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ABSTRACT

Domain generalization (DG) focuses on transferring domain-invariant knowledge
from multiple source domains (available at train time) to an a priori unseen tar-
get domain(s). This task implicitly assumes that a class of interest is expressed in
multiple source domains (domain-shared), which helps break the spurious correla-
tions between domain and class and enables domain-invariant learning. However,
in real-world applications, classes may often be expressed only in a specific do-
main (domain-linked), which leads to extremely poor generalization performance
for these classes. In this work, we introduce this task to the community and de-
velop an algorithm to learn generalizable representations for these domain-linked
classes by transferring useful representations from domain-shared classes. Specif-
ically, we propose a Fair and cONtrastive feature-space regularization algorithm
for Domain-linked DG, FOND. Rigorous and reproducible experiments with base-
lines across popular DG tasks demonstrate our method and its variants’ ability to
accomplish state-of-the-art DG results for domain-linked classes, given sufficient
number of domain-shared classes. Complementary to these contributions, we de-
velop theoretical insights for this task and practical insights for domain-linked
class generalizability in real-world settings.

1 INTRODUCTION

Domain generalization (DG) aims to learn discriminative representations that can generalize to
data distributions (domains) different from those observed during training, i.e. out-of-distribution.
Specifically, here the target domain is assumed to be unseen during training. Given this goal, the
guiding principle in modern DG algorithms is to learn representations that are invariant to source
domains, and hence generalizable to unseen targets (Ye et al., 2021). As a result, recent works
aim to explicitly reduce the representation discrepancy between multiple source-domains (Zhou
et al., 2023), by leveraging distribution-alignment (Rame et al., 2022; Nguyen et al., 2021), domain-
discriminative adversarial networks (Kim et al., 2023; Zhang et al., 2021a), domain-based feature-
alignment (Wang et al., 2023; Ruan et al., 2022; Kim et al., 2021), and meta-learning and few-shot
approaches (Qin et al., 2023; Gu et al., 2022; Shu et al., 2021; Zhang et al., 2021b; Li et al., 2018a).

Existing DG methods explicitly rely on classes being observed in multiple source-domains and/or
focus only on the overall accuracy. In the real-world however, classes of interest may often be ob-
served in a specific domain (domain-linked, YL), setting it apart from those observed in multiple
domains (domain-shared, YS); see Fig. 1a. These lead to generalization challenges in applications
including, healthcare (Chen et al., 2021), autonomous driving (Piva et al., 2023), and fraud detection
(Ataabadi et al., 2022), where classes/anomalies of interest may only have been observed in partic-
ular demographics, regions etc., resulting in large performance discrepancies between YL and YS .

Since domain-linked classes are only observed in one domain, models which aim to utilize domain-
linked data often encounter spurious correlations between the domain and the class (Lynch et al.,
2023; Zhang et al., 2022a). Thus the learned representations exhibit extreme bias towards domain-
specific features. This challenge is only exacerbated in the DG setting where we aim to learn repre-
sentations that can generalize to an unseen target domain. This results in poor performance on these
classes in practice; see for instance the domain-linked versus domain-shared performance discrep-
ancy in Fig. 1b. Consequently, we seek to specifically improve the generalizability of domain-linked
classes. This task, to the best of our knowledge has not been studied in the literature.
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Figure 1: Illustrating domain-linked (YL) and domain-shared (YS) classes and resulting per-
formance discrepancies. Panel (a) illustrates a shape classification task with domain-linked and
domain-shared classes; the domains are represented by color. During training some classes are ex-
pressed in multiple domains (e.g. circle) while others are expressed in only one domain (e.g. trian-
gle). Panel (b) communicates the performance discrepancy between YL and YS across all datasets.

Notwithstanding these challenges, recent advances in real-world machine learning draw from the
success of pretraining with classes/objectives different from downstream tasks (He et al., 2022).
This begs the question – can we transfer useful representations from domain-shared classes to
domain-linked classes? To begin, we analyze the factors impacting domain-linked class perfor-
mance theoretically. We then motivate and develop a contrastive and fairness-based objective to dis-
entangle spurious correlations between domain and class, and propose FOND, (Fair and cONtrastive
Domain-linked learning), to answer this question in the affirmative.

Specifically, we draw insights from recent works on fairness (Pham et al., 2023; Makhlouf et al.,
2021; Wang et al., 2020) to learn generalizable representations from YS for YL classes. Note that
this is different from the goal of classic DG fairness – achieve similar outcomes across protected
attributes (e.g., gender). On the contrary, we use fairness to ensure that the model can be moved
away from learning domain-specific features that can lead to spurious correlations for YL. Thus
leveraging fairness as a way to learn generalizable representations for domain-linked classes. To
complement this objective, we develop a contrastive learning objective that regularizes the pairwise
relationships between same-class-inter-domain and different-class-intra-domain training samples.

We rigorously evaluate FOND via detailed ablations, and comparisons on three standard DG bench-
mark datasets – PACS (Li et al., 2017), VLCS (Fang et al., 2013), and, OfficeHome (Venkateswara
et al., 2017) – across ten DG baselines, include the SOTA (Wang et al., 2023; Eastwood et al., 2022).
We find that indeed domain-linked class performance improves with the presence of a high enough
number of domain-shared classes, thus accomplishing domain-invariant representation learning. We
observe that that ERM is still a strong baseline, but FOND and its variants achieve a remarkable
overall performance improvement of +9.3 over ERM on an average (26.9% improvement), with a
gain of 39.2% on VLCS. This demonstrates that even observing other classes in diverse domains
can immensely help domain-linked classes!

2 RELATED WORKS

We briefly introduce domain generalization works related to this paper and identify the research gap
this paper seeks to study. To reiterate, DG aims to learn a machine learning model that predicts well
on distributions different from those seen during training. To achieve this, DG methods typically
aim to minimize the discrepancy between multiple source-domains (Ye et al., 2021).

