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Abstract

Stemming from traditional knowledge graphs001
(KGs), hyper-relational KGs (HKGs) provide002
additional key-value pairs (i.e., qualifiers) for003
each KG fact that help to better restrict the fact004
validity. In recent years, there has been an in-005
creasing interest in studying graph reasoning006
over HKGs. Meanwhile, as discussed in re-007
cent works that focus on temporal KGs (TKGs),008
world knowledge is ever-evolving, making it009
important to reason over temporal facts in010
KGs. Previous mainstream benchmark HKGs011
do not explicitly specify temporal information012
for each HKG fact. Therefore, almost all exist-013
ing HKG reasoning approaches do not devise014
any module specifically for temporal reasoning.015
To better study temporal fact reasoning over016
HKGs, we propose a new type of data structure017
named hyper-relational TKG (HTKG). Every018
fact in an HTKG is coupled with a timestamp019
explicitly indicating its time validity. We de-020
velop two new benchmark HTKG datasets, i.e.,021
Wiki-hy and YAGO-hy, and propose an HTKG022
reasoning model that efficiently models hyper-023
relational temporal facts.024

1 Introduction025

Traditional knowledge graphs (KGs) represent026

world knowledge by storing a collection of facts in027

the form of triples. Each KG fact can be described028

as (s, r, o), where s, o are the subject and object en-029

tities of the fact and r denotes the relation between030

them. On top of traditional triple-based KGs, hyper-031

relational KGs (HKGs) are designed to introduce032

additional information into each triple-based fact033

(also known as primary triple in HKGs) by incor-034

porating a number of key-value restrictions named035

as qualifiers (Zhang et al., 2018; Guan et al., 2019;036

Galkin et al., 2020). Compared with triple-based037

KGs, HKGs provide more complicated semantics.038

For example, in Fig. 1 (A), the degree and major039

information of Albert Einstein is provided, which040

Figure 1: Examples of HKG (A) and HTKG (B) facts.
Contents inside dashed line squares denote qualifiers.

helps to differentiate between the facts regarding 041

two universities attended by him. 042

Many reasoning approaches have been proposed 043

for HKGs, e.g., (Wang et al., 2021; Xiong et al., 044

2023), but unfortunately, they all assume that the 045

hyper-relational facts are static. As discussed in 046

recent works (Dasgupta et al., 2018; Ding et al., 047

2022), world knowledge is ever-evolving. In tem- 048

poral KGs, each fact is represented by a quadruple 049

(s, r, o, t) with an additional timestamp specifying 050

the time validity. Previous mainstream HKG bench- 051

marks do not explicitly specify time validity for 052

each HKG fact. This hinders the development of 053

the reasoning systems that can effectively handle 054

temporal dynamics within hyper-relational facts, 055

and as a result, almost all existing HKG reason- 056

ing methods lack a dedicated module for tempo- 057

ral reasoning. Modeling temporal knowledge in 058

HKGs is important as the temporal validity of a 059

fact improves knowledge expressiveness and might 060

be correlative to its qualifiers. A model should be 061

expressive enough to model such correlation. 062

To better study temporal fact reasoning over 063

HKGs, we propose a new type of data structure 064

named hyper-relational TKG (HTKG, see formal 065

definition in Sec. 2.1). Every fact in an HTKG is 066

defined in the form of ((s, r, o, t), {(rqi , eqi)}ni=1). 067
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(s, r, o, t) is its primary quadruple (t is a times-068

tamp denoting the valid time) and {(rqi , eqi)}ni=1069

are a number of n augmented qualifiers. We illus-070

trate an HTKG fact example in Fig. 1 (B). The071

two awards Ang Lee was nominated for because072

of Brokeback Mountain can be differentiated con-073

sidering the specified timestamps. An HTKG is074

composed solely of a collection of hyper-relational075

temporal facts so we use HTKGs to study temporal076

fact reasoning over HKGs. We construct two bench-077

mark HTKGs Wiki-hy and YAGO-hy based on two078

traditional TKG benchmarks Wikidata11k (Jung079

et al., 2021) and YAGO1830 (Han et al., 2021a).080

Since previous HKG reasoning approaches pay081

little attention to temporal reasoning, they are not082

fit for modeling HTKGs. To this end, we develop a083

model to achieve link prediction (LP) over hyper-084

relational TKGs (HypeTKG) as follows: (1) We085

first devise a qualifier-attentional time-aware graph086

encoder (QATGE) that considers both temporal in-087

formation and qualifiers in the graph aggregation088

process. (2) We then design a qualifier matching089

decoder (QMD). Given any HTKG LP query, QMD090

not only considers its own qualifiers, but also mod-091

els all the qualifiers appearing in query subject-092

related facts. The motivation of QMD is that the093

evidence for LP not only is stored in the query094

qualifiers but also can be found in other subject-095

related facts. Compared with previous methods,096

HypeTKG is able to capture the correlation be-097

tween temporal validity and qualifiers.098

Another point worth noting is that some re-099

cent works have started to explore whether time-100

invariant (TI) relational knowledge1 can help to en-101

hance temporal fact reasoning on traditional TKGs102

(Li et al., 2021, 2022; Liu et al., 2023). This arouses103

our interest in studying whether TI relational facts104

are beneficial in HTKG reasoning. In our work, we105

mine the TI relational knowledge from the Wiki-106

data KB. We pick out the facts that contain ten107

frequently mentioned TI relations, e.g., official lan-108

guage, and ensure that these facts remain valid109

within the whole time scopes of HTKGs. We adjust110

HypeTKG and create a model variant HypeTKGϕ111

that dynamically controls the influence of TI infor-112

mation for better reasoning on temporal facts. We113

also provide a wide range of baselines with TI facts114

and benchmark their temporal fact LP performance115

on our proposed HTKGs.116

1TI knowledge are represented with fact triples (s, r, o)
(same as the facts in triple-based KGs) and are valid anytime.

