., 2023): This curated dataset contains approximately 15,000 high-
quality, human-generated prompt-response pairs designed specifically for instruction tuning
of LLMs. Created by Databricks employees, it focuses on instruction-following capabilities
across a variety of domains and task types.

• OpenAssistant Conversations (Köpf et al., 2023): A multilingual, human-generated, and
human-annotated assistant-style conversation corpus featuring fully annotated conversation
trees in different languages. For our experiments, we utilize only the supervised fine-tuning
portion of this dataset, excluding any content related to reward modeling or reinforcement
learning.

These datasets vary significantly in size, format, tasks, and domains, providing a comprehensive
training ground for general language understanding and reasoning. Specifically, Flan V2 and CoT
datasets contribute to the model’s ability to handle a wide range of NLP tasks with enhanced reason-
ing capabilities, while Dolly-15k and OpenAssistant Conversations improve the model’s instruction-
following and conversational skills. In practice, we directly use the pre-processed dataset provided
by Xia et al. (2024), which consolidates these datasets into a unified format suitable for fine-tuning.6

For testing, we utilize two challenging benchmark datasets to evaluate the general reasoning and
problem-solving abilities of our model:

• Massive Multitask Language Understanding (MMLU; Hendrycks et al., 2021a): MMLU
is a comprehensive evaluation benchmark that assesses a model’s knowledge and reasoning
across 57 subjects, including humanities, sciences, social sciences, and more. The dataset
consists of over 19,000 multiple-choice questions designed to mimic the difficulty of an average
professional or college-level exam. Each question has four answer options, and the dataset
provides only the correct answer without any accompanying reasoning or explanation.

• BIG-Bench Hard (BBH; bench authors, 2023; Suzgun et al., 2023): BBH is a subset of the
BIG-Bench, consisting of 23 tasks identified as particularly challenging for LLMs. The tasks
cover a diverse range of domains such as logical reasoning, mathematics, commonsense rea-
soning, etc.. Unlike MMLU, BBH includes not only the correct answers but also detailed CoT
reasoning annotations for each question. This allows for the assessment of a model’s ability to
perform complex reasoning and generate intermediate reasoning steps.

Both datasets predominantly feature difficult multiple-choice question-answering formats with di-
verse question types, and only a few require numerical responses. The inclusion of reasoning
chains in BBH enables a more in-depth evaluation of the model’s reasoning capabilities compared to
MMLU, which focuses solely on the final answers. Importantly, there is no significant overlap be-
tween the training datasets and these test datasets, ensuring that the evaluation measures the model’s
ability to generalize to unseen tasks and domains. To facilitate the desired output formatting and
to guide the model during inference, we provide up to three in-context examples from the valida-
tion subset of the BBH dataset and five examples from MMLU dataset. These examples serve as
prompts to help the model understand the expected answer format and improve its performance on
the evaluation tasks.

Mathematical Reasoning For the mathematical reasoning category, we developed the MATH-
Combined dataset by integrating several existing mathematical problem-solving resources into a
unified format analogous to the MATH dataset (Hendrycks et al., 2021b), including

• GSM8K (Cobbe et al., 2021): A dataset containing 8,000 high-quality grade school math word
problems that require multi-step reasoning to solve. Each problem includes a question and a
detailed step-by-step solution.

• MathQA (Amini et al., 2019): Originally a multiple-choice dataset derived from the AI2 Arith-
metic and the DeepMind Mathematics datasets, MathQA consists of over 37,000 math word
problems across various topics. Each problem comes with a question, multiple-choice answers,
and annotated solution programs.

6Available at https://huggingface.co/datasets/princeton-nlp/less_data.
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Table 4: Dataset statistics. Although listed separately here, the fine-tuning datasets are mixed to-
gether and randomly shuffled before being used for model fine-tuning or clustering.