Data manipulation techniques primarily focus on data augmentation and generation techniques.
Typical augmentations include affine transformations in conjunction with additive noise, cropping
and so on (Shorten & Khoshgoftaar, 2019; He et al., 2016). Other methods include simulations (To-
bin et al., 2017; Yue et al., 2019; Tremblay et al., 2018), gradient-based perturbations like CrossGrad
(Shankar et al., 2018), adversarial augmentation (Volpi et al., 2018) and image mixing (e.g. CutMix
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(Mancini et al., 2020), Mixup (Zhang et al., 2018) and Dir-mixup (Shu et al., 2021)). Further-
more, generative models using VAEs GANs are also popular techniques for diverse data generation
(Anoosheh et al., 2017; Zhou et al., 2020; Somavarapu et al., 2020; Huang & Belongie, 2017).
Since the model generalizability is a consequence of training data diversity (Vapnik, 2000), FOND
and other approaches should be used in conjunction. It is important to consider the complexity of
data generation techniques since they often require observing classes in multiple domains.

Multi-domain feature alignment techniques primarily align features across source-domains
through explicit feature alignment. For example, DIRT (Nguyen et al., 2021) aligns transformed do-
mains, CORAL (Sun & Saenko, 2016) and M3SDA (Peng et al., 2019) align second and first-order
statistics, MDA (Hu et al., 2019) learn class-wise kernels, and others use measures like Wasserstein
distance (Zhou et al., 2021; Wang et al., 2021). Additionally, some methods focus on gradient op-
erations like PGrad (Wang et al., 2023) and Fishr (Rame et al., 2022), while other methods frame it
as probabilistic (EQRM in Eastwood et al. (2022)) or causal (CausIRL in Chevalley et al. (2022))
modelling tasks. Other approaches perform domain-discriminative adversarial training (Zhu et al.,
2022; Yang et al., 2021; Shao et al., 2019; Li et al., 2018b; Gong et al., 2018). Howerver, since there
is a 1:1 correlation between YL classes and their domains, adversarial domain-discriminators may
infer an inputs domain from class-discriminative features.

Meta-learning approaches improve generalizability by imitating the generalization tasks through
meta-train and meta-test objectives; MLDG (Li et al., 2018a) and ARM (Zhang et al., 2021b) are
popular base architectures (Zhong et al., 2022; Shu et al., 2021). Other interesting methods perform
adversarial training, Transfer (Zhang et al., 2021a), and few-shot learning, FSDG (Qin et al., 2023).

Contrastive learning aims is to learn representations, self-supervised (Chen et al., 2020b) or su-
pervised (Khosla et al., 2020; Motiian et al., 2017), such that similar samples are embedded close
to each other while distancing dissimilar samples (Huang et al., 2020; Ruan et al., 2022; Kim et al.,
2021; Khosla et al., 2020; Chen et al., 2020b; Motiian et al., 2017). These methods primarily fo-
cus on multi-domain comparisons in order to identify domain-invariant representations; see Zhou
et al. (2023) and the references therein. However, this methodology is insufficient for identifying
generalizable representations for domain-linked classes.

Fairness notions in DG (Makhlouf et al., 2021) involve reducing the performance discrepancy be-
tween protected attributes (e.g. demographic) (Pham et al., 2023; Wang et al., 2020). However, our
work enforces fairness to learn generalizable representations for domain-linked classes.

Research Gap. Existing DG approaches presuppose all classes are expressed in multiple domains
and/or seek to maximize average generalization; thus ignoring the large performance discrepancies
between domain-linked and domain-shared classes. Since these domain-linked classes may be of
interest in real-world settings, there is a need to understand the factors that impact their performance,
and to build models which can improve their generalizability to unseen domains.

3 PROBLEM FORMULATION

We formalize some definitions for the purposes of the paper. First, we define a domain as follows.

Definition 3.1 (Domain). Let X denote an nonempty input space (e.g. images, text, etc) and Y an
output label space. We denote as specific domain as S = {(xj , yj)}nj=1 ∼ DS : XS × YS , where
x ∈ XS ⊆ Rd and y ∈ YS ⊂ Z.

Given this definition of a domain, the DG task – which entails learning representations from multiple
source-domains to generalize to unseen target-domain(s) – can be formalized as shown below.

Definition 3.2 (Domain generalization). Given K training (source) domains S = {Si | i =
1, ...,K} where Si = {(xi

j , y
i
j)}

ni
j=1 denotes the i-th source domain with ni samples, and the joint

distributions between each pair of domains are different: DSi ̸= DSj

: 1 ≤ i ̸= j ≤ K. Then
the goal is to learn a predictive function from S for reliable performance on an unseen, out-of-
distribution target-domain T ∼ DT : X T × YT (i.e. DT ̸= DSi

for i ∈ {1, ...,K}).

We evaluated methods for closed-set domain generalization (i.e. YT =
⋃K

i=1 YSi

) where no source-
domain expresses all target classes (i.e., YT ⊂ YSi

for i ∈ {1, ...,K}). Furthermore, during training
there exists a set of classes expressed in only one source-domain, i.e. domain-linked classes YS

λ :
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Definition 3.3 (Set of domain-linked classes). YS
λ = {y : |{S ∈ S, y ∈ YS}| = 1}, YL for brevity.

Similarly, classes expressed in multiple domains, i.e. domain-shared classes YSi

σ as shown below.
Here, YT = YL ∪ YS and YL ∩ YS = ∅.
Definition 3.4 (Set of domain-shared classes). YS

σ = {y : |{S ∈ S, y ∈ YS}| > 1}, YS for brevity.

Learning Objective. The learning objective is to identify a generalizable predictive function M :
X → Y to achieve a minimum predictive error on an unseen, out-of-distribution, test domain T
under the previously outlined conditions. The task network is defined as M = (F ◦G)(x), to learn
the feature extractor F : X → H and the classifier G : H → Y∆, where ∆ is a probability simplex.

