# **Temporal Fact Reasoning over Hyper-Relational Knowledge Graphs**

Anonymous ACL submission

#### Abstract

Stemming from traditional knowledge graphs (KGs), hyper-relational KGs (HKGs) provide additional key-value pairs (i.e., qualifiers) for each KG fact that help to better restrict the fact validity. In recent years, there has been an increasing interest in studying graph reasoning 007 over HKGs. Meanwhile, as discussed in recent works that focus on temporal KGs (TKGs), world knowledge is ever-evolving, making it important to reason over temporal facts in KGs. Previous mainstream benchmark HKGs 011 do not explicitly specify temporal information for each HKG fact. Therefore, almost all existing HKG reasoning approaches do not devise 014 any module specifically for temporal reasoning. To better study temporal fact reasoning over 017 HKGs, we propose a new type of data structure named hyper-relational TKG (HTKG). Every fact in an HTKG is coupled with a timestamp explicitly indicating its time validity. We de-021 velop two new benchmark HTKG datasets, i.e., Wiki-hy and YAGO-hy, and propose an HTKG reasoning model that efficiently models hyperrelational temporal facts.

# 1 Introduction

027

Traditional knowledge graphs (KGs) represent world knowledge by storing a collection of facts in the form of triples. Each KG fact can be described as (s, r, o), where s, o are the subject and object entities of the fact and r denotes the relation between them. On top of traditional triple-based KGs, hyperrelational KGs (HKGs) are designed to introduce additional information into each triple-based fact (also known as primary triple in HKGs) by incorporating a number of key-value restrictions named as qualifiers (Zhang et al., 2018; Guan et al., 2019; Galkin et al., 2020). Compared with triple-based KGs, HKGs provide more complicated semantics. For example, in Fig. 1 (A), the degree and major information of *Albert Einstein* is provided, which



Figure 1: Examples of HKG (A) and HTKG (B) facts. Contents inside dashed line squares denote qualifiers.

helps to differentiate between the facts regarding two universities attended by him.

Many reasoning approaches have been proposed for HKGs, e.g., (Wang et al., 2021; Xiong et al., 2023), but unfortunately, they all assume that the hyper-relational facts are static. As discussed in recent works (Dasgupta et al., 2018; Ding et al., 2022), world knowledge is ever-evolving. In temporal KGs, each fact is represented by a quadruple (s, r, o, t) with an additional timestamp specifying the time validity. Previous mainstream HKG benchmarks do not explicitly specify time validity for each HKG fact. This hinders the development of the reasoning systems that can effectively handle temporal dynamics within hyper-relational facts, and as a result, almost all existing HKG reasoning methods lack a dedicated module for temporal reasoning. Modeling temporal knowledge in HKGs is important as the temporal validity of a fact improves knowledge expressiveness and might be correlative to its qualifiers. A model should be expressive enough to model such correlation.

To better study temporal fact reasoning over HKGs, we propose a new type of data structure named hyper-relational TKG (HTKG, see formal definition in Sec. 2.1). Every fact in an HTKG is defined in the form of  $((s, r, o, t), \{(r_{q_i}, e_{q_i})\}_{i=1}^n)$ .

063

064

065

067

041

043

044

(s, r, o, t) is its primary quadruple (t is a timestamp denoting the valid time) and  $\{(r_{q_i}, e_{q_i})\}_{i=1}^n$ are a number of n augmented qualifiers. We illustrate an HTKG fact example in Fig. 1 (B). The two awards Ang Lee was nominated for because of Brokeback Mountain can be differentiated considering the specified timestamps. An HTKG is composed solely of a collection of hyper-relational temporal facts so we use HTKGs to study temporal fact reasoning over HKGs. We construct two benchmark HTKGs Wiki-hy and YAGO-hy based on two traditional TKG benchmarks Wikidata11k (Jung et al., 2021) and YAGO1830 (Han et al., 2021a).

068

069

070

077

086

089

090

098

099

100

101

102

104

105

106

109

110

111

112

113

114

115

116

Since previous HKG reasoning approaches pay little attention to temporal reasoning, they are not fit for modeling HTKGs. To this end, we develop a model to achieve link prediction (LP) over hyperrelational TKGs (HypeTKG) as follows: (1) We first devise a qualifier-attentional time-aware graph encoder (QATGE) that considers both temporal information and qualifiers in the graph aggregation process. (2) We then design a qualifier matching decoder (OMD). Given any HTKG LP query, OMD not only considers its own qualifiers, but also models all the qualifiers appearing in query subjectrelated facts. The motivation of QMD is that the evidence for LP not only is stored in the query qualifiers but also can be found in other subjectrelated facts. Compared with previous methods, HypeTKG is able to capture the correlation between temporal validity and qualifiers.

Another point worth noting is that some recent works have started to explore whether timeinvariant (TI) relational knowledge<sup>1</sup> can help to enhance temporal fact reasoning on traditional TKGs (Li et al., 2021, 2022; Liu et al., 2023). This arouses our interest in studying whether TI relational facts are beneficial in HTKG reasoning. In our work, we mine the TI relational knowledge from the Wikidata KB. We pick out the facts that contain ten frequently mentioned TI relations, e.g., official language, and ensure that these facts remain valid within the whole time scopes of HTKGs. We adjust HypeTKG and create a model variant HypeTKG $^{\phi}$ that dynamically controls the influence of TI information for better reasoning on temporal facts. We also provide a wide range of baselines with TI facts and benchmark their temporal fact LP performance on our proposed HTKGs.

<sup>1</sup>TI knowledge are represented with fact triples (s, r, o) (same as the facts in triple-based KGs) and are valid anytime.

To summarize, our contribution is three-folded: (1) We propose a new data structure HTKG that draws attention to temporal fact reasoning over HKGs and propose two corresponding benchmarks (Sec. 2.1 and 3). (2) We propose HypeTKG, a model specifically designed to reason over HTKGs. Experimental results show that HypeTKG performs well in temporal fact reasoning over HTKGs (Sec. 5.2). (3) We study the influence of TI relational knowledge on HTKG reasoning and adapt HypeTKG to accommodate to TI information. We show that our model can benefit by carefully balancing the information between temporal and TI knowledge (Sec. 5.3). 117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

156

157

158

159

160

161

162

## 2 Preliminaries and Related Work

#### 2.1 Definition and Problem Statement

**Definition 1** (Hyper-Relational TKG). Let  $\mathcal{E}$ ,  $\mathcal{R}$ ,  $\mathcal{T}$  denote a set of entities, relations and timestamps<sup>2</sup>, respectively. An HTKG  $\mathcal{G}$  is a set of hyperrelational temporal facts. Each fact is denoted as  $((s, r, o, t), \{(r_{q_i}, e_{q_i})\}_{i=1}^n)$ , where (s, r, o, t) is its primary quadruple.  $e_{q_i} \in \mathcal{E}$  and  $r_{q_i} \in \mathcal{R}$  are the entity and relation in its *i*<sup>th</sup> qualifier  $q_i$ , respectively. n is the number of qualifiers.

**Definition 2** (Hyper-Relational TKG LP). Let  $\mathcal{G}_{tr}$  be a ground-truth HTKG.  $\mathcal{G}_{tr} = \mathcal{G}_{obs} \cup \mathcal{G}_{un}$   $(\mathcal{G}_{obs} \cap \mathcal{G}_{un} = \emptyset)$ , where  $\mathcal{G}_{obs}$  is a set of observed HTKG facts and  $\mathcal{G}_{un}$  is a set of unobserved facts. Given  $\mathcal{G}_{obs}$ , HTKG LP aims to predict the missing entity in the LP query  $((s, r, ?, t), \{(r_{q_i}, e_{q_i})\}_{i=1}^n)$   $(or ((?, r, o, t), \{(r_{q_i}, e_{q_i})\}_{i=1}^n))$  derived from each fact in  $\mathcal{G}_{un}$ .

Following previous works on TKGs, e.g., (Han et al., 2021b), for each fact, we create another fact  $((o, r^{-1}, s, t), \{(r_{q_i}, e_{q_i})\}_{i=1}^n)$  and add it to the graph, where  $r^{-1}$  denotes r's inverse relation. We derive an object entity prediction query from each fact and perform object prediction. Note that we follow (Galkin et al., 2020) and only predict missing entities in primary facts.

#### 2.2 Related Work

Due to page limit, see App. K for the detailed discussion of various previous methods.

**Temporal Fact Reasoning on Traditional TKGs** Extensive researches have been conducted for TKG reasoning. Although traditional TKG facts have no

 $<sup>^{2}</sup>$ We decompose time periods into a series of timestamps following (Jin et al., 2020).

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

211

qualifiers, each of them have a specified time iden-163 tifier for temporal fact reasoning. A series of works 164 develops time-aware score functions (Leblay and 165 Chekol, 2018; Xu et al., 2020; Goel et al., 2020; 166 Shao et al., 2022; Messner et al., 2022; Li et al., 2023; Pan et al., 2024) that compute plausibility 168 scores of quadruple-based TKG facts based on var-169 ious types of geometric operations. Some other 170 methods employ neural structures, e.g., LSTM (Hochreiter and Schmidhuber, 1997) or time-aware 172 graph neural networks, to achieve temporal reason-173 ing (Jin et al., 2020; Wu et al., 2020; Han et al., 174 2021b; Zhu et al., 2021; Li et al., 2021; Jung et al., 175 2021; Ding et al., 2022; Li et al., 2022; Liu et al., 176 2023). There are two settings in TKG LP, i.e., 177 interpolation and extrapolation. In extrapolation, 178 to predict a fact happening at time t, models can only observe previous TKG facts before t, while such restriction is not imposed in interpolation. In 181 our work, we only focus on the interpolated LP on HTKGs and leave extrapolation for future work. 183

Hyper-Relational KG Reasoning Mainstream HKG reasoning methods can be categorized into three types. The first type of works (Zhang et al., 186 2018; Liu et al., 2020; Fatemi et al., 2020; Di et al., 2021; Wang et al., 2023) treats each hyper-188 relational fact as an *n*-ary fact represented with an *n*-tuple:  $r_{abs}(e_1, e_2, ..., e_n)$ , where *n* is the nonnegative arity of an abstract relation  $r_{abs}^{3}$  representing the number of entities involved within  $r_{abs}$  and 192  $e_1, \ldots, e_n$  are the entities appearing in this *n*-ary fact. Although these methods show strong effectiveness, previous study (Galkin et al., 2020) has shown that the way of treating HKG facts as *n*-ary facts naturally loses the semantics of the original KG relations and would lead to a combinatorial ex-198 plosion of relation types. The second type of works (Liu et al., 2021; Guan et al., 2023) transforms each hyper-relational fact into a set of key-value pairs:  $\{(r_i:e_i)\}_{i=1}^n$ . Formulating hyper-relational facts into solely key-value pairs would also cause a problem that the relations from the primary fact triples and qualifiers cannot be fully distinguished (Galkin et al., 2020). To overcome the problems incurred in first two types of methods, recently, some works (Guan et al., 2020; Rosso et al., 2020; Galkin et al., 2020; Wang et al., 2021; Xiong et al., 2023; Chung 209 et al., 2023) formulate hyper-relational facts into a

189

190

191

193

194

197

199

206

207

210

primary triple with a set of key-value qualifier pairs:  $\{((s, r, o), \{(r_{q_i}, e_{q_i})\}_{i=1}^n)\}$ . This formulation distinguishes the primary fact triples and qualifiers, and meanwhile preserves the semantics of the original KG relations. While HKG reasoning methods perform well on HKG LP, none of them focuses on temporal reasoning because no temporal identifiers are explicitly specified in HKGs.

To draw attention to temporal fact reasoning over hyper-relational facts, a recent work (Hou et al., 2023) proposes n-tuple TKG (N-TKG), where each hyper-relational fact is represented with an n-tuple:  $(r, \{\rho_i : e_i\}_{i=1}^n, t)$ . n and t are the arity and the timestamp of the fact, respectively.  $\rho_i$  is the labeled role of the entity  $e_i$ . r denotes fact type. Compared with HTKG, N-TKG has limitation: HTKGs explicitly separate primary facts with additional qualifiers, while N-TKGs mix all the entities from the primary facts and qualifiers and are unable to fully emphasize the importance of primary facts. Hou et al. also propose a model NE-Net for extrapolated LP on N-TKGs. It is not optimal for interpolation because it can only model the graph information before the prediction timestamp. See App. K for more discussion.