Dataset Source # Instance linstr
(a) lresp

(a)

General Language Understanding and Reasoning

Fine-Tune

Dolly-15k Conover et al. (2023) 15,011 72.41 60.12
OpenAssistant Köpf et al. (2023) 55,668 20.14 113.09
CoT Wei et al. (2022) 100,000 168.70 34.94
Flan V2 Longpre et al. (2023) 100,000 216.59 16.71

Test BBH Suzgun et al. (2023) 6,511 64.87(b) 105.51
MMLU Hendrycks et al. (2021a) 14,042 88.53(b) 1

Mathematical Reasoning (MATH-Combined)

Fine-Tune & Test

MATH Hendrycks et al. (2021b) 7,500 & 1,000 32.69 88.47
GSM8k Cobbe et al. (2021) 7,441 & 1,000 45.19 56.93
SVAMP Patel et al. (2021) 677 & 280 31.66 28.15
MathQA Amini et al. (2019) 26,287 & 998 38.39 69.09

(a) These numbers represent the average number of words (character strings separated by whitespace and
newline characters) in the instruction and response sequences. They are generally smaller than the number
of tokens.
(b) These numbers do not include the in-context examples; if the examples are considered, the counts will
be approximately 3× larger for BBH and 5× larger for MMLU.

• SVAMP (Patel et al., 2021): A dataset designed to test the robustness of math word problem
solvers by introducing subtle variations to existing problems. It contains 1,000 problems that
require careful reasoning to avoid common pitfalls.

• MATH (Hendrycks et al., 2021b): A collection of 12,500 challenging competition-level math
problems covering subjects like algebra, geometry, calculus, and more. Each problem includes
a question and a detailed solution formatted in LaTeX.

To create a consistent and unified dataset, we process the inputs from GSM8K, MathQA, and
SVAMP to match the format of the MATH dataset. We utilize Claude 3 Sonnet (Anthropic, 2024) to
reformulate the final answers into a specified format, specifically using the “\boxed{}” command
to enclose final answers. For MathQA, which is originally in a multiple-choice format, we retain
only the correct answers and reformat them into value prediction tasks. This standardization ensures
that all problems across the datasets have a uniform presentation, facilitating knowledge transfer and
model training. During the processing, the reformatted outputs generated are compared to the orig-
inal answers to ensure accuracy. If the model fail to produce the correct answer after five attempts,
those instances are discarded to maintain the dataset quality.

Unlike the first category of general language understanding and reasoning, the fine-tuning and test
datasets in MATH-Combined are similarly distributed. This alignment allows us to gain insights
into the effectiveness of selecting task-specific data for fine-tuning, as it enables us to assess how
well the model performs on tasks that closely resemble its training data. To manage computational
resources efficiently, we sub-sample the test instances to approximately 1,000 problems per dataset.
Preliminary experiments show that it provides a representative enough evaluation of the model’s
performance while reducing the computational burden.

C MODEL CONFIGURATIONS

Our primary experiments utilize Gemma-2b (Gemma Team, 2024b), which contains 2.5 billion net-
work parameters, as the core framework for their relative efficiency in training and inference. Specif-
ically, we employ the instruction-tuned variant gemma-1.1-2b-it, known for its efficiency in
smaller-scale settings. We also conduct experiments with the larger and more advanced Gemma2
model gemma-2-9b-it (Gemma Team, 2024a) to investigate the impact of backbone model rep-
resentativeness on the relative performance.7 For the LoRA modifications, we default to a rank

7Available at https://huggingface.co/google/gemma-2-9b-it.
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r = 8 across all linear layers in the model (i.e., {q proj, k proj, v proj, o proj, up proj,
down proj, gate proj}), which count as about 0.39% of the total network parameters. In a sep-
arate experiment targeting the MATH-Combined dataset, we also explore the impact of increasing
the rank to r = 64. The adapter’s scaling factor α and dropout rate are consistently set to α = 4r
and pdropout = 0.1, respectively. The architecture for cluster-wise adapters Qc mirrors that of the
base adapter Qbase to streamline implementation. We typically set the gradient projection dimen-
sionality to dproj = 8192, but also include experiments with dproj = 512 to investigate the impact of
dimensionality reduction on model performance.

Due to license restrictions, we are unable to use LLaMA-series models (Touvron et al., 2023) for
our experiments.