4 THEORETICAL ANALYSIS

In this section, we theoretically formalize the challenges faced by domain-linked classes by demon-
strating the source of performance discrepancies between domain-linked and domain-shared classes.
These insights are then used to develop the proposed algorithm in the next section. Our main result
comes in the form of the following theorem; details are in App. B.
Theorem 1. Given K source domains Si for i ∈ [1,K], each contributing αi · m i.i.d. samples
where

∑K
i=1 αi = 1, and each αi denotes the fraction of samples contributed by a source Si, a target

domain T , and a hypothesis class H. The error ϵTℓ
(ĥ) of a domain-linked class ℓ of hypothesis

ĥ ∈ H , an empirical minimizer of ϵ(h) on the source samples, is upper bounded by

ϵTℓ
(ĥ) ≤ ϵTℓ

(h∗
T ) + dH∆H(T, Sℓ) +O(m−1), (1)

with probability at least (1 − δℓ) for δℓ ∈ (0, 1), where ϵTℓ
(h∗

T ) represents the error achieved by
h∗
T = minh∈H ϵT (h) on the target domain for the class ℓ. Further, the upper-bound if this were a

domain-shared class expressed in K domains is

ϵTℓ
(ĥ) ≤ ϵTℓ

(h∗
T ) +

K∑
i=1

αi dH∆H(T, Si) +O(m−1), (2)

with probability at least (1 − δs) for δs ∈ (0, 1), where dH∆H(·, ·) is the average distribution
divergence between domains. Then, if dH∆H(T, Si) ≤ dH∆H(T, Sℓ) for all i, the upper-bound in
Eq. (1) is greater than that of Eq. (2).

Remark 1. The result shows the dependence on the number of samples. While we use O(m−1) to
simplify this dependence, the number of samples for domain-linked classes is usually lower than
those for domain shared classes, which is a significant source of the performance discrepancy.

Remark 2. The average distribution divergence is another source of performance discrepancy, if the
domain-shared classes have a larger and more expressive dataset than domain-linked the condition
dH∆H(T, Si) ≤ dH∆H(T, Sℓ) is easy to meet. Although not explicitly stated, the diversity of data
can be encoded as the span of a given dataset, i.e. the size of the convex hull of all data points.

This theoretical result demonstrates that for a fixed hypothesis class, the distribution divergence and
samples play a major role. While the number of samples are usually fixed, we aim to inject the
domain diversity from shared classes to improve performance of domain-linked ones. Our empirical
result corroborates this theoretical intuition that a high-shared setting, where a higher number of
shared classes are observed in different domain indeed helps learning for domain-linked classes.

5 METHODOLOGY

We introduce the learning algorithm FOND (Fair and cONtrastive Domain-linked learning), which
learns domain-invariant representations from domain-shared YS classes that improve domain-linked
YL class generalization. We achieve this by minimizing the following objective described in Alg. 1:

LFOND = Ltask + λxdom · Lxdom + λfair · Lfair. (3)

We impose domain-invariant representation learning by focusing on specific pairwise sample rela-
tionships through the contrastive Lxdom objective. Since we require these representations to im-
prove domain-linked class generalizability, we impose fair representation learning between YL and
YS through the Lfair objective. The following sections describe the formulation these objectives.
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Algorithm 1 FOND Training Algorithm

Require: Source datasets S, feature extractor F , projection network Q, classification network G
1: while Not Converged do
2: Sample a batch of data B = {(x1,y1), (x1,y1), ..., (xK ,yK)} from all source domains S
3: BF = {(h1,y1), (h2,y2), ..., (hK ,yK)} ← F (B) ▷ Generate input representations
4: BQ = {(z1,y1), (z2,y2), ..., (zK ,yK)} ← Q(BF ) ▷ Generate feature projections
5: Lxdom ← {BQ, α, β} ▷ Calculate domain-aware loss according to Eq. equation 4
6: BC ← G(BF ) ▷ Generate classification logits
7: B(L)

C ,B(S)
C ← {BC} ▷ Separate logits based on ground-truth label group, i.e. YL or YS

8: Lfair,Ltask ← {B(L)
C ,B(S)

C }, {BC} ▷ Calculate task and fair losses according to
Eq. equation 5

9: end while
return F,G

5.1 LEARNING DOMAIN-INVARIANT REPRESENTATIONS FROM YS CLASSES

The YS and YL performance discrepancy (Fig. 1b) results since algorithms do not observe enough
domain-variances in YL data like they do with YS . In alignment with Remark 2, in Sec. 4, observ-
ing domain-variances allows models to learn representations that reduce the average distribution
divergence between source and target domain data. Therefore, unlike modern feature-alignment DG
approaches our learning objective explicitly treats YL and YS class samples differently.

Maximizing the mutual information between positive (same-class) inter-domain samples guides
domain-invariant learning (Chen et al., 2020a; Ren et al., 2023). For example, in Fig. 1a an al-
gorithm observing pairwise relationships between samples from domain-shared YS classes may
observe that encoding edge features increases mutual information while color reduces it. Further-
more, due the success of “hard negative mining” in representation learning literature (Robinson
et al., 2021; Zhang et al., 2022b; Liu et al., 2023), we hypothesize that negative (different-class)
intra-domain comparisons are more informative than negative inter-domain comparisons for reduc-
ing spurious domain and class correlations. For example, in Fig. 1a, an algorithm may achieve color
invariance by minimizing mutual information between samples from different classes (shapes) but
from the same domain (color). This is validated in Table. 2 where we observe that variants including
both α and β ( i.e, FOND and FOND\F) outperform all baselines.

Motivated approach. Therefore, we define a feature extractor F : X → H to take a input samples
x ∈ X and generate representation vectors, h ∈ H ⊆ RdF . We regularize the representation vectors
by applying a contrastive objective to the output of a projection network Q : H → Z to generate
normalized, lower-dimensional, representations z ∈ Z ⊆ RdQ . The goal of the contrastive objective
defined by Eq. (4) is to maximize the cosine similarity of the projected representations z between
same-label samples y (positive pairs) and minimize those that do not (negative pairs).