#### **Proposing New Benchmarks** 3

We propose two HTKG benchmark datasets Wikihy and YAGO-hy. Wiki-hy contains HTKG facts extracted from Wikidata (Vrandecic and Krötzsch, 2014), where they happen from year 1513 to 2020. YAGO-hy is constructed from the facts in YAGO3 (Mahdisoltani et al., 2015) and the time scope is from year 1830 to 2018. We use previous traditional TKG benchmarks Wikidata11k (Jung et al., 2021) and YAGO1830 (Han et al., 2021a) as bases and search for the qualifiers of their facts in Wikidata. We use the MediaWiki API<sup>4</sup> to identify the quadruple-based TKG facts in Wikidata and extract all the qualifiers stated under the corresponding Wikidata statements. Since Wikidata11k is originally extracted from Wikidata, we can directly find its relations and entities in this KB. YAGO1830's entities share the same pool as Wikidata but relation types are taken from schema.org. We map YAGO1830's relations to Wikidata's relations to enable fact matching (detailed mapping in App. A). We provide dataset statistics of both datasets in Table 1. Qualifier searching will include additional entities and relations. We include them in model

<sup>&</sup>lt;sup>3</sup>Abstract relation  $r_{abs}$  is derived from a combination of several KG relations by concatenating the relations in the primary triple and qualifiers (Galkin et al., 2020).

<sup>&</sup>lt;sup>4</sup>https://www.wikidata.org/w/api.php

| Dataset | $N_{\mathrm{train}}$ | $N_{\rm valid}$ | $N_{\text{test}}$ | $ \mathcal{E}_{\mathrm{pri}} $ | $ \mathcal{E}_{Qual} $ | $ \mathcal{R}_{pri} $ | $ \mathcal{R}_{Qual} $ | $ \mathcal{T} $ | ∃ Qual | avg( Qual ) | Qual% | $ \mathcal{G}_{\mathrm{TI}} $ | $ \mathcal{E}_{\mathrm{TI}} $ |
|---------|----------------------|-----------------|-------------------|--------------------------------|------------------------|-----------------------|------------------------|-----------------|--------|-------------|-------|-------------------------------|-------------------------------|
| Wiki-hy | 111,252              | 13,900          | 13,926            | 11,140                         | 1,642                  | 92                    | 44                     | 508             | 26,670 | 1.59        | 9.59% | 5,360                         | 3,801                         |
| YAGO-hy | 51, 193              | 10,973          | 10,977            | 10,026                         | 359                    | 10                    | 33                     | 188             | 10,214 | 1.10        | 6.98% | 7,331                         | 5,782                         |

Table 1: Dataset statistics.  $N_{\text{train}}/N_{\text{valid}}/N_{\text{test}}$  is the number of facts in the training/validation/test set.  $|\mathcal{E}_{\text{pri}}|/|\mathcal{R}_{\text{pri}}|/|\mathcal{T}|$  is the number of entities/relations/timestamps in primary quadruples.  $|\mathcal{E}_{\text{Qual}}|/|\mathcal{R}_{\text{Qual}}|$  is the number of additional entities/relations only existing in qualifiers.  $|\exists \text{ Qual}|/\text{Qual}\%$  is the number/the proportion of facts containing at least one qualifier. Complete sets of entities and relations are  $\mathcal{E} = \mathcal{E}_{\text{pri}} \cup \mathcal{E}_{\text{Qual}}$  and  $\mathcal{R} = \mathcal{R}_{\text{pri}} \cup \mathcal{R}_{\text{Qual}}$ , respectively.  $\mathcal{E}_{\text{TI}}$  is the number of entities additionally introduced in  $\mathcal{G}_{\text{TI}}$  and  $\mathcal{E}_{\text{TI}} \cap \mathcal{E} = \emptyset$ .

training and evaluation. We augment quadruplebased TKG facts with their searched qualifiers. The facts without any searched qualifier will remain unchanged. All the facts in our datasets are based on English. We discuss why we use Wikidata-based but not other popular ICEWS-based TKGs to construct HTKGs in App. B.

We explore TI knowledge as follows. We first find the top 400 frequent relations in Wikidata KB. Based on them, we then manually check each of them and pick out top 10 frequent relations that describe TI relationships among entities. The selected TI relations are *family name*, *native language*, *sub*class of, official language, child, sibling, father, mother, ethnic group, country of origin. We ensure that they are disjoint from the existing relations in the original HTKGs. Starting from the entities in our HTKGs, we search for their associated TI facts in Wikidata, where each of them corresponds to a selected TI relation. For example, for the YAGOhy entity Emmy Award, we take the facts such as (Emmy Award, subclass of, television award). As a result, we collect a set of facts denoted as  $\mathcal{G}_{TI}$  $(\mathcal{G}_{TI} \cap \mathcal{G}_{tr} = \emptyset)$  for Wiki-hy and YAGO-hy. We allow models to use all of them for enhancing LP over temporal facts during train/valid/test. See Table 1 for  $\mathcal{G}_{TI}$  statistics.

## 4 HypeTKG

265

266

270

271

273

274

277

278

279

287

288

289

290

291

293

298

HypeTKG consists of two parts, i.e., a qualifierattentional time-aware graph encoder (QATGE) and a qualifier matching decoder (QMD). To further learn from TI knowledge, we equip HypeTKG with additional modules and develop a model variant HypeTKG<sup> $\psi$ </sup> (model structure shown in Fig. 2).

# 4.1 Qualifier-Attentional Time-Aware Graph Encoder

QATGE learns a contextualized representation for every entity. Given an entity *e*, QATGE first finds its temporal neighbors from  $\mathcal{G}_{obs}$ :  $\mathcal{N}_e =$  $\{\zeta\} = \{((e', r', t'), \{(r'_{q_i}, e'_{q_i})\}_{i=1}^n)\}$ , where each temporal neighbor  $\zeta$  is derived from a fact  $((e', r', e, t'), \{(r'_{q_i}, e'_{q_i})\}_{i=1}^n) \in \mathcal{G}_{obs}$  connecting to e. For each  $\zeta$ , QATGE employs an attention-based module to model its qualifiers. It computes the representation  $\mathbf{h}_{q_i}^{\zeta}$  for the  $i^{\text{th}}$  qualifier  $q_i$  of  $\zeta$  with a function  $\phi(\cdot, \cdot)$ .

 $\mathbf{h}_{e_{q_i}'} \in \mathbb{R}^d$  and  $\mathbf{h}_{r_{q_i}'} \in \mathbb{R}^d$  denote the representations of the entity and relation in  $q_i$ , respectively.  $\parallel$ means concatenation and  $\mathbf{W}_1 \in \mathbb{R}^{d \times 2d}$  is a weight matrix.  $\mathbf{h}_{e_{q_i}'}^{\mathbb{C}} \in \mathbb{C}^{\frac{d}{2}}$  and  $\mathbf{h}_{r_{q_i}'}^{\mathbb{C}} \in \mathbb{C}^{\frac{d}{2}}$  are the complex vectors mapped from  $\mathbf{h}_{e_{q_i}'}$  and  $\mathbf{h}_{r_{q_i}'}$ . The real part of  $\mathbf{h}_{e_{q_i}'}^{\mathbb{C}}$  is the first half of  $\mathbf{h}_{e_{q_i}'}$  and the imaginary part is the second half (see mapping explanation and example in App. E).  $\circ$  is the Hadmard product on the complex space.  $f(\cdot) : \mathbb{C}^{\frac{d}{2}} \to \mathbb{R}^d$  is a mapping function that maps the complex vectors back to the real vectors. \* and  $\oplus$  are element-wise product and add operations, respectively. After getting  $\{\mathbf{h}_{q_i}^{\zeta}\}$ , QATGE integrates the information from all of them by computing an attentional feature  $\mathbf{h}_{Qual}^{\zeta}$ related to the primary relation r' of  $\zeta$ .

$$\begin{split} \tilde{\mathbf{h}}_{q_i}^{\zeta} &= (\mathbf{h}_{q_i}^{\zeta} {}^{\top} \mathbf{h}_{r'}) \ast \mathbf{w}, \\ \alpha_i[j] &= \frac{\exp(\tilde{\mathbf{h}}_{q_i}^{\zeta}[j])}{\sum_{k=1}^n \exp(\tilde{\mathbf{h}}_{q_k}^{\zeta}[j])}; \ \mathbf{a}_i = [\alpha_i[1], ..., \alpha_i[d]]^{\top}, \end{split}$$
(2)  
$$\mathbf{h}_{\text{Qual}}^{\zeta} &= \sum_{q_i} \mathbf{W}_{\text{Qual}}(\mathbf{a}_i \ast \mathbf{h}_{q_i}^{\zeta}). \end{split}$$

 $\mathbf{w} \in \mathbb{R}^d$  is a trainable parameter.  $\tilde{\mathbf{h}}_{q_i}^{\zeta}[j]$  denotes the  $j^{\text{th}}$  element of  $\tilde{\mathbf{h}}_{q_i}^{\zeta}$ .  $\mathbf{a}_i$  is an attention vector, where each of its element  $\alpha_i[j]$  denotes the attention score determining how important the  $j^{\text{th}}$  element of the  $i^{\text{th}}$  qualifier  $q_i$  is in the  $j^{\text{th}}$  element of  $\mathbf{h}_{\text{Qual}}^{\zeta}$ . The importance increases as the score rises.  $\mathbf{W}_{\text{Qual}} \in \mathbb{R}^{d \times d}$  is a weight matrix.  $\mathbf{h}_{\text{Qual}}^{\zeta}$  can be viewed as a parameter that adaptively selects the information highly-related to r' from all the qualifiers of  $\zeta$ . To compute e's representation  $\mathbf{h}_e$ ,

322

300

301

302

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

- 323 324 325

327

329

330



(a) Qualifier-attentional time-aware graph encoder (QATGE).

(b) Qualifier matching decoder (QMD).

Figure 2: Model structure of HypeTKG<sup> $\psi$ </sup>. HypeTKG<sup> $\psi$ </sup> first uses QATGE to encode all the entities. It then uses QMD to compute score regarding every candidate entity  $e_c \in \mathcal{E}$ . Temporal information is considered in both QATGE and QMD for temporal reasoning. The structure of HypeTKG can be derived by excluding the components concerning TI facts. View with Sec. 4 for better understanding.  $e''_1, ..., e''_{n_{TI}}$  and  $r''_1, ..., r''_{n_{TI}}$  are the entities and relations from a number of  $n_{TI}^s$  TI neighbors of query subject *s*, respectively. See App. G for expanded full size of figures.

we aggregate over all its temporal neighbors in  $\mathcal{N}_e$ with a gated structure.

334

337

338

341

$$\mathbf{h}_{e} = \frac{1}{|\mathcal{N}_{e}|} \sum_{\zeta \in \mathcal{N}_{e}} \mathbf{W}_{2} \phi \left( \mathbf{h}_{(e',t')}, \left( \gamma \mathbf{h}_{\text{Qual}}^{\zeta} + (1-\gamma) \mathbf{h}_{r'} \right) \right),$$
(3)

where  $\mathbf{W}_2 \in \mathbb{R}^{d \times d}$  is a weight matrix.  $\gamma$  is a trainable gate parameter controlling the amount of information taken from either the primary relation r' or the qualifiers. QATGE incorporates temporal information by learning a time-aware representation for each temporal neighbor's subject entity:  $\mathbf{h}_{(e',t')} = f_t(\mathbf{h}_{e'} || \mathbf{h}_{t'})$ .  $f_t(\cdot) : \mathbb{R}^{2d} \to \mathbb{R}^d$  is a layer of neural network.  $\mathbf{h}_{t'} = \sqrt{1/d} [\cos(\omega_1 t' + \phi_1), \dots, \cos(\omega_d t' + \phi_d)]$ , where  $\omega_1 \dots \omega_d$  and  $\phi_1 \dots \phi_d$  are trainable parameters.

