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Abstract

We propose a generalized score-based diffusion framework for learning multivariate
Gaussian mixture models with homoscedastic or heteroscedastic noise. Our goal
is to nonparametrically estimate the latent location distribution and denoise the
observations. Departing from the conventional maximum likelihood approach, we
reinterpret each observation as a temporal slice of a family of stochastic diffusion
processes. This modeling choice enables a principled characterization of the
additive noise structure and supports a multi-step denoising procedure grounded in
reverse-time dynamics. We introduce a score-based objective that explicitly models
the latent distribution and accommodates observation-specific noise covariances.
Theoretically, we establish that the score estimation error with n independent
observations achieves a near-parametric error rate of polylog(n)/n, improving upon
existing results in the diffusion literature. Empirically, our method outperforms
the nonparametric maximum likelihood estimator in both density estimation and
denoising fidelity, especially in high-dimensional settings. These findings suggest
a promising direction for integrating nonparametric empirical Bayes with diffusion-
based generative modeling for latent structure recovery.

1 Introduction

In many large-scale scientific domains, such as the analysis of high-dimensional astronomical data,
measurements are often corrupted by heteroscedastic noise, where error variances vary across
dimensions and differ across observations [Kelly}, | 2012} |Akritas and Bershady, |1996, |Anderson et al.}
2018]]. While this noise complicates downstream inference, it is frequently well-characterized through
the data collection process. A central goal in such settings is to recover the true latent signals and
their underlying distribution from noisy observations by leveraging structural information inherent in
the data. This problem can be naturally modeled using heteroscedastic Gaussian location mixtures,
described by:

. iid ind .

X, =0;+2Z;,  with 0 '~ G* and Z;, ¥ N(0,%;), fori=1,...,n, (1)
where {X;}7_, C R? are the observed data with distinct error distributions, {6} }?_, are the unob-
served latent signals drawn from a common unknown prior measure G*, and {Z;}"_; are independent
Gaussian noise with known positive-definite covariance matrices {3;}* ;.

Model @]) falls within the empirical Bayes (EB) framework [[Robbins| [1951}[1983]], where the goal
is to estimate the prior distribution G* and recover the latent vectors {6} }"_;. One way to achieve
the goal is through the G-modeling approach [Efron, 2014, which is directly modeling the prior on
the parameter scale and then plugged into the posterior calculation. A principled and widely used
approach to estimate G*, without imposing any parametric assumption on it, is the nonparametric
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maximum likelihood estimator (NPMLE) [Robbins|, |1950, [Kiefer and Wolfowitz, (1956, Jiang and
Zhang| [2009, |Gu and Koenker, 2016, |Polyanskiy and Wu, |2020]. The NPMLE seeks a distribution

G € P(R?) that maximizes the marginal likelihood of the observed data {X;}7

~ 1 <&
GMLE € argmax — Zlog fG,Ei (Xl), (2)
GeP(RY) T i

where P(R?) is the family of all probability measures on R? and f¢ x, () := [ ¢x, (x — 0)dG(0)
is the marginal density of X; under G with ¢y, (y) := (det(27%;))~'/?exp (—3y"E; 'y). Once
G is obtained, each latent signal 6, can be estimated using the empirical Bayes posterior mean:

0, = Egs0 | Xi, %] © X, + %V, log fas, (X), A3)

where () is due to the Tweedie’s formula [Efron} 2011, linking posterior means to V; log fz 5, (Xj),
the score function of the marginal density. This nonparametric approach flexibly adapts to latent
structures without strong modeling assumptions on G*. Theoretical guarantees for the NPMLE in
this model are well established in the homoscedastic setting >.; = X or the univariate setting d = 1:
it achieves a near-parametric sample complexity rate O (n~!(logn)?(?), i.e., parametric up to
logarithmic multiplicative factors, for both density estimation and Bayes regret risk [Jiang and Zhang|
2009, |Saha and Guntuboyinal [2020]. Recently, the results have further been extended to multivariate
and heteroscedastic setting in|Soloff et al.|[2025].

Despite these guarantees, the NPMLE and its associated Tweedie-based denoising procedure suffer
from inherent statistical and computational limitations that render their practical effectiveness
in high-dimensional settings: (a) Statistically, Tweedie’s posterior mean estimator often has an

over-shrinkage bias. As an example, consider a joint Gaussian model for (X, 6*): { g‘; } ~

N ({ 8 } , [ 2{; g ]) It follows that marginally 0* ~ N(0,1;), and X|0* ~ N (6%, 1;).

However, the posterior mean of 6* is E[0*| X| = X/2 ~ N(0, I;/2), thus underestimating the
variance of the latent signal. (b) Computationally, although problem (2)) is a convex optimization in
G, it is infinite-dimensional and difficult to solve in practice. Since it is known that there exists a
solution éMLE with support on at most n atoms, one common way to address the issue is to restrict
G to be a discrete measure of the form >\ | w;d,,,, with Y., w; = 1 for some m < n. Optimizing
over {(w;, p;)}™, € Ry x R? leads to a finite dimensional but nonconvex optimization, often
tackled via the expectation-maximization (EM) algorithm [Laird, 1978]]. However, EM suffers from
slow convergence and may converge to local maxima due to the nonconvexity. To mitigate these
issues, prior work has suggested fixing the atoms {; }7, using either grid points over a compact
region [Koenker and Mizeral 2014, Feng and Dicker, |2018]] or the observed data itself [Lashkari
and Golland| 2007]]. Yet the grid-based approach scales poorly with dimension, and the data-driven
strategy is suboptimal under heteroscedastic noise [Soloff et al, [2025]|. Figure ] further illustrates the
over-shrinkage and computational challenges that arise from these limitations.
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Figure 1: Left: 5, 000 two-dimensional observations X; (in blue) sampled from X ;|07 ~ AN (8}, (0.3)%I2) with 0" uniformly distributed
over a unit circle (in black). The posterior means (in red), obtained via the NPMLE and (3), are over-shrunk relative to the true unit circle. Right
(adapted from|Soloff et al.|[2025| Figure 7]): a real-world 19-dimensional astronomy data (in black). The estimated posterior means (in blue)
from NPMLE poorly reveal the underlying chemical structure (see Sectionﬁfor the denoising results from our methods).



1.1 Our Methods and Contributions

To address the statistical and computational limitations of the classical NPMLE and Tweedie-based
posterior denoising, we propose a novel perspective that reinterprets the data generation mechanism
in model (T) through the lens of stochastic diffusion processes. Our method is built on two core ideas:
replacing the NPMLE with score matching to estimate the prior within the G-modeling approach,
and applying multi-step posterior denoising to recover latent signals. Below, we present an overview
of our approach in the simplified homoscedastic setting; the full treatment of the heteroscedastic case
is developed in detail in Section 2}

Modeling the data measurement process. Consider the homoscedastic version of model (I), where

¥, =X foralli =1,---,n. In this special case, the observed data { X;}?_; are i.i.d. samples from
the convolution of the latent distribution G* with the Gaussian kernel (0, X):
X; ~ G x N(0,%), for i=1,...,n. 4

Rather than treating each observed data X; as the result of a static additive noise model, we propose
to interpret { X; }_, as snapshots from a forward stochastic diffusion process. Specifically, we model
the measurement process as a zero-drift stochastic differential equation (SDE) that continuously
perturbs samples from the latent prior G*:

dX® = g(t) ©Y2dB,, with X© £ {9737, ~ G, (5)

where B; € R? denotes a standard Brownian motion and g : R, — R is the diffusion coefficient
controlling the noise scaling. The function g(¢) can be adapted to reflect assumptions on the measure-

ment process; for simplicity, one natural choice is g(t) = /=25e' = a(t) := (fot g(s)2ds) =
222‘:11 . Under this model, the marginal distribution of X ®) evolves according to:
et —1
X0~ GF s N (o,zm) . where S0 = ()T = %
2 _

In particular, at time ¢ = 1, we have y® =y, Therefore, we can indeed view each X; as sampled
from the diffusion process () at t = 1, i.e., {X;}7, ~ X1,

Denoising the observations. The forward-time process in (B) is associated with a reverse-time
diffusion process, which can be approximated by a deterministic flow that shares the same marginal
distributions over time [Andersonl [1982] [Maoutsa et al., 2020, [Song et al., 2021al]. This flow is
governed by the following ordinary differential equation (ODE):

<t _

1 _
dX" = =2 g(t)? £ V. log fo- o X" dt. 6)

Given an estimator G of the prior G*, this reverse time ODE naturally defines a generalized multi-
step Tweedie-type empirical Bayes denoising procedure. Specifically, replacing G* with G and
discretizing the ODE backward in time from ¢ = 1 to ¢ = 0 with step size At yields the iterate:
- At

glAn = gt 4 = 9(0)° £ Valog fg s (6" with initial condition 8" = X;.  (7)
The final denoised estimate is taken as 51 = é}o) fori = 1,...,n. Notably, this method generalizes
Tweedie’s formula in (3]), which corresponds to a single-step approximation with At = 1. Our
multi-step denoising procedure mirrors optimization dynamics, particularly Langevin-type flows
over probability spaces, where smaller step sizes yield more controlled updates. This approach

allows gradual refinement of the denoised signal, helping mitigate the over-shrinkage bias observed
in one-step Tweedie denoising methods.

Learning the latent prior G*. Our stochastic framework also naturally induces a denoising score
matching (DSM) objective [Vincent, 2011]] for learning the prior G*. We propose to further perturb
the noisy observations X; using the forward SDE (3) to generate conditional samples from the kernel
p1e( - | Xi) = o _x( - — Xi), up to some stopping time 7". We then match the score of the model’s
marginal density to the conditional score induced by this perturbation:

~ e 2
G = arg min n;/l Ep(1X) [g(t)"’ |V log fe o (x) —Vlogpu(le»HE} dt, (8)



where ||z]|2 := 2TY x denotes a weighted ¢>-norm, extending the likelihood-weighting idea of
Song et al.| [2021b]. Intuitively, under our stochastic view, the observations at t = 1 already contain
calibrated noise relative to G*, and additional perturbation simulates conditional transitions. Matching
model scores to these local conditional scores allows global recovery of the latent prior. Unlike
standard diffusion models with the DSM objective that directly parameterize the score function with
neural networks [Song et al, 20214, we model the distribution G explicitly in (8). Such G-modeling
is crucial in deriving new theoretical guarantees for the score estimation risk. Computationally,
although the objective [§]is nonconvex, diffusion-type squared loss objectives have been empirically
observed to exhibit smoother optimization landscapes and avoid poor local minima [Xu et al., 2024].
This empirical tractability is further supported by theory on the benign optimization behavior of
overparameterized neural networks trained over mean-squared losses that can typically satisfy the
Polyak—F.ojasiewicz condition or behave linearly in the neural tangent kernel regime [Liu et al.|
2022].