Lxdom =
∑

i∈I
−1

|P (i)|
∑

p∈P (i) log
α·exp(zi·zp/τ)∑

j∈I\{i} β · exp(zi · zj/τ)
, (4)

α =

{
a, S(zi) ̸= S(zp), where a ≥ 1

1, otherwise
, β =

{
b, S(zi) = S(zj), yi ̸= yj , where b ≥ 1

1, otherwise

Let i ∈ I ≡ {1...N} be the index of a sample (anchor) where N denotes the batch size. P (i) = {p ∈
I\{i} : yp = yi} is the set of indices of all positives in the batch. The term α increases the cosine
similarity weight of the anchor zi and positive zp sample if they are inter-domain (S(zi) ̸= S(zp)),
pairs. Note that S(zi) denotes the domain S ∈ S that zi belongs to. Additionally, β increases the
cosine-similarity weight of the anchor zi and zj if they are negative, intra-domain ( S(zi) = S(zp)),
pairs. The FOND\FBA method variant sets a = b = 1, FOND\FB sets a ≥ 1, b = 1 and FOND\F
sets a ≥ 1, b ≥ 1; these variants omit fairness (i.e. \F). Note a and b are hyper-parameters.

5.2 IDENTIFYING DOMAIN-INVARIANT REPRESENTATIONS FOR YL WITH FAIRNESS

Increasing the weight of positive inter-domain similarity metrics through α in Eq. (4) biases
the model towards domain-shared YS generalization since these metrics are not present between
domain-linked YL class samples. Consequently, we impose fairness to constrain the model to learn
generalizabile features from YS classes that are also generalizable for YL classes.
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(a) VLCS (b) PACS (c) OfficeHome

Figure 2: Visualizing domains (rows) and classes (columns) for evaluation dataset. Note how
PACS and OfficeHome exhibit more obvious domain variations than VLCS.

Applying Fairness for DG. Notions of fairness in DG require that appropriate statistical measures
are equalized across protected attributes (e.g. gender) (Makhlouf et al., 2021). We can formulate
these notions of fairness as (conditional) independence statements between random variables: pre-
diction outcome M(X), protected attribute A and class Y (Kilbertus et al., 2017). For example,
demographic parity (M(X)⊥A) requires the prediction outcomes to be the same across different
groups; equalized odds (M(X)⊥A|Y ) requires that true and false positive rates are the same across
different groups; equalized opportunity (M(X)⊥A|Y = y) requires that only true positive rates are
the same across different groups. However, defining our protected attribute A as whether a sample
belongs to YS or YL would make the prediction outcome M(X) completely dependent on A.

Motivated approach. Therefore, we impose a fairness constraint on the prediction error rate such
that the domain-invariant representations learned from YS improve the generalizability of the disad-
vantaged YL classes. The violation of this objective is measured in Eq. (5) by the absolute difference
between their classification losses. We observe in Sec. 6.2 that this objective leads to large improve-
ments in YL classes given the model observes a sufficient number of YS classes (High-shared).

Lfair = |LL
task − LS

task|, where, Ltask = E(x,y)∼S [−y · log (M(x))] (5)

6 EXPERIMENTS

We specifically focus on analyzing domain-linked class performance under varying 1) shared-class
distribution settings (Sec. 6.1), 2) inter-domain variation types, and 3) number of classes. For rigor-
ous, fair and reproducible evaluation, we mirrored the DomainBed (Gulrajani & Lopez-Paz, 2021)
test-bed to be consistent with the experimentation in DG literature.

We report class-averaged classification accuracy and standard errors for YL classes here. Reported
values arising from three Monte-Carlo runs for three datasets, across four domains, for five random
hyper-parameter selections, and for the Low and High-shared settings. Overall, our extensive exper-
iments summarize the results of 360 experiments per baseline. We focus on the high-shared setting
for YL in the main paper, results for YS , low-shared setting are in the App. C. Implementation details
and the code is provided in App. A and supplementary, respectively.

6.1 EXPERIMENTAL SETUP

Datasets. To evaluated YL performance with respect to inter-domain variations and the number of
classes, we required keeping consistent a) dataset sizes and b) number of domains. Therefore we
chose DG literature gold standard datasets (Zhou et al., 2023): PACS, VLCS, and OfficeHome, as

Table 1: Evaluation dataset properties. This table characterizes the datasets and defines the num-
ber of YL versus YS classes for the Low and High class distribution experimental settings.

Properties Settings (|YS | : |YL|)
Datasets # Domains # Classes # Samples Domain Variation Type Low-shared High-shared

PACS 4 7 9,991 Style-Based 3:4 5:2

VLCS 4 5 10,729 Real-World 2:3 4:1

OfficeHome 4 65 15,588 Style-Based 25:40 50:15
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Table 2: High setting out-of-distribution test accuracy (%) for YL classes.

Algorithm VLCS PACS OfficeHome Average % Improvement
ERM 51.8 ± 3.3 14.7 ± 2.2 37.5 ± 0.6 34.6 (0.0%)
CORAL (Sun & Saenko, 2016) 49.8 ± 4.2 13.7 ± 1.0 38.9 ± 0.2 34.1 (-1.4%)
MLDG (Li et al., 2018a) 45.2 ± 3.4 13.8 ± 0.5 37.4 ± 0.7 32.1 (-7.2%)
ARM (Zhang et al., 2021b) 49.0 ± 1.4 16.2 ± 2.9 38.4 ± 0.2 34.5 (-0.3%)
SelfReg (Kim et al., 2021) 41.9 ± 0.2 13.4 ± 1.2 39.5 ± 0.6 31.6 (-8.7%)
CAD (Ruan et al., 2022) 51.7 ± 5.8 13.1 ± 0.7 36.4 ± 1.4 33.7 (-2.6%)
Transfer (Zhang et al., 2021a) 48.9 ± 3.0 16.0 ± 1.6 36.8 ± 0.2 33.9 (-2.0%)
CausIRL (Chevalley et al., 2022) 48.9 ± 2.5 13.3 ± 1.5 39.2 ± 0.2 33.8 (-2.3%)
EQRM (Eastwood et al., 2022) 45.4 ± 3.5 17.9 ± 2.0 37.8 ± 0.1 33.7 (-2.6%)
PGrad (Wang et al., 2023) 40.2 ± 1.8 12.6 ± 1.4 39.0 ± 0.8 30.6 (-11.6%)

FOND 72.1 ± 3.5 19.1 ± 0.6 40.6 ± 0.4 43.9 (+26.9%)
FOND\F 51.7 ± 6.0 17.5 ± 1.4 40.8 ± 0.6 36.7 (+6.1%)
FOND\FB 44.0 ± 2.3 15.4 ± 0.6 41.7 ± 0.7 33.7 (-2.6%)
FOND\FBA 51.3 ± 2.8 17.3 ± 1.3 39.1 ± 0.5 35.9 (+3.8%)

shown in Table 1 and Fig. 2. While PACS (Fig. 2b) and OfficeHome (Fig. 2c) datasets share similar
style-based domain-variations, there is a∼10x difference in class size. Furthermore, although VLCS
(Fig. 2a) and PACS have similar class sizes, VLCS expresses nuanced real-world domain-variations.

