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Abstract

Time series are often irregularly sampled with uneven time intervals. In multivari-
ate cases, such irregularities may lead to misaligned observations across variables
and varying observation counts, making it difficult to extract intrinsic patterns
and degrading the classification performance of deep learning models. In this
study, we propose an adaptive time encoding approach to address the challenge of
irregular sampling in multivariate time-series classification. Our approach gener-
ates latent representations at learnable reference points that capture missingness
patterns in irregular sequences, enhancing classification performance. We also
introduce consistency regularization techniques to incorporate intricate temporal
and intervariable information into the learned representations. Extensive experi-
ments demonstrate that our method achieves state-of-the-art performance with high
computational efficiency in irregular multivariate time-series classification tasks.

1 Introduction

Figure 1: Example of irregular multivariate time series

Multivariate time series, which con-
sist of multiple variables over time,
are prevalent in diverse domains such
as healthcare and finance [10, 14]. In
practice, time series are often irregu-
larly sampled with uneven time inter-
vals between consecutive observations
due to cost-saving measures, sensor
failures, or medical interventions [4]. As shown in Figure 1, in multivariate cases, observations across
different variables may not be aligned, and the number of observations in each variable can differ
because different subsets of variables are recorded at each time point. These irregularities hinder
the capture of intrinsic patterns, causing standard deep learning models, which assume that input
sequences are regularly sampled, to perform poorly in classification tasks [16].

To address irregularities, previous work has developed deep learning models that directly learn from
irregular time series to improve classification performance [2, 30]. In particular, recent studies have
exploited attention mechanisms to focus on partial observations in irregular time series, successfully
capturing complicated temporal patterns and achieving superior classification performance [3].

Despite their superiority, these methods encounter two notable limitations. First, they struggle to fully
exploit missingness patterns inherent in uneven time intervals, which reflect the underlying processes
that generate irregular time series [32]. For example, patients’ examination schedules, which vary
with changing health conditions or treatment needs, tend to reveal their health status. Second, they
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often overlook intervariable relationships, which are particularly beneficial for classifying multivariate
time series [8, 45]. Although some studies have considered these relationships as well as the challenge
of irregular sampling [42, 47], they have usually used graph neural networks that require a high
computational burden to capture intervariable dependencies [5, 41].

To address these issues, we design a novel interpolation-based encoder-classifier framework, Adaptive
Time Encoding Network (ATENet), which learns reference time points and generates effective
representations for irregular multivariate time-series classification. Specifically, we propose an
Adaptive Time Encoding (ATE) that learns reference time points, which serve as queries in an
attention mechanism in each training iteration, and creates fixed-length representations at the learned
reference points. This approach reduces information loss by interpolating with unevenly spaced
time points, effectively capturing missingness patterns from partially observed irregular time series.
It also avoids the need for manual tuning of reference points. Moreover, we introduce temporal
and intervariable consistency regularization terms to enhance representation quality by efficiently
capturing intricate temporal patterns between consecutive observations and structural relations
between variables, thereby boosting classification performance. Consequently, ATENet successfully
classifies irregular multivariate time series by transforming them into fixed-length representations at
the reference points that are adaptively learned to reflect both temporal and intervariable dependencies.

To demonstrate the effectiveness and efficiency of our method, we performed a series of experi-
ments on irregular multivariate time-series classification. ATENet achieved superior classification
performance with high computational efficiency compared to state-of-the-art (SOTA) methods.

This study has the following main contributions:

• We design a novel interpolation-based encoder-classifier framework that learns effective
representations for irregular multivariate time-series classification;

• Our encoding approach directly learns reference points, rather than manually finding the
optimal ones, to capture underlying patterns within irregular time series;

• We introduce temporal and intervariable consistency regularization terms to explicitly
consider intricate temporal dynamics and relationships across variables;

• The proposed method achieved SOTA performance with high computational efficiency in
irregular multivariate time-series classification.

2 Related Work

Irregular time series are characterized by uneven time intervals between adjacent observations. In
multivariate cases, these irregularities mean that observations may not be aligned across variables,
and the number of observations in each variable can also differ [12]. Such irregularities complicate
the analysis for time series, often leading to poor classification performance of deep learning models.

A traditional approach to dealing with these irregularities is temporal discretization, which discretizes
observations into consecutive and non-overlapping uniform bins [18, 22]. This approach is simple
but requires additional handling for bins with more than one observation and leads to missing data
when bins are empty [30].

As an alternative to temporal discretization, some previous studies intuitively preprocessed missing
observations using various imputation or interpolation schemes and then fed them as regular sequences
to standard deep learning models [23, 28]. However, the absence of observations can be informative
on its own, making the regular imputation not always beneficial [1, 19]. Moreover, they can distort
the inherent distribution of time series, leading to unintended distribution shifts [47].

Thus, several studies have developed deep learning models that directly learn from irregular time
series to improve classification performance by preserving their intrinsic characteristics. For example,
Che et al. [2] took the observed values and missing indicators as inputs for gated recurrent units and
handled irregular time intervals through a decay mechanism. In addition, Wu et al. [40] focused on
dynamically capturing temporal dependencies of irregular time series.

Some recent works have exploited attention mechanisms to successfully capture missingness patterns
in irregular time series by considering all observations within the time series and finding informative
ones [36, 48]. Horn et al. [9] incorporated an attention mechanism with differentiable set function
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learning to handle misaligned observations across different variables. Shukla and Marlin [30]
introduced a multi-time attention mechanism to learn temporal similarity from partial observations
and generate continuous-time embeddings. However, they struggle to fully exploit missingness
patterns that underlie irregular time series. Moreover, they do not explicitly capture intervariable
dependencies, which provide rich information in multivariate time-series classification [8, 45].

While some studies have attempted to reflect intervariable relationships along with irregularities
[42, 46, 47, 49], their computational complexities are extremely high due to the use of graph neural
networks or additional complex attention mechanisms to capture intervariable dependencies [5, 41].

3 Proposed Method

Figure 2: Overview of the proposed method

We propose a novel interpolation-
based encoder-classifier framework,
ATENet, for irregular multivariate
time-series classification. The en-
coder directly takes irregular se-
quences as inputs and generates their
representations at learnable reference
points, and the classifier predicts their
class labels. In particular, a novel
time encoding approach, ATE, is in-
troduced to learn effective reference time points for capturing missingness patterns of irregular
multivariate time series and generate latent representations at these reference points. Additionally, we
introduce temporal and intervariable consistency regularization techniques to incorporate intricate
temporal dynamics and relationships across variables into the representations, thereby enhancing
classification performance. Figure 2 illustrates an overview of ATENet.

3.1 Problem Statement

Let D = {(X𝑛, 𝒚𝑛)}𝑁𝑛=1 be a set of 𝑁 labeled samples, whereX𝑛 is an irregular multivariate time series,
and 𝒚𝑛 ∈ {0, 1}𝐶 is its one-hot encoded label vector. The observations in each variable 𝑣 ∈ {1, · · · , 𝑉}
of X𝑛 are irregularly recorded at different time points; hence, the number of observations 𝑇𝑛𝑣 can
differ across variables. Thus, for each variable 𝑣, we denote X𝑛𝑣 ∈ X𝑛 as a tuple ( 𝒕𝑛𝑣 , 𝒙𝑛𝑣), where
𝒕𝑛𝑣 = {𝑡𝑛𝑣1, · · · , 𝑡𝑛𝑣𝑇𝑛𝑣 } and 𝒙𝑛𝑣 = {𝑥𝑛𝑣1, · · · , 𝑥𝑛𝑣𝑇𝑛𝑣 } are the sets of the observed time points and
values, respectively.

Given a set of learnable reference time points 𝒓 = {𝑟1, · · · , 𝑟𝐾 }, we define an encoder 𝑓 : X𝑛 → 𝒛𝑛
and a classifier 𝑔 : 𝒛𝑛 → 𝒚̂𝑛, where 𝒛𝑛 ∈ R𝑉×𝐾 is 𝑉-dimensional representations for each of 𝐾
reference points, and 𝒚̂𝑛 ∈ R𝐶 denotes the softmax probabilities for each class 𝑐 ∈ {1, · · · , 𝐶} with
respect to X𝑛. Note that the dimension of 𝒛𝑛𝑘 ∈ 𝒛𝑛 is set equal to the number of variables 𝑉 of X𝑛
to enforce intervariable consistency between X𝑛 and 𝒛𝑛. Our objective is to optimize 𝑓 , 𝑔, and 𝒓 to
learn effective representations for irregular multivariate time-series classification. In the remainder of
this paper, we omit the sample index 𝑛 for brevity when the context is clear.

3.2 Adaptive Time Encoding

In the encoder 𝑓 , we introduce ATE that transforms an irregular multivariate time series X into a
representation 𝒛 on learnable reference points. To enhance representation quality, two consistency
regularization techniques for reflecting temporal and intervariable dependencies are also suggested.

3.2.1 Learnable Reference Time Points

Previous studies with attention mechanisms generally transform an irregular sequence into a fixed-
length representation by interpolating with regular time intervals [15, 30]. However, their repre-
sentation may be insufficient to substitute the input sequence due to information loss caused by
disregarding its irregularity in time intervals, and their classification performance tends to highly
depend on the choice of reference points [31, 50]. Thus, we explicitly learn the reference points to
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allow uneven time intervals and adaptively represent the partial observations of the irregular sequence
without manually exploring the optimal reference points.

Specifically, we first learn a globally shared set of reference time points, which are not fixed but
jointly optimized with model parameters to capture task-relevant temporal structures across the
training data. These reference points serve as soft anchors that reflect representative temporal patterns,
such as common event timings, even when sequences are irregular or misaligned. When the training
data exhibit diverse alignment distributions, the learned reference points are flexibly positioned to
reflect such variations. Importantly, although the reference points are shared, the attention-based
interpolation is computed individually for each sample, conditioned on its actual observations. This
design enables the model to adaptively align each sequence with the learned temporal structure,
effectively handling variability in observation frequencies or event timings. Moreover, this design
choice is motivated by three key benefits compared to using fully individualized reference points:

• Robustness and stability: It can mitigate sensitivity to per-sample noise and outliers.

• Generalization: It captures dataset-level temporal structure while retaining per-sample
adaptability through attention-based interpolation.

• Efficiency: It reduces computational overhead compared to per-sample optimization without
losing flexibility.

A detailed comparison between globally shared and fully individualized reference points is provided
in Appendix G.

Let 𝒓 = {𝑟1, · · · , 𝑟𝐾 } be a query parameter that is a globally shared set of learnable reference time
points uniformly initialized from zero to one. Note that during model training, this query parameter 𝒓
is optimized in an end-to-end manner. Given a 𝑣-th variable X𝑣 = ( 𝒕𝑣 , 𝒙𝑣) ∈ X, our approach takes a
query time point 𝑟𝑘 ∈ 𝒓 and a set of keys and values, 𝒕𝑣 and 𝒙𝑣 , as an input of the encoder 𝑓 and then
obtains 𝑉-dimensional representations 𝒛𝑘 at 𝑟𝑘 .