D FINE-TUNING

For both dataset categories, we fine-tune the base adapter Qbase for 2 epochs using the Adam op-
timizer, with an initial learning rate of 5 × 10−5 that linearly decays to zero. Preliminary testing
indicates that 2 epochs optimize performance for Qbase, ensuring a fair comparison with our method.
We also observe a strong tendency toward overfitting beyond this point, as indicated by the loss value
and gradient norm curve. Cluster-wise adapters Qc undergo an identical duration of fine-tuning at a
slightly reduced learning rate of 2 × 10−5. These hyperparameters, derived from prior experience,
are fixed without adjustments to preemptively accommodate unseen test data, diverging from the
methods of Xia et al. (2024). Most fine-tuning sessions are conducted on an computing instance
equipped with 8 NVIDIA A100 40GB GPUs, employing 4-bit quantization for the backbone model
M and bf16 precision for adapters Q. This setup essentially uses QLoRA (Dettmers et al., 2023)
rather than LoRA, but we do not specifically distinguish them as they both belong to the LoRA fam-
ily and do not impact our conclusions. Additional training sessions utilize instances with 8 NVIDIA
V100 32GB GPUs, using fp16 precision. We observe no difference in performance between these
configurations apart from training speed. The maximum token sequence length for training is 2,048,
with a batch size of 16 sequences distributed across the GPU instances. Only a few (< 100 for each
dataset category using the Gemma-2b tokenizer) of training sequences are longer than this threshold,
and we simply discard these instances.

E BASELINES

Our primary baseline is the base LoRA adapter M + Qbase, which is fine-tuned on the complete
dataset for 2 epochs to achieve optimal performance, as detailed in Section D. Additionally, we
consider a dataset-wise adapter M + Qdataset for MATH-Combined, where the adapter is fine-
tuned and applied to each test subset individually. For instance, M + QMATH is fine-tuned on the
MATH training subset of MATH-Combined and evaluated on its corresponding MATH test subsets;
similarly, M +QGSM8K is fine-tuned on the GSM8K training subset and evaluated on the GSM8K
test subsets, and so on. dd We also include the backbone model M itself as a baseline, which is
used directly for test-case inference without any adapter fine-tuning. This baseline is applied only to
BBH and MMLU datasets, as they contain in-context examples to guide the model’s output format.
All other baseline methods start from the M+Qbase checkpoint for further fine-tuning or inference,
and include:

• MoE Routing: This baseline implements layer-level routing with the same weights as EL-
REA. Specifically, similar to equation 3, the averaged linear layer adapter output is given by

F(x) =

C∑
c=0

λcBcA
T
c x; λc =

wc∑C
c′=0 wc′

; w0 ≜ wbase,A0 ≜ Abase,B0 ≜ Bbase. (11)

Here, we omit the layer indicator i for simplicity. The matrices A and B are defined as in § 2.1,
and w represents the routing weight for each cluster as in equation 9. Note that F(x) is the
output of the LoRA MoE, which should be added to the layer output from the backbone model
M(x) with a scaling factor of α/r = 4, as mentioned in Appendix C.

• MoE Merging: This baseline merges the expert network weights before processing the input.
Specifically, the averaged linear layer adapter weights become the final weights for the model,
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i.e., A =
∑C

c=0 λcAc and B =
∑C

c=0 λcBc. Once merged, the network behaves as a single-
expert model, and the output is calculated as F(x) = BATx.

• Mixture of LoRA Experts (MoLE, Wu et al., 2024): This baseline models each layer of
trained LoRAs as a distinct expert and incorporates a learnable gating function within each
layer, in contrast to the precomputed universal routing weights used in MoE Routing. Using
the same notation as in equation 11, the output of each MoLE layer is defined as

F(x) =

C∑
c=0

λcBcA
T
c x; λc =

exp(wT
c x)∑C

c′=0 exp(w
T
c′x)

, (12)

where wc, a vector of the same dimensionality as x, represents the learnable gating weight of
a single-output linear layer for each expert c. In our setup, the gating outputs are expected to
exhibit an imbalanced distribution, as shown in Figure 2. Consequently, we do not include the
gating balancing loss proposed by Wu et al. (2024). The routing parameters are trained on the
entire training set for 1 epoch at a learning rate of 2× 10−5 with all other parameters frozen.

• LoRA Ensembles (Wang et al., 2023a): This baseline trains three adapters, Q1, Q2, and Q3,
independently on the entire dataset using the same configuration as the base adapter Qbase

(§ 3.1). During inference, four models (i.e., {M + Q(e)
base} and {M + Qi}3i=1) are applied

to the input sequence. The final prediction is then computed by averaging their pre-activation
logits and taking the ArgMax as the predicted next token. We do not match the number of
ensemble models to the number of clusters, C, in ELREA due to concerns about the training
and evaluation costs.