#### 4.2 Qualifier Matching Decoder

QMD leverages the entity and relation represen-347 tations encoded by QATGE for LP. Assume we want to predict the missing entity of the LP query  $((s, r, ?, t), \{(r_{q_i}, e_{q_i})\}_{i=1}^{n_{que}})$  ( $n_{que}$  is the number of query qualifiers), QMD learns a query feature hque. 351 QMD first models query qualifiers  $\{(r_{q_i}, e_{q_i})\}_{i=1}^{n_{que}}$ with a qualifier-wise Transformer. Each query qualifier's entity and relation are treated as two 354 tokens and concatenated as a sub-sequence for this qualifier. The classification ([CLS]) token is then concatenated with the query qualifier tokens as a 357 sequence and input into the qualifier-wise Transformer, where the sequence length is  $2n_{que} + 1$ . We take the output representation of the [CLS] token as the query qualifier feature  $\mathbf{h}_{\text{Qual}}^{\text{que}} \in \mathbb{R}^{d}$ who contains comprehensive information from all query qualifiers. Apart from  $\mathbf{h}_{\text{Oual}}^{\text{que}}$ , we also devise a qualifier matcher that further exploits additional 364 supporting information from the qualifiers of other observed facts related to query subject s in  $\mathcal{G}_{obs}$ . Qualifier matcher finds all the HTKG facts in  $\mathcal{G}_{obs}$ 367

where each of them takes s as the subject of its primary quadruple<sup>5</sup>. It then collects all their qualifiers  $\{(\bar{r}_{q_l}, \bar{e}_{q_l})\}_{l=1}^{n_{all}}$  and computes a global qualifier feature

369

370

371

373

374

375

377

378

380

381

390

391

392

393

394

395

$$\eta_{l} = \frac{\exp((\mathbf{W}_{3}(\mathbf{h}_{\bar{r}_{q_{l}}} \| \mathbf{h}_{\bar{e}_{q_{l}}}))^{\top} (\mathbf{W}_{4}(\mathbf{h}_{(s,t)} \| \mathbf{h}_{r})))}{\sum_{m=1}^{n_{all}} \exp((\mathbf{W}_{3}(\mathbf{h}_{\bar{r}_{q_{m}}} \| \mathbf{h}_{\bar{e}_{q_{m}}}))^{\top} (\mathbf{W}_{4}(\mathbf{h}_{(s,t)} \| \mathbf{h}_{r}))))}, \qquad (4)$$
$$\mathbf{h}_{\text{Qual}}^{\text{glo}} = \sum_{q_{l}} \eta_{l} \mathbf{W}_{3}(\mathbf{h}_{\bar{r}_{q_{l}}} \| \mathbf{h}_{\bar{e}_{q_{l}}}),$$

where  $n_{\text{all}}$  denotes the number of *s*-related qualifiers and  $\mathbf{W}_3, \mathbf{W}_4 \in \mathbb{R}^{d \times 2d}$  are weight matrices.  $\mathbf{h}_{(s,t)} = f_t(\mathbf{h}_s \| \mathbf{h}_t)$ .  $\eta_l$  is the attention score of the  $l^{\text{th}}$  subject-related qualifier indicating its contribution to the LP query. Given  $\mathbf{h}_{\text{Qual}}^{\text{que}}$  and  $\mathbf{h}_{\text{Qual}}^{\text{glo}}$  $(\mathbf{h}_{\text{Qual}}^{\text{glo}} \in \mathbb{R}^d)$ , QMD uses another query-wise Transformer to compute a query feature. We concatenate the representation of another separate [CLS] token with  $\mathbf{h}_{(s,t)} \| \mathbf{h}_r \| \mathbf{h}_{\text{Qual}}^{\text{que}} \| \mathbf{h}_{\text{Qual}}^{\text{glo}}$  and input it into the query-wise Transformer. The output representation of this separate [CLS] token corresponds to  $\mathbf{h}^{\text{que}} \in \mathbb{R}^d$ .  $\mathbf{h}^{\text{que}}$  is used by QMD to compute a score for each candidate entity  $e_c \in \mathcal{E}$ 

$$\lambda(e_c) = (\mathbf{h}^{\text{que}} * \mathbf{h}_t)^\top \mathbf{W}_5 \mathbf{h}_{e_c}.$$
 (5)

 $\mathbf{W}_5 \in \mathbb{R}^{d \times d}$  is a score matrix. HypeTKG takes the candidate entity with the highest score as the predicted answer.

#### 4.3 Time-Invariant Knowledge Modeling

Previous sections discuss how HypeTKG performs HTKG LP without using TI knowledge. In this section, we discuss how we adapt HypeTKG to TI knowledge by developing a model variant HypeTKG<sup> $\psi$ </sup>. We first introduce another gated structure in QATGE to incorporate TI knowledge in the

<sup>&</sup>lt;sup>5</sup>We only consider subject-related qualifiers because we can only observe the subject entity in each LP query and we aim to find the additional qualifiers most related to the query.

398

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

encoding process. We change Eq. 3 to

$$\mathbf{h}_{e}^{\text{temp}} = \frac{1}{|\mathcal{N}_{e}|} \sum_{\zeta \in \mathcal{N}_{e}} \mathbf{W}_{2} \phi \left( \mathbf{h}_{(e',t')}, \left( \gamma \mathbf{h}_{\text{Qual}}^{\zeta} + (1-\gamma) \mathbf{h}_{r'} \right) \right),$$
$$\mathbf{h}_{e}^{\psi} = \frac{1}{|\mathcal{N}_{e}^{\psi}|} \sum_{\zeta^{\psi} \in \mathcal{N}_{e}^{\psi}} \mathbf{W}^{\psi} \phi(\mathbf{h}_{e''}, \mathbf{h}_{r''}),$$
$$\mathbf{h}_{e} = (1-\beta) \mathbf{h}_{e}^{\text{temp}} + \beta \mathbf{h}_{e}^{\psi}.$$
(6)

 $\beta$  is a trainable parameter controlling the magnitude of TI information.  $\mathcal{N}_e^{\psi} = \{\zeta^{\psi}\}$ 400 = $\{(e'', r'')|(e'', r'', e) \in \mathcal{G}_{\mathrm{TI}}\}$  denotes *e*'s TI neighbors derived from additional TI facts.  $\mathbf{h}_{e}^{\mathrm{temp}}$  and  $\mathbf{h}_{e}^{\psi}$  contain the encoded temporal and TI information, respectively. In QMD, we incorporate TI knowledge when we compute the query feature  $\mathbf{h}^{que}$ . Same as how we model query qualifiers, we use a TI-wise Transformer to model s's TI neighbors and output a TI feature  $\mathbf{h}_{TI}^s$ . We expand the input length of the query-wise Transformer and input  $\mathbf{h}_{(s,t)} \| \mathbf{h}_r \| \mathbf{h}_{\text{Qual}}^{\text{que}} \| \mathbf{h}_{\text{Qual}}^{\text{glo}} \| \mathbf{h}_{\text{TI}}^{s}$  for computing  $\mathbf{h}^{\text{que}}$ . Note that we do not model TI neighbors of all  $|\mathcal{E}|$ candidate entities in QMD because (1) this will incur excessive computational cost and (2) this part of information has been learned in QATGE.

#### 4.4 Parameter Learning

We minimize a binary cross-entropy (BCE) loss for learning model parameters. We take every fact in  $\mathcal{G}_{obs}$  as a query fact  $\delta$  and switch its object entity oto every other entity  $e \in (\mathcal{E} \setminus \{o\})$  to create  $|\mathcal{E}| - 1$ negative facts  $\{\delta^-\}$ . Our loss is defined as

$$\mathcal{L} = \frac{1}{|\mathcal{G}_{\text{obs}}| \times |\mathcal{E}|} \sum_{\delta \in \mathcal{G}_{\text{obs}}} (l_{\delta} + \sum_{\delta^{-}} l_{\delta^{-}}). \quad (7)$$

 $l_{\delta} = -y_{\delta} \log \lambda(\delta) - (1 - y_{\delta}) \log(1 - \lambda(\delta)),$  $l_{\delta^-} = -y_{\delta^-} \log(\lambda(\delta^-)) - (1 - y_{\delta^-}) \log(1 - \lambda(\delta^-))$ denote the BCE of  $\delta$  and  $\delta^-$ , respectively.  $y_{\delta} = 1$ and  $y_{\delta^-} = 0$  because we want to simultaneously maximize  $\lambda(\delta)$  and minimize  $\lambda(\delta^{-})$ .  $|\mathcal{G}_{obs}|$  is the number of HTKG facts in  $\mathcal{G}_{obs}$ .

#### **Experiments** 5

We do HTKG LP over Wiki-hy and YAGO-hy. We report HTKG LP results in Sec. 5.2. We study whether additional TI knowledge helps HTKG LP in Sec. 5.3. We do ablation studies and study the impact of the ratio of utilized qualifiers in Sec. 5.4. Finally, we present several case studies to show the effectiveness of leveraging TI knowledge and qualifier matcher for temporal fact reasoning over HTKGs in Sec. 5.5. We also study the impact of qualifier-augmented fact proportion and present it in App. I. We provide complexity analysis of our model in App. C.

#### **Experimental Setting** 5.1

We use two evaluation metrics, i.e., mean reciprocal rank (MRR) and Hits@1/3/10. We follow the filtering setting used in previous HKG reasoning works (Galkin et al., 2020). See App. D for detailed explanations of evaluation metrics. We consider two types of baselines: (1) Traditional TKG interpolation methods<sup>6</sup>, i.e., DE-SimplE (Goel et al., 2020), TeRo (Xu et al., 2020), T-GAP (Jung et al., 2021), BoxTE (Messner et al., 2022), TARGCN (Ding et al., 2022), TeAST (Li et al., 2023) and HGE (Pan et al., 2024). Since these methods have no way to model qualifiers, we neglect the qualifiers during implementation. (2) HKG reasoning methods, i.e., NaLP-Fix (Rosso et al., 2020), HINGE (Rosso et al., 2020), HypE (Fatemi et al., 2020), StarE (Galkin et al., 2020), GRAN (Wang et al., 2021), HyconvE (Wang et al., 2023), ShrinkE (Xiong et al., 2023) and HyNT (Chung et al., 2023). These methods cannot model temporal information in HTKGs. We make them neglect the timestamps during implementation. See App. F for HypeTKG and baseline implementation details. Note that NE-Net (Hou et al., 2023) still has no existing software and data, so we are unable to directly compare it with HypeTKG here.

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

# 5.2 Comparative Study

We report the HTKG LP results of all methods in Table 2. We observe that HypeTKG outperforms all baselines and achieves state-of-the-art. We believe this is because (1) traditional TKG reasoning methods lose a large amount of semantic information by failing to model qualifiers (2) and previous HKG reasoning baselines cannot distinguish from different timestamps, which is key to temporal fact reasoning.