Following Shukla and Marlin [30], we first derive a time embedding vector of size 𝐿 for 𝑡𝑣𝜏 ∈ 𝒕𝑣 using
a set of 𝐻 time embedding functions Φ = {𝜙1, · · · , 𝜙𝐻 }. Two popular time embedding functions are:

1. Sinusoidal embedding function [38]:

𝜙ℎ (𝑡𝑣𝜏) [ℓ] =
{
sin(𝑡𝑣𝜏/𝑇2ℓ/𝐿), if ℓ is even
cos(𝑡𝑣𝜏/𝑇2ℓ/𝐿), if ℓ is odd

(1)

where ℓ ∈ {1, · · · , 𝐿} is ℓ-th embedding component for 𝑡𝑣𝜏 , and 𝑇 is the number of all
possible observations when fully observed (maximum sequence length). This function is
independent of ℎ, deriving the same embedding vector for all 𝐻 time embedding functions.

2. Learnable embedding function [11]:

𝜙ℎ (𝑡𝑣𝜏) [ℓ] =
{
𝑤ℎℓ · 𝑡𝑣𝜏 + 𝑏ℎℓ , if ℓ = 1
sin(𝑤ℎℓ · 𝑡𝑣𝜏 + 𝑏ℎℓ), otherwise

(2)

where 𝑤ℎℓ and 𝑏ℎℓ are learnable parameters that represent the frequency and phase shift
of the sine function, respectively. It captures non-periodic patterns over time when ℓ = 1;
otherwise, it captures periodic patterns.

Our approach is agnostic to this function; hence, its choice is treated as a hyperparameter.

Subsequently, we define interpolation weights based on an attention mechanism. Specifically, the
interpolation weights 𝜅ℎ (𝑟𝑘 , 𝑡𝑣𝜏) are computed as a scaled inner product attention between the time
embedding vectors 𝜙ℎ (𝑡𝑣𝜏) and 𝜙ℎ (𝑟𝑘), which corresponds to the actually observed time point
𝑡𝑣𝜏 ∈ 𝒕𝑣 and the reference point 𝑟𝑘 , respectively, as follows:

𝜅ℎ (𝑟𝑘 , 𝑡𝑣𝜏) =
𝑒𝜙ℎ (𝑟𝑘 )𝜙ℎ (𝑡𝑣𝜏 )

⊤/
√
𝜖∑𝑇𝑣

𝜏′ 𝑒
𝜙ℎ (𝑟𝑘 )𝜙ℎ (𝑡𝑣𝜏′ )⊤/

√
𝜖
, (3)

where 𝑇𝑣 denotes the number of observations in X𝑣 , and 𝜖 is a scaling parameter. Note that the same
𝜙ℎ is equally applied to all variables. Then, we obtain an univariate time function forX𝑣 , 𝜓ℎ𝑣 (𝑟𝑘 ,X𝑣),
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(a) Temporal consistency regularization (b) Intervariable consistency regularization

Figure 3: Procedures for (a) temporal and (b) intervariable consistency regularization techniques

using the interpolation weights as follows:

𝜓ℎ𝑣 (𝑟𝑘 ,X𝑣) =
𝑇𝑣∑︁
𝜏=1

𝜅ℎ (𝑟𝑘 , 𝑡𝑣𝜏) · 𝑥𝑣𝜏 , (4)

where 𝑡𝑣𝜏 ∈ 𝒕𝑣 and 𝑥𝑣𝜏 ∈ 𝒙𝑣 denote an observed time point and value in X𝑣 . This function serves as
a kernel smoothing for X𝑣 [30]. Finally, for each reference point 𝑟𝑘 ∈ 𝒓, the representation 𝒛𝑘 ∈ R𝑉
is generated by a linear combination of the univariate time functions corresponding to 𝑟𝑘 across 𝑉
variables and 𝐻 heads. Formally, the 𝑣′-th embedding component of 𝒛𝑘 , where 𝑣′ ∈ {1, · · · , 𝑉}, is
calculated as follows:

𝒛𝑘 [𝑣′] =
𝐻∑︁
ℎ=1

𝑉∑︁
𝑣=1

𝜓ℎ𝑣 (𝑟𝑘 ,X) ·𝑊ℎ𝑣𝑣′ , (5)

where𝑊ℎ𝑣𝑣′ are learnable parameters. Following these procedures for all reference points in parallel,
we obtain the final representation 𝒛 = {𝒛1, · · · , 𝒛𝐾 } for X.

3.2.2 Temporal Consistency Regularization

In general, time series contain information redundancy, easily enabling the recovery of missing
observations through local temporal patterns obtained from adjacent observations. By hiding several
observations of the time series with a high masking ratio, this information redundancy can be
removed, thereby forcing the model to capture complex temporal relations [13]. Thus, we introduce a
novel temporal consistency regularization term that exploits a masking technique to capture intricate
temporal patterns in X. Figure 3a illustrates the temporal consistency regularization technique.

Given 𝑛-th sample X𝑛 = ( 𝒕𝑛, 𝒙𝑛) ∈ D, we define a binary mask 𝒎 ∈ R𝑉×𝑇 , where 𝑇 is the maximum
sequence length. Then, the masked keys and values, 𝒕′𝑛 and 𝒙′𝑛, are derived by element-wise
multiplication of 𝒎 with 𝒕𝑛 and 𝒙𝑛, respectively, as follows:

𝒕′𝑛 = 𝒕𝑛 ◦ 𝒎, 𝒙′𝑛 = 𝒙𝑛 ◦ 𝒎. (6)

We randomly pick the masking ratio ∈ [0.1, 0.9] in every epoch to avoid the effort of finding the
optimal masking ratio. Such random masking can encompass a variety of masking ratios, thereby
enhancing the capability to capture sophisticated temporal patterns of X𝑛. Consequently, we generate
a masked context view 𝒛′𝑛 = {𝒛′𝑛1, · · · , 𝒛

′
𝑛𝐾
} of X𝑛 by Eqs. (3)-(5) with 𝒕′𝑛 and 𝒙′𝑛.

To encourage temporal consistency, we employ both instance-wise and point-wise contrastive loss
functions suggested by Yue et al. [44], which are complementary as they capture coarse-grained and
fine-grained temporal dependencies, respectively. For X𝑛, the instance-wise contrastive loss L𝑇𝐶𝐼𝑛
is designed to maximize the similarity between the representation 𝒛𝑛𝑘 ∈ 𝒛𝑛 and its corresponding
masked context view 𝒛′

𝑛𝑘
∈ 𝒛′𝑛, while minimizing the similarities to representations at the same

reference point 𝑟𝑘 from other samples in the same batch. This loss is calculated as follows:

L𝑇𝐶𝐼𝑛 = − 1
𝐾

𝐾∑︁
𝑘=1

log
𝑒𝒛𝑛𝑘 ·𝒛

′
𝑛𝑘∑𝐵

𝑏=1

(
𝑒𝒛𝑛𝑘 ·𝒛

′
𝑏𝑘 + 𝟙[𝑛≠𝑏]𝑒𝒛𝑛𝑘 ·𝒛𝑏𝑘

) , (7)

where 𝐵 is the batch size, 𝐾 is the number of reference points, and 𝟙 is the indicator function. In
contrast, the point-wise contrastive loss L𝑇𝐶𝑃𝑛

, which uses the representations of X𝑛 at different
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reference points as negatives, is calculated by

L𝑇𝐶𝑃𝑛
= − 1

𝐾

𝐾∑︁
𝑘=1

log
𝑒𝒛𝑛𝑘 ·𝒛

′
𝑛𝑘∑𝐾

𝑘′=1

(
𝑒𝒛𝑛𝑘 ·𝒛

′
𝑛𝑘′ + 𝟙[𝑘≠𝑘′ ]𝑒𝒛𝑛𝑘 ·𝒛𝑛𝑘′

) , (8)

Finally, the temporal consistency regularization term is defined as follows:

L𝑇𝐶𝑛
=

1
2
(
L𝑇𝐶𝐼𝑛 + L𝑇𝐶𝑃𝑛

)
. (9)

3.2.3 Intervariable Consistency Regularization

Prior works that deal with intervariable relationships, which are known to be informative for multi-
variate time-series classification, have a high computational burden because they employed graph
neural networks or incorporated further complicated attention mechanisms. Thus, to efficiently reflect
the intervariable relationships, we exploit an intervariable consistency regularization term that is
simply calculated based on the outer product. Figure 3b briefly displays the intervariable consistency
regularization technique.

Given X𝑛 = ( 𝒕𝑛, 𝒙𝑛) and its representation 𝒛𝑛, we first define two outer product matrices for 𝒙𝑛 and
𝒛𝑛, denoted as P𝑛 and Q𝑛, as follows:

P𝑛 = ⌈𝜎(𝒙𝑛𝒙⊤𝑛 )⌋, Q𝑛 = 𝜎(𝒛𝑛𝒛⊤𝑛 ), (10)
where 𝜎 is the sigmoid function, and ⌈·⌋ is the rounding operator. The dimensions of P𝑛 and Q𝑛
are both ∥𝑉 ∥ × ∥𝑉 ∥. Following the outer product’s properties, which capture the structural relations
between two vectors [33], P𝑛 and Q𝑛 can reflect intervariable dependencies in 𝒙𝑛 and 𝒛𝑛, respectively.

Then, we encourage intervariable consistency by employing the binary cross-entropy loss as follows:

L𝑉𝐶𝑛
=

∑︁
(𝑝𝑖 𝑗 ,𝑞𝑖 𝑗 ) ∈ (P𝑛 ,Q𝑛 )

𝑝𝑖 𝑗 log 𝑞𝑖 𝑗 + (1 − 𝑝𝑖 𝑗 ) log(1 − 𝑞𝑖 𝑗 ), (11)

where 𝑝𝑖 𝑗 and 𝑞𝑖 𝑗 are the (𝑖, 𝑗) elements of P𝑛 and Q𝑛, respectively. Note that P𝑛 is regarded as the
ground truth of intervariable relations that should be maintained in the latent representation. Through
this loss, we can efficiently capture intervariable dependencies, enriching the representation 𝒛𝑛.

3.3 Adaptive Time Encoding Network

ATENet is an end-to-end framework that sequentially combines an encoder configured by ATE with
a classifier for irregular multivariate time-series classification. The encoder 𝑓 directly takes a labeled
irregular sequence (X𝑛, 𝒚𝑛) ∈ D as an input and generates a representation 𝒛𝑛 for the set of learnable
reference time points 𝒓. The classifier 𝑔 then uses 𝒛𝑛 to predict the softmax probabilities 𝒚̂𝑛.

3.3.1 Simple Classifier

If the encoder 𝑓 learns the representations that successfully substitute irregular multivariate time
series through ATE, we can achieve high classification performance even with a simple classifier.
Thus, we simply design the classifier 𝑔 as a gated recurrent unit followed by two fully connected
layers, where the first layer includes batch normalization and a GeLU activation function.