In summary, we propose a novel integration of score-based diffusion models with the classical
EB framework via G-modeling. The rest of the paper is organized as follows: In Section [2] we
present a stochastic process framework to model heteroscedastic Gaussian mixtures, where each
observation is treated as a marginal realization from a distinct diffusion process with its own score
function. Section [3|establishes the theoretical advantages of our approach, showing that G-modeling
combined with diffusion yields near-parametric rates for score estimation. We further discuss how
to numerically solve the G-modeling based score matching objective in Sectiond] In Section[5] we
present experimental results on both synthetic and real astronomical data, demonstrating substantial
improvements in denoising and prior recovery over NPMLE and one-step Tweedie-based methods,
supporting the improved computational scalability of our framework in high-dimensional settings.

1.2 Related Work

Score-based models for mixtures. Recent theory has provided provable guarantees for diffusion and
score-based models in learning Gaussian mixtures, yet these results neither handle the heteroscedastic
measurement setting we study nor aim at recovering the latent prior itself. Works such as|Gatmiry et al.
[2024], Chen et al.| [2024]],|Shah et al.|[2023|] propose diffusion-based algorithms for mixture models
under either finite discrete structures or continuous latent mixtures with homoscedastic noise. These
approaches typically assume access to an infinite supply of i.i.d. samples and yield slow convergence
guarantees of order O((logn)~'/?) in score or total variation distance, for some exponent p > 1.
Importantly, these works directly parametrize the score function, using either neural networks or
piecewise polynomial surrogates, without attempting nonparametric recovery of the latent mixing
measure G* or incorporate explicit G-modeling into the objective. Because of this direct score
parametrization, these methods cannot be readily applied to our core task of latent recovery and are
incompatible with our de-biased multi-step denoising procedure. A notable exception is|Ghosh et al.
[2025]], which presents the first analysis of combining score matching with G-modeling, achieving
a near-parametric rate O(log6 n/n) for score estimation risk. However, their results are limited to
the univariate, homoscedastic setting (d = 1). In contrast, our work tackles the more challenging
regime of multivariate, heteroscedastic Gaussian location mixtures with arbitrary dimension d > 1.
By coupling G-modeling with a stochastic process perspective, we develop an explicit estimator of
the latent prior G* and establish near-parametric rates for score estimation (up to small smoothing),
along with finite-sample guarantees for recovering the latent signals.

Image denoising in computer vision. While our problem and the proposed method may appear
superficially related to score-based diffusion approaches for image denoising, the settings and
statistical challenges are fundamentally different. Most notably, our task lacks access to clean ground
truth data, precluding the use of pre-trained score models, and all inference must be performed
from noisy observations alone. In contrast, supervised denoising approaches such as BM3D [Dabov:
et al.,2000] requires access to a large number of paired noisy-clean images, while self-supervised
methods like Noise2Score [Kim and Ye} 2021]] rely on one-step Tweedie approximations that ignore
the unknown prior G* and leverage only partial model information ;. These methods are either
unrealistic or statistically inefficient in scientific domains where latent structure is present but clean
data are unavailable, such as the astronomy measurement data. Even in moderate dimensions
(e.g., d = 20), empirical Bayes is a highly nontrivial statistical task due to the data sparsity: each
observation X; corresponds to a unique latent parameter 6 and an individual covariance 3;, yielding
just one single noisy sample to infer each 0.



2 SDGM: Score-based Diffusion with G-Modeling

In this section, we present our general treatment of the score-based diffusion approach with G-
modeling under the heteroscedastic setting. The key idea is still to reinterpret each noisy observation
as a time-1 snapshot from a latent stochastic diffusion process. While our homoscedastic formulation
serves as a motivating special case, the heteroscedastic setting introduces a crucial distinction: each
observation X; corresponds to a different SDE, despite all sharing a common latent initialization.
Specifically, we consider the following family of zero-drift linear SDEs:

dx = g;()21%dB,, with XV ~G*,  fori=1,....n, )

where {g;(t)}7, C R are the time-dependent diffusion coefficients. Without loss of generality, we

assume «;(t) := fg g:(s)%ds satisfies a;;(1) = 1 for all i. Then the time-dependent covariances are

). ()

given by th := o;(t) X;, and the marginal law of X"’ becomes

XD G s NO,5),  for t>0,i=1,...,n. (10)
Thus, each observation X in the original mixture model (1)) can be viewed as a marginal sample
from this diffusion process at £ = 1, i.e., X; = X" ~ G* x N'(0,%;) foralli = 1,...,n.
As in the homoscedastic case, each forward SDE in (9) is coupled with the reverse-time ODE:

~® _ 1 o - _
dX; __§gi(t) -Ei-Vxlong*_’EEt)(Xi)dt, for i=1,...,n.

Given any plug-in estimator G for G*, substituting ©(*) = E,Et) in (7] defines a multi-step score-based
denoising procedure that remains consistent with the EB framework. Furthermore, as At — 0, the
dynamics in (7)) induces a deterministic transport map from the noisy empirical measure toward a

latent measure G =~ G™. This perspective aligns with the design principles behind recent optimal
transport approaches for empirical Bayes denoising [Soloff et al.,[2025| Zhang et al.||2024]], mitigating
the over-shrinkage limitation of one-step Tweedie-type procedures.

Importantly, in our setting, the SDEs in (9) serve as a belief model for the true data-generating
process, and the noisy observations in (I]) are treated as marginal realizations from latent diffusion
paths. This fundamentally differs from the generative score-based diffusion models like Song et al.
[2021a], where SDEs are artificially constructed for the purpose of noise injection and score network
training. In an idealized setting where the true latent measure G* is known or accessible via unlimited
samples, one could apply the framework of |Song et al.|[2021blja] to learn a time-dependent score
network sy (-, t), mapping G* to pure noise through an invertible path. However, our setting departs
significantly from this setup. First, we observe only a finite collection of noisy samples at forward
time ¢ = 1, each generated by a unique, heteroscedastic SDE rather than homogeneous, artificially
perturbed noise. Second, our goal is to explicitly estimate the latent distribution G*, as opposed to
modeling it implicitly via score functions. Finally, because no data is available at intermediate times
t € (0, 1), the standard time-indexed score network sg(-,¢) cannot be trained in our setting.

To address these challenges, we propose a new objective that aggregates information across all
diffusion paths to estimate G*. Our method, which we term score-based diffusion with G-modeling

(SDGM), obtains the estimator G by:

~ ) 1< (T 2
G e arguin 7,(6) = - Y- [ 0PEsy s ||[Fiowa @) - Viogald)[ | ar an
i=1""% ‘

GEP(RY)

where, tg > 1 is the minimum diffusion time, and to simulate the homoscedastic behavior, we
consider the rescaled Gaussian transition kernel: z | i,t ~ K;(- | i) := N ([as (8) 2] Y2 X5, (1 —

a;(t)~1)14) defined for t > ¢y > 1, and define the mixture densities qr(f) and qg) to be:
1 — 1 —
i t) . . : ) ._
mpirical) ¢ o= 23Kl (Geinduced) o = T3 Fsioy gy

where T#G denotes the pushforward measure of G under map 7" such that for every set A C R?,
(T#G)(A) = G(T~tA). The defined mixtures satisfy that Eqr(f) = qgl Intuitively, qg) aggregates



the global behavior of the latent measure G across all SDEs, while qy(f ) serves as its empirical

counterpart based on noisy observations. By matching the score functions of these two mixtures, we
guide G toward an accurate approximation of G*. In the homoscedastic special case with 3; = X
and g; = g, the mixtures simplify to a rescaled version of the objective (TT)) that is equivalent to the
score matching formulation in (8) up to constants.

3 Theoretical Guarantees

In this section, we provide guarantees on the statistical performance for both homoscedastic and
heteroscedastic noise models. We primarily study three statistical properties to quantify how well the

SDGM estimator G of performs as a plug-in estimator for the true prior G*.

The successful convergence of diffusion-based generative models is underlaid by a low score esti-
mation error [Yakovlev and Puchkin, [2025| [Bortoli, [2022]]. Define the following time-cumulative
average Fisher divergence for all path measures p and v:

Sty (pllv) = Z/ oV log i = Vlog v 3dt.

Then, the specialized metric F(¢, 7] (fo+ st || /5 5 ) measures the time-cumulative risk on how

Vlog fg s approximates V log fg« s along the forward-time SDE path beyond the observable
time. It is consistent with the generalization risk concerned in|Yakovlev and Puchkin|[2025]].

For density estimation, G also provides a natural estimate for the mixture marginal law qg ) aggregated

from the paths of (©). We measure the quality of density estimation by the standard squared Hellinger
accuracy, $H2(p, q) :== 1 5 (VP — 4 )? between densities p and ¢. In particular, we are interested in
the following squared Helhnger distances:

(homoscedastic) ﬁz(fG*7z(t),f§ S ) (heteroscedastic) $7(q gz,qg))

which captures the global fit of the plug-in estimator G for estimating the joint law of {X ft) H>1.

The third metric of interest we establish is the squared Wasserstein distance (see e.g., Villani|[2008])),
which is defined for all 41, v € P(R?) that W3 (1, v) := inferi(u,v) E(z,y)~n [l —yl|3] with II(1, v)

denotes the set of all joint measures over j, v. The distance W3 (@ , G*) naturally characterizes the
direct consistency of G for the true G*.

We make the following assumptions on the latent structure and the data generation process (9).
In the assumptions, the support conditions are widely considered in literature [Jiang and Zhang,
2009\ [Saha and Guntuboyina, |[2020} |Ghosh et al.,[2025]]. They encompass a wide range of realistic
scenarios, including discrete mixtures, compactly supported manifold-supported latent structures, and
representative experiment settings in Section[5} Furthermore, well-conditioned assumptions on noise
covariances are ubiquitous in prior works [Soloff et al.,[2025]] and are essential to ensure smoothly-
defined score everywhere and to enable information-theoretically meaningful latent recovery.