#### 5.3 Do TI Relational Knowledge Help HTKG **Reasoning?**

We let HypeTKG and all baselines to use the additional TI facts and report their temporal fact LP performance on Wiki-hy and YAGO-hy in Table 3. For the HKG approaches, we directly include these facts into our datasets. For traditional TKG reasoning approaches, we create a number of temporal facts for each TI fact along the whole timeline and include these temporal

<sup>&</sup>lt;sup>6</sup>TKG extrapolation methods are not considered since we only study interpolated LP over HTKGs. Extrapolation methods are constrained to only use the graph information before each LP query, making them suboptimal for interpolation.

| Datasets  |       | Wil   | Ki-hy |       |       | YAG   | O-hy  |       |
|-----------|-------|-------|-------|-------|-------|-------|-------|-------|
| Model     | MRR   | H@1   | H@3   | H@10  | MRR   | H@1   | H@3   | H@10  |
| DE-SimplE | 0.351 | 0.218 | 0.405 | 0.640 | 0.684 | 0.625 | 0.715 | 0.807 |
| TeRo      | 0.572 | 0.473 | 0.640 | 0.727 | 0.760 | 0.720 | 0.782 | 0.822 |
| T-GAP     | 0.588 | 0.486 | 0.651 | 0.726 | 0.773 | 0.736 | 0.800 | 0.835 |
| BoxTE     | 0.449 | 0.348 | 0.512 | 0.646 | 0.685 | 0.642 | 0.725 | 0.767 |
| TARGCN    | 0.589 | 0.498 | 0.652 | 0.733 | 0.769 | 0.742 | 0.772 | 0.817 |
| TeAST     | 0.601 | 0.507 | 0.669 | 0.761 | 0.794 | 0.763 | 0.817 | 0.844 |
| HGE       | 0.602 | 0.507 | 0.666 | 0.765 | 0.790 | 0.760 | 0.814 | 0.837 |
| NaLP-Fix  | 0.507 | 0.460 | 0.569 | 0.681 | 0.730 | 0.709 | 0.751 | 0.813 |
| HINGE     | 0.543 | 0.497 | 0.585 | 0.694 | 0.758 | 0.730 | 0.762 | 0.819 |
| HypE      | 0.624 | 0.604 | 0.631 | 0.658 | 0.800 | 0.785 | 0.799 | 0.830 |
| StarE     | 0.565 | 0.491 | 0.599 | 0.703 | 0.765 | 0.737 | 0.776 | 0.820 |
| GRAN      | 0.661 | 0.610 | 0.679 | 0.750 | 0.808 | 0.789 | 0.817 | 0.842 |
| HyconvE   | 0.641 | 0.600 | 0.656 | 0.729 | 0.771 | 0.754 | 0.782 | 0.811 |
| ShrinkE   | 0.669 | 0.593 | 0.703 | 0.789 | 0.808 | 0.782 | 0.824 | 0.852 |
| HyNT      | 0.537 | 0.444 | 0.587 | 0.723 | 0.763 | 0.724 | 0.787 | 0.836 |
| HypeTKG   | 0.687 | 0.633 | 0.710 | 0.789 | 0.832 | 0.817 | 0.838 | 0.857 |

Table 2: HTKG LP results. The best results without using TI facts are marked in bold. H@1/H@3/H@10 means Hits@1/Hits@3/Hits@10.

facts into the datasets. For example, let  $t_{\min}/t_{\max}$ denotes the minimum/maximum timestamp of an HTKG. We transform a TI fact (s, r, o) to  $\{(s, r, o, t_{\min}), \dots, (s, r, o, t_{\max})\}$ . Surprisingly, we observe that while HypeTKG constantly benefit from the additional TI relational knowledge, other baselines cannot. We attribute this to the following reasons: (1) TI facts introduce distributional shift. Baseline methods learn TI and temporal knowledge without distinguishing their difference, making them less focused on the temporal facts. (2) HypeTKG employs its gate-structured graph encoder that adaptively controls the amount of information from the TI facts. HypeTKG's decoder also uses Transformer to distinguish the importance of different TI facts. These two steps help HypeTKG to exploit the TI knowledge that is most beneficial in LP and discard the redundant information. We further study whether TI knowledge can improve reasoning on quadruple-based TKGs in App. H.

#### 5.4 Further Analysis

487

488

489

490

491

492

493

494

495

496

497

498

499

501

504

505

507

508

509

510

512

513

514

515 516

517

518

519

520

Ablation Study We conduct ablation studies to demonstrate the importance of different model components of HypeTKG. In study A (Variant A), we neglect the qualifiers in all HTKG facts and do not include any qualifier learning component. In study B (Variant B), we remove qualifier attention in QATGE. In study C (Variant C), we remove the qualifier matcher in QMD. In study D (Variant D), we exclude time modeling modules and neglect timestamps in primary quadruples. From Table 4, we observe that learning qualifier is essential in reasoning HTKGs. Both qualifier attention in QATGE and qualifier matcher contribute to quali-

| Datasets  | ts WiKi- |       | WiKi-hy           |         |       | 7                 |
|-----------|----------|-------|-------------------|---------|-------|-------------------|
| Model     | w.o. TI  | w. TI | $\Delta \uparrow$ | w.o. TI | w. TI | $\Delta \uparrow$ |
| DE-SimplE | 0.351    | 0.326 | -0.025            | 0.684   | 0.643 | -0.041            |
| TeRo      | 0.572    | 0.553 | -0.019            | 0.760   | 0.742 | -0.018            |
| T-GAP     | 0.588    | 0.568 | -0.020            | 0.773   | 0.761 | -0.012            |
| BoxTE     | 0.449    | 0.409 | -0.040            | 0.685   | 0.670 | -0.015            |
| TARGCN    | 0.589    | 0.588 | -0.001            | 0.769   | 0.769 | 0.000             |
| TeAST     | 0.601    | 0.581 | -0.020            | 0.794   | 0.779 | -0.015            |
| HGE       | 0.602    | 0.592 | -0.010            | 0.790   | 0.780 | -0.010            |
| NaLP-Fix  | 0.507    | 0.504 | -0.003            | 0.730   | 0.728 | -0.002            |
| HINGE     | 0.543    | 0.535 | -0.008            | 0.758   | 0.754 | -0.004            |
| HypE      | 0.624    | 0.623 | -0.001            | 0.800   | 0.798 | -0.002            |
| StarE     | 0.565    | 0.547 | -0.018            | 0.765   | 0.758 | -0.007            |
| GRAN      | 0.661    | 0.667 | +0.006            | 0.808   | 0.794 | -0.014            |
| HyconvE   | 0.641    | 0.630 | -0.011            | 0.771   | 0.767 | -0.004            |
| ShrinkE   | 0.669    | 0.655 | -0.014            | 0.808   | 0.806 | -0.002            |
| HyNT      | 0.537    | 0.536 | -0.001            | 0.763   | 0.765 | +0.002            |
| HypeTKG   | 0.687    | 0.693 | +0.006            | 0.832   | 0.842 | +0.010            |

Table 3: MRR for all methods with (w. TI) and without (w.o. TI) TI facts.  $\Delta \uparrow$  denotes the absolute improvement. Note that HypeTKG w. TI equals HypeTKG<sup> $\psi$ </sup>.

fier modeling. We also find that modeling temporal information is essential for temporal fact reasoning.

|           | Setting |       |         | Wiki-hy |       |       | YAGO-hy |       |       |
|-----------|---------|-------|---------|---------|-------|-------|---------|-------|-------|
| Model     | Time    | Q Att | Q Match | MRR     | H@1   | H@10  | MRR     | H@1   | H@10  |
| Variant A | 1       | x     | X       | 0.642   | 0.569 | 0.775 | 0.795   | 0.770 | 0.841 |
| Variant B | 1       | x     | 1       | 0.671   | 0.616 | 0.777 | 0.826   | 0.811 | 0.856 |
| Variant C | 1       | 1     | x       | 0.671   | 0.615 | 0.777 | 0.803   | 0.781 | 0.842 |
| Variant D | X       | 1     | 1       | 0.652   | 0.597 | 0.751 | 0.792   | 0.769 | 0.835 |
| HypeTKG   | 1       | 1     | 1       | 0.687   | 0.633 | 0.789 | 0.832   | 0.817 | 0.857 |

Table 4: Ablation studies. Q means qualifier.



Figure 3: HypeTKG performance with a varying ratio of used qualifiers.

**Impact of the Ratio of Utilized Qualifiers** To further investigate the importance of learning qualifiers for reasoning hyper-relational temporal facts, we report HypeTKG's performance on Wiki-hy/YAGO-hy by using a varying ratio of utilized qualifiers. We implement HypeTKG on all Wiki-hy/YAGO-hy facts but randomly sample 0%/25%/50%/75%/100% of all the existing qualifiers during training and evaluation. From Fig. 3, we observe that HypeTKG achieves better results

524 525 526

527

528

529

530

531

532

| Case | Query                                                                        | Answer           | Subject-Related Qualifiers                                                                        | Attention Score                                                          |
|------|------------------------------------------------------------------------------|------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| A1   | $((Andrey Kolmogorov, award received, ?, 1941), \emptyset)$                  | USSR State Prize | (country of citizenship, Soviet Union)<br>(field of work, mathematics)<br>(country, Soviet Union) | $\begin{array}{c c} 9.39e^{-1} \\ 6.09e^{-2} \\ 2.61e^{-10} \end{array}$ |
| A2   | ((Andrey Kolmogorov, place of death, ?, 1987),<br>{(country, Soviet Union)}) | Moscow           | (country of citizenship, Soviet Union)<br>(field of work, mathematics)<br>(country, Soviet Union) | $ \begin{array}{c c} 0.99 \\ 1.64e^{-21} \\ 5.00e^{-22} \end{array} $    |

|  | Table 5: Ca | ase study A: | cases for | studying | qualifier | matcher. |
|--|-------------|--------------|-----------|----------|-----------|----------|
|--|-------------|--------------|-----------|----------|-----------|----------|

| Case | Query                                                        | Prediction w. TI    | Prediction w.o. TI | Related TI Facts                                                                                                                           |
|------|--------------------------------------------------------------|---------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| B1   | $((Pisa, country, ?, 1860), \emptyset)$                      | Kingdom of Sardinia | Kingdom of Prussia | (Pisa, official language, Italian)<br>(Kingdom of Sardinia, official language, Italian)<br>(Kingdom of Prussia, official language, German) |
| B2   | ((AK, place of birth, ?, 1903), {(country, Russian Empire)}) | Tbilisi             | Moscow             | (AK, native language, Georgian)<br>(Tbilisi, official language, Georgian)                                                                  |

Table 6: Case study B: cases for studying the effectiveness of TI relational knowledge. Prediction w./w.o. TI means the prediction result with/without using time-invariant facts. *AK* is the abbreviation of the entity *Aram Khachaturian*.

as the ratio increases, showing a positive correlation between its performance and the number of utilized qualifiers. This indicates that modeling qualifiers is beneficial for LP over temporal facts.

#### 5.5 Case Studies

534

535

536

537

538

540

541

542

543

547

549

552

553

554

555

557

558

559

561

563

564

565

A: Effectiveness of Qualifier Matcher We do case studies to show how our qualifier matcher improves HTKG reasoning (Table 5). HypeTKG ranks the ground truth missing entities in these cases as top 1. As discussed in Sec. 4.2, the qualifier matcher interprets the contribution of all the existing qualifiers related to the subject entity of the LP query with attention scores In Case A1, no qualifier is provided in  $\eta_l$ . the query for prediction. We find that qualifier matcher assigns a great attention score to the qualifier (country of citizenship, Soviet Union) from another fact. It can be taken as a hint to predict the ground truth missing entity USSR State Prize. This implies that to better reason the facts without qualifiers, our qualifier matcher can find the clues from other hyper-relational facts. In Case A2, we find that the qualifier matcher focuses more on the qualifiers from other facts but not from the query. Note that the query qualifiers have been modeled with a query-specific qualifier feature  $\mathbf{h}_{Qual}^{que}$  before computing the global qualifier feature. This indicates that our qualifier matcher can maximally extract information from the extra qualifiers rather than only focusing on the query qualifiers, enabling efficient information fusion. See App. J for more case study details and one more case (A3) discussion.

566 **B: Effectiveness of TI Knowledge** We demon-567 strate how TI relational knowledge enhances HTKG reasoning with two cases (Table 6). In both cases, HypeTKG achieves optimal prediction by leveraging TI knowledge, and makes mistakes without it. In B1, HypeTKG predicts the false answer Kingdom of Prussia without the support of TI facts. However, after considering them, HypeTKG manages to make accurate prediction because Pisa should share the same official language with the country that contains it. In B2, since both Tbilisi and Moscow belonged to Russian Empire in 1903, it is hard for HypeTKG to distinguish them during prediction without any further information. However, by knowing that Aram Khachaturian's native language is same as the official language of *Tbilisi*, i.e., Georgian, HypeTKG can exclude the influence of Moscow because people speak Russian there.

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

600

## 6 Conclusion

In this work, we propose a new data structure named HTKG for studying temporal fact reasoning over HKGs. To reason HTKGs, we design a model HypeTKG that is able to simultaneously deal with temporal information and qualifiers. We benchmark HypeTKG and various previous HKG/TKG reasoning methods on two newlyconstructed datasets, i.e., Wiki-hy and YAGO-hy. We show that HypeTKG achieves superior performance on HTKG LP. Besides, we mine the TI relational knowledge from Wikidata KB and study whether it can benefit models on hyper-relational temporal fact reasoning. We find that temporal fact reasoning on HTKGs can be enhanced by carefully balancing the information between temporal and TI knowledge.