Let 𝒚𝑛 = {𝑦𝑛1, · · · , 𝑦𝑛𝐶 } and 𝒚̂𝑛 = {𝑦̂𝑛1, · · · , 𝑦̂𝑛𝐶 } be the one-hot encoded label vector and predicted
softmax probabilities for an irregular multivariate time series X𝑛, where 𝐶 is the number of classes.
We define a classification loss as the cross-entropy combined with label smoothing, parameterized by
𝜂, to prevent overfitting of the model and improve its generalization performance [34], as follows:

L𝐶𝐿𝑛 = −
𝐶∑︁
𝑐=1

(
(1 − 𝜂)𝑦𝑛𝑐 +

𝜂

𝐶

)
log 𝑦̂𝑛𝑐 . (12)

3.3.2 Optimization

Given D = {(X𝑛, 𝒚𝑛)}𝑁𝑛=1, we train 𝑓 , 𝑔, and 𝒓 with the following loss function:

L =
1
𝑁

𝑁∑︁
𝑛=1

(
L𝐶𝐿𝑛 + 𝛼L𝑇𝐶𝑛

+ 𝛽L𝑉𝐶𝑛

)
, (13)
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Metric Dataset mTAND DGM2 GRU-D MTGNN Transformer Trans-mean SeFT Raindrop Warpformer MTSFormer ATENet

AUROC

P12-M 84.18±1.20 71.08±2.30 48.62±2.41 61.59±5.79 82.92±0.72 83.39±0.56 68.05±1.49 81.19±1.76 79.35±1.65 84.11±0.71 85.54±1.26
P12-L 49.60±3.16 69.46±1.47 49.82±3.85 68.36±6.09 59.05±1.81 61.64±1.54 64.70±2.01 70.40±1.60 74.57±2.28 75.17±1.09 79.64±2.24
P19 80.00±1.23 81.96±2.05 87.16±1.34 85.07±3.54 77.56±3.06 78.57±3.02 77.89±2.62 85.93±2.24 85.41±2.39 88.96±2.01 84.02±1.38

PAM 92.21±0.70 96.87±0.50 91.72±0.59 96.95±0.32 96.61±1.27 97.64±0.25 74.46±6.70 98.73±0.25 97.94±0.45 98.39±0.28 99.18±0.15

AUPRC

P12-M 52.89±2.27 29.99±2.24 14.83±1.55 24.25±5.49 46.35±2.81 48.54±2.24 24.43±3.10 42.14±3.32 41.98±1.30 48.53±2.55 53.31±2.02
P12-L 92.42±1.09 96.42±0.41 93.41±0.93 96.41±1.08 94.16±0.99 94.65±0.80 95.28±0.24 96.57±0.51 96.99±0.34 97.43±0.28 97.70±0.38
P19 31.24±4.15 31.12±5.25 47.37±2.97 41.13±8.01 29.60±6.26 28.05±6.23 30.34±1.80 50.63±3.32 41.12±3.30 57.96±4.10 41.16±3.02

PAM 74.95±2.68 88.28±1.28 75.78±2.02 88.85±2.00 86.73±4.21 91.50±0.61 36.43±12.23 95.48±0.91 92.75±1.43 94.21±0.71 97.61±0.26

Average Rank 7.50 6.88 8.25 6.75 8.13 6.63 9.13 3.75 4.63 2.38 2.00

Table 1: Classification performance of ATENet and baselines. The best score in each dataset is shown in bold.

where 𝛼 and 𝛽 weight the temporal and intervariable consistency regularization terms, respectively.

In summary, L𝐶𝐿𝑛 allows the representations to be directly affected by class labels and capture
discriminative features relevant to classification, while L𝑇𝐶𝑛

and L𝑉𝐶𝑛
capture inherent temporal

patterns and intervariable relationships in irregular multivariate time series, thereby enhancing
classification performance. Pseudo-code and complexity analysis are given in Appendices A and B.

4 Experiments

4.1 Experimental Settings

Here, we briefly describe the experimental settings. The implementation details and sensitivity
analyses for hyperparameters are provided in Appendices D and I.

Baselines. We compared ATENet with 10 SOTA methods: mTAND [30], DGM2 [40], GRU-D
[2], MTGNN [42], Transformer [38], Trans-mean, SeFT [9], Raindrop [47], Warpformer [46], and
MTSFormer [49]. All baselines, except Trans-mean, are mentioned in Section 2; Trans-mean is a
method that combines Transformer with average interpolation, which imputes missing observations
by the average observed value of each variable.

Datasets. To validate our method, ATENet, we used three irregular multivariate time-series datasets:

• P12 [7], which includes 11,988 patients recorded by 36 sensors in the first 48-hour stay in
the intensive care unit, has two predictive binary class labels: in-hospital mortality (P12-M)
and hospitalization length (P12-L).

• P19 [27] contains 38,803 patients monitored by 34 sensors. Each sample is annotated with a
binary class label for the occurrence of sepsis.

• PAM [25] has 5,333 samples for eight activities of daily life measured by 17 sensors.

Further details for each dataset are provided in Appendix C.

Evaluation metrics. We employed the area under the receiver operating characteristic curve
(AUROC) and area under the precision-recall curve (AUPRC) to evaluate classification performance
while considering the imbalance in each dataset. We repeated each experiment five times and reported
the averages and standard deviations.

4.2 Experimental Results

4.2.1 Classification Performance

Table 1 shows the averages and standard deviations of AUROC and AUPRC scores of the baselines
and ATENet for each dataset. The results of statistical tests, which confirm the significance of the
differences in classification performance, are given in Appendix E.

ATENet remarkably outperformed the baselines by achieving the best average rank of 2.00 across all
datasets and metrics, demonstrating the effectiveness of ATENet for irregular multivariate time-series
classification. Especially for the P12-M and P12-L datasets, which have the most variables, and
the PAM dataset, which has the longest sequences, our method showed the highest classification
performance in both AUROC and AUPRC scores. Moreover, ATENet performed significantly better
than the baselines in most cases (see Table A2). In Appendix F, we further discuss these results.
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(a) Leave-fixed-sensors-out (b) Leave-random-sensors-out

Figure 4: AUROC scores of ATENet, MTSFormer, and Raindrop when dropping variables with various ratios
∈ [0.1, 0.5] in (a) leave-fixed-sensors-out and (b) leave-random-sensors-out scenarios

4.2.2 Robustness to Missing Variables

ATENet can mitigate a drastic performance drop even when some variables are missing by introducing
intervariable consistency to capture the structural relations of inputs. We examined the robustness of
ATENet by selecting a subset of variables and hiding their observations in the test set. Following
Zhang et al. [47], we set up two scenarios:

• Leave-fixed-sensors-out: The most informative variables determined by information gain
analysis are dropped [47]. The dropped variables are fixed across every sample.

• Leave-random-sensors-out: Missing variables are not fixed but are selected randomly from
each sample.

In Figure 4, we compared the AUROC of ATENet and those of MTSFormer and Raindrop, which are
the SOTA methods that showed the second-best and third-best performance in Table 1, under these
scenarios where variables are removed at various ratios ranging from 0.1 to 0.5.

As shown in Figure 4a, ATENet showed more robust performance with low standard deviations
than MTSFormer and Raindrop in the leave-fixed-sensors-out scenario. MTSFormer and Raindrop
also take into account intervariable dependencies, but their performance remarkably declined on
most datasets. Especially in the P19 dataset, Raindrop’s performance notably dropped when 40% of
variables were removed. In addition, in the PAM dataset, MTSFormer showed a performance drop of
approximately 50% when 50% of variables were removed.

In the leave-random-sensors-out scenario, as exhibited in Figure 4b, the proposed method also
showed significantly better robustness to missing variables than MTSFormer and Raindrop. For
example, Raindrop’s performance dropped by approximately 30% when more than 20% of variables
were randomly dropped in each sample of the PAM dataset.

Therefore, this shows the robustness of ATENet to the absence of variables by successfully capturing
intervariable relationships in irregular multivariate time series. The complete results, including a
comparison of ATENet with all baselines, are provided in Appendix G.1.

Furthermore, our method can perform robustly when some observations are missing along the time
axis by effectively capturing intricate temporal dependencies owing to learnable reference points and
temporal consistency regularization. The results of these experiments are provided in Appendix H.

4.2.3 Computational Efficiency

The proposed method efficiently reflects intervariable relationships in irregular multivariate time
series by solely computing the outer product of variables and that of representations. Figure 5
shows the number of parameters and processing time of ATENet with those of MTGNN, Raindrop,
Warpformer, and MTSFormer, which achieved high classification performance among the baselines
by considering structural relationships between variables (see Table 1).

We observed that ATENet is remarkably efficient compared to MTGNN and Raindrop, which require
high computation complexities due to their use of graph neural networks, in terms of both the number
of parameters and processing time. In particular, for all datasets, the proposed method requires at
least 10 times fewer parameters and achieves speeds at least 3 times faster than Raindrop. Moreover,
although the efficiency gains over Warpformer and MTSFormer are not as large as those over Raindrop
and MTGNN, our method remains more efficient, as both rely on additional complicated attention
mechanisms to capture intervariable dependencies.
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(a) Number of Parameters (b) Processing Time per Epoch (s)

Figure 5: (a) Number of parameters and (b) processing time per epoch
for MTGNN, Raindrop, Warpformer, MTSFormer, and ATENet

Metric Dataset Regular Sparse Dense ATENet

AUROC

P12-M 85.49 85.61 85.65 85.54
P12-L 77.26 75.35 77.35 79.64
P19 83.58 82.67 83.46 84.02

PAM 99.00 99.10 98.97 99.18

AUPRC

P12-M 51.26 51.22 51.20 53.31
P12-L 97.55 97.54 97.55 97.70
P19 38.06 36.44 38.85 41.16

PAM 96.99 97.13 96.97 97.61

Table 2: Classification performance of
ATENet and ablation models

4.3 Ablation Studies

We investigated the effects of three key components of ATENet: learnable reference time points,
temporal consistency, and intervariable consistency.

4.3.1 Learnable Reference Time Points

To examine the impact of learnable reference time points, we compared the classification performance
of the proposed method against ATENet with fixed reference time points. We designed three ablation
models where the reference time points are at regular time intervals (Regular), increasingly sparse
time intervals (Sparse), and increasingly dense time intervals (Dense), respectively. In precise,
their reference time points 𝒓 = {𝑟1, · · · , 𝑟𝐾 } were characterized as follows:

• Regular: 𝑟𝑘 = 𝑟1 + (𝑘 − 1),∀𝑘 ∈ {1, · · · , 𝐾}

• Sparse: 𝑟𝑘 = 𝑟1𝑒
(𝑘−1) ,∀𝑘 ∈ {1, · · · , 𝐾}

• Dense: 𝑟𝑘 = 𝑟1𝑒
−(𝑘−1) ,∀𝑘 ∈ {1, · · · , 𝐾}

(a) Distribution of Observed Time Points

(b) Learnable Reference Time Points

(c) Fixed Reference Time Points (Regular)

Figure 6: Visualization of (a) distribution
of the observed time points and attention
weights for (b) learnable reference points
from ATENet and (c) fixed ones (Regular)

As presented in Table 2, our method outperformed three
ablation models, showing the effectiveness of learnable
reference points in classification performance.