• Self-Consistency (Wang et al., 2023b): This baseline performs 5 separate inference passes
with M + Qbase for each instance, using random token sampling with the last-layer SoftMax
activation temperature set to 1. The final answer is determined by majority voting among the 5
predictions. In case of a tie, one of the tied answers is randomly selected as the final prediction.

• Instruction Embedding: Instead of using the instruction gradients representation from equa-
tion 2, this baseline employs the sentence embedding of the instruction text directly for train-
ing data clustering and test instance routing. Specifically, we use the Sentence Transformers
(Reimers & Gurevych, 2019) Python package with the all-mpnet-base-v2 model check-
point8 to encode the instruction text into a fixed-size vector, which is then used for clustering
and routing in the same way as the gradient features.

• Random Cluster: This baseline maintains the same number of clusters and cluster sizes as
ELREA but assigns cluster members randomly from the fine-tuning dataset Dft. Specifically,
Drand,c ⊂ Dft, with |Drand,c| = |Dc|, and Drand,c ∩ Drand,c′ = ∅ for all c ̸= c′ ∈ {1, 2, . . . , C}.
The corresponding adapters are fine-tuned on these randomly assigned clusters and are uni-
formly weighted during inference, i.e., wrand,base = wrand,1 = . . . = wrand,C = 1. This random
assignment preserves the distribution characteristics of Dft, positioning Random Cluster as an
approximate deep ensemble baseline with equivalent training effort to ELREA.

• Uniform Weights: This baseline assigns uniform weights to all clusters during inference, i.e.,
wbase = w1 = . . . = wC = 1.

F INFERENCE PROMPTING

Listing 1: An example of MATH-Combined inference prompts.
1 <bos><start_of_turn>user
2 Let $A = (2, 0)$, $B = (0, 2)$, $C = (-2, 0)$, and $D = (0, -2)$. Compute the greatest

possible value of the product $PA \cdot PB \cdot PC \cdot PD$, where $P$ is a point on
the circle $xˆ2 + yˆ2 = 9$.<end_of_turn>

3 <start_of_turn>model

Listing 2: An example of expected model answer for dataset MATH-Combined.
1 We use complex numbers. Let $a = 2$, $b = 2i$, $c = -2$, and $d = -2$ be the complex numbers

corresponding to $A$, $B$, $C$, and $D$, respectively. Let $p$ be the complex number
corresponding to $P$, so that $|p| = \sqrt{9} = 3$. Then we have \[\begin{aligned} PA \
cdot PB \cdot PC \cdot PD &= |p-2| \cdot |p-2i| \cdot |p+2| \cdot |p+2i| \\ &= |(p-2)(p
+2)| \cdot |(p-2i)(p+2i)| \\ &= |pˆ2-4| \cdot |pˆ2+4| \\ &= |pˆ4-16|. \end{aligned}\]
Since $|p| = 3$, we have $|pˆ4| = 3ˆ4= 81$, so by the triangle inequality, \[|pˆ4-16| \le

8https://huggingface.co/sentence-transformers/all-mpnet-base-v2.
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|pˆ4| + |-16| = 81 + 16 = 97.\]Equality holds if and only if $pˆ4 = -81$, which occurs
when $p = 3\left(\frac{\sqrt2}{2} + \frac{\sqrt2}{2}i\right)$. Therefore, the answer is $
\boxed{97}$.<end_of_turn>

2 <eos>

Listing 3: An example of BBH inference prompts.
1 <bos><start_of_turn>user
2 Infer the date from context.
3
4 Example 1:
5 Q: Today is Christmas Eve of 1937. What is the date 10 days ago in MM/DD/YYYY?
6 Options:
7 (A) 12/14/2026
8 (B) 12/14/1950
9 (C) 12/14/2007

10 (D) 12/14/1937
11 (E) 07/14/1938
12 (F) 12/14/1988
13 A: Let’s think step by step.
14 If today is Christmas Eve of 1937, then today’s date is December 24, 1937. 10 days before

today is December 14, 1937, that is 12/14/1937. So the answer is (D).
15
16 Example 2:
17 Q: Tomorrow is 11/12/2019. What is the date one year ago from today in MM/DD/YYYY?
18 Options:
19 (A) 09/04/2018
20 (B) 11/11/2018
21 (C) 08/25/2018
22 (D) 11/02/2018
23 (E) 11/04/2018
24 A: Let’s think step by step.
25 If tomorrow is 11/12/2019, then today is 11/11/2019. The date one year ago from today is