To summarize, our contribution is three-folded: 117

(1) We propose a new data structure HTKG that 118

draws attention to temporal fact reasoning over 119

HKGs and propose two corresponding benchmarks 120

(Sec. 2.1 and 3). (2) We propose HypeTKG, a 121

model specifically designed to reason over HTKGs. 122

Experimental results show that HypeTKG performs 123

well in temporal fact reasoning over HTKGs (Sec. 124

5.2). (3) We study the influence of TI relational 125

knowledge on HTKG reasoning and adapt Hy- 126

peTKG to accommodate to TI information. We 127

show that our model can benefit by carefully bal- 128

ancing the information between temporal and TI 129

knowledge (Sec. 5.3). 130

2 Preliminaries and Related Work 131

2.1 Definition and Problem Statement 132

Definition 1 (Hyper-Relational TKG). Let E , R, 133

T denote a set of entities, relations and times- 134

tamps2, respectively. An HTKG G is a set of hyper- 135

relational temporal facts. Each fact is denoted as 136

((s, r, o, t), {(rqi , eqi)}ni=1), where (s, r, o, t) is its 137

primary quadruple. eqi ∈ E and rqi ∈ R are the 138

entity and relation in its ith qualifier qi, respectively. 139

n is the number of qualifiers. 140

Definition 2 (Hyper-Relational TKG LP). Let 141

Gtr be a ground-truth HTKG. Gtr = Gobs ∪ Gun 142

(Gobs ∩ Gun = ∅), where Gobs is a set of observed 143

HTKG facts and Gun is a set of unobserved facts. 144

Given Gobs, HTKG LP aims to predict the missing 145

entity in the LP query ((s, r, ?, t) , {(rqi , eqi)}ni=1) 146

(or ((?, r, o, t), {(rqi , eqi)}ni=1)) derived from each 147

fact in Gun. 148

Following previous works on TKGs, e.g., (Han 149

et al., 2021b), for each fact, we create another 150

fact ((o, r−1, s, t), {(rqi , eqi)}ni=1) and add it to the 151

graph, where r−1 denotes r’s inverse relation. We 152

derive an object entity prediction query from each 153

fact and perform object prediction. Note that we 154

follow (Galkin et al., 2020) and only predict miss- 155

ing entities in primary facts. 156

2.2 Related Work 157

Due to page limit, see App. K for the detailed 158

discussion of various previous methods. 159

Temporal Fact Reasoning on Traditional TKGs 160

Extensive researches have been conducted for TKG 161

reasoning. Although traditional TKG facts have no 162

2We decompose time periods into a series of timestamps
following (Jin et al., 2020).
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qualifiers, each of them have a specified time iden-163

tifier for temporal fact reasoning. A series of works164

develops time-aware score functions (Leblay and165

Chekol, 2018; Xu et al., 2020; Goel et al., 2020;166

Shao et al., 2022; Messner et al., 2022; Li et al.,167

2023; Pan et al., 2024) that compute plausibility168

scores of quadruple-based TKG facts based on var-169

ious types of geometric operations. Some other170

methods employ neural structures, e.g., LSTM171

(Hochreiter and Schmidhuber, 1997) or time-aware172

graph neural networks, to achieve temporal reason-173

ing (Jin et al., 2020; Wu et al., 2020; Han et al.,174

2021b; Zhu et al., 2021; Li et al., 2021; Jung et al.,175

2021; Ding et al., 2022; Li et al., 2022; Liu et al.,176

2023). There are two settings in TKG LP, i.e.,177

interpolation and extrapolation. In extrapolation,178

to predict a fact happening at time t, models can179

only observe previous TKG facts before t, while180

such restriction is not imposed in interpolation. In181

our work, we only focus on the interpolated LP on182

HTKGs and leave extrapolation for future work.183

Hyper-Relational KG Reasoning Mainstream184

HKG reasoning methods can be categorized into185

three types. The first type of works (Zhang et al.,186

2018; Liu et al., 2020; Fatemi et al., 2020; Di187

et al., 2021; Wang et al., 2023) treats each hyper-188

relational fact as an n-ary fact represented with189

an n-tuple: rabs(e1, e2, ..., en), where n is the non-190

negative arity of an abstract relation rabs
3 represent-191

ing the number of entities involved within rabs and192

e1, ..., en are the entities appearing in this n-ary193

fact. Although these methods show strong effec-194

tiveness, previous study (Galkin et al., 2020) has195

shown that the way of treating HKG facts as n-ary196

facts naturally loses the semantics of the original197

KG relations and would lead to a combinatorial ex-198

plosion of relation types. The second type of works199

(Liu et al., 2021; Guan et al., 2023) transforms each200

hyper-relational fact into a set of key-value pairs:201

{(ri : ei)}ni=1. Formulating hyper-relational facts202

into solely key-value pairs would also cause a prob-203

lem that the relations from the primary fact triples204

and qualifiers cannot be fully distinguished (Galkin205

et al., 2020). To overcome the problems incurred206

in first two types of methods, recently, some works207

(Guan et al., 2020; Rosso et al., 2020; Galkin et al.,208

2020; Wang et al., 2021; Xiong et al., 2023; Chung209

et al., 2023) formulate hyper-relational facts into a210

3Abstract relation rabs is derived from a combination of
several KG relations by concatenating the relations in the
primary triple and qualifiers (Galkin et al., 2020).