Assumptlon 1. The true latent measure in model (1) is compactly supported, ie, G* €
P([=M, M]%) for some finite radius M > 0. There exists 0 < o < & < oo such that the co-
variances satisfy ol < ¥; < Glyforalli=1,... n. The diffusion coefficient satisfies a;(1) = 1

(such that Z(l) >;) and other mild regularity conditions specified in the supplemental.

Our first theorem characterizes the performance of our SDGM framework for the canonical ho-
moscedastic model (@), which is specialized from our guarantee for the heteroscedastic model.
Theorem 1 (Homoscedastlc noise). Under Assumption[I|and further assume that¥; =%, g; = g

foralli=1,...,n. Let G minimizes ob]ectlve [®) constrained over the family P([—M, M]%) and
with parameters to and T satisfying 1 + < al(ty) < a(T) < 2. Then provided n suﬁ?czently

large, the following bounds hold with probability at least 1 — n~2

lon



Score and density estimation:

_ 1 .
ESpo,11(fer ol fasm) Smd o). ﬁ(log n)24+3, (12)
1
EH (fo 0 [a st0) SMd(e5). — (log n)2**3, (13)
Deconvolution:
. A 1
EWZ(G*,G) < ogn’ (14)

Here, we write f(n) < g(n) if there exists a universal constant C' independent of n such that
f(n) < Cg(n), Vn. We write Sg, g, .. to emphasize that the constant C' = Cj also depends on the
fixed specification parameters 6;’s. In the following, we discuss implications of this result. Under a
latent manifold setting with homoscedastic isotropic noise and neural parameterization of the score

function, recent work [Yakovlev and Puchkin, 2025] proves the rate Eg(, 71(fo- s | fa ) =

O(n—28/(4B+do) polylog(n)), where dy is the intrinsic dimension of the manifold and § denotes a
smoothness parameter. To our knowledge, this is the sharpest rate known for diffusion-based score
estimation under such assumptions. By leveraging explicit G-modeling to impose the structure on
the estimated scores, our result achieves an improved O(n 1) leading dependence on sample size
n (up to logarithmic factors), under more general assumptions. Moreover, our Hellinger accuracy
bound (T3), modulo a small distributional shift from ¢ = 1 to ¢, matches the rate achieved in NPMLE
literature [Saha and Guntuboyinal |2020]. If the target is to estimate fg~ 5 at the observational noise
level, an unavoidable smoothing cost due to diffusion arises. In this regime, the task incurs the
inevitable minimax rate O(n~2/(4+4)) that cannot compete with NPMLE [Wibisono et al., 2024].
Finally, in the Gaussian deconvolution setting with fixed noise design, the minimax rate deteriorates
to the logarithmic regime O(1/logn) due to inherent ill-posedness induced by Gaussian smoothing
and it is the best rate possibly achieved by both NPMLE and our framework [Soloft et al., 2025|
Dedecker and Michel, [2013]]. We further discuss limitations of the current theory in Section 6]

Our next theorem generalizes the results to the heteroscedastic settings. The core contents of
Theorem 2] parallels that of Theorem [I] but additional care is needed to account for observation-
specific noise covariances and SDEs. To make the readers easy to follow, we present the main result
informally below and defer detailed technical derivations and proofs of Theorem [I] and 2] to the
supplemental material.

Theorem 2 (Heteroscedastic noise; Informal). Under Assumption|l| provided solution G to
constrained over the family P([—M, M%) with (to, T) satisfying well-behaved smoothing condition,
then with high probability,

2d+3 2d+3
5 (to) | (t)y < (logn)™T™* 2 (to) (to)y « (logn)*™*?
E%’[tOvT](qG* q@ )N n 9 Ef) (qG* 7q@ )N n 5
1o 1 — ~ 1
EWs | = (8) 724G, = (8:)7VP#G | £ .
2(”1—1( ) ’”;:1( )" S Toan

4 Solution Methods to Solve

The optimization problem in (TI)) is an infinite dimensional nonconvex problem that is challenging to
solve numerically. We discuss practical strategies for approximately computing the SDGM solution.

Strategy one: discretize the support of G. A classical approach to deal with the infinite dimensional
variable (G, as commonly used in NPMLE, is to restrict the class of priors to discrete measures with
a finite number of supports: G = Z;”:l w;6,,,, with Z;”:l w; = 1, w; > 0. This reduces the
optimization to a finite-dimensional, albeit nonconvex, problem over {(w;, 1) }72 ;.

Strategy two: continuous modeling with normalizing flows. An alternative approach is to model
G continuously using normalizing flows [Rezende and Mohamed, [2015| [Dinh et al., 2017, [Durkan
et al.,[2019]]. A normalizing flow represents a flexible distribution as the pushforward of a simple
base distribution (e.g., standard Gaussian) through an invertible neural network. We parameterize G



using a Neural Spline Flow [Durkan et al.,[2019] implemented via the nf1lows library [Durkan et al.|
2020], allowing efficient sampling and density evaluation. In our framework, we draw Monte Carlo
samples from the flow to estimate f¢ and its score during training. Sampling from a continuous prior
is theoretically justified by empirical Bayes approximation results: given a continuous G, there exists
a discrete approximation G’ that closely matches fg and its gradient [Saha and Guntuboyinal [2020),
Lemma D.3]. Furthermore, continuous modeling enables richer recovery of the underlying structure
of G, which is crucial for scientific interpretation and denoising applications [Shen and Wu, [2022].

Batched and conditional estimation of g;. The full mixture ¢ (z) plays a central role in our
theoretical guarantees, but evaluating its score V, log q¢ is computationally intensive for large
n. A natural relaxation is to approximate g¢ at each iteration using only a mini-batch of obser-
vations. In particular, we focus on the case where the mini-batch size B = 1: at each training
step, we align the rescaled conditional score V,, log fG,z:(f) (x) with the empirical conditional score

Ve log N (x; X5, (a;(t) — 1)%;). This corresponds to a conditional score matching update, mirroring
the classical intuition of denoising score matching [[Vincent, [2011], while offering computational sim-
plicity and stability in stochastic optimization. In fact, subsampled estimation for mixture inference
has also been used in early works [Celeux et al., 2001} |Ihler et al., | 2003|.

S Numerical Experiments

In this section, we evaluate the empirical performance of our proposed method on synthetic het-
eroscedastic datasets and real-world astronomy data. We also investigate whether the empirical scaling
behavior aligns with our theoretical guarantees, particularly as we vary the problem dimension. We
refer the readers to the supplemental for more implementation details and results.

Baselines and metrics. We evaluate two variants of our proposed method: SDGM-C, which uses
a continuous prior modeled via normalizing flows, and SDGM-D, which uses a discrete prior. We
compare our approaches against the state-of-the-art NPMLE solvers for the problem implemented
in literature. Specifically, we compare with (1) NPMLE-N, the discretized NPMLE with supports
taken fixed at noisy data (thus the objective (2) is optimized over only weights and becomes convex),
as advocated in|Lashkari and Golland| [2007]]; we adopt the Newton-based augmented Lagrangian
method implemented from [Zhang et al. 2024)]. (2) PEM, the partial EM method which is a
generalized EM method proposed in|Zhang et al.|[2022] that used tighter sequential relaxations.

In addition, we consider a hybrid heuristic called SDGM-P to further improve the likelihood value
defined in (2)). This method first trains the SDGM-C model to learn a continuous prior, from which
we sample support points. These support points are then used for a post-processing step via the
convex NPMLE-N solver, effectively refining the prior estimate to maximize the likelihood.

We evaluate the performance of different methods over following metrics: (1) Fisher divergence
(FD) defined by §n(fc, fv) == + 2=y IV1og fa- 5, (Xi) — Viog fa 5 (Xi)[3. (2) Negative
log-likelihood (NLL) defined by —% >°" | log fa s, (Xi), which serves as a proximal for the KL

n
divergence between fé o and fg- 5, (3) Squared Wasserstein-2 distance (W22) between estimated G
and G, approximated by the entropy-regularized optimal transport distance [[Cuturi, 2013] |Genevay!
et al.,2018]. (4) Mean squared error (MSE) between the denoised and clean data % S 16: — 6713

Synthetic datasets. We evaluate our method on two synthetic datasets with low-dimensional manifold
structure, both of which are widely used in the NPMLE literature [Saha and Guntuboyina, 2020}
Zhang et al.,[2024]). Specifically, for d > 2, we generate clean latent vectors ¢; that exhibit nontrivial
structure only in the first two dimensions, with the remaining dimensions padded with zeros:

Example 1 (circle): The first two coordinates of each 8 are drawn uniformly from a circle of radius
6 centered at the origin.

Example 2 (uppercase letter “A”): The first two coordinates of each 8 are drawn uniformly from one
of five line segments that form the shape of the capital letter “A.” These segments connect the points
(—4,6), (—2,0), (0,6), (2,0), and (4, 6), with each segment selected with equal probability 1/5.

We then corrupt each 6} with independently generated heteroscedastic Gaussian noise Z; ~ N (0, X;),
where each ¥; is a diagonal matrix. The diagonal entries of ¥; are sampled independently and
uniformly from the interval [(0.8)2, (1.2)?].



Table 1: Models are trained with dimension d = 16 and sample size n = 2 X 10%. The | indicates that lower values are better. We report
generalization risks evaluated on a separate test dataset of size 10*. Denoising of the baseline methods NPMLE-N and PEM is performed via
the one-step Tweedie’s formula, while our methods use the ODE solver. Results for stochastic methods are averaged over 5 independent runs.

G™ circle uppercase letter “A”
metric FD | NLL | w3l MSE | FD | NLL | w3l MSE |
NPMLE-N 46.82 25.88 14.43 357 34.88 25.10 12.41 3.04
PEM 471 24.89 452 1.26 3.78 24.40 4.09 1.35

SDGM-C | 1.2710.04 24.82410.01 2.0710.77 1.13+0.01 | 1.2340.11 24.334£0.01 1.68+0.31 1.3210.03
SDGM-D | 3.7210.05 24.88+0.00 3.95+0.03 1.6410.03 | 5.2640.05 24.4110.00 3.94+0.00 1.73+0.02
SDGM-P | 0.6810.05 24.7810.00 1.0710.06 1.29010.02 | 0.4910.02 24.3010.00 1.25+0.07 1.45+0.02

The results are summarized in Table|l|and Figures [2|and [3} where G of our methods are plotted using
the marginal density estimated through geodesic-KDE [Vincent and Bengiol [2002]]. As shown in
Table[T] SDGM consistently outperforms the NPMLE baselines across all metrics, with the additional
post-processing step (SDGM-P) further improving the quality of prior estimation in most cases. The
denoising effects of different methods are evident in Figures[2]and[3] Specifically, the estimated

signals 52 from NPMLE and one-step Tweedie denoising appear overly blurred and shrunk, failing to
recover the underlying manifold structure. In contrast, SDGM, equipped with multi-step ODE-based
denoising, is able to clearly capture and preserve the latent geometry of the data.