612

614

615

616

617

619

625

630

631

641

647

648

650

654

# 7 Limitations

602One limitation of our work is that we have not603explored qualifier prediction, i.e., predicting the604missing elements in the qualifiers. We also have605not considered another challenge in temporal fact606reasoning, i.e., time prediction. We think our work607can be the base of future studies on these two top-608ics. Also, as we have only studied interpolated609link prediction on HTKGs, developing HTKG ex-610trapolation methods would also be an important611direction in the future.

## References

- Ivana Balazevic, Carl Allen, and Timothy M. Hospedales. 2019. Tucker: Tensor factorization for knowledge graph completion. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pages 5184–5193. Association for Computational Linguistics.
  - Antoine Bordes, Nicolas Usunier, Alberto García-Durán, Jason Weston, and Oksana Yakhnenko.
     2013. Translating embeddings for modeling multirelational data. In Advances in Neural Information Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems 2013. Proceedings of a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United States, pages 2787–2795.
  - Elizabeth Boschee, Jennifer Lautenschlager, Sean O'Brien, Steve Shellman, James Starz, and Michael Ward. 2015. ICEWS Coded Event Data.
  - Zongsheng Cao, Qianqian Xu, Zhiyong Yang, Xiaochun Cao, and Qingming Huang. 2021. Dual quaternion knowledge graph embeddings. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021, pages 6894–6902. AAAI Press.
  - Chanyoung Chung, Jaejun Lee, and Joyce Jiyoung Whang. 2023. Representation learning on hyperrelational and numeric knowledge graphs with transformers. In *Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2023, Long Beach, CA, USA, August 6-10, 2023*, pages 310–322. ACM.
- Shib Sankar Dasgupta, Swayambhu Nath Ray, and Partha P. Talukdar. 2018. Hyte: Hyperplane-based temporally aware knowledge graph embedding. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, October 31 - November 4, 2018, pages

2001–2011. Association for Computational Linguistics. 655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

- Shimin Di, Quanming Yao, and Lei Chen. 2021. Searching to sparsify tensor decomposition for n-ary relational data. In WWW '21: The Web Conference 2021, Virtual Event / Ljubljana, Slovenia, April 19-23, 2021, pages 4043–4054. ACM / IW3C2.
- Zifeng Ding, Yunpu Ma, Bailan He, Zhen Han, and Volker Tresp. 2022. A simple but powerful graph encoder for temporal knowledge graph completion. In *NeurIPS 2022 Temporal Graph Learning Workshop*.
- Bahare Fatemi, Perouz Taslakian, David Vázquez, and David Poole. 2020. Knowledge hypergraphs: Prediction beyond binary relations. In *Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020*, pages 2191–2197. ijcai.org.
- Mikhail Galkin, Priyansh Trivedi, Gaurav Maheshwari, Ricardo Usbeck, and Jens Lehmann. 2020. Message passing for hyper-relational knowledge graphs. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020, Online, November 16-20, 2020, pages 7346– 7359. Association for Computational Linguistics.
- Rishab Goel, Seyed Mehran Kazemi, Marcus Brubaker, and Pascal Poupart. 2020. Diachronic embedding for temporal knowledge graph completion. In The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 3988– 3995. AAAI Press.
- Saiping Guan, Xiaolong Jin, Jiafeng Guo, Yuanzhuo Wang, and Xueqi Cheng. 2020. Neuinfer: Knowledge inference on n-ary facts. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, July 5-10, 2020, pages 6141–6151. Association for Computational Linguistics.
- Saiping Guan, Xiaolong Jin, Jiafeng Guo, Yuanzhuo Wang, and Xueqi Cheng. 2023. Link prediction on n-ary relational data based on relatedness evaluation. *IEEE Trans. Knowl. Data Eng.*, 35(1):672–685.
- Saiping Guan, Xiaolong Jin, Yuanzhuo Wang, and Xueqi Cheng. 2019. Link prediction on n-ary relational data. In *The World Wide Web Conference*, *WWW 2019, San Francisco, CA, USA, May 13-17*, 2019, pages 583–593. ACM.
- Zhen Han, Peng Chen, Yunpu Ma, and Volker Tresp. 2021a. Explainable subgraph reasoning for forecasting on temporal knowledge graphs. In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net.

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

767

768

769

- 711 712 713
- 716 717 718

719

715

- 720 721 722 723 724
- 727 728 729
- 730 731
- 732 733 734
- 735
- 737 738

739 740 741

742

743 744 745

746 747

748

749 750

751 752

753

754

755 756

757 758

759

760 761 762

763 764

- Zhen Han, Zifeng Ding, Yunpu Ma, Yujia Gu, and Volker Tresp. 2021b. Learning neural ordinary equations for forecasting future links on temporal knowledge graphs. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7-11 November, 2021, pages 8352– 8364. Association for Computational Linguistics.
- Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. *Neural computation*, 9:1735– 80.
- Zhongni Hou, Xiaolong Jin, Zixuan Li, Long Bai, Saiping Guan, Yutao Zeng, Jiafeng Guo, and Xueqi Cheng. 2023. Temporal knowledge graph reasoning based on n-tuple modeling. In *Findings of the* Association for Computational Linguistics: EMNLP 2023, Singapore, December 6-10, 2023, pages 1090– 1100. Association for Computational Linguistics.
- Woojeong Jin, Meng Qu, Xisen Jin, and Xiang Ren. 2020. Recurrent event network: Autoregressive structure inferenceover temporal knowledge graphs. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020, Online, November 16-20, 2020, pages 6669– 6683. Association for Computational Linguistics.
- Jaehun Jung, Jinhong Jung, and U Kang. 2021. Learning to walk across time for interpretable temporal knowledge graph completion. In KDD '21: The 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event, Singapore, August 14-18, 2021, pages 786–795. ACM.
- Seyed Mehran Kazemi and David Poole. 2018. Simple embedding for link prediction in knowledge graphs. In Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages 4289–4300.
- Thomas N. Kipf and Max Welling. 2017. Semisupervised classification with graph convolutional networks. In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net.
- Julien Leblay and Melisachew Wudage Chekol. 2018. Deriving validity time in knowledge graph. In *Companion of the The Web Conference 2018 on The Web Conference 2018, WWW 2018, Lyon , France, April 23-27, 2018*, pages 1771–1776. ACM.
- Jiang Li, Xiangdong Su, and Guanglai Gao. 2023. Teast: Temporal knowledge graph embedding via archimedean spiral timeline. In *Proceedings of the* 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2023, Toronto, Canada, July 9-14, 2023, pages 15460–15474. Association for Computational Linguistics.

- Yujia Li, Shiliang Sun, and Jing Zhao. 2022. Tirgn: Time-guided recurrent graph network with localglobal historical patterns for temporal knowledge graph reasoning. In *Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI 2022, Vienna, Austria, 23-29 July 2022,* pages 2152–2158. ijcai.org.
- Zixuan Li, Xiaolong Jin, Wei Li, Saiping Guan, Jiafeng Guo, Huawei Shen, Yuanzhuo Wang, and Xueqi Cheng. 2021. Temporal knowledge graph reasoning based on evolutional representation learning. In SIGIR '21: The 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, Virtual Event, Canada, July 11-15, 2021, pages 408–417. ACM.
- Kangzheng Liu, Feng Zhao, Guandong Xu, Xianzhi Wang, and Hai Jin. 2023. RETIA: relation-entity twin-interact aggregation for temporal knowledge graph extrapolation. In 39th IEEE International Conference on Data Engineering, ICDE 2023, Anaheim, CA, USA, April 3-7, 2023, pages 1761–1774. IEEE.
- Yu Liu, Quanming Yao, and Yong Li. 2020. Generalizing tensor decomposition for n-ary relational knowledge bases. In WWW '20: The Web Conference 2020, Taipei, Taiwan, April 20-24, 2020, pages 1104–1114. ACM / IW3C2.
- Yu Liu, Quanming Yao, and Yong Li. 2021. Role-aware modeling for n-ary relational knowledge bases. In WWW '21: The Web Conference 2021, Virtual Event / Ljubljana, Slovenia, April 19-23, 2021, pages 2660– 2671. ACM / IW3C2.
- Farzaneh Mahdisoltani, Joanna Biega, and Fabian M. Suchanek. 2015. YAGO3: A knowledge base from multilingual wikipedias. In Seventh Biennial Conference on Innovative Data Systems Research, CIDR 2015, Asilomar, CA, USA, January 4-7, 2015, Online Proceedings. www.cidrdb.org.
- Johannes Messner, Ralph Abboud, and İsmail İlkan Ceylan. 2022. Temporal knowledge graph completion using box embeddings. In Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference on Innovative Applications of Artificial Intelligence, IAAI 2022, The Twelveth Symposium on Educational Advances in Artificial Intelligence, EAAI 2022 Virtual Event, February 22 -March 1, 2022, pages 7779–7787. AAAI Press.
- J. Pan, M. Nayyeri, Y. Li, and S. Staab. 2024. Hge: Embedding temporal knowledge graphs in a product space of heterogeneous geometric subspaces. In *Proc. 38th AAAI Conference on Artificial Intelligence* (*AAAI*), pages 1–13.
- Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Z. Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

881

882

Junjie Bai, and Soumith Chintala. 2019. Pytorch: An imperative style, high-performance deep learning library. In Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages 8024–8035.

824

825

832

833

834

835

836

837

839

845

847

850

853

861

870

871

872

874

875

876

878

879

- Paolo Rosso, Dingqi Yang, and Philippe Cudré-Mauroux. 2020. Beyond triplets: Hyper-relational knowledge graph embedding for link prediction. In WWW '20: The Web Conference 2020, Taipei, Taiwan, April 20-24, 2020, pages 1885–1896. ACM / IW3C2.
- Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and Max Welling. 2018. Modeling relational data with graph convolutional networks. In *The Semantic Web - 15th International Conference, ESWC 2018, Heraklion, Crete, Greece, June 3-7, 2018, Proceedings,* volume 10843 of *Lecture Notes in Computer Science*, pages 593–607. Springer.
- Pengpeng Shao, Dawei Zhang, Guohua Yang, Jianhua Tao, Feihu Che, and Tong Liu. 2022. Tucker decomposition-based temporal knowledge graph completion. *Knowl. Based Syst.*, 238:107841.
- Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. 2019. Rotate: Knowledge graph embedding by relational rotation in complex space. In 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net.
- Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard. 2016. Complex embeddings for simple link prediction. In Proceedings of the 33nd International Conference on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, volume 48 of JMLR Workshop and Conference Proceedings, pages 2071–2080. JMLR.org.
- Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and Partha P. Talukdar. 2020. Composition-based multirelational graph convolutional networks. In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net.
- Denny Vrandecic and Markus Krötzsch. 2014. Wikidata: a free collaborative knowledgebase. *Commun. ACM*, 57(10):78–85.
- Chenxu Wang, Xin Wang, Zhao Li, Zirui Chen, and Jianxin Li. 2023. Hyconve: A novel embedding model for knowledge hypergraph link prediction with convolutional neural networks. In *Proceedings of the* ACM Web Conference 2023, WWW 2023, Austin, TX, USA, 30 April 2023 - 4 May 2023, pages 188–198. ACM.
- Quan Wang, Haifeng Wang, Yajuan Lyu, and Yong Zhu. 2021. Link prediction on n-ary relational facts: A

graph-based approach. In *Findings of the Association for Computational Linguistics: ACL/IJCNLP* 2021, Online Event, August 1-6, 2021, volume ACL/IJCNLP 2021 of *Findings of ACL*, pages 396– 407. Association for Computational Linguistics.

- Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. 2014. Knowledge graph embedding by translating on hyperplanes. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, July 27 -31, 2014, Québec City, Québec, Canada, pages 1112–1119. AAAI Press.
- Jiapeng Wu, Meng Cao, Jackie Chi Kit Cheung, and William L. Hamilton. 2020. Temp: Temporal message passing for temporal knowledge graph completion. In *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020, Online, November 16-20, 2020,* pages 5730–5746. Association for Computational Linguistics.
- Bo Xiong, Mojtaba Nayyeri, Shirui Pan, and Steffen Staab. 2023. Shrinking embeddings for hyperrelational knowledge graphs. In *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2023, Toronto, Canada, July 9-14, 2023*, pages 13306–13320. Association for Computational Linguistics.
- Chengjin Xu, Mojtaba Nayyeri, Fouad Alkhoury, Hamed Shariat Yazdi, and Jens Lehmann. 2020. Tero: A time-aware knowledge graph embedding via temporal rotation. In *Proceedings of the 28th International Conference on Computational Linguistics, COLING 2020, Barcelona, Spain (Online), December 8-13, 2020,* pages 1583–1593. International Committee on Computational Linguistics.
- Richong Zhang, Junpeng Li, Jiajie Mei, and Yongyi Mao. 2018. Scalable instance reconstruction in knowledge bases via relatedness affiliated embedding. In Proceedings of the 2018 World Wide Web Conference on World Wide Web, WWW 2018, Lyon, France, April 23-27, 2018, pages 1185–1194. ACM.
- Shuai Zhang, Yi Tay, Lina Yao, and Qi Liu. 2019. Quaternion knowledge graph embeddings. In Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages 2731–2741.
- Cunchao Zhu, Muhao Chen, Changjun Fan, Guangquan Cheng, and Yan Zhang. 2021. Learning from history: Modeling temporal knowledge graphs with sequential copy-generation networks. In *Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021*, *Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9*, *2021*, pages 4732–4740. AAAI Press.

# 940 941 942 943 944 945 946 947 948

949 950 951

952

953

954

958

960

962

963

964

965

966

967

968

969

# A YAGO-hy Construction Details

We provide the relation mapping from YAGO1830 to Wikidata in Table 7. During matching, we carefully examine YAGO1830 facts and find that *playsFor* represents a person playing for a sports team, and *isAffiliatedTo* represents a person's political affiliation. Therefore, we map *playsFor* to *member of sports team* and *isAffiliatedTo* to *member of political party*. Besides, YAGO1830 is originally a TKG extrapolation dataset, we redistribute its facts and change it into an interpolation dataset before qualifier searching. We ensure that the proportions of the number of facts in train/valid/test sets of YAGO-hy conform to the corresponding sets in YAGO1830.

| YAGO Relation  | Wikidata Relation         | Wikidata Relation ID |
|----------------|---------------------------|----------------------|
| wasBornIn      | place of birth            | P19                  |
| diedIn         | place of death            | P20                  |
| worksAt        | employer                  | P108                 |
| playsFor       | member of sports team     | P54                  |
| hasWonPrize    | award received            | P166                 |
| isMarriedTo    | spouse                    | P26                  |
| owns           | owned by <sup>-1</sup>    | P127                 |
| graduatedFrom  | educated at               | P69                  |
| isAffiliatedTo | member of political party | P102                 |
| created        | notable work              | P800                 |

Table 7: Relation type mapping from YAGO1830 to Wikidata. *owned*  $by^{-1}$  denotes the inverse relation of *owns* 

# B Why Not Construct ICEWS-Based HTKGs?

Integrated Crisis Early Warning System (ICEWS) (Boschee et al., 2015) is another popular KB for constructing quadruple-based TKGs. Hou et al. (Hou et al., 2023) use ICEWS to construct an N-TKG, i.e., NICE. We do not use ICEWS to construct HTKGs due to the following reasons. Different from Wikidata, every fact in ICEWS has no additional statements that can serve as qualifiers. To solve this problem, Hou et al. design rule templates on ICEWS relations and decompose the relation of each ICEWS quadruple-based fact into several parts. For example, an ICEWS-based fact (*Iran, express intent to provide humanitarian aid*, *Yemen, t*) will be transformed into:

(express intent to cooperate, volunteer : Iran, cooperation target : Yemen, cooperation content : provide humanitarian aid, t). N-TKG assumes that this transformation brings auxiliary information into fact quadruples, however, we think the amount of additional information is highly limited. This is because the transformation from an ICEWS-based fact quadruple into an N-TKG fact does not consider any additional information source other than the original quadruple. In other words, the amount of information stored in an ICEWS-based fact quadruple is nearly the same as the amount carried by its n-tuple form. As discussed in previous works about HKGs, qualifiers are introduced to better restrict the fact validity and also increase the data expressiveness. Due to the lack of additional linked statements in ICEWS, it is not easy to construct meaningful HTKGs based on this KB.

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

# C Complexity Analysis

The time complexity of HypeTKG is the same as most of previous GNN-based TKG approaches, which is  $O(|\mathcal{T}||\mathcal{E}| + |\mathcal{T}||\mathcal{R}|)$ , where  $\mathcal{T}, \mathcal{E}$ , and  $\mathcal{R}$  are the number of timestamps, entities, and relations, respectively. Similarly, the memory complexity is  $O(|\mathcal{E}|d + |\mathcal{R}|d)$ . The qualifier modeling modules, though requires additional computation, does not increase the time and memory complexity as qualifiers are also composed by entities and relations. As for HypeTKG $^{\psi}$ , since it considers time-invariant knowledge that introduces additional entities and relations, the time complexity becomes  $O(|\mathcal{T}|(|\mathcal{E}| + |\mathcal{E}_{\mathrm{TI}}|) + |\mathcal{T}|(|\mathcal{R}| + |\mathcal{R}_{\mathrm{TI}}|))$  and the memory complexity is  $O((|\mathcal{E}| + |\mathcal{E}_{\text{TI}}|)d + (|\mathcal{R}| +$  $|\mathcal{R}_{\text{TI}}| d$ ).  $|\mathcal{E}_{\text{TI}}|$  and  $|\mathcal{R}_{\text{TI}}|$  are the numbers of introduced new entities and relations in time-invariant facts, respectively.

# **D** Evaluation Metrics Details

MRR computes the mean of the reciprocal ranks for all test queries:  $\frac{1}{2N_{\text{test}}} \sum_{\text{que}} \frac{1}{\theta_{\text{que}}}$ , where  $\theta_{\text{que}}$  denotes the rank of the ground truth missing entity in the test query que. Note that for each fact in the test set, we derive two LP queries for both subject and object entity prediction, and therefore, the total number of test queries is  $2N_{\text{test}}$ . Hits@1/3/10 denotes the proportion of the test queries where ground truth entities are ranked as top 1/3/10.

# E Complex Vector Mapping Details

 $\mathbf{h}_{e'_{q_i}}^{\mathbb{C}} \in \mathbb{C}^{\frac{d}{2}} \text{ and } \mathbf{h}_{r'_{q_i}}^{\mathbb{C}} \in \mathbb{C}^{\frac{d}{2}} \text{ are the complex vec-}$  1015 tors mapped from  $\mathbf{h}_{e'_{q_i}}$  and  $\mathbf{h}_{r'_{q_i}}$ . The real part of 1016 
$$\begin{split} \mathbf{h}_{e'_{q_i}}^{\mathbb{C}} \text{ is the first half of } \mathbf{h}_{e'_{q_i}} \text{ and the imaginary part} \\ \text{ is the second half, e.g., if } \mathbf{h}_{e'_{q_i}} &= [6,3]^{\top} \in \mathbb{R}^2, \\ \text{ then } \mathbf{h}_{e'_{q_i}}^{\mathbb{C}} &= [6+3\sqrt{-1}]^{\top} \in \mathbb{C}^1. \quad \mathbf{h}_{r'_{q_i}}^{\mathbb{C}}[j] = \\ \cos(\mathbf{h}_{r'_{q_i}}[j]) + \sqrt{-1}\sin(\mathbf{h}_{r'_{q_i}}[\frac{d}{2}+j]), \text{ where } \mathbf{h}_{r'_{q_i}}^{\mathbb{C}}[j] \\ \text{ and } \mathbf{h}_{r'_{q_i}}[\frac{d}{2}+j] \text{ denote the } j^{\text{th}} \text{ and } (\frac{d}{2}+j)^{\text{th}} \text{ element} \\ \text{ of } \mathbf{h}_{r'_{q_i}}^{\mathbb{C}} \text{ and } \mathbf{h}_{r'_{q_i}}, \text{ respectively.} \end{split}$$

## **F** Implementation Details

1019

1020

1021

1022

1023

1024

1025

1028

1029

1030

1033

1034

1035

1037

1038

1039

1040

1041

1042

1043

1045

We implement all the experiments of HypeTKG and baselines with PyTorch (Paszke et al., 2019) on an NVIDIA A40 with 48GB memory and a 2.6GHZ AMD EPYC 7513 32-Core Processor. For HypeTKG, we set the batch size to 256 and use the Adam optimizer with an initial learning rate of 0.0001. We search hyperparameters following Table 8. For each dataset, we do 108 trials to try different hyperparameter settings. We run 100 epochs for each trial and compare their validation results. We choose the setting leading to the best validation result and take it as the best hyperparameter setting. The best hyperparameter setting is also stated in Table 8. Every result reported is the average result of five runs with different random seeds. The error bars are relatively small and are omitted. We report the total training time of our model until it reaches maximum performance in Table 9. We also specify the GPU memory usage (Table 10) and number of parameters (Table 11).

| Hyperparameter                   | Search Space             |
|----------------------------------|--------------------------|
| # Layers of Aggregation in QATGE | {1, <b>2</b> }           |
| Embedding Size                   | {100, 200, <b>300</b> }  |
| $\gamma$ Initialization          | {0.1, <b>0.2</b> , 0.3}  |
| $\beta$ Initialization           | { <b>0.1</b> , 0.2, 0.3} |

Table 8: Hyperparameter searching strategy. Optimal hyperparameters are marked in bold. The best hyperparameter settings of both datasets are the same.

| Datasets          | YAGO-hy       | Wiki-hy       |
|-------------------|---------------|---------------|
| Model             | Training Time | Training Time |
| HypeTKG           | 37.53         | 48.32         |
| HypeTKG $^{\psi}$ | 40.06         | 51.72         |

| Table 9 | : Trainin | g time |
|---------|-----------|--------|
|---------|-----------|--------|

For baselines, we use the official open-sourced implementations of the following baseline meth-

| Datasets          | YAGO-hy    | Wiki-hy    |
|-------------------|------------|------------|
| Model             | GPU Memory | GPU Memory |
| HypeTKG           | 9,514MB    | 30,858MB   |
| HypeTKG $^{\psi}$ | 15,422MB   | 43,976MB   |

Table 10: GPU memory usage.

| Datasets          | YAGO-hy    | Wiki-hy    |
|-------------------|------------|------------|
| Model             | # Param    | # Param    |
| HypeTKG           | 10,830,222 | 11,028,690 |
| HypeTKG $^{\psi}$ | 13,075,246 | 13,274,314 |

| Table 11: | Number | of | parameters |
|-----------|--------|----|------------|
|-----------|--------|----|------------|

ods, i.e., DE-SimplE<sup>7</sup>, TeRo<sup>8</sup>, T-GAP<sup>9</sup>, BoxTE<sup>10</sup>, TARGCN<sup>11</sup>, TeAST<sup>12</sup>, HGE<sup>13</sup>, HINGE<sup>14</sup>, HypE<sup>15</sup>, StarE<sup>16</sup>, GRAN<sup>17</sup>, HyConvE<sup>18</sup>, ShrinkE<sup>19</sup> and HyNT<sup>20</sup>. For NaLP-Fix, we use its faster implementation in the repository of HINGE. We use the default hyperparameters of all baselines for HTKG LP.

1046

1047

1048

1049

1051

1053

1054

1056

1057

# G Expanded Size Figures of Model Structure

Fig. 4 shows the the expanded size of model structure illustration of HypeTKG $^{\psi}$ .

# H Can TI Knowledge Improve Reasoning over Traditional TKGs?

To answer this question, we also enable Variant A1059(introduced in Sec. 5.4 Ablation Study) to use TI1060facts and develop Variant  $A^{\psi}$ . Since Variant A and1061 $A^{\psi}$  do not model qualifiers, letting them perform1062HTKG LP equals doing LP over quadruple-based1063traditional TKGs. We report Variant  $A^{\psi}$ 's LP results in Table 12. By comparing them with Table10654, we find that our TI knowledge modeling compo-1066

<sup>7</sup>https://github.com/BorealisAI/de-simple
<sup>8</sup>https://github.com/Soledad921/ATISE
<sup>9</sup>https://github.com/Jaehunjung1/T-GAP
<sup>10</sup>https://github.com/JohannesMessner/BoxTE
<sup>11</sup>https://github.com/ZifengDing/TARGCN
<sup>12</sup>https://github.com/ZifengDing/TARGCN
<sup>14</sup>https://github.com/Aellixx/TeAST
<sup>13</sup>https://github.com/NacyNiko/HGE
<sup>14</sup>https://github.com/ServiceNow/HypE
<sup>16</sup>https://github.com/ServiceNow/HypE
<sup>16</sup>https://github.com/Irjconan/GRAN
<sup>18</sup>https://github.com/CarllllWang/HyConvE/tree/master
<sup>19</sup>https://github.com/xiongbo010/ShrinkE

<sup>20</sup>https://github.com/bdi-lab/HyNT



(b) Qualifier matching decoder (QMD).