Defining Shared-Class Distribution Settings. We define two shared-class distribution settings –
Low and High – denoting the relative number of shared classes |YS | with respect to the total |YT |
(refer to Table 1). In the Low setting ∼ 1/3 of the classes are domain-shared; ∼ 2/3 in the High
setting. YL andYS classes were randomly selected and assigned round-robin to each source-domain.

Baselines. Baselines were selected to a) cover a variety of foundational DG methodologies, that
are b) well represented in DG literature and have c) been benchmarked against DomainBed (Gul-
rajani & Lopez-Paz, 2021). Therefore, we evaluate: naive empirical risk minimization, ERM; pop-
ular distribution-alignment, CORAL (Sun & Saenko, 2016); contrastive mixing-based, RSC (Huang
et al., 2020) predecessor, SelfReg (Kim et al., 2021); contrastive CLIP-based (Radford et al.,
2021) method, CAD (Ruan et al., 2022); popular meta-learning baselines, ARM (Zhang et al., 2021b)
and MLDG (Li et al., 2018a); adversarial meta-learning network, Transfer (Zhang et al., 2021a);
causal representations, CausIRL (CORAL variant) (Chevalley et al., 2022); gradient optimization,
PGrad (Wang et al., 2023); probabilistic framework, EQRM (Eastwood et al., 2022).

6.2 EXPERIMENTAL RESULTS

In this section, we present the experimental results and empirically demonstrate that FOND benefits
the domain-linked class performance (YL) by transferring domain-invariant representations learned
from domain-shared classes (YS).

Effect of shared-class settings and total class size. We report the performance under the low-and
high-shared setting in Fig. 3 (Table 4 in App. C shows detailed listings). FOND relies on observing
domain-shared classes, therefore it only demonstrates top-4 performance in the Low setting. In the
High setting we observe that FOND consistently outperforms all baselines as shown in Table 2. Strik-
ingly, FOND results in a 39% performance improvement over the best baseline (ERM) for VLCS.
There are some interesting trends in Fig. 3. It seems that while for VLCS and OfficeHome the per-
formance improves from Low to High, this is not true for PACS. Does this mean that shared setting
does not help? To probe this further, in Fig. 4 we track only those classes which were domain-linked
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Figure 3: Average YL classes performances for Low and High shared-class distribution settings.
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Figure 4: Tracking individual domain-linked YL classes performances for classes in both Low
and High shared-class distribution settings. We track the changes in the domain-linked classes
present in both the Low and High setting.

in both Low and High setting to see how an increase in domain-shared classes impacts the perfor-
mance of domain-linked classes. We see that in fact for both VLCS and PACS FOND improves
the performance for domain-linked classes! But another interesting trend presents itself for Office-
Home. We observe that while FOND outperforms all other baselines in the High setting, OfficeHome
domain-linked classes performance in Fig.4(c) decreased. To get full picture, in Fig.3(c) we note
that the performance gains are modest, this indicates that Low and High are not relative but absolute.
In other words, a higher number of domain-linked classes require a large number of domain-shared
classes, which again underscores the importance of domain-shared classes.

Effect of inter-domain variations. To analyze the impact of domain differences we turn to char-
acteristics of the dataset. As shown in Fig. 2c, VLCS domains are real-world while for PACS and
OfficeHome domain differences are more obvious. We find while FOND outperforms all baselines
for each of the datasets (Table 2), the results for VLCS are the most prominent. In fact, each baseline
struggles on PACS and OfficeHome. Our theoretical analysis sheds light on this trend. Specifically,
from Thm. 1 we see that the distribution divergence dH∆H(T, Sℓ) between the source and the target
plays a major role for effective transfer, and puts a fundamental limit on the performance. Interest-
ingly, FOND is able to leverage domain-shared classes to maximize performance.

Impact on domain-shared classes. While the goal of this work is to improve domain-linked per-
formance, a natural question arises regarding the impact of this prioritization on the domain shared
classes. To analyze this performance, in Fig. 7 we present a comparative analysis of the YL vs.
YS accuracies. For each of the dataset, FOND results in striking improvement in YL accuracies as
compared to all the baselines. We also observe how different FOND variants can be used to reconcile
the trade-off in the real-world. Interestingly, the performance improvements for OfficeHome show
how modest loss of YS can lead to significant gains in YL, highlighting the strenghts of FOND.

Visualizing learned representations. To further understand the representations learned by FOND,
for each dataset we visualize its learned latent representations and compare them to those learned by
ERM (top-performing-baseline in Table 2). For ERM, the class-colored clusters are also distinctly
sub-clustered by domain (e.g. broken circle in Fig. 6a and Fig. 6b). For FOND, class-colored clusters
are not as distinctly sub-clustered by domain (Fig. 6d and Fig. 6e); therefore FOND learns more
domain-invariant representations. Furthermore, for domain-linked YL class samples, FOND (e.g.
solid circle in Fig. 6f) yields more generalizable representations than ERM (Fig. 6c. Finally, while
all methods struggle on the pink class, FOND empirically maintains top performance.
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Figure 5: Visualizing YL and YS performance trade-offs on the High shared-class distribu-
tion setting. Our method outperforms all baselines on YL classes with more competitive YS class
performance as the total number of target classes increases (left to right). Additional plots in App. C.
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Dimension 2
Figure 6: t-SNE latent representation visualization for the PACS-High dataset. Each row vi-
sualizes the representations of FOND versus top-performing baseline ERM. Source-domain (Photo,
Art and Sketch) representations are colored by class (left) and domain (center). Target-domain (Car-
toon) representations are colored by class (right). Refer to the analysis of the domain-linked YL
class generalization (solid circle) and domain-invariant learning (broken circle) in Sec. 6.2.