Real-world astronomy data. We further demonstrate our SDGM-C on a challenging real-world
scientific problem: estimating the latent distribution of stellar chemical abundances and denoising
observations from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) Data
Release 14 [Abolfathi et al., 2018, Majewski et al.| |2017]]. With pre-processing in Ratcliffe et al.
[2020], this dataset, comprising n = 27, 238 stars with d = 19 chemical abundance measurements
(e.g., [Fe/H], [Mg/Fe], [Si/Fe]), features heteroscedastic, element-correlated Gaussian noise for each
star. The true underlying abundances 0 are expected to reside on a lower-dimensional manifold
governed by astrophysical nucleosynthetic processes [Ting et al.| 2012} [Weinberg et al.| [2019].
Accurately revealing the underlying physical structures through the denoised abundances is crucial
for reliable studies of Milky Way formation and evolution [Freeman and Bland-Hawthornl [2002].
As depicted earlier in Figure [I] applying the NPMLE across the full 19-dimensional space is
computationally prohibitive and produces unreliable estimates, as evidenced by Soloff et al.|[2025],
Zhang et al|[2024]. Notably, applying SDGM-C to the APOGEE data (Figure ) reveals sharpened
astrochemically significant structures. Taken together with our theoretical guarantees, these empirical
results showcase that SDGM couples superior denoising fidelity with graceful high-dimensional
scalability, making it a promising tool for robust inference in complex scientific datasets.

Figure 2: Projected plots of the circle experiment onto the first two dimensions. NPMLE-N (columns 2 & 3) performance significantly degrades
when the dimension increases from d = 8 (top row) to d = 16 (bottom row). Our proposed SDGM-C (columns 4 & 5) stays efficient when d
ZIrOws.

6 Discussions, Limitations, and Future Work

This work develops a stochastic-process reinterpretation of Gaussian location mixtures that bridges
classical empirical Bayes inference and modern diffusion-based modeling. Through this lens, we
introduce a diffusion-type G-modeling objective and a multi-step generalized Tweedie denoising
procedure that jointly estimate the latent measure and recover the underlying signals from het-



GoPMLEN),

Dendsed dat (SDGN-C) Genee) Denased daca (SDGILP; Tweee) Dendseddat (SDGNLP; ODE) Genap)

Figure 3: Projected plots of the letter A experiment in d = 16 onto the first two dimensions. NPMLE and PEM (top row) struggled by learning
only a noisy latent prior, and causing denoised data to collapse within the region between the two legs of the A, illustrating over-shrinkage. The
bottom row shows our SDGM variants. Notably, even G is estimated by SDGM, the one-step Tweedie denoising (middle of the bottom row) still
over-shrinks 6;. By contrast, the proposed denoising scheme better preserves the A structure, with fewer points confined to the center of the A.

7/ /s SR SR .-

(a) [Mg/Fe]-[Si/Fe] Plane (b) [Mn/Fe]-[Mg/Fe] Plane

Figure 4: Left: Noisy APOGEE observations projected onto two 2-D planes. Middle: The denoised data reveals a fusiform-like or banana-like

structure in the central region and a thin manifold structure in the upper region. Right: The marginal density of fitted G suggests strong
abundance correlation among the chemicals. These results significantly improve the performance of NPMLE and Tweedie denoising in Figurem

eroscedastic mixtures. Unlike standard score-based diffusion approaches that directly parameterize
the score function, our method explicitly models the latent prior distribution GG, which is crucial for
consistent recovery of the latent law. In contrast to traditional NPMLE solvers that suffer from slow
convergence and over-shrinkage bias, our framework achieves comparable or improved denoising
and prior recovery performance, with better empirical scalability in high-dimensional regimes.

Limitations. Our theoretical analysis builds on assumptions comparable to those in prior NPMLE
studies [Saha and Guntuboyina, 2020, [Soloff et al., [2025] and attains a near-parametric rate of
n~'(logn)®@. These results rely on standard regularity conditions, including compact support
of the latent measure and well-conditioned covariance matrices, which are common in NPMLE
theory but restrict general applicability in heavy-tailed or ill-conditioned settings. Although the
rate matches the minimax lower bound in Hellinger distance for Gaussian mixture estimation [[Kim
and Guntuboyinal 2022], the dependence on the ambient dimension d remains unfavorable and
limits its practicality in very high dimensions. This reflects the intrinsic difficulty of estimating
a d-dimensional latent measure and recovering each 6; from a single noisy sample X;. Since our
experiments show that the score-based G-modeling approach is more robust and computationally
scalable than existing NPMLE solvers, and diffusion models have been observed to capture low-
dimensional data manifolds [Pidstrigachl 2022]], a promising future direction is to derive rates
depending only on the intrinsic dimension dy < d of the manifold supporting G*, following
assumptions similar to[Yakovlev and Puchkin| [2025]]. Algorithmically, our current solution methods
rely on heuristic sampling and approximations that do not guarantee convergence to global minima of
the infinite-dimensional nonconvex objective. The formulation in Section 2] was primarily chosen to
ensure theoretical tractability under the heteroscedastic setting and is not yet optimized for large-scale
computation. Future work should aim to bridge this gap between theory and implementation by
refining both the modeling formulation and algorithmic design, supported by further analysis of
optimization and approximation errors within the empirical Bayes framework.

Broader implications. The line of work suggests that integrating diffusion-based generative modeling
with nonparametric empirical Bayes principles can yield a unified approach to statistical deconvolu-
tion, manifold recovery, and inverse inference under heteroscedastic noise. Future investigations can
further extend this framework toward manifold-aware score estimation and other related directions
that enhance its theoretical scope and practical applicability.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our abstract and introduction set out an overview of our methods, the the-
oretical guarantees, and empirical improvements that are detailed in Section 2, 3 and 5,
respectively. We clearly introduce the scope of study and background context in the first few
paragraphs of the introduction.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discussed several non-positive implications with our theoretical results
following Theorem [l We also discussed computational challenges of our proposal in
Section 4, with efforts to alleviate them.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We detailed the most significant assumptions in the main text and presented a
proof sketch. We aim to present complete technical derivations in our supplemental.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

» The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Our major contribution is a statistical modeling perspective together with an
optimization objective that can be implemented with various approaches. We discuss our
approaches to approximately solve our proposed model. We detailed datasets, metrics, base-
lines and model variants in Section 5, and a pointer to the supplemental for implementation
details, code, and more results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We detailed the complete synthetic data preparation process in the main text.
For the APOGEE data we used, it is publicly available at https://data.sdss.org/sas/
dr14/apogee/vac/apogee-rc/cat/. We provided the code together with usages in the
supplemental.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Dataset generation procedures, noise levels, model variants and evaluation
protocols are given in Section 5. We will put the architecture and hyperparameters for the
continuous normalizing flow model in the supplemental.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: Table 1 reports mean and standard deviation over 5 independent runs for each
metric, if the method is run under stochastic optimization methods.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We plan to detail these details together with other implementation details in
the supplemental.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We acknowledge that we have reviewed the Code of ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
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12.

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discussed the impact of the problem in scientific domains. We demonstrated
that our framework help to mitigate challenges in traditional methods, which has the potential
to benefit future scientific inference tasks.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our work does not release a high-risk model or dataset.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cited the source of APOGEE data and relevant papers. The data is publicly
available at https://www.sdss4.org/.
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13.

14.

15.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: Our paper does not release any new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The work involves no human-subject data collection.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
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Justification: No human-subject research is conducted.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The core original method are developed without any LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Supplemental Material for ‘“Score-Based Diffusion Modeling for
Nonparametric Empirical Bayes in Heteroscedastic Gaussian
Mixtures”

A Code

Our code is available at https://github. com/chgongyu/sdgm-neurips.gitl

B Proofs of Results in Section 3

B.1 Formal statements of Theorem 2]
Assumption 2. For the SDEs defined in (9), assume

1. (latent measure) G* € P([—M, M|?) for some radius M € [0, oc).
2. (covariances) clg 2 ¥; X olgforalli=1,... n.

3. (diffusion coefficients) For allt = 1,...,n, g; : Ry — R is a continuous function. Let
a;(t) == fg gi(8)?ds. We require the normalization condition o;(1) = 1, and additionally
the well-behavior condition: fixa T > 1, then for every t € [1,T), there exists (g,g) > 0
such that g < |g;(¢)?| < 3.

Theorem 3. Provided conditions in Assumption let (to, T') satisfy to < T and

1
logn

to T
g/ gi(t)dt g/ g (t)dt < 1.
1 1

Let G, be an optimal solution to Objective (T1) constrained over the measure class P(|—M, M]?),
then provided n sufficiently large, with probability at least 1 — n™2,

* for score estimation:

T
ES o a2l i= [ B, [Viogaf (x) - Vlog g (z) 3t

(log n)+3;

1
<Cu,M,7,0),(9,9) o

e for density estimation at t = tg:
t t 1 )
ES?(a6” lag) <Coasm..(0) 5, (081

* for the deconvolution risk,

EW; (i S () HeT, Z(Zirl/z#én) <t

ogn
i=1 =1 8

B.2 Control of Fisher risk

Our arguments are built upon the “random-X" regime with fixed design model (i.e., sample size
n, latent prior G*, and covariances {¥;}?_, are fixed). Conditioned on the fixed design, we can
resample the dataset X,, = {X;}?_, from the stochastic processes {G* * N'(0,3;)}™ ;. This view
is similar to, e.g., [Pan et al.|[2020] where the observed data as treated random realizations from a
fixed design model; see also |[Rosset and Tibshirani [2020]] for discussions on random versus fixed-X
statistical viewpoints.
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We recall the following definitions of the rescaled mixture laws and its empirical estimator:

ZfGltld» C]n ZKt

Ex, [¢)] = 4G @,

where G, ; := (Zl(-t))_l/ 24t@ denotes the pushforward measure under linear map induced by the
covariance structure Egt) at time ¢, and the rescaled transition kernel that perturbs the ¢-th data pair
(Xi7 Zz) iS'

K- 1) = N ([ea (=] 72X, (1= aa())™)a)

(®) (t)

We abbreviate the score function for g,

()

and g’ respectively as:

= Vlog q(t) s .= Vlog ¢¥.