Furthermore, in Figure 6, we visualized the distribution
of observed time points across all training samples in the
PAM dataset and illustrated the attention weights corre-
sponding to the learnable and fixed (Regular) reference
points using an example sequence from the same dataset.
As shown in Figure 6a, the blue bars indicate the overall
distribution of observed time points, while the learnable
reference points (green circles) are predominantly located
in regions with high observation density. In Figure 6b, the
blue dots denote the observed values, and the learnable
reference time points (green circles) adaptively align with
clusters of these observations (brown circles), effectively
capturing irregular sampling patterns and emphasizing in-
formative observations through highly deviated attention
weights. In contrast, Figure 6c shows that the Regular
reference points fail to capture temporal irregularities and
find informative time points for classification, as their at-
tention weights are rather uniformly distributed. These
results reaffirm the benefit of our approach in reflecting
missingness patterns in irregular sequences and reducing
information loss that may occur with uniformly spaced
interpolation, leading to more effective representations for
classification.
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4.3.2 Temporal Consistency Regularization

Metric w/o L𝑇𝐶 w/o L𝑇𝐶𝑃 w/o L𝑇𝐶𝐼 w/o L𝑉𝐶
AUROC 0.20 0.13 0.91 3.22
AUPRC 1.28 0.57 1.63 3.33

Table 3: Average performance drop rate (%) of ablation
models without consistency regularization compared to
ATENet

To capture intricate temporal patterns, our
method encourages temporal consistency by us-
ing instance-wise and point-wise contrastive
loss functions, L𝑇𝐶𝐼 and L𝑇𝐶𝑃 . As listed in
Table 3, ATENet w/o L𝑇𝐶 , ATENet w/o L𝑇𝐶𝑃 ,
and ATENet w/o L𝑇𝐶𝐼 dropped the average per-
formance compared to ATENet. Thus, we vali-
dated that temporal consistency regularization is useful for capturing temporal dependencies spanning
various time intervals, thereby enhancing classification performance. The complete results are
provided in Appendix G.2

4.3.3 Intervariable Consistency Regularization

Figure 7: Visualization of intervariable relations from
the input and from the learned representations at epochs
1 and 20

The proposed method efficiently captures in-
tervariable relationships by ensuring intervari-
able consistency between inputs and their rep-
resentations. As shown in Table 3, ATENet w/o
L𝑉𝐶 highly dropped the average performance
of 3.33% in the AUPRC compared to ATENet,
demonstrating that this regularization term can
provide rich information for accurate classifi-
cation. The complete results for each dataset
are provided in Appendix G.2. Furthermore, as
shown in Figure 7, the learned representation progressively aligns with the input structure during
training, highlighting the efficacy of intervariable consistency regularization in reflecting intervariable
information.

5 Conclusion

We propose ATENet, a novel end-to-end framework designed to enhance classification performance
on irregular multivariate time series by learning their effective representations. In particular, we
introduce ATE, which learns reference time points and generates representations at these reference
points. This approach can successfully capture missingness patterns without information loss caused
by disregarding uneven time intervals and without the need for an expensive tuning process to find
optimal reference points. ATE also introduces temporal and intervariable consistency regularization
terms, ensuring the enrichment of temporal information and efficient reflection of intervariable
relationships. A series of experiments on irregular multivariate time-series classification demonstrated
that ATENet outperformed the SOTA methods with high computational efficiency.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction clearly reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our work in Appendix F.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper fully discloses all the information and details of the main experi-
mental results in Section 4.1 and Appendices C and D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We provide the instructions, data, and code of the main experimental results in
Appendices C, D, and J.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/

guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not be

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide all the training and test details in Section 4.1 and Appendices C
and D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report standard deviations in Tables 1, A3, A4, and A5, and include error
bars in Figures 4, A1, A2, and A3. Statistical tests of the main results are given in Table A2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide the information on the computer resources in Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in this paper conforms fully to the NeurIPS Code of
Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All creators and original owners of assets used in the paper are properly
credited, and the licenses and terms of use are explicitly mentioned and properly respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The paper uses it only for editing.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM


A Overview of ATENet

In this study, we propose ATENet that sequentially combines an encoder 𝑓 configured by our encoding
approach, ATE, with a classifier 𝑔 to enhance classification performance on irregular multivariate
time series.

While ATENet might appear to incorporate familiar components such as attention-based interpolation
and contrastive regularization, its key contribution lies in the effective integration and optimization of
these components to address the unique challenges of irregular multivariate time-series classification.

• Adaptive encoding process: We propose a novel encoding framework that learns reference
time points in an end-to-end supervised manner, eliminating the need for predefined an-
chors or handcrafted temporal discretization. Unlike prior approaches, our method directly
optimizes the reference points with respect to both the task objective and the empirical distri-
bution of observed time points. This design enables the model to align irregular sequences in
a task-aware and data-adaptive temporal space, thereby improving both the expressiveness
and generalization of the learned representations across varying sampling patterns.

• Consistency regularization: To further improve the quality and robustness of representa-
tions, ATENet incorporates two lightweight yet effective regularization techniques:

– Temporal consistency regularization: This component enforces stability in the
learned representations under random temporal masking, a perturbation strategy spe-
cialized for sparse or irregular time series. By promoting invariance to partially missing
observations, it enhances generalization under temporal noise or missingness.

– Intervariable consistency regularization: We design a novel contrastive objective that
encourages structural consistency across variables by exploiting the outer product be-
tween input and representation spaces. This approach efficiently captures intervariable
dependencies and serves as a lightweight alternative to complex graph-based or recur-
rent models, enhancing cross-variable coherence without incurring high computational
overhead.

In Algorithm A1, we present a pseudo-code of our method to describe its overall learning procedure.

Algorithm A1 Learning procedure of ATENet

Input: Set of 𝑁 labeled irregular multivariate time-series samples D = {(X𝑛, 𝒚𝑛)}𝑁𝑛=1, set of time
embedding functions Φ = {𝜙1, · · · , 𝜙𝐻 }, and the number of learnable reference time points 𝐾

Output: Trained encoder 𝑓 , classifier 𝑔, and reference time points 𝒓 = {𝑟1, · · · , 𝑟𝐾 }
1: Initialize encoder 𝑓 , classifier 𝑔, and reference points 𝒓.s
2: for each epoch do
3: for (X𝑛, 𝒚𝑛) ∈ D do
4: # Learnable Reference Time Points
5: Obtain time embedding vectors for X𝑛 and 𝒓 using the 𝐻 time embedding functions in Φ.
6: Generate 𝒛𝑛 = {𝒛𝑛1, · · · , 𝒛𝑛𝐾 } at learnable reference time points 𝒓 by Eqs. (3)-(5).
7: # Temporal Consistency Regularization
8: Randomly pick a masking ratio ∈ [0.1, 0.9].
9: Generate a masked view 𝒛′𝑛 = {𝒛′𝑛1, · · · , 𝒛

′
𝑛𝐾
} by Eqs. (4)-(6).

10: Compute temporal consistency regularization term L𝑇𝐶𝑛
by Eqs. (7)-(9).

11: # Intervariable Consistency Regularization
12: Obtain two outer product matrices P𝑛 and Q𝑛 for X𝑛 and 𝒛𝑛, respectively, by Eq. (10).
13: Compute intervariable consistency regularization term L𝑉𝐶𝑛

by Eq. (11).
14: # Classification Loss Function
15: 𝒚̂𝑛 ← 𝑔(𝒛𝑛)
16: Compute classification loss L𝐶𝐿𝑛 by Eq. (12).
17: end for
18: # Optimization
19: Update 𝑓 , 𝑔 and 𝒓 by Eq. (13).
20: end for
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Dataset Number of samples Number of variables Number of observed points Number of classes Sparsity ratio (%)

P12-M 11,988 36 215 2 88.4
P12-L 11,988 36 215 2 88.4
P19 38,803 34 60 2 94.9

PAM 5,333 17 600 8 60.0

Table A1: Dataset statistics of three datasets. Sparsity ratio is the ratio between the number of missing
observations and that of all possible observations when fully observed.

B Complexity Analysis

Here, let 𝑁 , 𝑉 , 𝐶, and 𝑇 be the number of instances, variables, classes, and the maximum sequence
length in an irregular multivariate time-series dataset D, respectively. In addition, let 𝐻 be the number
of embedding functions (attention heads) in the encoder 𝑓 and 𝐽 be the maximum hidden dimension
in the classifier 𝑔, respectively.

ATE consists of the procedures for interpolation on learnable reference points based on the multi-time
attention mechanism (MTA) [30] and computing two consistency regularization terms.

• Interpolation on learnable reference points leverages the MTA that has time complexities
for computing query, key, and value matrices for 𝐻 attention heads (O(𝑁𝑉2𝐾 + 𝑁𝑉2𝑇)),
calculating the scaled dot product attention for 𝐻 heads (O(𝑁𝑉𝐾𝑇)), and concatenating the
results from 𝐻 heads with a linear transform (O(𝑁𝑉2𝐾)). Thus, the time complexity of this
procedure is summarized as O(𝑁𝑉 (𝑉𝐾 +𝑉𝑇 + 𝐾𝑇)).

• Temporal consistency regularization proceeds the random masking to inputs (O(𝑁𝑉𝑇)) and
additional MTA for the masked inputs (O(𝑁𝑉 (𝑉𝐾 +𝑉𝑇 +𝐾𝑇))); hence, its time complexity
is also dominated by O(𝑁𝑉 (𝑉𝐾 +𝑉𝑇 + 𝐾𝑇)).

• Intervariable consistency regularization has time complexities for computing the outer
product of variables and that of representations (O(𝑁𝑉 (𝑉𝑇 +𝑉𝐾))).

Therefore, the time complexity per epoch of ATE is dominated by O(𝑁𝑉 (𝑉𝐾+𝑉𝑇 +𝐾𝑇)). In general,
𝐾 ≤ 𝑇 ; hence, the time complexity can be reduced to O(𝑁𝑉𝑇 (𝑉+𝐾)). While the attention mechanism
can incur a relatively large computational cost, our approach introduces minimal computational burden
for reflecting intervariable relations, compared to existing methods that account for intervariable
dependencies in multivariate irregular time series by leveraging graph neural networks.

ATENet consists of the encoder with the time complexity of O(𝑁𝑉𝑇 (𝑉 + 𝐾)). The classifier in
ATENet is constructed by a gated recurrent unit (GRU) followed by two fully connected layers with
batch normalization and a GeLU activation function; hence, it requires the additional time complexity
of O(𝑁𝐽 (𝑉𝐾 + 𝐾𝐽 + 𝐶)). Thus, ATENet has the time complexity per epoch of O(𝑁𝑉𝑇 (𝑉 + 𝐾) +
𝑁𝐽 (𝑉𝐾 + 𝐾𝐽 + 𝐶)). When 𝐶 is smaller than 𝐽, the time complexity per epoch can be reduced to
O(𝑁𝑉𝑇 (𝑉 + 𝐾) + 𝑁𝐽 (𝑉𝐾 + 𝐾𝐽)). In Figure 5 of the main body, we compare our method to existing
methods in terms of the number of parameters and processing time per epoch.