primary triple with a set of key-value qualifier pairs: 211

{((s, r, o), {(rqi , eqi)}ni=1)}. This formulation dis- 212

tinguishes the primary fact triples and qualifiers, 213

and meanwhile preserves the semantics of the orig- 214

inal KG relations. While HKG reasoning methods 215

perform well on HKG LP, none of them focuses on 216

temporal reasoning because no temporal identifiers 217

are explicitly specified in HKGs. 218

To draw attention to temporal fact reasoning over 219

hyper-relational facts, a recent work (Hou et al., 220

2023) proposes n-tuple TKG (N-TKG), where each 221

hyper-relational fact is represented with an n-tuple: 222

(r, {ρi : ei}ni=1, t). n and t are the arity and the 223

timestamp of the fact, respectively. ρi is the labeled 224

role of the entity ei. r denotes fact type. Compared 225

with HTKG, N-TKG has limitation: HTKGs ex- 226

plicitly separate primary facts with additional qual- 227

ifiers, while N-TKGs mix all the entities from the 228

primary facts and qualifiers and are unable to fully 229

emphasize the importance of primary facts. Hou et 230

al. also propose a model NE-Net for extrapolated 231

LP on N-TKGs. It is not optimal for interpolation 232

because it can only model the graph information 233

before the prediction timestamp. See App. K for 234

more discussion. 235

3 Proposing New Benchmarks 236

We propose two HTKG benchmark datasets Wiki- 237

hy and YAGO-hy. Wiki-hy contains HTKG facts 238

extracted from Wikidata (Vrandecic and Krötzsch, 239

2014), where they happen from year 1513 to 2020. 240

YAGO-hy is constructed from the facts in YAGO3 241

(Mahdisoltani et al., 2015) and the time scope is 242

from year 1830 to 2018. We use previous tradi- 243

tional TKG benchmarks Wikidata11k (Jung et al., 244

2021) and YAGO1830 (Han et al., 2021a) as bases 245

and search for the qualifiers of their facts in Wiki- 246

data. We use the MediaWiki API4 to identify the 247

quadruple-based TKG facts in Wikidata and extract 248

all the qualifiers stated under the corresponding 249

Wikidata statements. Since Wikidata11k is origi- 250

nally extracted from Wikidata, we can directly find 251

its relations and entities in this KB. YAGO1830’s 252

entities share the same pool as Wikidata but rela- 253

tion types are taken from schema.org. We map 254

YAGO1830’s relations to Wikidata’s relations to 255

enable fact matching (detailed mapping in App. A). 256

We provide dataset statistics of both datasets in Ta- 257

ble 1. Qualifier searching will include additional 258

entities and relations. We include them in model 259

4https://www.wikidata.org/w/api.php
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Dataset Ntrain Nvalid Ntest |Epri| |EQual| |Rpri| |RQual| |T | |∃ Qual| avg(|Qual|) Qual% |GTI| |ETI|

Wiki-hy 111, 252 13, 900 13, 926 11, 140 1, 642 92 44 508 26, 670 1.59 9.59% 5, 360 3, 801
YAGO-hy 51, 193 10, 973 10, 977 10, 026 359 10 33 188 10, 214 1.10 6.98% 7, 331 5, 782

Table 1: Dataset statistics. Ntrain/Nvalid/Ntest is the number of facts in the training/validation/test set. |Epri|/|Rpri|/|T |
is the number of entities/relations/timestamps in primary quadruples. |EQual|/|RQual| is the number of additional
entities/relations only existing in qualifiers. |∃ Qual|/Qual% is the number/the proportion of facts containing at least
one qualifier. Complete sets of entities and relations are E = Epri ∪ EQual and R = Rpri ∪RQual, respectively. ETI is
the number of entities additionally introduced in GTI and ETI ∩ E = ∅.

training and evaluation. We augment quadruple-260

based TKG facts with their searched qualifiers. The261

facts without any searched qualifier will remain un-262

changed. All the facts in our datasets are based on263

English. We discuss why we use Wikidata-based264

but not other popular ICEWS-based TKGs to con-265

struct HTKGs in App. B.266

We explore TI knowledge as follows. We first267

find the top 400 frequent relations in Wikidata KB.268

Based on them, we then manually check each of269

them and pick out top 10 frequent relations that de-270

scribe TI relationships among entities. The selected271

TI relations are family name, native language, sub-272

class of, official language, child, sibling, father,273

mother, ethnic group, country of origin. We ensure274

that they are disjoint from the existing relations in275

the original HTKGs. Starting from the entities in276

our HTKGs, we search for their associated TI facts277

in Wikidata, where each of them corresponds to a278

selected TI relation. For example, for the YAGO-279

hy entity Emmy Award, we take the facts such as280

(Emmy Award, subclass of, television award). As281

a result, we collect a set of facts denoted as GTI282

(GTI ∩ Gtr = ∅) for Wiki-hy and YAGO-hy. We283

allow models to use all of them for enhancing LP284

over temporal facts during train/valid/test. See Ta-285

ble 1 for GTI statistics.286

4 HypeTKG287

HypeTKG consists of two parts, i.e., a qualifier-288

attentional time-aware graph encoder (QATGE)289

and a qualifier matching decoder (QMD). To fur-290

ther learn from TI knowledge, we equip HypeTKG291

with additional modules and develop a model vari-292

ant HypeTKGψ (model structure shown in Fig. 2).293

4.1 Qualifier-Attentional Time-Aware Graph294

Encoder295

QATGE learns a contextualized representation for296

every entity. Given an entity e, QATGE first297

finds its temporal neighbors from Gobs: Ne =298

{ζ} = {((e′, r′, t′), {(r′qi , e
′
qi)}

n
i=1)}, where each299

temporal neighbor ζ is derived from a fact 300

((e′, r′, e, t′), {(r′qi , e
′
qi)}

n
i=1) ∈ Gobs connecting to 301

e. For each ζ, QATGE employs an attention-based 302

module to model its qualifiers. It computes the 303

representation hζqi for the ith qualifier qi of ζ with 304

a function ϕ(·, ·). 305

hζqi = ϕ(he′qi
,hr′qi

)

= W1(he′qi
∥hr′qi ) ∗ f(h

C
e′qi

◦ hC
r′qi

) ∗ (he′qi ⊕ hr′qi
).

(1) 306

he′qi
∈ Rd and hr′qi

∈ Rd denote the representa- 307

tions of the entity and relation in qi, respectively. ∥ 308

means concatenation and W1 ∈ Rd×2d is a weight 309

matrix. hC
e′qi

∈ C
d
2 and hC

r′qi
∈ C

d
2 are the complex 310

vectors mapped from he′qi
and hr′qi

. The real part 311

of hC
e′qi

is the first half of he′qi and the imaginary 312

part is the second half (see mapping explanation 313

and example in App. E). ◦ is the Hadmard product 314

on the complex space. f(·) : C
d
2 → Rd is a map- 315

ping function that maps the complex vectors back 316

to the real vectors. ∗ and ⊕ are element-wise prod- 317

uct and add operations, respectively. After getting 318

{hζqi}, QATGE integrates the information from all 319

of them by computing an attentional feature hζQual 320

related to the primary relation r′ of ζ. 321

h̃ζqi = (hζqi
⊤
hr′) ∗w,

αi[j] =
exp(h̃ζqi [j])∑n
k=1 exp(h̃ζqk [j])

; ai = [αi[1], ..., αi[d]]
⊤,

hζQual =
∑
qi

WQual(ai ∗ hζqi).

(2) 322

w ∈ Rd is a trainable parameter. h̃ζqi [j] denotes 323

the jth element of h̃ζqi . ai is an attention vector, 324

where each of its element αi[j] denotes the atten- 325

tion score determining how important the jth el- 326

ement of the ith qualifier qi is in the jth element 327

of hζQual. The importance increases as the score 328

rises. WQual ∈ Rd×d is a weight matrix. hζQual can 329

be viewed as a parameter that adaptively selects 330

the information highly-related to r′ from all the 331

qualifiers of ζ. To compute e’s representation he, 332
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(a) Qualifier-attentional time-aware graph encoder (QATGE). (b) Qualifier matching decoder (QMD).