Figure 4: Expanded size of model structure illustration of HypeTKG $^{\psi}$ .

nents can also effectively enhance reasoning over traditional TKGs.

| Datasets           |       | WiKi-h | у       | YAGO-hy |        |         |  |  |
|--------------------|-------|--------|---------|---------|--------|---------|--|--|
| Model              | MRR   | Hits@1 | Hits@10 | MRR     | Hits@1 | Hits@10 |  |  |
| Variant $A^{\psi}$ | 0.660 | 0.587  | 0.791   | 0.818   | 0.797  | 0.855   |  |  |

Table 12: TKG LP results with time-invariant knowledge.

I Impact of Qualifier-Augmented Fact Proportion.

To better quantify HypeTKG's power in learning qualifiers, we sample several datasets from Wikihy and YAGO-hy with different proportions of facts equipped with qualifiers. We experiment HypeTKG and its variants on these new datasets.

1076(100)/(66/(33) Dataset ConstructionWe take1077Wiki-hy as example. We first pick out all the1078facts, where each of them has at least one qual-1079ifier, from Wiki-hy and construct Wiki-hy (100).1080We call it Wiki-hy (100) because 100% of its facts1081are equipped with qualifiers. Next, we keep Wiki-1082hy (100) and randomly sample an extra number of

facts without any qualifier from the original Wiki-1083 hy. We add these facts into Wiki-hy (100) until 1084 the proportion of the facts equipped with qualifiers reaches 66%. We call this new dataset Wiki-1086 hy (66). Similarly, we further expand Wiki-hy 1087 (66) to Wiki-hy (33). YAGO-hy (100)/(66)/(33) follows the same policy. During the process of 1089 sampling extra quadruple-based facts, we put each 1090 sampled fact to the same set where it comes from. 1091 For example, when we construct Wiki-hy (66), 1092 we keep Wiki-hy (100) unchanged and further sample quadruple-based facts from Wiki-hy. If 1094 a fact is sampled from the training set of Wiki-hy, 1095 then it will be put into the training set of Wiki-1096 hy (66). For YAGO-hy, we construct YAGO-hy (100)/(66)/(33) in the same way. We keep the 1098 data example proportions of train/valid/test sets in 1099 Wiki-hy (100)/(66)/(33) same as the ones in Wiki-1100 hy. YAGO-hy (100)/(66)/(33) follows the same 1101 policy. Table 13 shows the dataset statistics of 1102 (100)/(66)/(33) datasets used to study the impact 1103 of qualifier-augmented fact proportion. As more 1104 quadruple-based facts are added, e.g. from (100) to 1105 (66),  $|\mathcal{E}_{pri}|/|\mathcal{R}_{pri}|$  grows and some entities/relations 1106 only existed in qualifiers will appear in primary 1107

1069

1070

1073

1074

quadruples, leading to smaller  $|\mathcal{E}_{Qual}|/|\mathcal{R}_{Qual}|$ . This does not mean that (100)/(66)/(33) datasets share different pools of qualifier-augmented facts. Note that the proportions of facts with at least one qualifier in the original Wiki-hy and YAGO-hy are 9.59% and 6.98% (Table 1), respectively, which are much smaller than 33%.

1108

1109

1110

1111

1112

1113

1114

1134

| Dataset      | $N_{\mathrm{train}}$ | $N_{\mathrm{valid}}$ | $N_{\text{test}}$ | $ \mathcal{E}_{\mathrm{pri}} $ | $ \mathcal{E}_{Qual} $ | $\left \mathcal{R}_{pri}\right $ | $ \mathcal{R}_{Qual} $ | $ \mathcal{T} $ |
|--------------|----------------------|----------------------|-------------------|--------------------------------|------------------------|----------------------------------|------------------------|-----------------|
| Wiki-hy(100) | 21,210               | 2,764                | 2,696             | 3,392                          | 1,648                  | 25                               | 49                     | 507             |
| Wiki-hy(66)  | 31,815               | 4,146                | 4,044             | 8,786                          | 1,643                  | 58                               | 47                     | 507             |
| Wiki-hy(33)  | 63, 630              | 8,292                | 8,088             | 10,656                         | 1,642                  | 72                               | 46                     | 507             |
| YAGO-hy(100) | 7,232                | 1,530                | 1,452             | 1,739                          | 414                    | 9                                | 33                     | 187             |
| YAGO-hy(66)  | 10,848               | 2,295                | 2,178             | 4,844                          | 392                    | 10                               | 33                     | 188             |
| YAGO-hy(33)  | 21,696               | 4,590                | 4,356             | 7,339                          | 378                    | 10                               | 33                     | 188             |

| Table 13: | (100)/(66)/(33) | dataset | statistics. |
|-----------|-----------------|---------|-------------|
|-----------|-----------------|---------|-------------|

**Experiments** We report the performance of Hy-1115 peTKG and its first three variants on all created 1116 datasets in Table 14 and 15. Regardless of the 1117 proportion of qualifier-augmented facts, we have 1118 two findings: (1) HypeTKG and Variant B & C 1119 benefit from qualifiers on all datasets, confirming 1120 the importance of learning qualifiers for reason-1121 ing hyper-relational temporal facts. (2) Variant 1122 B & C constantly underperform HypeTKG on all 1123 datasets, proving the effectiveness of both qualifier 1124 modeling components. Note that (100)/(66)/(33)1125 datasets have different data distributions as the orig-1126 inal datasets. Therefore, it is not meaningful to di-1127 rectly compare each model variant's performance 1128 among them (e.g., compare Variant A across Wiki-1129 hy (100)/(66)/(33)). Our findings are based on dif-1130 ferent variants' performance on the same dataset 1131 (e.g., compare Variant A, B, C and HypeTKG on 1132 Wiki-hy(100)). 1133

#### J Case Study Details

A: Effectiveness of Qualifier Matcher We give 1135 an insight of how our qualifier matcher improves 1136 HTKG reasoning with three cases (Table 5). Hy-1137 peTKG ranks the ground truth missing entities in 1138 these cases as top 1 and achieves optimal predic-1139 tion. As discussed in Sec. 4.2, we learn a global 1140 qualifier feature in the qualifier matcher by consid-1141 ering the contribution of all the existing qualifiers 1142 related to the subject entity of the LP query. Each 1143 qualifier is assigned an attention score  $\eta_l$  indicat-1144 1145 ing its contribution. Note that numerous queries are derived from the facts that are without any 1146 qualifier. For example, in Case A1, no qualifier 1147 is provided in predicting which reward did An-1148 drey Kolmogorov receive in 1941 (Case A1 and 1149

A2 are taken from YAGO-hy). HypeTKG extracts 1150 all the qualifiers related to Andrey Kolmogorov 1151 from other facts in YAGO-hy and computes the 1152 global qualifier feature based on them. We find 1153 that it assigns a great attention score to the quali-1154 fier (country of citizenship, Soviet Union) and this 1155 qualifier can directly be taken as a hint to predict 1156 the ground truth missing entity USSR State Prize 1157 since USSR is also interpreted as Soviet Union. 1158 We also find that (*field of work, mathematics*) is 1159 also dominant in the global qualifier feature. This 1160 is also reasonable because Andrey Kolmogorov 1161 is a mathematician and he is awarded USSR 1162 State Prize of mathematics in 1941. Compared 1163 with these two qualifiers, the last qualifier, i.e., 1164 {(*country*, *Soviet Union*)}), is not so important in 1165 prediction, and thus is assigned a low attention 1166 score by HypeTKG. Case A1 implies that to reason 1167 the facts without qualifiers, i.e., quadruple-based 1168 facts, our qualifier matcher can find the clues from 1169 the subject-related qualifiers existing in other hyper-1170 relational facts and support prediction. In Case A2, 1171 we find that the qualifier matcher focuses more on 1172 the qualifiers from other facts but not the one from 1173 the query. Note that the query qualifiers have been 1174 explicitly modeled with a query-specific qualifier 1175 feature  $\mathbf{h}_{Qual}^{que}$  before computing the global qualifier 1176 feature. This indicates that our qualifier matcher 1177 can maximally extract important information from 1178 the extra qualifiers rather than only focusing on 1179 the query qualifiers, enabling efficient information 1180 fusion. Case A3 is taken from Wiki-hy. Since 1181 qualifier relations and primary relations have inter-1182 section, some extra subject-related qualifiers from 1183 other HTKG facts can directly indicate the answers 1184 to the queries. In Case A3, we observe that Hy-1185 peTKG manages to recognize such qualifiers to 1186 improve prediction. This further proves that our 1187 qualifier matcher is able to help capture the corre-1188 lation between qualifiers and temporal validity. To 1189 summarize, our qualifier matcher achieves reason-1190 ing enhancement by efficiently utilizing additional 1191 information from the extra qualifiers related to the 1192 query subject. 1193

B: Effectiveness of TI KnowledgeWe demon-strate how TI relational knowledge enhances1195HTKG reasoning with two cases (Table 6). In1196both cases, HypeTKG achieves optimal prediction1197(ranks ground truth answers as top 1) by lever-1198aging TI knowledge, and makes mistakes with-1199out considering it. Case B1 is taken from Wiki-1200

| Setting   |                       | Wiki-hy (33) |       |       | Wiki-hy (66) |       |       | Wiki-hy (100) |       |       |       |       |
|-----------|-----------------------|--------------|-------|-------|--------------|-------|-------|---------------|-------|-------|-------|-------|
| Model     | Time                  | Q Att        | Match | MRR   | H@1          | H@10  | MRR   | H@1           | H@10  | MRR   | H@1   | H@10  |
| Variant A | <ul> <li>✓</li> </ul> | X            | X     | 0.499 | 0.420        | 0.624 | 0.522 | 0.457         | 0.622 | 0.629 | 0.562 | 0.739 |
| Variant B | 1                     | X            | 1     | 0.520 | 0.462        | 0.626 | 0.570 | 0.528         | 0.638 | 0.669 | 0.622 | 0.749 |
| Variant C | 1                     | 1            | X     | 0.519 | 0.461        | 0.622 | 0.567 | 0.524         | 0.639 | 0.662 | 0.607 | 0.749 |
| HypeTKG   | 1                     | $\checkmark$ | 1     | 0.546 | 0.492        | 0.642 | 0.573 | 0.531         | 0.642 | 0.682 | 0.640 | 0.750 |

Table 14: Study of qualifier-augmented fact proportion on Wiki-hy.

|           |      | Settir       | ıg           | YA    | GO-hy | (33)  | YA    | GO-hy | (66)  | YAC   | GO-hy ( | 100)  |
|-----------|------|--------------|--------------|-------|-------|-------|-------|-------|-------|-------|---------|-------|
| Model     | Time | Q Att        | Q Match      | MRR   | H@1   | H@10  | MRR   | H@1   | H@10  | MRR   | H@1     | H@10  |
| Variant A |      | X            | X            | 0.650 | 0.624 | 0.694 | 0.574 | 0.531 | 0.644 | 0.593 | 0.576   | 0.622 |
| Variant B | 1    | X            | 1            | 0.692 | 0.673 | 0.701 | 0.640 | 0.629 | 0.668 | 0.685 | 0.672   | 0.706 |
| Variant C | 1    | 1            | X            | 0.687 | 0.669 | 0.700 | 0.638 | 0.625 | 0.667 | 0.683 | 0.670   | 0.705 |
| HypeTKG   | 1    | $\checkmark$ | $\checkmark$ | 0.696 | 0.678 | 0.703 | 0.645 | 0.632 | 0.669 | 0.688 | 0.676   | 0.712 |

Table 15: Study of qualifier-augmented fact proportion on YAGO-hy.

hy. In B1, HypeTKG predicts the false answer Kingdom of Prussia without the support of TI facts. However, after considering them, HypeTKG manages to make accurate prediction because Pisa should share the same official language with the country that contains it. Case B2 is taken from YAGO-hy. In B2, since both Tbilisi and Moscow belonged to Russian Empire in 1903, it is hard for HypeTKG to distinguish them during prediction without any further information. However, by knowing that Aram Khachaturian's native language is same as the official language of Tbilisi, i.e., Georgian, HypeTKG can exclude the influence of Moscow because people speak Russian there. The presented cases illustrate how our model better reasons HTKGs with TI knowledge.