11/11/2018. So the answer is (B).
26
27 Example 3:
28 Q: Jane and John married on Jan 2, 1958. It is their 5-year anniversary today. What is the

date tomorrow in MM/DD/YYYY?
29 Options:
30 (A) 01/11/1961
31 (B) 01/03/1963
32 (C) 01/18/1961
33 (D) 10/14/1960
34 (E) 01/03/1982
35 (F) 12/03/1960
36 A: Let’s think step by step.
37 If Jane and John married on Jan 2, 1958, then and if it is their 5-year anniversary today,

then today’s date is Jan 2, 1963. The date tomorrow is Jan 3, 1963, that is 01/03/1963.
So the answer is (B).

38
39 Question:
40 Q: Today is Christmas Eve of 1937. What is the date tomorrow in MM/DD/YYYY?
41 Options:
42 (A) 12/11/1937
43 (B) 12/25/1937
44 (C) 01/04/1938
45 (D) 12/04/1937
46 (E) 12/25/2006
47 (F) 07/25/1937<end_of_turn>
48 <start_of_turn>model

Listing 4: An example of MMLU inference prompts.
1 <bos><start_of_turn>user
2 Please solve the following multi-choice problems.
3
4 Example 1:
5 What distinguishes coercive diplomacy from military force?
6
7 Option A: Compellence is another term for coercive diplomacy, but covering a narrower set of

criteria; compellence covers those threats aimed at initiating adversary action. A threat
to coerce a state to give up part of its territory would count as coercive diplomacy, as
long as that threat proactively initiates action before reactive diplomacy is taken.

8 Option B: Coercive diplomacy constitutes the threats of limited force to induce adversary’s
incentive to comply with the coercer’s demands. It is an influence strategy that is
intended to obtain compliance: the use of force to defeat an opponent first does not
count. It leaves an element of choice with the target to comply, or to continue.

9 Option C: Military force, or the threat of military force, utilises fear to achieve strategic
objectives. Coercive diplomacy is differentiated from this approach, because it does not
use fear as a tool for coercing an adversary.
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10 Option D: Coercive diplomacy is employed to use force but to limit its effects on the
international community. Coercive diplomacy is an aggressive strategy that is intended to
obtain compliance through defeat. It does not leave an element of choice with the target

, the target either being forced to comply or engage in conflict. It seeks to control by
imposing compliance by removing any opportunity for negotiation or concession.

11
12 Answer: B
13
14 Example 2:
15 Which of the following is the best lens through which to investigate the role of child

soldiers?
16
17 Option A: Child soldiers are victims of combat that need re-education and rehabilitation.
18 Option B: Children and their mothers are not active subjects in warfare and are best

considered as subjects in the private sphere.
19 Option C: Children are most often innocent bystanders in war and are best used as signifiers

of peace.
20 Option D: Children have political subjecthood that is missed when they are considered as

passive victims of warfare.
21
22 Answer: D
23
24 Example 3:
25 In order to become securitized, a threat must be presented in which of these ways?
26
27 Option A: As an existential threat that requires immediate and extraordinary action, posing a

threat to the survival of the state or to societal security.
28 Option B: As requiring immediate and extraordinary action by the state, threatening the

survival of a referent object and therefore warranting the use of measures not normally
employed in the political realm.

29 Option C: As an urgent threat to the survival of the referent object, so serious that it
legitimises the employment of extraordinary action in response.

30 Option D: As an urgent threat to the survival of the audience that requires extraordinary or
emergency measures.

31
32 Answer: C
33
34 Example 4:
35 How can we best describe the relationship between the state-centric approach and the concept

of human security?
36
37 Option A: There are such wide divisions within the human security framework regarding the

nature of threats and referent objects that no widely applicable comparisons between
state-centric approaches and human security can be drawn.

38 Option B: By adopting the framework of human security, the limitations of the realist state-
centric approach become evident. Whilst human security defines the referent object as the
person or population, state-centric approaches prioritise the security of the state, de-

prioritizing the pursuit of human security.
39 Option C: The state-centric approach to security is a faction of human security, usually

defined within the broad school of human security. By being state-centric this approach
prioritises the individual as the referent object in security studies.

40 Option D: Both the state-centric and human-centric approaches to security are mutually
exclusive and offer a sufficient analytic framework with which to understand the
international security system. It is therefore the role of security analysts to determine
which of these substantial concepts is correct, and which should be discarded.