Figure 2: Model structure of HypeTKGψ . HypeTKGψ first uses QATGE to encode all the entities. It then uses QMD
to compute score regarding every candidate entity ec ∈ E . Temporal information is considered in both QATGE and
QMD for temporal reasoning. The structure of HypeTKG can be derived by excluding the components concerning
TI facts. View with Sec. 4 for better understanding. e′′1 , ..., e

′′
nsTI

and r′′1 , ..., r
′′
nsTI

are the entities and relations from a
number of nsTI TI neighbors of query subject s, respectively. See App. G for expanded full size of figures.

we aggregate over all its temporal neighbors in Ne333

with a gated structure.334

he =
1

|Ne|
∑
ζ∈Ne W2ϕ

(
h(e′,t′),

(
γhζQual + (1− γ)hr′

))
,

(3)335

where W2 ∈ Rd×d is a weight matrix. γ is a336

trainable gate parameter controlling the amount of337

information taken from either the primary relation338

r′ or the qualifiers. QATGE incorporates temporal339

information by learning a time-aware representa-340

tion for each temporal neighbor’s subject entity:341

h(e′,t′) = ft(he′∥ht′). ft(·) : R2d → Rd is a342

layer of neural network. ht′ =
√

1/d[cos(ω1t
′ +343

ϕ1), . . . , cos(ωdt
′ + ϕd)], where ω1 . . . ωd and344

ϕ1 . . . ϕd are trainable parameters.345

4.2 Qualifier Matching Decoder346

QMD leverages the entity and relation represen-347

tations encoded by QATGE for LP. Assume we348

want to predict the missing entity of the LP query349

((s, r, ?, t), {(rqi , eqi)}
nque
i=1) (nque is the number of350

query qualifiers), QMD learns a query feature hque.351

QMD first models query qualifiers {(rqi , eqi)}
nque
i=1352

with a qualifier-wise Transformer. Each query353

qualifier’s entity and relation are treated as two354

tokens and concatenated as a sub-sequence for this355

qualifier. The classification ([CLS]) token is then356

concatenated with the query qualifier tokens as a357

sequence and input into the qualifier-wise Trans-358

former, where the sequence length is 2nque + 1.359

We take the output representation of the [CLS]360

token as the query qualifier feature h
que
Qual ∈ Rd361

who contains comprehensive information from all362

query qualifiers. Apart from h
que
Qual, we also devise363

a qualifier matcher that further exploits additional364

supporting information from the qualifiers of other365

observed facts related to query subject s in Gobs.366

Qualifier matcher finds all the HTKG facts in Gobs367

where each of them takes s as the subject of its 368

primary quadruple5. It then collects all their quali- 369

fiers {(r̄ql , ēql)}
nall
l=1 and computes a global qualifier 370

feature 371

ηl =
exp((W3(hr̄ql ∥hēql ))

⊤(W4(h(s,t)∥hr)))∑nall
m=1 exp((W3(hr̄qm ∥hēqm ))⊤(W4(h(s,t)∥hr)))

,

hglo
Qual =

∑
ql

ηlW3(hr̄ql ∥hēql ),
(4) 372

where nall denotes the number of s-related quali- 373

fiers and W3,W4 ∈ Rd×2d are weight matrices. 374

h(s,t) = ft(hs∥ht). ηl is the attention score of 375

the lth subject-related qualifier indicating its con- 376

tribution to the LP query. Given h
que
Qual and h

glo
Qual 377

(hglo
Qual ∈ Rd), QMD uses another query-wise Trans- 378

former to compute a query feature. We concatenate 379

the representation of another separate [CLS] to- 380

ken with h(s,t)∥hr∥h
que
Qual∥h

glo
Qual and input it into 381

the query-wise Transformer. The output represen- 382

tation of this separate [CLS] token corresponds to 383

hque ∈ Rd. hque is used by QMD to compute a 384

score for each candidate entity ec ∈ E 385

λ(ec) = (hque ∗ ht)⊤W5hec . (5) 386

W5 ∈ Rd×d is a score matrix. HypeTKG takes 387

the candidate entity with the highest score as the 388

predicted answer. 389

4.3 Time-Invariant Knowledge Modeling 390

Previous sections discuss how HypeTKG performs 391

HTKG LP without using TI knowledge. In this 392

section, we discuss how we adapt HypeTKG 393

to TI knowledge by developing a model variant 394

HypeTKGψ. We first introduce another gated struc- 395

ture in QATGE to incorporate TI knowledge in the 396

5We only consider subject-related qualifiers because we
can only observe the subject entity in each LP query and we
aim to find the additional qualifiers most related to the query.
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encoding process. We change Eq. 3 to397

htemp
e =

1

|Ne|
∑
ζ∈Ne

W2ϕ
(
h(e′,t′),

(
γhζQual + (1− γ)hr′

))
,

hψe =
1

|Nψ
e |

∑
ζψ∈Nψ

e

Wψϕ(he′′ ,hr′′),

he = (1− β)htemp
e + βhψe .