By definition, the cumulated Fisher divergence EF, 1 (qG* | |q(t)) between G* and an arbitrary
deterministic measure G is naturally related to the population score matching risk defined by:

1&- 1, ) @ (|2
L3 [ 0 [P0l

It is clear that the Fisher risk can be upper bounded by 7, via rescaling of diffusion and noise
coefficients:

¢ < suwp {[g2(0)Anin(Z0)] 1} T(G).

Fito.11 (a6
i1€[n],t€[to, T

Notice however that 7. (G) needs not to be the expectation of the finite-n empirical risk defined in
eq.(T), i.e., Ex, Jn(G) # J«(G) in general. This is due to that (1) the score estimator is a biased
ratio estimator (though the density gi+ and its gradient is unbiasedly estimated): Ex s, # sg«, and
(2) both the integrand functional s,, and the sampling law K are X,,-dependent thus they cannot be
trivially decoupled.

Thus, we further define a decoupled risk with respect to population-level score s+ and data-dependent
sampling law K;(-| X;):
2
Jar
2

I (1,
22 OB

Then it is clear that Ex, 7, (G) = J.(G) for every deterministic G, because E[K,(-]i)] = fa: 14

For the random estimator @n, the optimality condition of jn(@n) implies a basic inequality that
allows us to link 7, and 7,, through 7., as we detail below.

Lemma 1 (Basic inequality). Every optimal solution G,, to (TI) satisfies:
Jo(Gr) <4 T,(GY). (15)

Proof of Lemmall] We start with the following definition that presents a joint view over the tuple
(i,t,x) to ease the integral representation in 7,,.

Definition 1 (Joint law over index, time and sample). Fix the data {(X;,¥;)}!, and set

Define the probability measure P,, on {1,... . n} x [to, T] x R by

t
P, {i=k,tedt,x €dx} = g’ll;(Z) Pl )—1)1d(.’L‘ - [ak(t)zk]_l/QXk) dtdz.
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Equivalently:
1
Hi= k=1 2
(t | i = k) has density %7
fto gr(u) du
(z|i=k, t) ~ K (k).

With the above definitions, we first note that we can rewrite the objective (TT)) by:

1 [T
= Z/ 92 (0) Bae, (1) 56 (2) = s (@)
i=1"to

2
s (2) = s @),
By the optimality condition, provided G' € P(R?) is a minimizer of (IT) and G* is feasible, we have
TIn(G) < T.(G*). Using the quadratic expansion:
lla — el = 1Ib = cllf: = lla = blf%: = 2(b— )" S(a—b) <0

where we let a = sg), b= sg), and ¢ = s\, we obtain:

B t0)~B, HS(G - g)

dt

i

=/ E,.

2
o S, |8 - SO TEGE )] a6

By Cauchy-Schwarz inequality applied to the inner product term and rearranging terms,
2
(i,t,2)~Pp, |: ) SG ( ) s | = (i,t,z)~P,, SG x) Sp ($) s,

which recovers the claim by rewriting the integrals back in 7, and T.. [

By the basic inequality eq. (T3], we can now relate the empirical risk to the population risk as follows:

T(Gr) = [Tu(Gr) = Tu(G)] + T (G). (17)

The first term is the uniform deviation between the true and empirical .7, over the feasible set of
G, and the second term is at most four times the score empirical regret J,,(G*) conditioned on the
observed data X,,. Below we control the two terms in expectation respectively.

B.2.1 Control of 7,,(G*)

We first have:
2
L (GF) / Zgz Eonr(10) [HSG — s ”’)’ zj at
T t 2
S Hela,X{gz( ))\max(zi)}Ezwq(t) |: S(G’)k( ) o Sg't) (I)H2:| dt.
to "’

To control this term, we integrate and generalize tools from |[Wibisono et al. [2024], [Saha and
Guntuboyina [2020]] to prove our next lemma.

Lemma 2 (Control of score empirical regret). For each t € [to,T] where (to,T) are specified in
Theorem

2 1
Ex, [Ezqu) ‘S(Gt)* (z) — s (x)HQ] < Cd7M7(ag)ﬁ(log n)4s, (18)
‘We now build up the necessary toolbox to prove the above lemma. Following|Jiang and Zhang|[2009]],

Saha and Guntuboyinal[2020], it is beneficial to consider the following regularized score rule. Given
an arbitrary density p, define its associated regularized score function with parameter € > 0 as:

Vp
pVe

€ .
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where p V € denotes max{p, e}. For a fixed ¢, when it is clear in context, we now drop the index (t)
in the score. Expand the empirical regret via regularization:

By, [llsa = sul] < 3By, [lse- — st

2 2 2
+ llsge = sall® + llsn — sal?] .

As useful in the following proof, we first define a general class of heteroscedastic mixtures, in
which both the base measures GG and the Gaussian smoothing kernels can be heteroscedastic across
components. We then show that their associated regularized score function is uniformly bounded.
The definition will be useful to characterize the behavior of the empirical score s,,, in which each
component is a different Dirac measure d,,y,)-1/2x, smoothed by a personalized transition kernel

N(0, K;) with K; = (1 — a; 1)1,
Definition 2 (General heteroscedastic mixtures). Let { K;}!_, be positive definite covariance matrices
such that kl; = K; < klg. Let G := {Gi}j-, be a collection of probability measures on R4,

Define the heteroscedastic mixture pc,,,,n = % Yo Gi %« N(0, hK;) for bandwidth parameter
h > 0.

Lemma 3 (Uniform bounding of regularized scores). Fix a mixture density defined in Definition 2]

For every x € R,
VPG n@lle 1) (2rhk)~
PGpy.n(T) Ve — hk 2
for0 <e< (27rh@)*d/2671/2.

Proof. For each component p; := G; * N'(0, hK;) in the mixture, consider the transformation such
that if X ~ p;, let X; := (hK;)~'/2X; and let p; = G; * N'(0, I) be the transformed measure
governing X; . Then we have the following equations:

pila) = [hI| 72 ((hE) ™).
Upi(e) = (1|2 (0K T2V () T %)

For p; being convolution of measure with standard Gaussian kernel, [Saha and Guntuboyina| [|2020}
Lemma F.1] directly applies:

Vil (2m)~¢
—— <4/lo
Di TR
_ IVl _ li(hE)~ 1/2sz|| 27Th"~‘
Di pz hk

We observe that the function z+/log S22 is concave over x € (0 f thus by Jensen’s inequality:

2ﬂhk
S 1Vl <npe, ¢ (@nhk) 4

i=1 G[n] h

and

Vpain , ; 1 2mhk)—¢
VDG all < > Vil < —log( 7; k)
PGln),h nPGy,,,h hk PGy b

The claim then follows from a same argument as in proof of (F.2) in Lemma F.1 of Saha and
Guntuboyinal [2020] to relate the regularized rule with the unregularized bound derived above under
the two cases pgn),n < € and pgn),n > €. O

‘We now turn our attention to tools for bounding the discrepancy between regularized scores:

€ €12
EQH [HSG* - S’I'LH ]7
via their corresponding Hellinger distance. We rely on specializing Theorem E.1 of [Saha and
Guntuboyinal [2020] and Lemma 1 of [Wibisono et al.|[2024] to the following form that is closely
related to our setting with heteroscedastic mixture.
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Lemma 4 (Bayes discrepancy of regularized scores). For two arbitrary n-collections of probabili
measures G\, and Hp,) on R?. Let the mixtures DGy,y,h and pay, n be defined as in Deﬁnition

then
2
€ €
Epc[n],h HSG[n],h SH[n],hH2

cd orhk)~4/2\°
< Tk max { <1og (6)) s [1og (PG, h PH 1) 52(pc[n],h,pH[n],h),

ifhk <1land0 < e < (2mhk)~42e1/2,
Proof of Lemmal4} Examining the proof of Saha and Guntuboyina|[2020, Theorem E.1], we have:

1/2
€ €
PGpyoh |:HSG[n]1h SH[nJ,hH ] <Th +1y,

with
1 1
ZTE S 2*62(]761["],hapH[,,L],h)T27 and T2 < Z Az 1
1=1
where
k k
T2 .— sup { [Vpo,n (@)l } Azk — / (0% /0x; (pG[n],h _pH[n],h)z-
2€RY,0€{G ), Hn} \ Po, n(@) Ve ’ " PGpoy,h V €+ PHp, 0 V€

With integration by parts, it is shown there that A’s satisfy a recursion that for & > 1,

A?,k S2TA; 1Dk + A 1D 41
With generalized Lemma F.2 of Saha and Guntuboyinal [2020] and some work around the recursion,
we can deduce that for every a > +/(2k — 1)/(hk):

2(2mhk) =42 2 /o hka?
Aik < % [02k52(pc[,,L],mpH["],h) + \/;(az/hk')(% 1)/26 hk ‘| 7

and further with & = kg +1 > T2 and taking a+/hk = max {\/Qko +1, \/2| log 9(pn.h, P« h)\},
we have

— (LQ
€ hk S ﬁz(pG[n],hapH[n],h)a
and
A; 1 < Cmax {ZkoT, e(1+ \/hk)a} (P by Dak)-
Plugging in the uniform upper bound on Y by Lemma [3|and some basic algebra around the choice
of ko and merging of terms yield the desired bound. Because the last algebraic steps exactly follow

from |Saha and Guntuboyinal[2020, Proof of Theorem E.1], we refer our readers to their work for
more details. O

The above result implies that we can further reduce the discrepancy between regularized scores to
bounding the Hellinger distance between g~ and its empirical estimate g,,. We recall the following
result from Wibisono et al.| [[2024]] that controls the Hellinger convergence rate of smoothed empirical
distributions with the vanilla radial Gaussian kernel.

Lemma 5 ([Wibisono et al.| [2024, Lemmas 2 & 3]). Let p be an a-subgaussian measure on R4
whose score s(x) = V log p(x) is L-Lipschitz. Let py, = p* pp, where @y, is the density of N'(0, h1y).
Then for every x € R4,

plz) exp(dLh/2). (19)
pn ()
Let p, be its size-n empirical measure and pp,, = pn * N(0, hly). Then provided h <

min{}-, a?},

)

1 /Ca%logn\d/2  4d
B (g pn)] < & (C2lomnY

where C > 0 is a universal constant.