C Detailed Description on Datasets

To evaluate the proposed method, ATENet, we employed three irregular multivariate time-series
datasets as follows:

• P12 (PhysioNet Mortality Prediction Challenge 2012) [7] is one of the popular healthcare
datasets recorded by 36 sensors for 11,988 patients, after dropping 12 inappropriate samples
[9], during their first 48-hour stay in the intensive care unit. This dataset has two predictive
labels: in-hospital mortality (P12-M) and hospitalization length (P12-L). A positive class of
the P12-M dataset indicates in-hospital death, and this dataset has 13.8% positive samples.
For the P12-L dataset, each patient is assigned a binary class label indicating the length of
hospitalization. While a positive class indicates a stay longer than three days, a negative
class indicates a stay of three days or less. This dataset has 93% positive samples, thereby
being highly imbalanced.

• P19 (PhysioNet Sepsis Early Prediction Challenge 2019) [27] is another popular healthcare
dataset containing 40,336 patients monitored by 34 irregularly sampled sensors, including
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eight vital signs and 26 laboratory values. We remove the samples with extremely short or
long time series, thereby remaining 38,803 patients with more than one and less than 60
observations. Each patient has a binary class label that indicates the occurrence of sepsis
within the next six hours. This dataset is highly imbalanced due to about 96% negative
samples.

• PAM (PAMAP2 Physical Activity Monitoring) [25] PAM has 5,333 samples with 600
continuous observations measured by 17 sensors after modification following Zhang et al.
[47]. This dataset has eight human activities of daily life. To make the samples irregular, we
randomly removed 60% of the observations. Each sample is annotated with one of eight
activities of daily living. The number of samples is balanced across all eight activities.

The characteristics of each dataset are given in Table A1. To handle missing values in irregular time
series, we first set the missing values to zero. The input was then configured by concatenating the
observations with a binary mask indicator, which was set to 1 when an observation existed and 0
otherwise. Following Zhang et al. [47], for the P12-M, P12-L, and P19 datasets, we applied batch
minority class upsampling. We also excluded static information (e.g., age, gender, height, and weight)
from model training to focus on each method’s ability to capture temporal patterns within irregular
time series. All datasets were split into training (80%), validation (10%), and test (10%) sets.

D Implementation Details

In ATENet, the encoder 𝑓 maps an irregular multivariate time series X = ( 𝒕, 𝒙) with 𝑉 variables to
𝑉-dimensional time embeddings at 𝐾 reference time points. The encoder 𝑓 consists of multi-head
attention with 𝐻 embedding functions (attention heads), each deriving a time embedding vector of
size 𝐿 for each observed time point. In this study, both 𝐾 and 𝐿 were set to 128. For the P12-M,
P12-L, P19, and PAM datasets, we set 𝐻 to 2, 4, 2, and 1, respectively, while using learnable,
learnable, sinusoidal, and learnable embedding functions in that order. The subsequent classifier 𝑔 is
constructed by a GRU followed by two fully connected layers, where the first layer includes batch
normalization and a GeLU activation function, and the second one uses a softmax as an activation
function. The GRU dimension was set to 32, and the two fully connected layers had dimensions of
32 and 𝐶, respectively, where 𝐶 is the number of classes. Additionally, the scaling parameter 𝜖 in Eq.
(3) and the smoothing parameter 𝜂 in Eq. (12) of the main text were set to 128 and 0.1, respectively.

For model training, we set the batch size 𝐵 to 128 and ran the model for 20 epochs. For the P12-M
dataset, we used the Adam optimizer with an initial learning rate of 0.0001 and assigned weights of
0.01 and 0.1 to the temporal and intervariable consistency regularization terms, 𝛼 and 𝛽, respectively.
In the P12-L dataset, we used the Adam optimizer with an initial learning rate of 0.001 and set both 𝛼
and 𝛽 to 0.01. In the P19 dataset, we also employed the Adam optimizer, but with an initial learning
rate of 0.01, and adjusted 𝛼 and 𝛽 to 0.01 and 1, respectively. For the PAM dataset, we maintained a
learning rate of 0.01, while setting 𝛼 to 0.1 and 𝛽 to 0.01. Note that all hyperparameters were selected
based on performance on the validation set, and the final results were obtained from the model that
achieved the best validation performance. The impact of each hyperparameter is further explored in
Appendix I.

We repeated each experiment five times and reported the averages and standard deviations. All
experiments were executed on a PyTorch platform using an Intel Core i9-10900X at 3.70 GHz CPU,
256 GB RAM, and an NVIDIA GeForce RTX 4090 24 GB GPU.

E Statistical Tests

To confirm the significance of the differences in classification performance in Table 1 of the main text,
we conducted statistical tests. Specifically, we adopted a paired t-test to compare the proposed method
to each baseline on each dataset. The following markers indicate the results of the significance tests:

• ✔ indicates that ATENet performed significantly better than the baseline with a smaller
p-value than 0.05.

• − indicates no significant difference between the methods being compared.

• ✘ indicates the baseline performed significantly better than our approach.

23



Metric Dataset mTAND DGM2 GRU-D MTGNN Transformer Trans-mean SeFT Raindrop Warpformer MTSFormer

AUROC

P12-M − ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
P12-L ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ − −

P19 ✔ − ✘ − ✔ ✔ ✔ − − ✘
PAM ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

AUPRC

P12-M − ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
P12-L ✔ − ✔ ✔ ✔ ✔ ✔ − − −

P19 ✔ ✔ ✘ − ✔ ✔ ✔ ✘ − ✘
PAM ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Table A2: Statistical significance results comparing ATENet with each baseline on each dataset

As shown in Table A2, the proposed method, ATENet, performed significantly better than the
baselines in most cases.

F Limitations

Here, we discuss some limitations of our work and suggest potential directions for future research.

F.1 Marginal Performance Gains and Trade-offs

As shown in Tables 1 and A2, our method did not outperform some baseline methods, particularly
GRU-D, Raindrop, and MTSFormer, on the P19 dataset. While the learnable reference time points
are designed to adapt to irregular patterns, the P19 dataset may exhibit extreme variability and
noise in sampling times and values, making it challenging for any method based on reference time
points to capture nuanced patterns effectively and generalize the reference time points for all data
[6, 27]. For example, as shown in Table 1 of the main text, our method and mTAND, which leverage
reference time points, showed relatively low classification performance on the P19 dataset compared
to the other datasets. Therefore, in future work, we expect to enhance classification performance on
such challenging datasets by incorporating additional techniques, such as Kalman filter or wavelet
denoising, to mitigate the effects of extreme variability and noise in sampling.

Furthermore, our key contribution lies in the encoder, which transforms irregular multivariate time
series into fixed-length representations at learnable reference points. To demonstrate its effectiveness
without relying on complex backbones, we deliberately used a simple classifier. However, more com-
plex classifiers may improve performance by capturing richer class-specific patterns. In preliminary
experiments on the P12-M dataset, replacing the simple decoder with a transformer and a temporal
convolutional network yielded slight AUROC improvements of 0.13% and 0.50%, respectively, but
with 1.08× and 2.29× increases in processing time per epoch, respectively. These marginal gains
suggest that classifier complexity may trade off with the overall efficiency of our method. Designing
classifiers that balance accuracy and efficiency is a promising direction for future work.

F.2 Robustness to Start-Time Mismatch

First, start-time mismatch (or misalignment) is not inherently problematic in modern sequence
modeling approaches such as Transformers or recurrent models [24, 29, 20, 17, 35, 2]. These models
do not rely on absolute timestamps but instead learn representations based on the relative positions or
temporal dynamics within each sequence. Consequently, the fact that sequences start at different times
does not invalidate the model’s ability to learn meaningful patterns, nor does it by itself constitute a
distribution shift.

Second, in many real-world time-series domains, start times are often not entirely random. Instead,
they tend to follow domain-specific routines or event triggers. For example, patient monitoring
typically begins at symptom onset or ICU admission in clinical data, and measurements in industrial
settings may align with batch starts or fault occurrences. Thus, even without explicit synchronization,
there is often implicit regularity that the model can exploit. ATENet is designed to capture such latent
patterns by learning reference points and generating representations aligned to them. Moreover, even
in scenarios where start times are highly variable or nearly random, ATENet is still likely to work
well by learning uniformly distributed reference points that provide broad temporal coverage without
depending on strict alignment.
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F.3 Generalization under Temporal Distribution Shifts

Regarding generalization to datasets with different temporal distributions (i.e., distribution shift), our
experiments were conducted under within-dataset settings. However, shifts in temporal dynamics,
such as variations in event density or measurement frequency between training and deployment
environments, may affect the effectiveness of the learned reference points. In such cases, the learned
reference points may fail to align with informative regions in the target data, potentially degrading
interpolation quality and downstream performance. We identify this limitation as an important
direction for future work.

F.4 Robustness under Extremely Sparse Observation Scenarios

Similar to other attention-based methods, ATENet may underperform in extremely sparse observation
scenarios due to the fundamental lack of information. However, ATENet is designed to be more
robust to such sparsity than conventional approaches by:

• Learning reference points that adapt to data-driven observation patterns, especially around
informative regions;

• Using attention-based interpolation that effectively aggregates information from both nearby
and even distant observations;

• Introducing temporal consistency regularization based on random masking, which enhances
representation quality even when data is partially missing.

As shown in Appendix H, ATENet demonstrates strong robustness under high levels of missingness.
Specifically, the model maintained competitive performance when up to 50% of the observations
were randomly dropped, indicating that our method remains effective as long as a minimal level of
temporal coverage is preserved.

Nonetheless, in extremely sparse settings where few or no observations exist near any reference point,
performance can degrade. We will address this limitation in future work that is robust in extremely
sparse scenarios.

G Complete Results

Here, we present the complete results of the experiments, which demonstrate robustness to missing
variables and the effectiveness of temporal and intervariable consistency regularization terms.

G.1 Robustness to Missing Variables

ATENet can mitigate a drastic performance drop, when some variables are removed, by introducing
intervariable consistency regularization to capture structural relations between variables in irregular
multivariate time series. In Section 4.2 of the main text, we investigated the robustness of ATENet by
selecting a subset of variables and hiding their observations in the test set. Following Zhang et al.
[47], we considered two scenarios: leave-fixed-sensors-out and leave-random-sensors-out.

In Tables A3 and A4, we provide the complete results for the classification performance of ATENet
and that of the baseline methods when eliminating variables by various ratios ∈ [0.1, 0.5] for both
scenarios, respectively. In most cases, the proposed method performed more robustly than the baseline
methods by achieving a higher classification performance. In contrast, although MTGNN, Raindrop,
Warpformer, and MTSFormer consider intervariable relationships, their classification performance
significantly declined in most datasets. For example, in the PAM dataset under the leave-fixed-
sensors-out scenario, MTGNN exhibited a maximum performance drop of 30% in AUROC and 60%
in AUPRC. Raindrop showed a maximum performance drop of 40% in AUROC and 70% in AUPRC.
Both Warpformer and MTSFormer showed about 50% and 80% performance drop in AUROC and
AUPRC, respectively.