(6)398

β is a trainable parameter controlling the mag-399

nitude of TI information. Nψ
e = {ζψ} =400

{(e′′, r′′)|(e′′, r′′, e) ∈ GTI} denotes e’s TI neigh-401

bors derived from additional TI facts. h
temp
e and402

hψe contain the encoded temporal and TI informa-403

tion, respectively. In QMD, we incorporate TI404

knowledge when we compute the query feature405

hque. Same as how we model query qualifiers, we406

use a TI-wise Transformer to model s’s TI neigh-407

bors and output a TI feature hsTI. We expand the408

input length of the query-wise Transformer and in-409

put h(s,t)∥hr∥h
que
Qual∥h

glo
Qual∥hsTI for computing hque.410

Note that we do not model TI neighbors of all |E|411

candidate entities in QMD because (1) this will412

incur excessive computational cost and (2) this part413

of information has been learned in QATGE.414

4.4 Parameter Learning415

We minimize a binary cross-entropy (BCE) loss for416

learning model parameters. We take every fact in417

Gobs as a query fact δ and switch its object entity o418

to every other entity e ∈ (E \ {o}) to create |E| − 1419

negative facts {δ−}. Our loss is defined as420

L = 1
|Gobs|×|E|

∑
δ∈Gobs

(lδ +
∑
δ− lδ−). (7)421

lδ = −yδ log λ(δ)) − (1 − yδ) log(1 − λ(δ)),422

lδ− = −yδ− log(λ(δ−))−(1−yδ−) log(1−λ(δ−))423

denote the BCE of δ and δ−, respectively. yδ = 1424

and yδ− = 0 because we want to simultaneously425

maximize λ(δ) and minimize λ(δ−). |Gobs| is the426

number of HTKG facts in Gobs.427

5 Experiments428

We do HTKG LP over Wiki-hy and YAGO-hy. We429

report HTKG LP results in Sec. 5.2. We study430

whether additional TI knowledge helps HTKG LP431

in Sec. 5.3. We do ablation studies and study the432

impact of the ratio of utilized qualifiers in Sec. 5.4.433

Finally, we present several case studies to show434

the effectiveness of leveraging TI knowledge and435

qualifier matcher for temporal fact reasoning over436

HTKGs in Sec. 5.5. We also study the impact of437

qualifier-augmented fact proportion and present it438

in App. I. We provide complexity analysis of our439

model in App. C.440

5.1 Experimental Setting 441

We use two evaluation metrics, i.e., mean recipro- 442

cal rank (MRR) and Hits@1/3/10. We follow the 443

filtering setting used in previous HKG reasoning 444

works (Galkin et al., 2020). See App. D for detailed 445

explanations of evaluation metrics. We consider 446

two types of baselines: (1) Traditional TKG inter- 447

polation methods6, i.e., DE-SimplE (Goel et al., 448

2020), TeRo (Xu et al., 2020), T-GAP (Jung et al., 449

2021), BoxTE (Messner et al., 2022), TARGCN 450

(Ding et al., 2022), TeAST (Li et al., 2023) and 451

HGE (Pan et al., 2024). Since these methods have 452

no way to model qualifiers, we neglect the qual- 453

ifiers during implementation. (2) HKG reason- 454

ing methods, i.e., NaLP-Fix (Rosso et al., 2020), 455

HINGE (Rosso et al., 2020), HypE (Fatemi et al., 456

2020), StarE (Galkin et al., 2020), GRAN (Wang 457

et al., 2021), HyconvE (Wang et al., 2023), ShrinkE 458

(Xiong et al., 2023) and HyNT (Chung et al., 2023). 459

These methods cannot model temporal information 460

in HTKGs. We make them neglect the timestamps 461

during implementation. See App. F for HypeTKG 462

and baseline implementation details. Note that NE- 463

Net (Hou et al., 2023) still has no existing software 464

and data, so we are unable to directly compare it 465

with HypeTKG here. 466

5.2 Comparative Study 467

We report the HTKG LP results of all methods in 468

Table 2. We observe that HypeTKG outperforms 469

all baselines and achieves state-of-the-art. We be- 470

lieve this is because (1) traditional TKG reasoning 471

methods lose a large amount of semantic informa- 472

tion by failing to model qualifiers (2) and previous 473

HKG reasoning baselines cannot distinguish from 474

different timestamps, which is key to temporal fact 475

reasoning. 476

5.3 Do TI Relational Knowledge Help HTKG 477

Reasoning? 478

We let HypeTKG and all baselines to use the ad- 479

ditional TI facts and report their temporal fact 480

LP performance on Wiki-hy and YAGO-hy in 481

Table 3. For the HKG approaches, we directly 482

include these facts into our datasets. For tradi- 483

tional TKG reasoning approaches, we create a 484

number of temporal facts for each TI fact along 485

the whole timeline and include these temporal 486

6TKG extrapolation methods are not considered since we
only study interpolated LP over HTKGs. Extrapolation meth-
ods are constrained to only use the graph information before
each LP query, making them suboptimal for interpolation.
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Datasets WiKi-hy YAGO-hy
Model MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

DE-SimplE 0.351 0.218 0.405 0.640 0.684 0.625 0.715 0.807
TeRo 0.572 0.473 0.640 0.727 0.760 0.720 0.782 0.822
T-GAP 0.588 0.486 0.651 0.726 0.773 0.736 0.800 0.835
BoxTE 0.449 0.348 0.512 0.646 0.685 0.642 0.725 0.767
TARGCN 0.589 0.498 0.652 0.733 0.769 0.742 0.772 0.817
TeAST 0.601 0.507 0.669 0.761 0.794 0.763 0.817 0.844
HGE 0.602 0.507 0.666 0.765 0.790 0.760 0.814 0.837

NaLP-Fix 0.507 0.460 0.569 0.681 0.730 0.709 0.751 0.813
HINGE 0.543 0.497 0.585 0.694 0.758 0.730 0.762 0.819
HypE 0.624 0.604 0.631 0.658 0.800 0.785 0.799 0.830
StarE 0.565 0.491 0.599 0.703 0.765 0.737 0.776 0.820
GRAN 0.661 0.610 0.679 0.750 0.808 0.789 0.817 0.842
HyconvE 0.641 0.600 0.656 0.729 0.771 0.754 0.782 0.811
ShrinkE 0.669 0.593 0.703 0.789 0.808 0.782 0.824 0.852
HyNT 0.537 0.444 0.587 0.723 0.763 0.724 0.787 0.836

HypeTKG 0.687 0.633 0.710 0.789 0.832 0.817 0.838 0.857

Table 2: HTKG LP results. The best results without
using TI facts are marked in bold. H@1/H@3/H@10
means Hits@1/Hits@3/Hits@10.

facts into the datasets. For example, let tmin/tmax487

denotes the minimum/maximum timestamp of488

an HTKG. We transform a TI fact (s, r, o) to489

{(s, r, o, tmin), ..., (s, r, o, tmax)}. Surprisingly, we490

observe that while HypeTKG constantly benefit491

from the additional TI relational knowledge, other492

baselines cannot. We attribute this to the following493

reasons: (1) TI facts introduce distributional shift.494

Baseline methods learn TI and temporal knowl-495

edge without distinguishing their difference, mak-496

ing them less focused on the temporal facts. (2) Hy-497

peTKG employs its gate-structured graph encoder498

that adaptively controls the amount of information499

from the TI facts. HypeTKG’s decoder also uses500

Transformer to distinguish the importance of dif-501

ferent TI facts. These two steps help HypeTKG502

to exploit the TI knowledge that is most beneficial503

in LP and discard the redundant information. We504

further study whether TI knowledge can improve505

reasoning on quadruple-based TKGs in App. H.506

5.4 Further Analysis507

Ablation Study We conduct ablation studies to508

demonstrate the importance of different model com-509

ponents of HypeTKG. In study A (Variant A), we510

neglect the qualifiers in all HTKG facts and do511

not include any qualifier learning component. In512

study B (Variant B), we remove qualifier attention513

in QATGE. In study C (Variant C), we remove the514

qualifier matcher in QMD. In study D (Variant D),515

we exclude time modeling modules and neglect516

timestamps in primary quadruples. From Table517

4, we observe that learning qualifiers is essential518

in reasoning HTKGs. Both qualifier attention in519

QATGE and qualifier matcher contribute to quali-520

Datasets WiKi-hy YAGO-hy
Model w.o. TI w. TI ∆ ↑ w.o. TI w. TI ∆ ↑
DE-SimplE 0.351 0.326 -0.025 0.684 0.643 -0.041
TeRo 0.572 0.553 -0.019 0.760 0.742 -0.018
T-GAP 0.588 0.568 -0.020 0.773 0.761 -0.012
BoxTE 0.449 0.409 -0.040 0.685 0.670 -0.015
TARGCN 0.589 0.588 -0.001 0.769 0.769 0.000
TeAST 0.601 0.581 -0.020 0.794 0.779 -0.015
HGE 0.602 0.592 -0.010 0.790 0.780 -0.010