41
42 Answer: B
43
44 Example 5:
45 What are the frameworks of analysis within which terrorism has been considered (as of 2020)?
46
47 Option A: Competition between larger nations has resulted in some countries actively

supporting terrorist groups to undermine the strength of rival states. Terrorist networks
are extended patronage clubs maintained and paid for by their donor states and are

conceptualised as being like state actors, to be dealt with using military force.
48 Option B: Globalization has enabled the internationalization of terrorist activities by

opening up their operational space, although coordination is still managed from a
geographical base. This suggests that terrorist groups are nationally structured which
means that terrorism cannot be considered in terms of a war to be defeated militarily
without having serious implications on the indigenous population.

49 Option C: Terrorism can be viewed as a problem to be resolved by military means (war on
terrorism), by normal police techniques (terrorism as crime), or as a medical problem
with underlying causes and symptoms (terrorism as disease).

50 Option D: Terrorism is viewed as a criminal problem. The criminalization of terrorism has two
important implications. Firstly, it suggests that terrorism can be eradicated -
terrorists can be caught and brought to trial by normal judicial proceedings thereby
removing the threat from society - and secondly, it suggests that preventative crime
techniques are applicable to prevent its development.

51
52 Answer: C
53
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Table 5: Efficiency comparison on a toy dataset. Time is in seconds; memory is in GiB.

Step
M+Qbase ELREA

Time Memory Time Memory

Fine-tuning base adapter Qbase on Dft (§ 3.1) 246 15.49 246 15.49
Calculating training gradient features δ(xft, instr) (§ 3.3) – – 68 24.76
Calculating test gradient features δtest (§ 3.4) – – 14 24.76
Fine-tuning experts on clusters (§ 3.3) – – 246 15.49

Fine-Tuning Total 246 – 574 –

Inference (§ 3.4) 114 7.73 262 18.46

54 Question:
55
56 Which of these principles is not an element of the responsibility to protect?
57
58 Option A: The responsibility to prevent.
59 Option B: The responsibility to react.
60 Option C: The responsibility to remain sovereign.
61 Option D: The responsibility to rebuild.<end_of_turn>
62 <start_of_turn>model

G EFFICIENCY ANALYSIS

Theoritical Analysis Theoretically, the computational overhead of ELREA compared to using
M+Qbase arises from the following aspects:

1) the computation of the gradients of all training and test instructions; 2) clustering the gradient
features of the training data points and computing the weights of each test data point on the clusters;
3) additional training steps to fit LoRA experts on the training clusters; 4) additional computational
resources required to perform the forward pass on all LoRA experts for each test data point. In
practice, step 2) only takes a few minutes with our clustering setup (§ 3.3 and § 3.4), which is
negligible compared to the entire training process and will be ignored in the following discussion.

If implemented properly, step 1) can also be integrated into the training and inference process with
relatively small overhead. With a naı̈ve implementation, step 1) approximately equals the cost of
training the model on the combination of training and test instructions (without answers) for one
epoch, whose overhead depends on the average length of the instructions. For datasets such as
OpenAssistant, MATH, GSM8k, and MathQA, whose average instruction length is comparatively
much shorter than the answer length (Table 4), the overhead is minimal. In the worst-case scenario,
step 1)’s overhead approximates the cost of training the model on the combination of training and
test for one epoch, which is still acceptable for most fine-tuning datasets.

As the sum of our training cluster sizes equals the number of training data points, i.e.,
∑C

c=1 |Dc| =
|Dft|, the additional training steps in step 3) take the same amount of time as training the base adapter
Qbase (§ 3.4) on Dft, excluding CPU-disk I/O overhead, which is generally less than one minute in
our experiments.

The complexity of step 4), however, is harder to estimate as it varies drastically according to the
implementation. In our implementation, we choose to duplicate the input instruction along the batch
dimension by the number of experts (i.e., C + 1) and perform a forward pass on the backbone and
all experts simultaneously. This implementation has a similar cost to using a (C + 1)× inference
batch size with the base adapter M+Qbase.