These results demonstrate the robustness of ATENet against missing variables by successfully
capturing intervariable relationships in irregular multivariate time series.
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Metric Dataset Drop Ratio mTAND DGM2 GRU-D MTGNN Transformer Trans-mean SeFT Raindrop Warpformer MTSFormer ATENet

AUROC

P12-M

- 84.18±1.20 71.08±2.30 48.62±2.41 61.59±5.79 82.92±0.72 83.38±0.56 68.05±1.49 81.19±1.76 79.35±1.65 84.11±0.71 85.54±1.26
0.1 83.41±1.10 67.42±2.71 48.80±2.58 58.13±4.03 74.58±1.42 74.23±1.00 67.83±1.44 58.33±8.45 77.56±1.23 77.09±2.06 85.12±1.24
0.2 73.41±2.81 66.64±2.75 49.80±1.18 57.87±3.50 71.67±1.87 70.08±1.86 67.89±1.89 64.61±1.41 52.83±18.17 74.71±2.31 75.94±2.59
0.3 69.64±5.02 64.72±1.82 49.05±1.26 56.14±3.52 64.81±3.30 64.44±3.36 67.70±1.85 62.28±4.02 51.11±13.05 65.16±2.56 69.32±2.71
0.4 69.88±3.85 62.70±0.74 47.14±1.54 54.47±5.72 60.65±2.35 60.67±2.70 67.53±1.89 60.20±1.79 50.33±7.65 58.78±3.52 69.04±2.86
0.5 65.69±3.78 63.25±1.94 47.17±1.61 54.87±4.51 57.99±2.51 57.99±2.51 65.05±1.86 60.52±3.31 49.92±0.16 55.44±1.93 62.32±3.06

P12-L

- 49.60±3.16 69.46±1.47 49.82±3.85 68.36±6.09 59.05±1.81 61.64±1.54 64.70±2.01 70.40±1.60 74.57±2.28 75.17±1.09 79.64±2.24
0.1 49.63±3.15 69.18±1.39 49.83±3.85 67.69±5.76 58.98±1.80 60.11±1.69 64.55±2.08 66.90±1.22 72.71±2.79 72.94±1.72 79.63±2.38
0.2 55.32±4.13 69.16±1.34 51.73±4.16 67.63±5.77 58.91±1.81 59.86±1.60 64.32±2.06 66.80±1.45 55.56±14.43 72.58±1.76 75.81±2.47
0.3 55.06±2.24 68.11±1.73 51.34±1.56 68.22±4.00 56.72±2.65 57.77±2.30 64.24±2.05 66.87±2.09. 55.03±7.72 68.58±2.57 74.79±2.51
0.4 53.42±2.50 68.02±2.08 53.24±1.59 67.96±4.85 56.17±2.77 57.43±2.36 64.29±1.98 67.60±2.92 53.93±8.34 67.70±2.03 74.56±2.61
0.5 54.56±2.50 67.81±2.13 52.59±3.52 67.69±4.99 53.35±2.91 53.35±2.91 63.37±2.07 66.70±1.84 49.85±0.26 66.82±2.21 73.38±2.55

P19

- 80.00±1.23 81.96±2.05 87.16±1.34 85.07±3.54 77.56±3.06 78.57±3.02 77.89±2.62 85.93±2.24 85.41±2.39 85.40±1.66 84.02±1.38
0.1 78.79±1.16 34.78±27.69 86.26±1.90 81.77±3.50 75.54±3.53 75.82±3.40 77.00±1.99 82.86±1.57 72.54±3.44 84.67±1.70 82.47±1.45
0.2 78.34±1.34 34.28±27.52 85.10±0.89 81.79±3.21 74.98±3.52 75.20±3.43 74.74±1.10 80.52±1.73 45.08±9.12 84.68±2.30 77.88±1.99
0.3 79.58±0.73 34.11±27.45 84.64±1.98 82.01±3.23 74.94±3.53 75.13±3.53 68.01±1.68 80.58±2.03 48.00±5.63 84.18±2.60 76.76±1.85
0.4 77.47±2.42 34.12±27.41 81.67±1.36 81.82±3.08 74.75±3.49 74.86±3.39 49.33±28.51 60.20±1.79 51.24±4.07 79.22±1.58 76.38±1.78
0.5 76.30±2.75 34.10±27.29 79.62±1.65 81.29±3.50 74.67±3.50 74.67±3.50 47.35±27.37 80.05±2.39 50.04±0.11 75.86±1.39 74.55±2.12

PAM

- 92.21±0.70 96.87±0.50 91.72±0.59 96.95±0.32 96.61±1.27 97.64±0.25 74.46±6.70 98.73±0.25 97.94±0.45 98.39±0.28 99.18±0.15
0.1 89.62±1.17 95.74±1.08 81.33±2.60 95.92±0.98 94.76±1.61 93.74±1.34 68.16±1.97 71.89±13.61 96.16±1.02 96.23±0.72 99.15±0.16
0.2 78.05±2.66 90.84±2.14 78.85±3.00 89.85±1.03 85.48±1.23 85.07±1.55 66.71±1.75 63.87±7.59 49.27±4.42 81.28±4.46 95.55±1.36
0.3 71.11±4.19 88.04±2.40 73.11±5.54 86.40±2.15 82.33±1.94 82.83±1.84 68.64±1.47 60.43±15.36 47.56±3.61 77.06±3.40 94.53±1.60
0.4 69.16±5.60 86.86±1.70 61.55±2.33 82.53±3.57 81.51±1.83 82.98±1.91 63.47±2.38 60.79±9.98 53.09±11.73 74.65±3.38 87.94±3.38
0.5 68.45±5.58 69.12±2.67 60.41±1.64 68.53±1.47 50.11±0.53 50.11±0.53 58.85±1.27 59.85±3.91 50.09±0.30 50.36±0.38 87.76±3.33

AUPRC

P12-M

- 52.89±2.27 29.99±2.24 14.83±1.55 24.25±5.49 46.35±2.81 48.54±2.24 24.43±3.10 42.14±3.32 41.98±1.30 48.53±2.55 53.31±2.02
0.1 50.84±2.13 27.29±2.47 13.46±1.03 21.38±3.00 36.30±2.75 36.10±3.45 24.41±3.10 20.26±6.18 38.48±2.81 39.55±2.35 51.59±2.48
0.2 34.48±6.24 26.91±2.61 15.11±1.24 21.43±2.83 33.98±1.90 33.16±1.31 24.48±2.44 22.89±3.49 20.68±9.75 36.80±2.55 38.57±3.96
0.3 26.48±5.07 25.53±2.56 14.64±0.67 19.88±2.18 24.89±3.17 24.64±3.32 24.59±2.64 21.56±3.93 17.69±6.17 24.95±1.94 29.31±2.38
0.4 27.91±4.45 24.01±2.20 13.99±1.43 18.28±3.66 20.65±3.03 20.90±2.85 24.57±2.82 20.79±2.82 15.84±2.68 20.62±3.82 29.12±2.56
0.5 23.21±1.99 22.53±2.24 13.25±0.98 18.68±2.92 18.57±3.29 18.57±3.29 22.60±2.85 20.43±4.02 14.44±1.32 17.48±3.30 22.40±1.54

P12-L

- 92.42±1.09 96.42±0.41 93.41±0.93 96.41±1.08 94.16±0.99 94.65±0.80 95.28±0.24 96.57±0.51 96.99±0.34 97.43±0.28 97.70±0.38
0.1 92.43±1.07 96.34±0.43 93.41±0.90 96.28±1.02 94.17±0.98 94.24±1.05 95.28±0.25 96.01±0.37 96.84±0.65 97.11±0.45 97.74±0.41
0.2 94.14±1.25 96.33±0.44 93.46±1.07 96.27±1.02 94.28±0.99 94.26±1.00 95.23±0.24 96.08±0.39 93.30±3.53 97.05±0.46 97.04±0.53
0.3 94.28±0.39 96.27±0.59 92.83±0.88 96.49±0.89 94.09±1.12 94.06±1.10 95.24±0.30 96.17±0.51 93.33±2.00 96.12±0.69 96.81±0.62
0.4 93.51±0.43 96.27±0.59 93.52±0.46 96.48±0.93 93.97±1.11 94.03±1.07 95.26±0.29 96.15±0.63 93.35±1.79 95.71±0.60 96.85±0.63
0.5 94.12±1.05 96.28±0.54 93.33±0.29 96.39±0.96 93.47±1.18 93.47±1.18 95.17±0.32 95.94±0.58 93.09±0.55 95.50±0.67 96.91±0.52

P19

- 31.24±4.15 31.12±5.25 47.37±2.97 41.13±8.01 29.60±6.26 28.05±6.23 30.34±1.80 50.63±3.32 41.12±3.30 57.96±4.10 41.16±3.02
0.1 28.85±3.02 9.62±12.49 38.93±5.54 39.57±6.96 36.38±5.69 26.82±5.73 25.97±1.74 46.08±4.96 18.58±2.15 49.36±3.00 36.42±2.75
0.2 29.09±3.17 10.08±13.50 28.09±3.66 40.51±6.03 38.16±6.29 30.40±7.19 15.77±0.68 44.29±4.29 5.18±2.58 48.14±4.62 26.14±5.83
0.3 31.81±3.06 10.34±13.71 26.99±4.19 40.64±5.61 39.19±5.88 32.57±6.84 13.29±1.01 44.18±4.47 4.79±0.66 47.53±4.72 25.11±5.64
0.4 27.37±2.97 10.26±13.91 20.58±2.31 40.75±5.99 40.11±5.41 34.70±6.05 9.37±5.52 20.79±2.82 4.65±0.58 43.22±4.31 23.72±5.43
0.5 24.54±3.14 9.94±13.32 21.81±3.42 40.19±6.12 40.26±5.04 40.26±5.04 7.29±4.36 43.80±4.38 4.35±0.25 41.39±3.74 20.45±6.16

PAM

- 74.95±2.68 88.28±1.28 75.78±2.02 88.85±2.00 86.73±4.21 91.50±0.61 36.43±12.23 95.48±0.91 92.75±1.43 94.21±0.71 97.61±0.26
0.1 67.36±4.45 84.01±3.02 56.01±4.78 83.53±5.56 77.00±5.41 72.29±5.03 26.75±2.54 37.51±25.55 86.42±3.32 84.32±2.94 97.42±0.20
0.2 42.36±5.01 66.01±4.97 50.66±5.61 63.05±3.66 50.53±2.57 51.47±3.34 26.51±2.61 27.07±5.29 15.67±3.64 52.55±4.11 89.14±2.14
0.3 30.72±5.62 57.26±4.53 41.54±10.12 52.11±4.92 43.28±2.18 45.06±2.61 27.11±1.46 24.77±9.91 15.46±1.48 39.02±2.61 84.78±3.09
0.4 29.18±6.40 54.30±3.81 24.54±5.33 47.25±7.31 40.75±1.37 45.58±2.14 24.07±1.93 24.97±7.64 18.20±6.21 36.78±2.02 63.76±5.85
0.5 27.65±5.85 30.79±3.55 22.14±3.24 29.44±1.73 12.63±0.17 12.63±0.17 20.17±2.33 22.12±4.29 12.55±0.05 12.76±0.13 62.31±6.22

Table A3: Classification performance of ATENet and baselines when dropping variables with various ratios
∈ [0.1, 0.5] in the leave-fixed-sensors-out scenario. Drop Ratio denotes the ratio of missing variables.