NaLP-Fix 0.507 0.504 -0.003 0.730 0.728 -0.002
HINGE 0.543 0.535 -0.008 0.758 0.754 -0.004
HypE 0.624 0.623 -0.001 0.800 0.798 -0.002
StarE 0.565 0.547 -0.018 0.765 0.758 -0.007
GRAN 0.661 0.667 +0.006 0.808 0.794 -0.014
HyconvE 0.641 0.630 -0.011 0.771 0.767 -0.004
ShrinkE 0.669 0.655 -0.014 0.808 0.806 -0.002
HyNT 0.537 0.536 -0.001 0.763 0.765 +0.002

HypeTKG 0.687 0.693 +0.006 0.832 0.842 +0.010

Table 3: MRR for all methods with (w. TI) and without
(w.o. TI) TI facts. ∆ ↑ denotes the absolute improve-
ment. Note that HypeTKG w. TI equals HypeTKGψ .

fier modeling. We also find that modeling temporal 521

information is essential for temporal fact reasoning. 522

Setting Wiki-hy YAGO-hy
Model Time Q Att Q Match MRR H@1 H@10 MRR H@1 H@10

Variant A ✓ ✗ ✗ 0.642 0.569 0.775 0.795 0.770 0.841
Variant B ✓ ✗ ✓ 0.671 0.616 0.777 0.826 0.811 0.856
Variant C ✓ ✓ ✗ 0.671 0.615 0.777 0.803 0.781 0.842
Variant D ✗ ✓ ✓ 0.652 0.597 0.751 0.792 0.769 0.835
HypeTKG ✓ ✓ ✓ 0.687 0.633 0.789 0.832 0.817 0.857

Table 4: Ablation studies. Q means qualifier.

Figure 3: HypeTKG performance with a varying ratio
of used qualifiers.

523

Impact of the Ratio of Utilized Qualifiers To 524

further investigate the importance of learning 525

qualifiers for reasoning hyper-relational tempo- 526

ral facts, we report HypeTKG’s performance on 527

Wiki-hy/YAGO-hy by using a varying ratio of 528

utilized qualifiers. We implement HypeTKG on 529

all Wiki-hy/YAGO-hy facts but randomly sample 530

0%/25%/50%/75%/100% of all the existing quali- 531

fiers during training and evaluation. From Fig. 3, 532

we observe that HypeTKG achieves better results 533

7



Case Query Answer Subject-Related Qualifiers Attention Score

A1 ((Andrey Kolmogorov, award received, ?, 1941), ∅) USSR State Prize
(country of citizenship, Soviet Union) 9.39e−1

(field of work,mathematics) 6.09e−2

(country, Soviet Union) 2.61e−10

A2 ((Andrey Kolmogorov, place of death, ?, 1987), Moscow
(country of citizenship, Soviet Union) 0.99

(field of work,mathematics) 1.64e−21

{(country, Soviet Union)}) (country, Soviet Union) 5.00e−22

Table 5: Case study A: cases for studying qualifier matcher.

Case Query Prediction w. TI Prediction w.o. TI Related TI Facts

B1 ((Pisa, country, ?, 1860), ∅) Kingdom of Sardinia Kingdom of Prussia
(Pisa, official language, Italian)

(Kingdom of Sardinia, official language, Italian)
(Kingdom of Prussia, official language,German)

B2 ((AK, place of birth, ?, 1903), {(country,Russian Empire)}) Tbilisi Moscow (AK, native language,Georgian)
(Tbilisi, official language,Georgian)

Table 6: Case study B: cases for studying the effectiveness of TI relational knowledge. Prediction w./w.o. TI means
the prediction result with/without using time-invariant facts. AK is the abbreviation of the entity Aram Khachaturian.