7 DISCUSSION

Summary. Domain generalization (DG) in real-world settings often suffers from data scarcity lead-
ing to classes which are only observed in specific domains, i.e. they are domain-linked. DG ef-
forts primarily focus on improving the overall accuracy which can lead to critical failures in the
real-world. Motivated from this challenge, we focused on improving the out-of-distribution general-
ization for domain-linked classes by transferring domain-invariant knowledge from domain-shared
classes. Consequently, we proposed FOND; the first method for domain-linked domain generaliza-
tion, which achieves state-of-the-art performance as compared to the current SOTA DG approaches.

Significance. By introducing the domain-linked DG task we draw attention to the large performance
discrepancies between domain-linked and domain-shared classes, across current state-of-the-art DG
algorithms. A similar challenge has been observed in the context of data-scarcity in long-tailed
classification (50− 1000 classes) Gu et al. (2022), but we show that DG models struggle even for a
modest number of classes, highlighting a need to develop methods that can address this challenging
scenario. Our focus here is only on domain-linked class performance. This is not a limitation,
but a change in focus. We also observe a need to develop insightful metrics to understand the DG
representations, since a sole focus on overall accuracy can be misleading. Finally, we also note that
DG methods implicitly assume that training domains are different, FOND is the only method that is
able to achieve reliable performance under nuanced real-world domain variations (e.g. VLCS).

Key Takeaways. From our analysis, we observe that the proposed method works well in the High-
shared setting. This highlights the need for observing a sufficient number of domain-shared classes
in multiple domains to be able to draw useful representations. We also note that the performance
differences between Low and High are especially stark for VLCS and PACS, which have lower
number of classes as compared to OfficeHome. This indicates that Low and High are not dependent
on proportions of domain-linked vs. domain-shared classes, but their absolute number. This also
presents an opportunity for rethinking DG for small vs. large class settings. More importantly,
guided by our theoretical insights which demonstrates the role of average distributional divergence
between source and target domains, we observe that FOND performs the best on VLCS, which
contains real-world domain shifts. The ability to leverage knowledge from domain-shared classes to
accomplish state-of-the-art results for domain-linked ones opens tremendous possibilities for real-
world DG, stimulating domain generalization research for real-world data-scarce domains.

Limitations and future work. Like all baselines, FOND also struggles in the Low-shared setting,
which is due to the fact the there aren’t enough shared classes to learn from. Next, we make a binary
distinction between domain-linked and domain-shared classes, but it will be exciting to explore
methods that can adapt to varying levels of shared-ness in future. Nevertheless, our work calls for
paying a closer attention to the biases and assumptions in DG.
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8 ETHICS STATEMENT

Our fairness objective is conditioned on a class being represented in multiple domains, which in the
real-world may result from representation inequalities of protected attributes and/or classes which
are only observed in certain domains (or rarely observed in others). Therefore, careful consideration
is required when deploying fairness based DG research since they could make decisions that unfairly
impact specific groups. This work demonstrates how we can begin to think about these challenging
tasks. On the computation front, domain generalization research is computationally heavy since it
requires multiple validation cycles for each dataset, algorithm, hyper-parameter search space and
shared-class distribution setting. Therefore, as we expand DG research we need to improve ML re-
source efficiency to both increases its accessibility and reduce negative environmental consequences.

9 REPRODUCIBILITY

For reproducability, all algorithms, datasets, hyper-parameter searching and model selection follow
the DomainBed (Gulrajani & Lopez-Paz, 2021) benchmark standard; refer to App. A. All code is
self contained and the corresponding training scripts are provided in the supplementary resources.
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A EXPERIMENTAL SETUP

A.1 IMPLEMENTATION DETAILS

For consistency, all algorithms have a fine-tuned ResNet-18 backbone (He et al., 2016) pre-trained
on ImageNet (Deng et al., 2009). Specifically, we replace the final (softmax) layer, insert a dropout
layer and then fine-tune the entire network. Since minibatches from different domains follow differ-
ent distributions, batch normalization degrades domain generalization algorithms (Seo et al., 2019).
Therefore, we freeze all batch normalization layers before fine-tuning. Additionally, the training
data augmentations are: random size crops and aspect ratios, resizing to 224 × 224 pixels, random
horizontal flips, random color jitter, and random gray-scaling. Our experiments ran on different
GPUs: NVIDIA RTXA6000, NVIDIA GeForce RTX2080. Further implementation details are pro-
vided in the attached code.

A.2 HYPER-PARAMETER SEARCH

For each algorithm we perform five random search attempts over a joint distributions of all their
hyper-parameters. The performance of each hyper-parameter is evaluated using the strategy outlined
in App. A.3. This is repeated for each of the five sets of hyper-parameters and the set maximizing the
average domain-linked YL accuracy is selected. This search is performed for across three different
seeds where all hyper-parameters are optimized anew for each algorithm, dataset and partial-overlap
setting. The hyper-parameter search space for each algorithm is provided in the attached code.

A.3 MODEL SELECTION

Given K domains, we train K models, sharing the same hyper-parameters θ, but each model holds a
different domain out. During the training of each model, 80% of the training data from each domain
is used for training and the other 20% is used to determine the version that will be evaluated. We
evaluate each model on its held-out domain data, and average the YL accuracy of these K models
over their held-out domains. This provides us with an estimate of the quality of a given set of
hyper-parameters. This strategy was chosen because it aligns with the goal of maximizing expected
performance under out-of-distribution domain-variation without picking the model using the out-of-
distribution data. The YL accuracy performance across held-out domains and final averages for each
dataset, algorithm and partial-overlap setting are displayed in Table 4.

A.4 DATASETS

PACS (Li et al., 2017) is a 9,991-image dataset consisting of four domains corresponding to four
different image styles: photo (P), art-painting (A), cartoon (C) and sketch (S). Each of the four
domains hold seven object categories: dog, elephant, giraffe, guitar, horse, house and person.