26



We extend the above lemma for empirical heteroscedastic kernel densities.

Corollary 1 (Hellinger convergence of heteroscedastically smoothed empirical measures). Let
{Y;}_, be independent random variables, each drawn from an a-subgaussian, L-log-smooth mea-

sure p; on RY. Consider the heteroscedastic mixture p,, with density: py 5 (x) := % > Pharg (T —
Y;) and denote its population mixture p, ,, = Elp,, 1] = % St pi * N(0,hK;). Assume each
klq = K; < klg, and hk < min{a? 1/2L}. Then,

OE,EO‘ <logn>d/2 4d

B[S nnpen)] < =25\ =)+ (20)

n

for a constant C that depends on o, k.

Proof of Corollary[l} By proof of Lemma 2 inWibisono et al.|[2024], let B C R¢,
El(ps () — pp.n(x))?
E [52(pn,h7p*,h):| S / [(p Yh( ) P ’h( )) ]d$+2/ DPx.h
B p*,h (x) c
Fix each z, then for each i-th component of the empirical mixture ¢y i, (x — Y;), by their trick:

Epnk, (v — Y;)? = |[4nhK;| " *Eppk, 2 (v — V7).

Thus
Var[p, n(x)] = % ZVar[thKi (z = Y))]
i=1

(4rhk)~4/?

:% S (Hmh il Blpnk ol — YD) ~ Elpns, (2~ Vo)) < ETE

i=1

p*,h/Q(I)'

Combining with above,

drhk)—4/2 Ds T
E [9% (o, pen)] < (4mhk) / /2 )dx+2/ Dah-
n B p*,h(x) e

Notice that p, j, is subgaussian with parameter at most ¢ = v/ a2 + hk. By letting B be the box

region with center E,,, [Y'] and radius o/log n, standard concentration inequalities for multivariate
subgaussian variables yield f gePen < 2—7:1, and for the first term we can bound:

/ P*,h/z(ﬁf)dm < Vol(B) sup P*,h/2($) _ (402 1Ogn)d/2 sup p*,h/?(x)’
B p*,h(x) T p*,h(I) z p*,h(z)

where the last term can be bounded by applying an immediate extension from (I9) and Lemma
6 of [Wibisono et al.|[2024]]. For each component in the mixture, consider the rotation p; , =
K;l/Q#pi * N(0, h1;). Then notice Vlogp; , = Kil/QVlogpi,h. For all h > 0 and z € RY, let
T = Ki_lx such that:

log Pish (z) = log Dish (Ki_l/Qx)
Di,2h Di2h

<Ez (0,10 [108 Di,n (T) — log pin (T — VRZ)]

0
—Enom / (~ 2,V log Fun(F — uZ))du
—Vh

0
<E / 1Z] - |V log Pin (@ — uZ) — Vlog i (@) du < FLdh,
—Vh

which implies p. (%) /ps.on () < exp(kLdh).

Combining the results, we obtain:

(%5~ + hk)logn/Amhk)™>  4d _ C, (4a2/h+k )””2 4d
<= ——logn] +—.

n
O

A

E [9(pnps psn)] < - tos B
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Lastly, we study the discrepancy due to regularizing ¢,, and ¢g~, which can be controlled via adapting
results from|Saha and Guntuboyinal [2020]. Specifically, we recall the following result:

Lemma 6 (Saha and Guntuboyina [2020 Lemma 4.3]). For a probability measure G € P(R?) and
lete € (0, (21)~%2e=1/2]. Let L(€) := \/—log((2m)9€2). Then for every compact set S C RY,

aGo= [ (1‘ fG’Id ) IVfousls o ¢uniayn(0, 8)0@ + daise),

fa1, Ve fa.1,

where N (0, S) is the regular Euclidean §-covering of set S.

Intuitively, the score and its regularized counterpart differ only in the tails.
= 15" Gi € P(RY), and
let the heteroscedastic mixture pg,,, 1, defined as in Deﬁnition@ Let e € (0, (2mhk) = 2e=1/2n71)

0
and define L(e) := \/—ﬁ log((2whk)4n2e?). For compact sets Sy, ..., S, C RY,

Corollary 2. For an arbitrary n-mixture of probability measures G|y,

1< d .
Bl 5l < Canay 3 (FVG/EE. 80800 + 5618 ).

Proof of Corollary[2] The strategy to prove this slightly generalized version is similar to proof of
Lemma [3] the Proof of Lemma F.7 in [Saha and Guntuboyinal [2020] and proofs in Section D.2

of |Soloff et al.| [2025]]. Specifically, for every fixed =, we can let GG; denote the distribution of

(hK;)~1/26; where ; ~ G; and write z; = (hK;)~/?x. This allow us to rescale the terms in the
score function:

1 & _
pG[n]7h(x) = EZ |hKl| I/Qféi’jd(zi)y

=1
1 n
VPG h(@) = O IhK T (RK) TPV fa ().
=1
By convexity,
[1REG| =12 (REG) ™2V fa, ()P
\WEG =2 o 1 (w0)

2
< (hp)~ @2+ L ZM7
= e

\|VPG["],h(CC)||2 Z

pG[n]ah(x)

and it is trivial to verify that for every i€ n):

PG, h( ) > (hk) d/QfG“]d (xz)
2 2
Y PR TGN R P f61,(70)_ .
pG[n]7h(x) Ve féi,ld (z;) V n(hk)d/Qe
2 2
2 _ / 1 PG,k (2) [V pcyn (@]l I
pG[nph("E) Ve pG[n]7h($)

S, (@) IV fa, g @)
dkknhz/< fG Id (z;) V n(hk)d/2e > f@,ld(mi) i

ZA (Gy,n(hk)¥ ).

Thus,

]Epe[n],}L HlSG[n],h - SEG[,,L],

:Cdkknh
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where C, | + = Ed/z / EY?L Now, Lemma@ directly applies to each summand. Provided e €

(0, (2mhk)=4/2e=1/21] "and L(e \/—— log((2mhk)dn2e?), then for compact sets S;, i =
1,...,n,

EPG[n]vh“|SG[nhh ~ 5G1u, Wll?] < Cink oh Z N(4/L(e), Si) L% (e)e + dGi(S5).

where we applied the covering number bound and the change—of—varlables identity for pushforward
measures under linear maps to re-express the terms defined on .S and S°¢.

O
We are now finally ready to integrate the above pieces together to prove Lemma|2]

Proof of Lemmal[2] Provided

1 n ) 1 n B
) = - S K- |i) = - D Staisy-rex, * N0, (1= o MI)
i=1 i=1

) IE I

t) _ _

dG- = E 1 fa:, 1, = -~ E 1 fer 14
i= =

where each G, : (Z(i)) V24G* and E(f) = a;(t)8; = (J, gl( )ds)3;. It highlights that ¢,
and gg can be Vlewed as a specialization of the mixtures in Definition 2] We can easily verify that

fox t-Id’ is at most y/4M?2 /g + 1-subgaussian and 1-log-smooth. By construction, 1 — «; e
L =

[5.1).

By the earlier decomposition,

Ex,Eq, [lIso- = sull’] < 3By, [llso — s 17| + 3Bx, Eqpx, s = sill® + llsn — s2?]

For the first term, the test function is deterministic with respect to the data, thus we can reduce the
expectation to its population quantity. On the other hand, for terms involving s,, it is a random
function of the data samples, thus we evaluate first the inner expectation, conditioned on a fixed data.

B * N(0, (1 —a; 1)I,)

The first term can be controlled via a direct application of Corollary 2| with € = (27)~%/2¢=1/2 /n
and the sets S; = {(2")=1/20 | 6 € [ M, M]%} so G7 +(Si) = 1. Then we have:

d
1 MVd 1
E [ *—€*2<C N(4,8)]-5 |1 n
0. |lIsa= — s = d[sgp ( )]nN< +2(miniai(t)0)1/2> n
1
<Caq,M,c—
n

The last term can be controlled similarly. Standard Gaussian concentration yields that: provided
n > 2d, with probability at least 1 — n~1, max || X;||cc < 7, := M + 7/6log(n). Now let the
compact set in Corollarylbe S; = {(Egt))’l/zx | © € [~74,7,]?}. Conditioned on the high-
probability event, each § (=12, is compactly supported on S; and thus satisfies G;(S¢) = 0;
otherwise G;(S¢) < 1 is uniformly bounded. Let € = (27)~%2e~1/2 /n and we obtain:

logn
Ex,Eq, x, [Hsn —s%Hz} < ('Seu[p] N(4/L(e), Si)L(€)* +d> ~5 MgT)

Lastly for the Bayes discrepancy between regularized scores, by Lemma] Corollary [T} and the same
strategy to reduce the expected Hellinger distance in|Wibisono et al.|[2024, Lemma 4],

}9%(qn, a6+

Exn QnIXn |:||SG* - STLH :| SC(LZEXW [ma’X {(log n)37 ‘ log‘ﬁ(qTﬁ qG*)

(log n)/2+3

<Cu,M,7,0) -
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Combining the terms, we obtain the desired result that for all ¢ € [tg, T,

e~gl)

Ex, [IE

2 1
520 = s} < Canr iy tomn) .

B.2.2 Control of J.(G,) — J.(G)

We control the term 7.(G,) — J«(G,) in (I7) via empirical process theory together with the
regularization trick introduced above. In particular, we crucially rely on local Rademacher complexity
analysis following Bartlett et al.| [2005], |Lei et al.|[2016]]. Localization also appears essential to obtain
sharp learning rate in empirical Bayes guarantees [Saha and Guntuboyina} 2020} Soloff et al., [ 2025|
Stein, |1981]]. Under the uniform bounding assumption, it is without loss of generality to let g; = g
for all ¢ € [n] to ease the notations.