Empirical Results To evaluate the efficiency of ELREA, we compared its computation time with
that of the baseline model M+Qbase using a same set of hyper-parameters and device configuration
on a single NVIDIA A101 80G GPU, except for the following specific parameters. We generate a
toy dataset consisting of 2,000 training samples and 400 test samples as a smaller-scale but more
controllable evaluation setup. Each sample contains 60 random lorem-ipsum words in both the
instruction and the answer (which accounts for around 200 tokens each), matching the lengths in
Dolly-15k (Table 4). We designate C = 4 experts and set the LoRA ranks to r = 8. The model
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Figure 4: Distribution of data sources and categories within each cluster for the MATH-Combined
and GLUR (general language understanding and reasoning) training sets at rank r = 8. Cluster
indices are shown along the rows, while columns represent data sources and categories, formatted as
“{source dataset}-{category}” for MATH-Combined and “{source dataset}” for
GLUR. The color intensity reflects the sample count, with darker shades indicating higher counts.
Each column is independently normalized, meaning scales may differ across columns. Color gradi-
ents are slightly curved to improve visibility for categories with fewer samples.

undergoes fine-tuning over 3 epochs, with batch sizes of 4 for both fine-tuning and inference. During
inference, the model consistently predict the next 20 tokens for all input instructions to ensure a fair
comparison.

The results from our implementation, presented in Table 5, indicate that the fine-tuning time for EL-
REA was 574 seconds, which is approximately 2.3× that of the baseline M+Qbase’s 246 seconds.
Similarly, the inference time and memory consumption are about 2.3× and 2.4×, respectively. In
contrast, a classic Deep Ensembles setup, where each LoRA expert is trained independently from
scratch on the entire dataset, would require 5× the time of the baseline for both fine-tuning and
inference. Thus, ELREA offers significant efficiency and performance gains compared to this more
traditional approach.

Further enhancements to ELREA’ efficiency could be achieved by reducing the number of experts
or the LoRA ranks, or by constructing gradient features from only the top-k Transformer blocks
rather than the entire model. Moreover, we are exploring LoRA merging techniques in ongoing
work to effectively combine similar expert adapters, thereby further reducing inference costs.

H FURTHER ANALYSIS ON DATA CLUSTERING

To better understand the distribution of data across clusters, we analyzed the sources and categories
within each cluster from the MATH-Combined dataset, as visualized in Figure 4. Here, “data source”
refers to the individual datasets that comprise MATH-Combined (i.e., MATH, GSM8k, SVAMP, or
MathQA) and language understanding and reasoning (i.e., CoT, Dolly-15k, Flan V2, and OpenAs-
sistant), and “category” pertains to the finer-grain labels within these datasets. Notably, GSM8k is
categorized uniformly under a single label “gsm8k” due to its lack of distinct category labels.

Analysis of Figure 4 reveals distinct correlations between clusters and data sources. For instance,
in MATH-Combined, clusters 2, 3, and 5 predominantly contain samples from MATH, whereas
clusters 0, 1, 6, and 7 primarily feature contributions from MathQA. This clustering also appears to
group together tasks requiring similar mathematical skills; for example, cluster 4 heavily includes
SVAMP samples, which typically assess algebraic problem-solving capabilities, alongside signifi-
cant portions of “Algebra” and “Prealgebra” from the MATH dataset.
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(a) (b) (c)

Figure 5: Examples of data clusters from MATH-Combined, generated using different random seeds
in cases where the clusters are non-identical. The entire dataset is used for clustering, but only 10%
of the data is visualized for clarity. The 8,192-dimensional gradient features are projected into 2D
space using t-SNE. The colors are randomly assigned; the same color does not necessarily imply the
same cluster across different seeds.

Additionally, within individual sources, clusters distinguish between finer categories effectively;
cluster 2 mainly focuses on Geometry and Probability, whereas cluster 3 is concentrated on Al-
gebra. These insights suggest that the data representations successfully capture inherent structural
differences, making the clustering both interpretable and meaningful. Such characteristics motivates
the design of ELREA and significantly improves its efficacy.

As mentioned in § 3.3, the clustering process is robust to random seeds; i.e., different seeds yield
similar clusters. In cases where the clusters are not identical, we visualize them using t-SNE in
Figure 5, which demonstrates sensible data partitioning and similar cluster structures across differ-
ent seeds. Even if the cluster boundaries are not identical, the ensemble framework in ELREA
effectively mitigates these differences through weighted aggregation of experts, ensuring robust per-
formance across various cluster configurations. Therefore, the clustering process is both stable and
reliable, providing a strong foundation for the ELREA framework.
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