G.2 Effects of Temporal and Intervariable Consistency Regularization

To validate the influence of the temporal and intervariable consistency regularization terms, we
compared the classification performance of ATENet to that of ablation models, ATENet w/o L𝑇𝐶 ,
ATENet w/o L𝑇𝐶𝑃 , ATENet w/o L𝑇𝐶𝐼 and ATENet w/o L𝑉𝐶 in Section 4.3 of the main text. Table
A5 presents the complete results of these ablation studies.

As a result, ATENet outperformed the ablation models in most cases, demonstrating the effectiveness
of both temporal and intervariable consistency regularization terms in enhancing classification
performance. Specifically, removing temporal consistency (ATENet w/o L𝑇𝐶 ) exhibited an average
drop in AUPRC of 1.28%, whereas removing intervariable consistency (ATENet w/o L𝑉𝐶 ) caused
a larger average drop of 3.33%. These findings indicate that both components are beneficial, with
intervariable consistency showing a more substantial effect in our experimental settings.

G.3 Futher Analysis

G.3.1 Empirical Trade-offs Between Flexibility and Stability

We evaluated a variant that computes reference points individually for each sample. Although this
approach offers better flexibility, it can be more sensitive to noise and irregular sampling, often
resulting in unstable training and degraded generalization performance.

As shown in the Table A6, the globally shared design (ours) showed comparable or slightly better
performance across most datasets. Notably, the fully individualized variant showed a substantial
drop in performance on the P19 dataset, which may contain highly variable and noisy sequences (see
Appendix F). This highlights that globally shared reference points, combined with sample-specific
attention-based interpolation, offer better robustness under challenging conditions.
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Metric Dataset Drop Ratio mTAND DGM2 GRU-D MTGNN Transformer Trans-mean SeFT Raindrop Warpformer MTSFormer ATENet

AUROC

P12-M

- 84.18±1.20 71.08±2.30 48.62±2.41 61.59±5.79 82.92±0.72 83.38±0.56 68.05±1.49 81.19±1.76 79.35±1.65 84.11±0.71 85.54±1.26
0.1 76.75±1.53 69.55±1.94 49.69±1.42 61.25±5.48 81.38±0.61 81.18±0.88 64.04±1.84 58.30±7.80 80.42±1.20 82.40±1.15 84.25±1.85
0.2 73.15±2.15 68.65±1.51 49.83±1.25 60.82±4.53 80.43±1.15 80.24±1.84 61.15±2.05 63.48±5.45 54.59±22.51 81.68±1.17 82.06±1.50
0.3 69.11±1.77 66.88±0.88 48.90±2.30 57.77±3.93 77.23±0.70 77.17±0.91 61.53±2.11 57.93±6.10 51.40±19.43 78.29±0.69 79.46±1.39
0.4 66.32±1.43 64.40±1.24 47.65±0.69 57.33±3.74 76.53±1.95 77.09±1.14 59.64±2.31 59.86±5.80 46.85±17.77 76.52±2.62 78.86±1.53
0.5 63.25±2.07 64.09±1.24 49.54±3.00 57.42±2.55 74.28±0.63 74.67±0.86 57.87±3.35 62.42±4.79 49.39±17.51 73.78±1.34 76.48±2.22

P12-L

- 49.60±3.16 69.46±1.47 49.82±3.85 68.36±6.09 59.05±1.81 61.64±1.54 64.70±2.01 70.40±1.60 74.57±2.28 75.17±1.09 79.64±2.24
0.1 54.33±5.35 69.14±1.87 53.68±3.61 67.55±6.67 58.88±2.12 60.29±1.98 63.74±2.43 66.92±1.20 73.94±2.63 74.33±1.51 78.48±1.78
0.2 55.62±3.93 68.64±1.24 52.50±3.30 66.65±5.90 58.91±2.52 60.21±2.15 62.54±2.88 66.71±1.52 54.66±18.23 72.69±2.18 78.79±2.11
0.3 56.18±3.78 69.13±1.28 52.30±2.52 65.47±6.23 57.64±2.11 58.99±1.97 63.47±1.24 66.57±1.60 54.15±13.82 70.87±2.15 76.74±2.13
0.4 54.99±3.02 66.80±1.64 53.61±3.95 63.59±6.06 57.52±2.68 58.36±2.45 62.81±2.35 67.25±2.29 48.78±16.58 70.82±0.85 76.10±1.98
0.5 52.69±3.41 66.70±3.35 51.83±3.04 63.00±5.08 56.95±2.29 58.18±1.90 61.89±3.44 66.11±1.07 45.43±13.54 69.77±1.22 75.78±1.85

P19

- 80.00±1.23 81.96±2.05 87.16±1.34 85.07±3.54 77.56±3.06 78.57±3.02 77.89±2.62 85.93±2.24 85.41±2.39 88.96±2.01 84.02±1.38
0.1 77.48±1.87 37.19±27.42 84.49±0.90 81.35±2.93 77.15±3.20 77.31±2.99 77.06±2.68 81.51±2.77 83.36±2.44 87.18±1.85 84.04±1.56
0.2 76.75±1.47 38.07±27.73 82.04±2.19 79.97±2.70 77.02±3.09 77.11±2.57 75.86±2.71 77.89±2.46 46.05±19.12 85.83±2.21 83.18±2.30
0.3 76.68±1.19 43.78±16.00 79.95±1.28 77.35±3.94 76.53±2.85 76.62±2.66 75.01±3.05 79.65±3.10 43.69±19.59 84.78±1.39 82.14±2.86
0.4 72.09±1.80 43.76±15.36 78.88±0.75 74.36±3.05 76.47±3.49 76.52±3.28 73.50±2.79 78.83±2.19 48.39±14.38 83.53±3.19 81.48±4.10
0.5 73.34±1.81 44.84±14.47 77.04±1.35 72.20±3.23 76.07±3.67 76.23±3.59 73.04±3.07 77.67±2.89 52.73±6.53 82.59±1.39 80.55±5.21

PAM

- 92.21±0.70 96.87±0.50 91.72±0.59 96.95±0.32 96.61±1.27 97.64±0.25 74.46±6.70 98.73±0.25 97.94±0.45 98.39±0.28 99.18±0.15
0.1 83.24±0.99 95.53±0.66 86.28±1.06 95.22±0.40 95.51±1.06 94.53±1.07 68.13±1.15 72.96±23.13 96.80±0.51 97.43±0.34 98.39±0.13
0.2 77.94±1.21 92.29±0.34 83.81±0.55 92.47±0.81 93.42±1.16 93.01±0.93 65.75±0.98 64.10±4.99 51.03±7.47 94.96±0.68 97.40±0.60
0.3 71.40±1.50 90.14±1.07 75.25±1.36 90.14±0.60 91.92±0.98 92.01±0.90 63.71±1.56 64.21±7.49 46.09±3.27 92.78±1.05 95.23±0.74
0.4 66.96±1.11 86.19±0.96 68.73±1.68 86.39±1.59 89.43±0.43 89.78±0.55 31.40±0.83 60.23±3.97 49.96±7.27 89.50±1.65 92.84±1.05
0.5 64.51±1.83 83.16±0.77 65.62±1.65 82.62±0.57 86.94±0.46 87.41±0.47 60.55±1.36 60.24±2.56 50.54±7.35 85.95±2.19 90.98±1.31

AUPRC

P12-M

- 52.89±2.27 29.99±2.24 14.83±1.55 24.25±5.49 46.35±2.81 48.54±2.24 24.43±3.10 42.14±3.32 41.98±1.30 48.53±2.55 53.31±2.02
0.1 32.94±1.69 28.67±2.30 14.52±0.42 23.10±4.71 44.57±2.63 44.94±3.00 21.68±2.60 20.18±5.91 43.64±2.21 46.41±3.17 50.57±3.92
0.2 30.47±2.46 27.89±2.07 13.60±0.82 22.78±5.28 42.32±3.24 42.70±3.41 19.88±2.37 22.24±5.40 22.94±12.06 43.82±2.52 47.11±1.73
0.3 27.30±2.47 26.00±2.61 14.59±1.62 21.99±3.57 36.96±3.59 39.06±3.66 19.66±2.29 19.50±3.71 20.36±10.18 38.69±2.63 42.41±2.80
0.4 24.49±1.85 24.03±1.88 13.30±0.29 21.02±3.18 37.71±3.53 39.29±2.00 19.23±2.67 22.34±5.71 17.52±9.75 37.48±3.01 42.56±3.03
0.5 23.12±2.64 24.04±1.99 14.72±0.92 19.88±2.39 35.65±4.33 36.30±3.37 17.89±2.87 23.30±4.38 18.97±10.34 35.25±3.44 37.01±1.82

P12-L

- 92.42±1.09 96.42±0.41 93.41±0.93 96.41±1.08 94.16±0.99 94.65±0.80 95.28±0.24 96.57±0.51 96.99±0.34 97.43±0.28 97.70±0.38
0.1 94.21±1.00 96.37±0.57 94.17±0.66 96.27±1.21 94.18±1.02 94.30±1.09 95.18±0.31 96.04±0.43 96.90±0.62 97.29±0.34 97.49±0.42
0.2 93.99±0.90 96.29±0.46 93.00±1.24 96.27±0.87 94.24±1.02 94.40±1.04 95.01±0.44 96.11±0.33 93.34±3.81 97.05±0.42 97.69±0.41
0.3 94.39±0.62 96.33±0.44 93.48±0.50 95.95±1.12 94.04±1.00 94.13±1.06 95.22±0.24 96.04±0.44 92.98±3.25 96.75±0.44 97.30±0.43
0.4 93.86±0.47 96.00±0.48 93.89±0.56 95.79±1.13 93.95±1.13 93.88±1.20 95.05±0.32 95.99±0.53 91.98±3.73 96.77±0.23 97.30±0.37
0.5 93.25±0.80 96.07±0.81 93.33±0.67 95.73±0.97 93.92±1.10 94.02±1.13 94.91±0.72 95.92±0.33 91.65±3.00 96.59±0.48 97.31±0.25