VLCS (Fang et al., 2013) is a 10,729-image dataset consisting of four domains corresponding to
four different datasets: VOC2007 (V), LabelMe (L), Caltech101 (C) and SUN09 (S). Each of the
four domains hold five object categories: bird, car, chair, dog and person.

OfficeHome (Venkateswara et al., 2017) is a 15,588-image dataset consisting of images of everyday
objects organized into four domains; art-painting, clip-art, images without backgrounds and real-
world photos. Each of the domains holds 65 object categories typically found in offices and homes.

Table 3: Domain-shared (YS) classes for each dataset and shared-class distribution setting. The
left table defines the number of YS classes and the right displays the corresponding YL classes.

|YS |/|YT |
Setting PACS OfficeHome VLCS

Low 3/7 25/65 2/5

High 5/7 50/65 4/5

YL
PACS OfficeHome VLCS

{0,1,3,5,6} {0-13, 30-34, 44-64} {0,1,4}
{1,6} {0-4, 44-64} {1}
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A.5 MODEL ARCHITECTURE

In this section we describe the FOND architecture components and outline the intermediate latent
representations that are used for our learning objectives.

• The Feature Extraction Network, F (.), takes a training input sample x ∈ S and generates
a representation vector, h = F (x) ∈ RdF where dF = 512.

• The Projection Network, Q(.), takes the representation vector h and non-linearly projects
it to a lower-dimensional vector z = P (h) ∈ RdQ where dQ = 256. Additionally, the pro-
jection vector is normalized ||z|| = 1. These projections are used for FONDs‘’s contrastive
learning objective Eq. (4).

• The Classification Network, G(.), performs the image classification downstream task with
the representations generated by F (.), i.e., h ∈ RdF . The network’s output is a vector of
dimension |YT | denoting the softmax label probabilities of the input x.

B PROOF OF THEORETICAL RESULT

Proof. Given K source domains and a class c ∈ [C], we use the result from Thm. 4 in Ben-David
et al. (2010) assuming that each of the domains contributes αi ·m i.i.d. samples where

∑K
i=1 αi = 1

without loss of generality. The following result is reproduced from Ben-David et al. (2010), where
we have used the Landau notation to simplify the result. Additionally, for our analysis, λ-closeness
(λα = 0) is assumed because of the extremely large capacities of neural-networks; this assumption
is often made in DG and is experimentally validated (Vedantam et al., 2021). Furthermore, since
ϵT (h

∗
T ) is fixed, our analysis focuses on the dα and O(m−1) terms.

Theorem 2 (Ben-David et al. (2010) Thm. 4). Given K source domains Si for i ∈ [1,K], each
contributing αi ·m i.i.d. samples where

∑K
i=1 αi = 1, and each αi denotes the fraction of samples

contributed by a source Si, a target domain T , that the hypothesis class H needs to generalize
to. Then, if ϵTc

(h∗
T ) represents the error achieved by hypothesis h∗

T = minh∈H ϵT (h) on a class
c ∈ [1, C] on the target domain, the error ϵTc

(ĥ) of c on the target domain T using hypothesis
ĥ ∈ H , an empirical minimizer of ϵ(h) on the source samples is upper bounded by

ϵTc
(ĥ) ≤ ϵTc

(h∗
T ) +

K∑
i=1

αi dH∆H(T, Si) +O(m−1) (6)

with probability at least (1 − δ), where dH∆H(·, ·) is the average distribution divergence between
domains, and δ ∈ (0, 1).

Now, let ℓ and s denote a domain-linked and domain-shared class, respectively. We will be using
Thm. 2 to evaluate the upper-bound on error for ℓ and s.

For class ℓ, there is just once source domain therefore αi = 1, and we have

ϵTℓ
(ĥ) ≤ ϵTℓ

(h∗
T ) + dH∆H(T, Sℓ) +O(m−1),

with probability at least (1 − δℓ) for δℓ ∈ (0, 1), where ϵTℓ
(h∗

T ) represents the error achieved by
h∗
T = minh∈H ϵT (h) on the target domain for the class ℓ.

Now, of the class ℓ is expressed in K domains, then the upper-bound from Thm. 2 is given by

ϵTell
(ĥ) ≤ ϵTℓ

(h∗
T ) +

K∑
i=1

αi dH∆H(T, Si) +O(m−1),

Analyzing the upper-bounds above we note that for the case when ℓ is domain-shared class, if any
of the source domains Si are closer to the target domain T as compared to when it is domain-linked
class i.e.

dH∆H(T, Si) ≤ dH∆H(T, Sℓ) ∀ i,

the upper-bound for ϵTℓ
(ĥ) is greater than ϵTs(ĥ). The bounds are equal when dH∆H(T, Si) =

dH∆H(T, Sℓ) for all i.
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C ADDITIONAL RESULTS

Table 4: Results on YL class accuracy evaluated on PACS, VLCS and OfficeHome for the
Low and High shared-class distribution settings. FOND and variants significantly outperform all
baselines during the High setting with top-4 performance on Low and best performance overall.

Datasets
Setting Algorithm VLCS PACS OfficeHome Average

Low

ERM 50.7 ± 1.0 36.5 ± 0.5 38.5 ± 0.4 41.9 (0.0)
CORAL (Sun & Saenko, 2016) 45.5 ± 1.6 33.3 ± 0.8 40.7 ± 0.2 39.8 (-2.1)

MLDG (Li et al., 2018a) 50.8 ± 2.0 38.0 ± 0.1 38.1 ± 0.1 42.3 (+0.4)
ARM (Zhang et al., 2021b) 47.7 ± 0.9 36.8 ± 1.3 39.0 ± 0.1 41.2 (-0.7)

SelfReg Kim et al. (2021) 46.6 ± 1.2 32.4 ± 0.4 40.0 ± 0.3 39.6 (-2.3)
CAD (Ruan et al., 2022) 45.5 ± 1.5 33.0 ± 0.9 36.9 ± 1.2 38.5 (-3.4)