as the ratio increases, showing a positive correla-534

tion between its performance and the number of535

utilized qualifiers. This indicates that modeling536

qualifiers is beneficial for LP over temporal facts.537

5.5 Case Studies538

A: Effectiveness of Qualifier Matcher We do539

case studies to show how our qualifier matcher540

improves HTKG reasoning (Table 5). HypeTKG541

ranks the ground truth missing entities in these542

cases as top 1. As discussed in Sec. 4.2,543

the qualifier matcher interprets the contribution544

of all the existing qualifiers related to the sub-545

ject entity of the LP query with attention scores546

ηl. In Case A1, no qualifier is provided in547

the query for prediction. We find that qualifier548

matcher assigns a great attention score to the quali-549

fier (country of citizenship, Soviet Union) from an-550

other fact. It can be taken as a hint to predict the551

ground truth missing entity USSR State Prize. This552

implies that to better reason the facts without quali-553

fiers, our qualifier matcher can find the clues from554

other hyper-relational facts. In Case A2, we find555

that the qualifier matcher focuses more on the qual-556

ifiers from other facts but not from the query. Note557

that the query qualifiers have been modeled with a558

query-specific qualifier feature h
que
Qual before com-559

puting the global qualifier feature. This indicates560

that our qualifier matcher can maximally extract in-561

formation from the extra qualifiers rather than only562

focusing on the query qualifiers, enabling efficient563

information fusion. See App. J for more case study564

details and one more case (A3) discussion.565

B: Effectiveness of TI Knowledge We demon-566

strate how TI relational knowledge enhances567

HTKG reasoning with two cases (Table 6). In 568

both cases, HypeTKG achieves optimal prediction 569

by leveraging TI knowledge, and makes mistakes 570

without it. In B1, HypeTKG predicts the false an- 571

swer Kingdom of Prussia without the support of TI 572

facts. However, after considering them, HypeTKG 573

manages to make accurate prediction because Pisa 574

should share the same official language with the 575

country that contains it. In B2, since both Tbilisi 576

and Moscow belonged to Russian Empire in 1903, 577

it is hard for HypeTKG to distinguish them during 578

prediction without any further information. How- 579

ever, by knowing that Aram Khachaturian’s native 580

language is same as the official language of Tbilisi, 581

i.e., Georgian, HypeTKG can exclude the influence 582

of Moscow because people speak Russian there. 583

6 Conclusion 584

In this work, we propose a new data structure 585

named HTKG for studying temporal fact rea- 586

soning over HKGs. To reason HTKGs, we de- 587

sign a model HypeTKG that is able to simultane- 588

ously deal with temporal information and quali- 589

fiers. We benchmark HypeTKG and various previ- 590

ous HKG/TKG reasoning methods on two newly- 591

constructed datasets, i.e., Wiki-hy and YAGO-hy. 592

We show that HypeTKG achieves superior perfor- 593

mance on HTKG LP. Besides, we mine the TI re- 594

lational knowledge from Wikidata KB and study 595

whether it can benefit models on hyper-relational 596

temporal fact reasoning. We find that temporal fact 597

reasoning on HTKGs can be enhanced by carefully 598

balancing the information between temporal and 599

TI knowledge. 600
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7 Limitations601

One limitation of our work is that we have not602

explored qualifier prediction, i.e., predicting the603

missing elements in the qualifiers. We also have604

not considered another challenge in temporal fact605

reasoning, i.e., time prediction. We think our work606

can be the base of future studies on these two top-607

ics. Also, as we have only studied interpolated608

link prediction on HTKGs, developing HTKG ex-609

trapolation methods would also be an important610

direction in the future.611
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A YAGO-hy Construction Details938

We provide the relation mapping from YAGO1830939

to Wikidata in Table 7. During matching, we940

carefully examine YAGO1830 facts and find that941

playsFor represents a person playing for a sports942

team, and isAffiliatedTo represents a person’s po-943

litical affiliation. Therefore, we map playsFor to944

member of sports team and isAffiliatedTo to mem-945

ber of political party. Besides, YAGO1830 is origi-946

nally a TKG extrapolation dataset, we redistribute947

its facts and change it into an interpolation dataset948

before qualifier searching. We ensure that the pro-949

portions of the number of facts in train/valid/test950

sets of YAGO-hy conform to the corresponding951

sets in YAGO1830.

YAGO Relation Wikidata Relation Wikidata Relation ID

wasBornIn place of birth P19
diedIn place of death P20

worksAt employer P108
playsFor member of sports team P54

hasWonPrize award received P166
isMarriedTo spouse P26

owns owned by−1 P127
graduatedFrom educated at P69
isAffiliatedTo member of political party P102

created notable work P800

Table 7: Relation type mapping from YAGO1830 to
Wikidata. owned by−1 denotes the inverse relation of
owns

952

B Why Not Construct ICEWS-Based953

HTKGs?954

Integrated Crisis Early Warning System (ICEWS)955

(Boschee et al., 2015) is another popular KB for956

constructing quadruple-based TKGs. Hou et al.957

(Hou et al., 2023) use ICEWS to construct an N-958

TKG, i.e., NICE. We do not use ICEWS to con-959

struct HTKGs due to the following reasons. Dif-960

ferent from Wikidata, every fact in ICEWS has961

no additional statements that can serve as quali-962

fiers. To solve this problem, Hou et al. design rule963

templates on ICEWS relations and decompose the964

relation of each ICEWS quadruple-based fact into965

several parts. For example, an ICEWS-based fact966

(Iran, express intent to provide humanitarian aid,967

Yemen, t) will be transformed into:968

(express intent to cooperate,

volunteer : Iran,

cooperation target : Yemen,

cooperation content : provide humanitarian aid, t).

969

N-TKG assumes that this transformation brings 970

auxiliary information into fact quadruples, how- 971

ever, we think the amount of additional information 972

is highly limited. This is because the transforma- 973

tion from an ICEWS-based fact quadruple into an 974

N-TKG fact does not consider any additional infor- 975

mation source other than the original quadruple. In 976

other words, the amount of information stored in 977

an ICEWS-based fact quadruple is nearly the same 978

as the amount carried by its n-tuple form. As dis- 979

cussed in previous works about HKGs, qualifiers 980

are introduced to better restrict the fact validity and 981

also increase the data expressiveness. Due to the 982

lack of additional linked statements in ICEWS, it 983

is not easy to construct meaningful HTKGs based 984

on this KB. 985

C Complexity Analysis 986

The time complexity of HypeTKG is the same as 987

most of previous GNN-based TKG approaches, 988

which is O(|T ||E| + |T ||R|), where T , E , and 989

R are the number of timestamps, entities, and re- 990

lations, respectively. Similarly, the memory com- 991

plexity is O(|E|d+ |R|d). The qualifier modeling 992

modules, though requires additional computation, 993

does not increase the time and memory complex- 994

ity as qualifiers are also composed by entities and 995

relations. As for HypeTKGψ, since it considers 996

time-invariant knowledge that introduces additional 997

entities and relations, the time complexity becomes 998

O(|T |(|E| + |ETI|) + |T |(|R| + |RTI|)) and the 999

memory complexity is O((|E|+ |ETI|)d+ (|R|+ 1000

|RTI|)d). |ETI| and |RTI| are the numbers of intro- 1001

duced new entities and relations in time-invariant 1002

facts, respectively. 1003

D Evaluation Metrics Details 1004

MRR computes the mean of the reciprocal ranks 1005

for all test queries: 1
2Ntest

∑
que

1
θque

, where θque de- 1006

notes the rank of the ground truth missing entity in 1007

the test query que. Note that for each fact in the 1008

test set, we derive two LP queries for both subject 1009

and object entity prediction, and therefore, the to- 1010

tal number of test queries is 2Ntest. Hits@1/3/10 1011

denotes the proportion of the test queries where 1012

ground truth entities are ranked as top 1/3/10. 1013

E Complex Vector Mapping Details 1014

hC
e′qi

∈ C
d
2 and hC

r′qi
∈ C

d
2 are the complex vec- 1015

tors mapped from he′qi
and hr′qi

. The real part of 1016
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hC
e′qi