Denote the pointwise loss v with:

bio(@: Q) = s (@) = s (@)
and let the regularized point-wise discrepancy ¢, where we write the shorthand notation sg, ;, :=
Vag /(a5 v e):

2

)

3

Vi@ G) = [IsG 4 (2) — sGe 1 (@) 13,

We also let:
hit(2;G) = Ezon0,(1—ai ()11 Vit (T + Z;G),  hi((25G) = Ezon(0,(1—au ()1 10) Vi (T + Z; Q).
such that for all fixed G, denote X; := (£{")~1/2X;

Elheo(R::G)] = Bxegyr,, [004(X: 6,

~

1 ~ ~
7.0 = [P S hialFsGde, 3.(6) =EL(G)
Consistent with Bartlett et al.| [2005]], we write for a function f : X — R,
1« 1
Pof==> f(X), Pf=Ef(X), Ruf=-3% oif(Xy).
i=1 i=1
Here 04, ..., 0, are n independent Rademacher variables. For a function class F, its Rademacher

complexity is ER, F := E [sup ;e Rn f] -

To facilitate metric entropy toolkit derived in Saha and Guntuboyinal [2020], |Soloff et al.| [2025], we
consider the following pseudometric that restricts the localized score discrepancy to a compact set .S:

mZ (G, H) = max sup ||sg,(x) — g ()|, -
i€[n] z€$ i

It is natural to consider the following compact set: A = {z € R? : qg)(x) > € VG €
P([-M, M]%)}, in which we guarantee s = s, for all measures G. Denote

(04,0¢) := (min Umin(ZZ(-t)),maxamax(zz(-t))) .

i€[n] i€[n]

It is straightforward to show that a sufficient radial condition that implies z € A is:
ez < re < N 2log((2m))~4/2e1) — M\/d/ot] -
+
Let B= {z € R%: ||z||2 < r.} then B C A. By standard Gaussian concentration, provided

€< eni=(2m) Y2 exp <—;(2M\/d/at +Vd+ 2\/logn)2> ,
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then
P(X€A)>P(Xe€B)>1-n"% VX ~ fg,, 1, Vi € [n]. 21)

With the above construction, we define the discrepancy function }NLGJ/ : [n] x R? — R that restricts
the regularized discrepancy to the high-probability set A:

hG’t(Z’, 3?) :EZNN(O,(I—ai(t)*l)Id) [wzt(.’ﬂ + Z; G)l{a? +Z € AH

Then for arbitrary fixed G, we separate:

o~ T ~ ~
7.(G) - To(C) = / 9()°[Phe. — Pohc.dt

to

1 ~ N )

/ ZE Z { [thi 1{A°}] — Z§t>1/1¢,t(Xi + Zi(t))l{Xi + Zi(t) €A }} dt
i=1

T

T n
< [ 90PPho. - Pah.dde+ [ gleps Y Elwia{a)

to to

where P and P, are defined with respect to the product measures - ZZ 10: ® far La|,

i,t?

and
=1

LS. (i,%,) defined over the augmented space [n] x RY. We drop the last term since z/J s are
nonnegative.

Control of [P — Pn]ﬁ We apply the following results that establishes generalization analysis with
local Rademacher complexities:

Lemma 7 (Theorem 3.3 of [Bartlett et al.| [2005]). Let F be a class of functions with range in [a, b]
and assume that there are some functional T : F — R and some constant B such that for every
f € F, Var[f] <T[f] < B Pf. Let ¢ be a sub-root function that satisfies the following properties:

* ¢ :[0,00) = [0, 00) is non-decreasing and r — p(r)/+/1 is non-increasing for r > 0.
* @ is continuous on [0, 00) and the equation p(r) = r has a unique positive solution r*. For
allr >, r>r* < r > (r).
If for any r > r*, ¢ satisfies,
¢(r) = BER,{f € F:T(f) <r},
then for any K > 1, and any t > 0, with probability at least 1 — exp(—t),

K K t
Pf< Pf+clEr +(Cz(b—a)+63BK))ﬁ7 VfeF

where cy, c1, co are numerical constants.

It is convenient to then apply |[Lei et al.|[2016]’s results that presents the local Rademacher complexity
bounds in terms of metric entropy.

Lemma 8 (Corollary 1 of Lei et al|[2016]). Let F be a function class with sup ez || fllooc < 0.

If F can be finitely covered with respect to the metric || - || 1,(p,) == ([ |f12dp)"/?; that is there
exists positive numbers vy, 6, p such that log N (u, F, || - ||2) := sup,, supp_ log N(u, F, ||-|,(p,) <
§log? (y/u) for any u € (0,7, then for any r € (0,~2],

drlog? (2ynl/?) N §logP(2yn'/?) ]

(22)

ERn{fE}—:PfQST}SCbm,’Y[ n n

In particular, the right hand side of (22)) defines a valid sub-root function whose fixed point satisfies
r* < cdlog(n)? /n (see Section B.3. of |Lei et al.[[2016])). Thus, it suffices for us to show the function
class of interests satisfies the required covering number bounds.

For every fixed t, the (relaxed) function class of interests is H; = {Eg’t : G € P(R?)}. We have the
following:
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e For all h € H,, there exists b;(e) such that 0 < h < ¢ < 4supg |55 < bZ(e). By
Lemmal[3] let

bi(€) = 24/log[(2m)~de2].

* The variance condition is satisfies by letting T'(h) := Ph?. Then Var[h] < T[h] by
definition and 7'(h) < b?(e) Ph by the uniform bounding above.

* The covering number of H; satisfies N (u, My, || -[l2) < N (557 P(R?), m?). For G, H €
P(R?), and (i,2) € P,,
B — bl (6, @) < 261( B (05 (2 + Z3 )2 = 5 (e + 2, H)Y?| - 1z + Z € A}).

By the reverse triangle inequality that |||a — ¢|| — ||b — ¢||| < ||a — b|| and conditioned on
y=x+2Zc A

W’zt(yv )1/2_ f,t(yQH)lm‘
=lIsG.:(v) = G- :W)lls, — 5T (v) — 5G- 4 ()
<Is&. () = s (W)llz, <m (G, H).

Thus for every n and P,,,

3

ht — hirellpa(en) < 2bi()mA (G, H)

€

u
—> Tog N(u, My, | l2) < Tog N (;

By the same strategy in Soloff et al.[[2025]], we have:
m (G, H) < (20)7bu(e) sup o) (@) — 4} (2)]

z€A

121 qup ||VqG (x) — Vq(f? (@)]l2
z€A

+ o,

sﬁ%m*wwmmme@u it 1a(@)]

i€ln] zcA

+a 2 maxsup |V fa, 1. (2) = V(@)
i€[n] zecA

Lemma 9 (Lemmas 5 and 6 of Soloff et al.|[2025]). Define the semi-norm over S C R%:
lfc.o = frolloo,s :=maxsup |fa, , 1,(x) = fr, . 1.(2)],
i€[n] ze$

[ fa,o — fH,o coa(@) =V, 1, ()

and let S° := {z € R% : inf e ||z — y|| < a}. For F:= {(fa, k)1, : {Gi}7, € P(RY), kI <
{K;}"_, = kl;}, there exists positive constants Cyq and CaF.) Such that for all compact S C RY,
M > 0, and sufficiently small n > 0 such that B

c. - d+1
a d,k.k
mNmE-mms%N@s(m n) ,

c. - d+1
a NN
mwmm-wmg@meQ%77).

where a = \/ 2% log Y2 (27k)d/ 2y,
Apply Lemma [J]to our metric, by letting

w =5, (bi()/2+ 1),
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provided u* sufficiently small, we have
log N (u*, P(R?),m) < log N(n/2,F, | Hoo 4) +1log N(n/2,F, | - [lv,4)

< CyN(a, A“)(log )d"’1
n

< Caa~ Vol (A%/?)(log Cd(bt(ﬁ)/*2 +1) )+,
€

where the last step is due to Lemma F.6 of Saha and Guntuboyina| [2020]]. Since a necessary radial
condition for z € A is given by

M M - - T
d(, [~ D= inf flo—yl3 < 2log((2m) V2t = 7 (),
\/> \/> yE[— m]
we have that:

d
a~Vol(A%/?) < a7 . ¢y (n(e) +M,/d/o, + 2@)

5(27) /2
Same, (Te(e)V 1)?log <(7)7>

/2

This implies that:

log N (

*

2by(€)’

By choosing € = ¢, = o(n~2), we have b;(e,) < /logn and 77(e,,) < logn, provided n >
Na 5,0, sufficiently large such that terms involving n dominate constant terms. Thus, one can
apply Lemma(with K =2)and Lemma(with v < (be(€)/2 4+ 1)be(e) /e, 6 < (Te(e) V1), p=
3d/2+ 1) to show that for arbitrary k > 1 and G € P([—M, M]?), with probability at least 1 —n =",

b2 D)

eu*

P(Rdxmf) it (i) V1) (1og

~ ~ ~ 2 = 1 d 1 3d/2+1 kl
Phey — Pahiey < Pahy + e 20t Y DT dog ()T ) (o Rlos(n)
’ ’ ’ be(€)? n n
~ o~ 1 2d
:/ )*[Phe, , Pnh@mt]dtgj*(GnHO(%),
to

since hgﬂt(’t, x) < h;+(x; G) and the time integral of P, h; +(x; G) recovers J.(@) by definition.
Control of tail. We remain to bound for every ¢ and ¢:
Eoncr N (0,1 Wit (2; G)1{z € A}
=E[(¢i1(2; G) — i (2, @) UH{w € A} + B[, (25 G)1{w € A%}].

The second term is trivially bounded via uniform bounding b, (¢€) of every regularized score functional
¢ and eq.(Z1) that P(A¢) < n~2 provided € = ¢,, chosen above. Thus,

E[¢; ,(7;G)1{z € A°}] < bZ(e)n 2. (1)
By standard algebraic operations via triangle inequality, let 6; = max ¢4} ||c — || and do =
maXee{a,b} ||CE||’
la = bl < [la® = b + [la — a®[| + [[b = 0[] = [la® — b°]| + 26,
= [lla = 0]|* = [la® = b|1*| <[lla — b — [la® = b<[I| - (lla — b]| + [|a® — b))
<261 - (2]|a® — b°|| + 261) < 4(67 + 20102).