P19

- 31.24±4.15 31.12±5.25 47.37±2.97 41.13±8.01 29.60±6.26 28.05±6.23 30.34±1.80 50.63±3.32 41.12±3.30 57.96±4.10 41.16±3.02
0.1 25.59±1.80 8.05±9.56 41.98±3.41 33.40±6.12 28.90±5.93 25.12±5.46 28.37±2.22 45.75±4.62 34.69±4.55 54.45±4.23 40.59±1.60
0.2 25.44±1.50 7.32±8.16 37.80±2.37 25.89±7.49 30.25±6.21 25.53±5.53 24.70±2.79 43.42±3.78 7.80±7.43 51.56±3.96 39.28±1.67
0.3 26.26±3.09 6.30±5.47 33.01±1.41 19.71±5.26 31.07±6.91 26.57±6.17 22.15±1.58 43.79±4.57 7.40±6.01 50.24±3.16 36.86±1.51
0.4 22.38±4.02 5.95±4.66 29.33±5.31 14.87±3.98 31.99±5.50 27.18±5.31 18.30±1.67 44.01±4.23 5.46±2.79 49.05±4.06 35.27±1.33
0.5 23.65±2.54 5.35±3.61 23.58±4.49 11.84±2.87 32.90±5.68 28.28±6.02 17.34±0.85 43.15±4.06 6.94±3.24 46.12±3.99 32.42±1.47

PAM

- 74.95±2.68 88.28±1.28 75.78±2.02 88.85±2.00 86.73±4.21 91.50±0.61 36.43±12.23 95.48±0.91 92.75±1.43 94.21±0.71 97.61±0.26
0.1 50.81±3.79 83.24±2.15 64.10±2.33 81.96±2.44 82.04±3.48 76.49±3.98 26.40±1.83 40.21±25.18 89.63±1.09 90.73±0.71 94.62±0.46
0.2 41.46±1.77 72.49±1.62 59.11±1.51 71.23±2.65 72.63±2.64 71.41±2.57 24.08±2.35 28.06±5.71 15.71±3.71 82.50±1.66 91.76±1.48
0.3 33.24±1.22 65.96±3.68 43.36±2.20 64.06±1.32 66.93±1.60 67.41±2.58 21.84±2.31 27.68±8.06 16.29±1.74 77.34±1.39 85.34±2.10
0.4 27.98±2.85 54.29±2.58 32.18±2.97 84.09±3.76 59.05±0.70 60.60±0.83 20.26±1.06 23.12±3.90 15.91±3.77 67.62±2.00 77.81±2.55
0.5 24.81±2.64 49.16±2.30 27.24±1.70 46.74±1.76 52.64±1.18 54.42±1.01 19.47±1.57 22.86±3.21 17.09±4.45 60.79±3.19 72.58±2.72

Table A4: Classification performance of ATENet and baselines when dropping variables with various ratios
∈ [0.1, 0.5] in the leave-random-sensors-out scenario. Drop Ratio denotes the ratio of missing variables.

Metric Dataset w/o L𝑇𝐶 w/o L𝑇𝐶𝑃 w/o L𝑇𝐶𝐼 w/o L𝑉𝐶 ATENet

AUROC

P12-M 85.53±1.29 85.61±1.17 85.62±1.20 85.49±1.17 85.54±1.26
P12-L 79.86±1.95 79.81±2.22 79.56±1.96 79.08±2.92 79.64±2.41
P19 83.19±1.93 83.43±2.23 81.39±3.16 81.75±2.21 84.02±1.38

PAM 99.02±0.23 99.01±0.22 99.08±0.30 98.84±0.52 99.18±0.15

Average Performance Drop Rate (%) 0.20 0.13 0.91 3.22 -

AUPRC

P12-M 53.28±2.05 53.34±1.87 53.39±1.87 52.93±1.99 53.31±2.02
P12-L 97.72±0.47 97.72±0.38 97.66±0.49 97.56±0.47 97.70±0.38
P19 36.75±3.75 38.87±5.24 35.08±5.48 29.32±4.18 41.16±3.02

PAM 96.93±1.08 97.57±0.40 97.14±0.68 96.65±1.16 97.61±0.26

Average Performance Drop Rate (%) 1.28 0.57 1.63 3.33 -

Table A5: Classification performance of ablations related to temporal and intervariable consistency regularization

Method P-12M P-12L P19 PAM

AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

Fully Individualized Variant 85.07 52.28 79.39 97.71 81.53 30.09 99.02 96.96
ATENet (ours) 85.54 53.31 79.64 97.70 84.02 41.16 99.18 97.61

Table A6: Classification performance of ATENet and fully individualized variant

G.3.2 Comparison with Pretrain-then-Finetune Frameworks

Pretrain-then-finetune frameworks, such as ModernTCN [21], aim to learn general-purpose represen-
tations through task-agnostic pretraining followed by finetuning on downstream tasks. In contrast,
ATENet adopts a task-specific learning strategy that directly optimizes representations for the classi-
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Method P-12M P-12L P19 PAM

AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

ModernTCN 81.16 42.92 71.20 96.47 75.31 17.73 98.35 93.30
ATENet 85.54 53.31 79.64 97.70 84.02 41.16 99.18 97.61

Table A7: Classification performance of ATENet and ModernTCN

Method P-12M P-12L P19 PAM

AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

FreRA 73.63 33.39 68.28 96.14 78.36 31.60 93.94 76.31
FGTI 82.87 46.12 72.75 96.91 81.54 43.21 99.31 97.05

ATENet 85.54 53.31 79.64 97.70 84.02 41.16 99.18 97.61

Table A8: Classification performance of ATENet and frequency-domain approaches

fication objective. This approach can provide several advantages, including better task alignment,
lower computational cost, and architectural simplicity.

To empirically evaluate the effectiveness of this design, we compared ATENet with ModernTCN, a
recent pretrain-then-finetune method. As shown in the Table A7, ATENet consistently outperformed
ModernTCN across all datasets in both AUROC and AUPRC, demonstrating that task-specific
learning can be highly effective even without explicit pretraining.

G.3.3 Comparison with Frequency-Domain Approaches

Frequency-domain approaches offer a complementary perspective on time-series analysis. However,
their applicability to irregular multivariate time series is limited by the assumption of uniform
sampling inherent in most Fourier-based methods [26, 39]. When this assumption is violated, as is
often the case in irregular settings, frequency-based representations can become unstable or unreliable.
This limitation likely contributes to the scarcity of related studies in this domain.

Nevertheless, we compared ATENet with two recent frequency-based methods: FreRA [37] and
FGTI [43]. Although these methods were originally developed for regularly sampled data or different
tasks, we adapted them to the irregular multivariate time-series classification setting to enable a fair
comparison. As shown in the Table A8, ATENet outperformed both methods in most cases. While
FGTI achieved comparable performance to ATENet in a few cases (e.g., AUPRC on P19), it relies
on a diffusion-based architecture with significantly more parameters and longer processing time. In
contrast, ATENet showed competitive results with a simpler and more efficient design.

H Robustness to Missing Observations

Learnable reference points and temporal consistency regularization can enhance the capability of
capturing inherent temporal patterns by focusing on partial observations with inconsistent time
intervals in irregular time series. That is, ATENet can robustly perform when some observations
are missing along the time axis. To validate this effect, in Figure A1, we compared the AUROC
of ATENet with that of MTSFormer and Raindrop, which showed the second-best and third-best
performance in Table 1 of the main body, across various missing ratios ∈ [0.1, 0.5]. Here, we
randomly hid observations in each sample of the test set along the time axis instead of using all
observations for certain variables. As a result, ATENet consistently performed, unlike Raindrop,
despite the presence of missingness along the time axis, demonstrating that our method effectively
captures intricate temporal dependencies.

I Sensitivity Analysis

We analyzed hyperparameters affecting ATENet, including the time embedding function, the number
of heads in MTA, the learning rate, and the loss weights. Here, we report classification performance
using the AUPRC, which was used to select the best models for each dataset.
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Figure A1: AUROC scores of ATENet and Raindrop across missing ratios ∈ [0.1, 0.5] along the time axis

(a) Time embedding function (b) Number of heads (c) Learning rate

Figure A2: AUPRC scores according to (a) time embedding function, (b) number of heads, and (c) learning rate

Time embedding function. We analyzed the influence of the time embedding function 𝜙 by
comparing the AUPRC for sinusoidal and learnable functions. As shown in Figure A2a, although the
classification performance for the P12-L and PAM datasets was not sensitive to 𝜙, the classification
performance on the P12-M and P19 datasets differed by about 5% depending on 𝜙. These performance
gaps stem from how these embedding functions capture temporal dependencies and unique patterns in
each dataset. The sinusoidal embedding function is fixed and periodic, thereby successfully capturing
predictable and cyclic temporal patterns. Thus, it performs well in datasets with smooth or cyclic
temporal structures. However, this function may struggle with non-periodic data, as it cannot adapt
to complex time dependencies. In contrast, the learnable embedding function is more flexible in
capturing non-periodic patterns and is able to learn temporal representations specialized to the data,
making them advantageous for datasets with more complex or non-cyclic patterns. To sum up, the
choice of time embedding function impacts classification performance based on the complexity of
the temporal patterns in each dataset. Thus, exploring the optimal embedding function 𝜙 is necessary
to enhance classification performance. In this study, we set 𝜙 to sinusoidal embedding function for
the P19 dataset, whereas learnable one for the remaining datasets.

Number of heads. To examine the effect of the number of time embedding functions (attention
heads), 𝐻, we compared the AUPRC on each dataset using various 𝐻s. As shown in Figure A2b,
the classification performance slightly differed depending on 𝐻 in the P19 dataset. However, the
performance differences for the other datasets were small, indicating that ATENet is not highly
sensitive to the number of heads. We set the number of heads 𝐻 in the P12-M, P12-L, P19, and PAM
datasets to 2, 4, 2, and 1, respectively.

Learning rate. In Figure A2c, we compared the AUPRC of ATENet by varying the learning rates.
Consequently, the classification performance on the four datasets differed according to the learning
rate. In this study, the learning rates for the P12-M, P12-L, P19, and PAM datasets were set to 0.0001,
0.001, 0.01, and 0.01, respectively.

Loss weights. We use two loss weights 𝛼 and 𝛽 associated with temporal and intervariable consis-
tency regularization terms to reflect intricate temporal and intervariable dependencies, respectively.
Figure A3 exhibits the AUPRC of ATENet for various pairs of 𝛼 and 𝛽. The performance differences
for the P12-M, P12-L, and PAM datasets were relatively small, indicating ATENet’s robustness
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Figure A3: AUPRC scores according to weights for temporal and intervariable consistency regularization terms

against 𝛼 and 𝛽. However, for the P19 dataset, the performance gap is significantly high. Therefore,
in this study, we set a pair of (𝛼, 𝛽) for the P12-M, P12-L, P19, and PAM datasets to (0.01, 0.1), (0.01,
0.01), (0.01, 1), and (0.1, 0.01) through a grid search for 𝛼 ∈ {0.01, 0.1, 1} and 𝛽 ∈ {0.01, 0.1, 1}.

J Code Availability

The code for reproducing our experimental results is available on GitHub at https://github.com/
shlee-labs/ATENet.
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