#### K Related Work Details

1203

1204

1205

1206

1207

1209 1210

1211

1212

1213

1214

1215

1216

1217

Traditional KG & TKG Reasoning Extensive 1218 1219 researches have been conducted for KG reasoning. A series of works (Bordes et al., 2013; Trouil-1220 lon et al., 2016; Sun et al., 2019; Zhang et al., 1221 2019; Cao et al., 2021) designs KG score functions 1222 that compute plausibility scores of triple-based KG 1223 facts, while another line of works (Schlichtkrull 1224 et al., 2018; Vashishth et al., 2020) incorporates 1225 neural-based modules, e.g., graph neural network 1226 (GNN) (Kipf and Welling, 2017), into score functions for learning better representations. On top 1228 1229 of the existing KG score functions, some recent works develop time-aware score functions (Leblay 1230 and Chekol, 2018; Xu et al., 2020; Goel et al., 2020; 1231 Shao et al., 2022; Messner et al., 2022; Li et al., 1232 2023; Pan et al., 2024) that further model time 1233

information for reasoning over traditional TKGs. 1234 Another group of TKG reasoning methods employ 1235 neural structures. Some of them (Jin et al., 2020; 1236 Wu et al., 2020; Han et al., 2021b; Zhu et al., 2021; 1237 Li et al., 2021, 2022; Liu et al., 2023) achieve tem-1238 poral reasoning by first learning the entity and rela-1239 tion representations of each timestamp with GNNs 1240 and then using recurrent neural structures, e.g., 1241 LSTM (Hochreiter and Schmidhuber, 1997), to 1242 compute time-aware representations. Other meth-1243 ods (Jung et al., 2021; Han et al., 2021a; Ding 1244 et al., 2022) develop time-aware relational graph 1245 encoders that directly perform graph aggregation 1246 based on the temporal facts sampled from differ-1247 ent time. There are two settings in TKG LP, i.e., 1248 interpolation and extrapolation. In extrapolation, 1249 to predict a fact happening at time t, models can 1250 only observe previous TKG facts before t, while 1251 such restriction is not imposed in interpolation. 1252 Among the above mentioned works, (Leblay and 1253 Chekol, 2018; Xu et al., 2020; Goel et al., 2020; 1254 Shao et al., 2022; Messner et al., 2022; Wu et al., 1255 2020; Jung et al., 2021; Ding et al., 2022; Li et al., 1256 2023; Pan et al., 2024) are for interpolation and 1257 (Jin et al., 2020; Han et al., 2021b; Zhu et al., 2021; 1258 Li et al., 2021; Han et al., 2021a; Li et al., 2022; 1259 Liu et al., 2023) are for extrapolation. Traditional 1260 TKG reasoning methods cannot optimally reason 1261 over HTKG facts because they are unable to model 1262 qualifiers. In our work, we only focus on the inter-1263 polated LP on HTKGs and leave extrapolation for 1264 future work. 1265

Hyper-Relational KG ReasoningMainstream1266HKG reasoning methods can be categorized into1267

| Case | Query                                                                       | Answer               | Subject-Related Qualifiers                                                                        | Attention Score                                                     |
|------|-----------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| A1   | $((Andrey \ Kolmogorov, award\ received, ?, 1941), \emptyset)$              | USSR State Prize     | (country of citizenship, Soviet Union)<br>(field of work, mathematics)<br>(country, Soviet Union) | $9.39e^{-1} \\ 6.09e^{-2} \\ 2.61e^{-10}$                           |
| A2   | ((Andrey Kolmogorov, place of death,?, 1987),<br>{(country, Soviet Union)}) | Moscow               | (country of citizenship, Soviet Union)<br>(field of work, mathematics)<br>(country, Soviet Union) | $\begin{array}{c} 0.99 \\ 1.64 e^{-21} \\ 5.00 e^{-22} \end{array}$ |
| A3   | $((Wernher von Braun, academic degree, ?, 1934), \emptyset)$                | Doctor of Philosophy | (academic degree, Doctor of Philosophy)<br>(academic major, physics)                              | $0.99 \\ 6.00e^{-10}$                                               |

Table 16: Case study A: cases for studying qualifier matcher.

| Case | Query                                                        | Prediction w. TI    | Prediction w.o. TI | Related TI Facts                                                                                                                           |
|------|--------------------------------------------------------------|---------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| B1   | $((Pisa, country, ?, 1860), \emptyset)$                      | Kingdom of Sardinia | Kingdom of Prussia | (Pisa, official language, Italian)<br>(Kingdom of Sardinia, official language, Italian)<br>(Kingdom of Prussia, official language, German) |
| B2   | ((AK, place of birth, ?, 1903), {(country, Russian Empire)}) | Tbilisi             | Moscow             | (AK, native language, Georgian)<br>(Tbilisi, official language, Georgian)                                                                  |

Table 17: Case study B: cases for studying the effectiveness of TI relational knowledge. Prediction w./w.o. TI means the prediction result with/without using time-invariant facts. AK is the abbreviation of the entity Aram Khachaturian.

three types. The first type of works (Zhang et al., 1268 2018; Liu et al., 2020; Fatemi et al., 2020; Di 1269 et al., 2021; Wang et al., 2023) treats each hyper-1270 relational fact as an *n*-ary fact represented with 1271 an *n*-tuple:  $r_{abs}(e_1, e_2, ..., e_n)$ , where *n* is the non-1272 negative arity of an abstract relation  $r_{abs}^{21}$  repre-1273 senting the number of entities involved within  $r_{abs}$ 1274 and  $e_1, \ldots, e_n$  are the entities appearing in this *n*-1275 ary fact. RAE (Zhang et al., 2018) generalizes 1276 traditional KG reasoning method TransH (Wang 1277 et al., 2014) to reasoning n-ary facts and improves 1278 performance by considering the relatedness among 1279 1280 entities. Similarly, HypE (Fatemi et al., 2020) and GETD (Liu et al., 2020) derive the n-ary fact rea-1281 soning models by modifying traditional KG score 1282 functions SimplE (Kazemi and Poole, 2018) and 1283 TuckER (Balazevic et al., 2019), respectively. S2S 1285 (Di et al., 2021) improves GETD by enabling reasoning over mixed-arity facts. HyConvE (Wang 1286 et al., 2023) employs convolutional neural networks 1287 to perform 3D convolution capturing the deep interactions of entities and relations. Although these 1289 methods show strong effectiveness, the way of treat-1290 ing HKG facts as *n*-ary facts naturally loses the semantics of the original KG relations and would 1292 1293 lead to a combinatorial explosion of relation types (Galkin et al., 2020). The second type of works 1294 (Guan et al., 2023; Liu et al., 2021) transforms 1295 each hyper-relational fact into a set of key-value 1296 pairs:  $\{(r_i : e_i)\}_{i=1}^n$ . NaLP (Guan et al., 2023) 1297

1291

captures the relatedness among all the  $r_i : e_i$  pairs 1298 by using neural networks. RAM (Liu et al., 2021) 1299 introduces a role learning paradigm that models 1300 both the relatedness among different entity roles as well as the role-entity compatibility. Formulating 1302 hyper-relational facts into solely key-value pairs 1303 would also cause a problem. The relations from the 1304 primary fact triples and qualifiers cannot be fully 1305 distinguished, and the semantic difference among them is ignored (Galkin et al., 2020). To overcome 1307 the problems incurred in first two types of methods, 1308 recently, some works (Guan et al., 2020; Rosso 1309 et al., 2020; Galkin et al., 2020; Wang et al., 2021; 1310 Xiong et al., 2023) formulate hyper-relational facts 1311 into a primary triple with a set of key-value qual-1312 ifier pairs:  $\{((s, r, o), \{(r_{q_i}, e_{q_i})\}_{i=1}^n)\}$ . NeuInfer 1313 (Guan et al., 2020) uses fully-connected neural net-1314 works to separately model each primary triple and 1315 its qualifiers. HINGE (Rosso et al., 2020) adopts 1316 a convolutional framework that is iteratively ap-1317 plied on the qualifiers for information fusion. StarE 1318 (Galkin et al., 2020) develops a qualifier-aware 1319 GNN which allows jointly modeling an arbitrary 1320 number of qualifiers with the primary triple rela-1321 tion. GRAN (Wang et al., 2021) models HKGs 1322 with edge-biased fully-connected attention. It uses 1323 separate edge biases for the relations in the primary 1324 triples and qualifiers to distinguish their semantic 1325 difference. ShrinkE (Xiong et al., 2023) models 1326 each primary triple as a spatial-functional trans-1327 formation from the primary subject to a relation-1328 specific box and let qualifiers shrink the box to 1329 narrow down the possible answer set. 1330

<sup>&</sup>lt;sup>21</sup>Abstract relation  $r_{abs}$  is derived from a combination of several KG relations by concatenating the relations in the primary triple and qualifiers (Galkin et al., 2020).

| 1331 | A recent work (Hou et al., 2023) proposes a new                                   |
|------|-----------------------------------------------------------------------------------|
| 1332 | type of TKG, i.e., n-tuple TKG (N-TKG), where                                     |
| 1333 | each hyper-relational fact is represented with an                                 |
| 1334 | n-tuple: $(r, \{\rho_i : e_i\}_{i=1}^n, t)$ . <i>n</i> and <i>t</i> are the arity |
| 1335 | and the timestamp of the fact, respectively. $\rho_i$ is                          |
| 1336 | the labeled role of the entity $e_i$ . $r$ denotes fact                           |
| 1337 | type. Compared with HTKG, N-TKG has limita-                                       |
| 1338 | tion: HTKGs explicitly separate primary facts with                                |
| 1339 | additional qualifiers, while N-TKGs mix all the                                   |
| 1340 | entities from the primary facts and qualifiers and                                |
| 1341 | are unable to fully emphasize the importance of                                   |
| 1342 | primary facts. Besides, N-TKGs pair each entity                                   |
| 1343 | with a labeled role. A large proportion of roles are                              |
| 1344 | not directly extracted from the associated KBs and                                |
| 1345 | are manually created depending on the fact type                                   |
| 1346 | (e.g., the proposed NICE dataset in (Hou et al.,                                  |
| 1347 | 2023)). In our work, qualifiers are directly taken                                |
| 1348 | from the Wikidata KB, which guarantees that all                                   |
| 1349 | the additional information conforms to the original                               |
| 1350 | KB and requires no further effort of manual label-                                |
| 1351 | ing. Another drawback of (Hou et al., 2023) is that                               |
| 1352 | the proposed NICE N-TKG dataset in this work is                                   |
| 1353 | based on ICEWS KB. As discussed in App. B, us-                                    |
| 1354 | ing ICEWS for constructing hyper-relational KGs                                   |
| 1355 | does not fully align to the motivation of introduc-                               |
| 1356 | ing qualifiers into traditional TKGs. Our proposed                                |
| 1357 | HTKGs are both based on Wikidata KB, which is                                     |
| 1358 | much more meaningful. To achieve extrapolated                                     |
| 1359 | LP over N-TKGs, (Hou et al., 2023) develops a                                     |
| 1360 | model called NE-Net that jointly learns from histor-                              |
| 1361 | ical temporal information and entity roles. NE-Net                                |
| 1362 | performs well on N-TKG extrapolation, but it is                                   |
| 1363 | not optimal for interpolation over hyper-relational                               |
| 1364 | facts because it is unable to encode the graph in-                                |
| 1365 | formation after the timestamp of each LP query.                                   |
| 1366 | Our proposed HTKG reasoning model HypeTKG                                         |
| 1367 | is able to capture the temporal factual information                               |
| 1368 | along the whole timeline of HTKGs, serving as a                                   |
| 1369 | more reasonable method for interpolated LP.                                       |