Transfer (Zhang et al., 2021a) 48.3 ± 0.6 36.4 ± 1.8 38.1 ± 0.3 40.9 (-1.0)
CausIRL (Chevalley et al., 2022) 45.8 ± 0.9 33.6 ± 0.9 40.9 ± 0.2 40.1 (-1.8)

EQRM (Eastwood et al., 2022) 49.1 ± 1.1 37.4 ± 0.7 39.9 ± 0.2 42.1 (+0.2)
PGrad (Wang et al., 2023) 49.0 ± 0.7 34.4 ± 0.5 39.0 ± 0.3 40.8 (-1.1)

FOND 48.0 ± 0.4 35.3 ± 1.2 40.3 ± 0.3 41.2 (-0.7)
FOND\F 48.5 ± 1.0 35.3 ± 0.5 40.6 ± 0.6 41.5 (-0.4)

FOND\FB 50.0 ± 0.2 33.2 ± 0.5 41.0 ± 0.5 41.4 (-0.5)
FOND\FBA 46.6 ± 1.0 35.4 ± 1.2 41.0 ± 0.4 41.0 (-0.9)

High

ERM 51.8 ± 3.3 14.7 ± 2.2 37.5 ± 0.6 34.6 (0.0)
CORAL (Sun & Saenko, 2016) 49.8 ± 4.2 13.7 ± 1.0 38.9 ± 0.2 34.1 (-0.5)

MLDG (Li et al., 2018a) 45.2 ± 3.4 13.8 ± 0.5 37.4 ± 0.7 32.1 (-2.5)
ARM (Zhang et al., 2021b) 49.0 ± 1.4 16.2 ± 2.9 38.4 ± 0.2 34.5 (-0.1)
SelfReg (Kim et al., 2021) 41.9 ± 0.2 13.4 ± 1.2 39.5 ± 0.6 31.6 (-3.0)

CAD (Ruan et al., 2022) 51.7 ± 5.8 13.1 ± 0.7 36.4 ± 1.4 33.7 (-0.9)
Transfer (Zhang et al., 2021a) 48.9 ± 3.0 16.0 ± 1.6 36.8 ± 0.2 33.9 (-0.7)

CausIRL (Chevalley et al., 2022) 48.9 ± 2.5 13.3 ± 1.5 39.2 ± 0.2 33.8 (-0.8)
EQRM (Eastwood et al., 2022) 45.4 ± 3.5 17.9 ± 2.0 37.8 ± 0.1 33.7 (-0.9)

PGrad (Wang et al., 2023) 40.2 ± 1.8 12.6 ± 1.4 39.0 ± 0.8 30.6 (-4.0)

FOND 72.1 ± 3.5 19.1 ± 0.6 40.6 ± 0.4 43.9 (+9.3)
FOND\F 51.7 ± 6.0 17.5 ± 1.4 40.8 ± 0.6 36.7 (+2.1)

FOND\FB 44.0 ± 2.3 15.4 ± 0.6 41.7 ± 0.7 33.7 (-0.9)
FOND\FBA 51.3 ± 2.8 17.3 ± 1.3 39.1 ± 0.5 35.9 (+1.3)

Low/High

ERM 51.3 ± 2.2 25.6 ± 1.4 38.0 ± 0.2 38.3 (0.0)
CORAL (Sun & Saenko, 2016) 47.7 ± 2.9 23.5 ± 0.9 39.8 ± 0.2 37.0 (-1.3)

MLDG (Li et al., 2018a) 48.0 ± 2.7 25.9 ± 0.3 37.8 ± 0.4 37.2 (-1.1)
ARM (Zhang et al., 2021b) 48.4 ± 1.2 26.5 ± 2.1 38.7 ± 0.2 37.9 (-0.4)
SelfReg (Kim et al., 2021) 44.3 ± 0.7 22.9 ± 0.8 39.8 ± 0.5 35.6 (-2.7)

CAD (Ruan et al., 2022) 48.6 ± 3.7 23.1 ± 0.8 36.7 ± 1.3 36.1 (-2.2)
Transfer (Zhang et al., 2021a) 48.6 ± 1.8 26.2 ± 1.7 37.5 ± 0.3 37.4 (-0.9)

CausIRL (Chevalley et al., 2022) 47.4 ± 1.7 23.5 ± 1.2 40.1 ± 0.2 37.0 (-1.3)
EQRM (Eastwood et al., 2022) 47.3 ± 2.3 27.7 ± 1.4 38.9 ± 0.2 37.9 (-0.3)

PGrad (Wang et al., 2023) 44.6 ± 1.3 23.5 ± 1.0 39.0 ± 0.6 35.7 (-2.6)

FOND 60.1 ± 2.0 27.2 ± 0.9 40.5 ± 0.4 42.6 (+4.3)
FOND\F 50.1 ± 3.5 26.4 ± 1.0 40.7 ± 0.6 39.1 (+0.9)

FOND\FB 47.0 ± 1.3 24.3 ± 0.6 41.4 ± 0.6 37.6 (-0.7)
FOND\FBA 49.0 ± 1.9 26.4 ± 1.3 40.1 ± 0.5 38.5 (+0.2)
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Figure 7: Visualizing baseline and ablation algorithm accuracy between YL and YS classes
across all datasets and shared-class settings. The white plots communicate accuracies for each
dataset’s High and Low shared-class settings. The light-grey plots communicate average accura-
cies for each dataset (left-most column) and shared-class setting (bottom-row). The dark-grey plot
(bottom-left) communicates the average accuracies across all datasets and shared-class settings. The
exact values and standard error bars are displayed in Table 4.
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Figure 8: Additional t-SNE latent representation visualization for the PACS-High dataset. Each
row visualizes the additional representations of the baseline algorithms (i.e. Transfer, CAD, MLDG,
SelfReg, CORAL). Source-domain (Photo, Art and Sketch) representations are colored by class and
domain. Target-domain (Cartoon) representations are colored by class. Refer to the analysis of the
domain-linked YL class generalization (solid circle) and domain-invariant learning evidence (broken
circle) found in Sec. 6.2.
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