Lettmg a= s b = sg) ;0 = 8¢ 4, b° = sg. 4, and applying Cauchy—Schwarz inequality, the first
term in above becomes

E[(vi: = ¢ AN =El(llse = so- 5o — 156 — 56 I50)1H{A}]

< 47, E — 5P +2 — 55| - |IsS. | 1{ A€
—H7H,67£r(1[‘“‘_XM7M}d) ot El([[sg — sy ll” +2[lsg — syl - [Isq ) 1{A}]

< 47, E <€ ]2 b E _521/2PA(:1/2
< o 4B s5)+ b Ellsn — sy P(AY)

45, (A + bi(e )A1/2> (ii)
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where we again used the uniform bounding . The discrepancy A := E[||sg — s%||?] can be bounded
by Corollary 2] with a change of measure. By the Cauchy-Schwarz inequality,

A < V14X (gnllac ) Bay lsm — sill)!2,
where the fourth moment of the score discrepancy can be analogously controlled as the second moment
with only the change of the leading constant and the dependency from L% () to L%+2(e). The chi-
squared distance x%(p||q) = [ % —11is jointly convex and we have x*(fa, . 1.1 fH....1.) < Camoz
is upper bounded by a constant. Consequently, given G*, H compactly supported, with the choice of
€ < n~2, we have that:
(log n)(d+2)/4
—

AS

Recall b:(e) =< /logn, so combining (i) + (ii) yields:

T 1 — (logn)(d+2)/4
)%= E[; :1{A°}|dt S —————.
902y Sty g S

Combining the high-probability part and the tail, we can conclude this section by asserting:

5\ 7 (A 5 Ay, Polylog(n)
TolGa) = TolGn) S (g Fo(Gr) + P,
By further upper bounding [/f*( G,) by J,(G*) from the basic inequality and applying Lernmal
we recover the first claim in Theorem [3]on score estimation guarantee that with probability at least
1 — n~F for arbitrary k& > 1,

=N 1 2d+1/2 1 Oo(1) 1
EJ.(Gn) S SET.(G*) + (Og"L + Og(?j < ~(logn)°@.

:

B.3 Control of Hellinger divergence

Our next result controls the KL divergence between qé‘)) and qgi’) by the Fisher risk controlled above.

Without loss of generality, assume g;(t) = g(t) so a;(t) = a(t). Recall that we define:

1 n
ag) =~ (S TPHG < N (0, L),

i=1

Let
1 n
35 = = Y (S0 N (O, a1
=1
:Vlogq(t)( )= 7V10qu (e/ /1),

Valt)

Lemma 10. For every fixed G € P(R?),

145°) S Fieo 1 (402145,

KL (g5

lq

Proof. Denote the path space by Q = C([to, T]; R%). Under the latent measure G and the same
conditions on 3; and g; as in Assumption [I| define the path law Q¢ to be the unique solution for the
following reverse-time SDE on [tg, T:

dXD = —g(t)>V1og G (X D) dt + g(t) dB,,  X10) ~ gllo), (23)

Similarly to |Song et al.| [2021b, Proof of Theorem 1], consider the measurable Markov kernel
K :Q x B(R*) — [0, 1] with K (w, ) = d,(y)=z then we have:

@“0 =QcK = /K )Qa(dw)
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that shows that the marginal mixture law g¢ at g is the push-forward of the aggregated path measure
Q¢ under the kernel K. By the data processing inequality,

KL (G ll36")) = KL(Qo- K||QeK) < KL(Qc+||Qa)-
In addition, the KL divergence is invariant with the linear rescaling:

las”) = KL(Ge2[1g5).

C]G*

KL (qgf

Since the SDEs associated with Q¢ and Q ¢~ differ only in the drift coefficient, we can apply the
Girsanov theorem [[Oksendall [2013] to yield:

KL(Qg-

T
Qc) fIEQG* [/ HVIoqu* Viogg t)H dt]
to
IOk 0 o>
- E, o |[Viozal - 1 dt
z/to AORERC N U
Z / S [Hwogq“) Vlog g }dt
0

1f
S 23[% T] (qG’*

i)

O

Plugging in the first claim that bounds S [to,T) (qG* qé)) in Lemma and use the basic divergence
inequality that $? < K L yields the desired second claim.

Lastly, the third claim on the Wasserstein divergence:

g (135 v S 06 5 o

i=1 i=1

follows from a direct application of Theorem 10 of [Soloff et al.| [2025] with the upper bound of

5’)2(%%) A(t‘))) from above.

B.4 Reduction with Homoscedastic Noise

Proof of Theorem[l] When ¥; = X are all equal, We have:
46 = fwynpar, = fozw(@) = 5072 ((Z(”) 1/2$) :
Vlog fg o (2) = (S0) 2V log gl ((2)7"/22).
We have the following equivalence:

S(fasollfaso) S Amin(ED) 7 F(aklldh),
KL(fgsolfaso) = KL(ggllqw),
W2(G, H) </ Amax(D)WE(ETYV2 4G, 07 V24H).

This shows that Theorem 1 is a direct corollary of Theorem [3| with only adjustments to the leading
constants. O

C Implementation Details and Additional Results

Experiments compute resources. We fit all our models and performed all experiments on an
internal HPC cluster. Jobs were scheduled on GPU-enabled nodes, each using one NVIDIA GeForce
GTX 2080 Ti GPU and its accompanying Intel Xeon Skylake 6130 @ 2.1 GHz CPUs with 96 GB of
RAM per node. Individual training runs require a maximal of 2 GPU hours and 4 CPU hours, while
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the denoising runs require a maximal of 1 GPU hour and 2 CPU hours. The entire experiment takes
approximately 120 hours. These estimates do not include preliminary or failed experiments.

Hyperparameters and architectures. For our implementations, we consider two variants SDGM-C
and SDGM-D, for continuous and discrete latent model, respectively. In the continuous case, the
flow uses four repeats of the following block: ActNorm — random permutation — MaskedPiece-
wiseRationalQuadraticAutoregressiveTransform, where each autoregressive transform conditions on
all previous dimensions via a 2-layer MADE network (128 hidden features), uses eight linear-tail
bins (tail bound 10), enforces minimum bin width/height and derivative of 5 x 1073, leaky ReLLU
activations, residual blocks, and no dropout or batch norm. The base distribution is a standard normal
distribution. In the discrete case, we use a trainable mixture of 2,000 components (initialized from
random normals or random draws from the observations) and corresponding randomly initialized
weights.

For the baselines, used the official implementation of Dual-ALM provided by the authors of Zhang
et al.|[2022]] athttps://github.com/YangjingZhang/Dual-ALM-for-NPMLE. For NPMLE-N,
we use all available training data samples as the fixed supports. Thus, the latent mixture is given
by: 2?21 w;o X; with w;’s trainable. For PEM, we fix a latent mixture of 2,000 components, i.e.,

G = Z?iolo w;6,,, with both {(w;, 11;)}7°9° optimizable. We randomly sample points from the

dataset as the initial supports and uniformly initialize the weights.
SDE setting and training objective. Throughout our experiments, we consider the following family
of variance-exploding SDEs:

ay" = g)2}?dB,, with Y,” ~ G*.

K2

In particular, we use a shared diffusion coefficient g(t) = 622_1 et. Under this SDE, the marginal

distribution at any time ¢ > 0 is Yi(t) ~ G* x N(0, El(»t)), where the effective time-dependent

() _ -1 (&)
= >};. Our observed data X; correspond to Y;* 7.

covariance is X

i e2—1

The training objective for our SDGM models is based on DSM to match the conditional score of
fé s with p1:(-|X;). For each data point (X}, 3;) in a training batch of size Np:

1. Atimet; > 1 is sampled (specifically, ¢; is drawn uniformly from [1 + €, Tiax], Where we
use € = 1072 and T}yex = 1.5 in our experiments).

2. A perturbed data point, X/, is generated by corrupting X; with additional noise: X| =

X; + Z;, where Z; ~ N (0, thi) - El(.l)). This X is a sample from the SDE path at time
t;, conditioned on X; being the state at ¢ = 1.

To compute the score of our model’s current estimate of the data distribution at time ¢;, we first
represent our learned latent prior, G.

« For SDGM-C, G is represented by a neural spline flow. We obtain a discrete approximation
by drawing m = 2,000 samples {; };”:1 from this flow and assigning uniform weights
w; = 1/m.

« For SDGM-D, G = Z;nzl w;d,,,;, where the support points {; 1 and their corresponding
logits (which determine weights w; via softmax) are directly trainable parameters, with
m = 2,000.

The score of the marginal distribution conditional on i-th SDE at time ¢; implied by

G and noise covariance Egti) is denoted Vlog f@_z(m(

S g XL SN E) T g — XD), where fg () = STy wiN (@ g, B) and

(4| X], thi)) are the posterior probabilities of the mixture components given the perturbed data

X|. The objective function minimizes the expected squared difference between this model score and
the true score of the perturbation kernel, V x/ log p14, (X[ X;) = —(thi) - Egl))*lZi. For a batch,

X/). This score is computed as
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https://github.com/YangjingZhang/Dual-ALM-for-NPMLE

the loss is:

‘ 2

‘Vlog f& o (X) = Viogpyy, (X|X5)

~ 1 No
L(G) = Ng ZQQ(tz‘)
i=1

All our experiments are performed with the importance sampling strategy as in|Song et al.| [2021b]]
that further reduce the variance in estimating the time integral by directly sample ¢; according
to p(t) x g(t)2. The optimization is performed using the Adam optimizer. For the experiments
presented, we used a learning rate of 5 x 10~° (unless specified otherwise for particular experiments),
B1 = 0.9, Adam € = 1078, no weight decay (weight decay = 0.0), and gradient norm clipping at 1.0.

Denoising. For denoising, we run the “dopri5” ODE solver implemented in torchdiffeq [Chen,
2018]] with absolute and relative tolerance fixed at 10~ from ¢ = 0.999 to ¢t = 0.001. We use the
same procedure as in the training process to obtain a discrete approximation of the learned latent
prior for estimating the score along the reverse-time path.

More numerical results. We performed an additional synthetic experiment in which the nontrivial
structure in the first two dimensions is discretely supported:

Example 3 (discrete): The first two coordinates of each 6 are drawn uniformly from the discrete
ensembles of three points {(0, 0), (0,6), (6,0)}.

The noises are then drawn with the same procedure as described earlier to produce the observations.

Denoised data (d =) Gid=3) Denoised data (d = 32) Gd=3)

Figure 5: Projected plots of the discrete experiment onto the first two dimensions in dimensions d € (8, 16) and training sample size
n = 2 x 10%. SDGM-C stays effective in estimating the discrete locations as d grows. Recent NPMLE solver in |[Zhang et al.| [2022]
demonstrates significantly degraded performance in such dimensions.

We also performed additional circle experiments with d further increases.

Denoised data (d=2¢) G=24) Denoised data (d=32) Gu=3)

Figure 6: Projected plots of the circle experiment onto the first two dimensions in higher dimensions d € (24, 32) and training sample size
n = 107. SDGM-C stays relatively stable in recovering the underlying circular structure as d grows to a dimension for which numerical
NPMLE solvers struggle.
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