is the first half of he′qi and the imaginary part1017

is the second half, e.g., if he′qi = [6, 3]⊤ ∈ R2,1018

then hC
e′qi

= [6 + 3
√
−1]⊤ ∈ C1. hC

r′qi
[j] =1019

cos(hr′qi
[j])+

√
−1 sin(hr′qi

[d2+j]), where hC
r′qi

[j]1020

and hr′qi
[d2+j] denote the jth and (d2+j)th element1021

of hC
r′qi

and hr′qi
, respectively.1022

F Implementation Details1023

We implement all the experiments of HypeTKG1024

and baselines with PyTorch (Paszke et al., 2019)1025

on an NVIDIA A40 with 48GB memory and a1026

2.6GHZ AMD EPYC 7513 32-Core Processor. For1027

HypeTKG, we set the batch size to 256 and use1028

the Adam optimizer with an initial learning rate1029

of 0.0001. We search hyperparameters following1030

Table 8. For each dataset, we do 108 trials to try dif-1031

ferent hyperparameter settings. We run 100 epochs1032

for each trial and compare their validation results.1033

We choose the setting leading to the best validation1034

result and take it as the best hyperparameter setting.1035

The best hyperparameter setting is also stated in1036

Table 8. Every result reported is the average result1037

of five runs with different random seeds. The error1038

bars are relatively small and are omitted. We report1039

the total training time of our model until it reaches1040

maximum performance in Table 9. We also specify1041

the GPU memory usage (Table 10) and number of1042

parameters (Table 11).

Hyperparameter Search Space

# Layers of Aggregation in QATGE {1, 2}
Embedding Size {100, 200, 300}
γ Initialization {0.1, 0.2, 0.3}
β Initialization {0.1, 0.2, 0.3}

Table 8: Hyperparameter searching strategy. Optimal
hyperparameters are marked in bold. The best hyperpa-
rameter settings of both datasets are the same.

Datasets YAGO-hy Wiki-hy

Model Training Time Training Time

HypeTKG 37.53 48.32

HypeTKGψ 40.06 51.72

Table 9: Training time.

1043

For baselines, we use the official open-sourced1044

implementations of the following baseline meth-1045

Datasets YAGO-hy Wiki-hy

Model GPU Memory GPU Memory

HypeTKG 9,514MB 30,858MB

HypeTKGψ 15,422MB 43,976MB

Table 10: GPU memory usage.

Datasets YAGO-hy Wiki-hy

Model # Param # Param

HypeTKG 10,830,222 11,028,690

HypeTKGψ 13,075,246 13,274,314

Table 11: Number of parameters.

ods, i.e., DE-SimplE7, TeRo8, T-GAP9, BoxTE10, 1046

TARGCN11, TeAST12, HGE13, HINGE14, HypE15, 1047

StarE16, GRAN17, HyConvE18, ShrinkE19 and 1048

HyNT20. For NaLP-Fix, we use its faster imple- 1049

mentation in the repository of HINGE. We use the 1050

default hyperparameters of all baselines for HTKG 1051

LP. 1052

G Expanded Size Figures of Model 1053

Structure 1054

Fig. 4 shows the the expanded size of model struc- 1055

ture illustration of HypeTKGψ. 1056

H Can TI Knowledge Improve Reasoning 1057

over Traditional TKGs? 1058

To answer this question, we also enable Variant A 1059

(introduced in Sec. 5.4 Ablation Study) to use TI 1060

facts and develop Variant Aψ. Since Variant A and 1061

Aψ do not model qualifiers, letting them perform 1062

HTKG LP equals doing LP over quadruple-based 1063

traditional TKGs. We report Variant Aψ’s LP re- 1064

sults in Table 12. By comparing them with Table 1065

4, we find that our TI knowledge modeling compo- 1066

7https://github.com/BorealisAI/de-simple
8https://github.com/soledad921/ATISE
9https://github.com/jaehunjung1/T-GAP

10https://github.com/JohannesMessner/BoxTE
11https://github.com/ZifengDing/TARGCN
12https://github.com/dellixx/TeAST
13https://github.com/NacyNiko/HGE
14https://github.com/eXascaleInfolab/HINGE_code
15https://github.com/ServiceNow/HypE
16https://github.com/migalkin/StarE
17https://github.com/lrjconan/GRAN
18https://github.com/CarllllWang/HyConvE/tree/master
19https://github.com/xiongbo010/ShrinkE
20https://github.com/bdi-lab/HyNT
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(a) Qualifier-attentional time-aware graph encoder (QATGE).

(b) Qualifier matching decoder (QMD).

Figure 4: Expanded size of model structure illustration of HypeTKGψ .

nents can also effectively enhance reasoning over1067

traditional TKGs.

Datasets WiKi-hy YAGO-hy
Model MRR Hits@1 Hits@10 MRR Hits@1 Hits@10

Variant Aψ 0.660 0.587 0.791 0.818 0.797 0.855

Table 12: TKG LP results with time-invariant knowl-
edge.

1068

I Impact of Qualifier-Augmented Fact1069

Proportion.1070

To better quantify HypeTKG’s power in learning1071

qualifiers, we sample several datasets from Wiki-1072

hy and YAGO-hy with different proportions of1073

facts equipped with qualifiers. We experiment Hy-1074

peTKG and its variants on these new datasets.1075

(100)/(66/(33) Dataset Construction We take1076

Wiki-hy as example. We first pick out all the1077

facts, where each of them has at least one qual-1078

ifier, from Wiki-hy and construct Wiki-hy (100).1079

We call it Wiki-hy (100) because 100% of its facts1080

are equipped with qualifiers. Next, we keep Wiki-1081

hy (100) and randomly sample an extra number of1082

facts without any qualifier from the original Wiki- 1083

hy. We add these facts into Wiki-hy (100) until 1084

the proportion of the facts equipped with quali- 1085

fiers reaches 66%. We call this new dataset Wiki- 1086

hy (66). Similarly, we further expand Wiki-hy 1087

(66) to Wiki-hy (33). YAGO-hy (100)/(66)/(33) 1088

follows the same policy. During the process of 1089

sampling extra quadruple-based facts, we put each 1090

sampled fact to the same set where it comes from. 1091

For example, when we construct Wiki-hy (66), 1092

we keep Wiki-hy (100) unchanged and further 1093

sample quadruple-based facts from Wiki-hy. If 1094

a fact is sampled from the training set of Wiki-hy, 1095

then it will be put into the training set of Wiki- 1096

hy (66). For YAGO-hy, we construct YAGO-hy 1097

(100)/(66)/(33) in the same way. We keep the 1098

data example proportions of train/valid/test sets in 1099

Wiki-hy (100)/(66)/(33) same as the ones in Wiki- 1100

hy. YAGO-hy (100)/(66)/(33) follows the same 1101

policy. Table 13 shows the dataset statistics of 1102

(100)/(66)/(33) datasets used to study the impact 1103

of qualifier-augmented fact proportion. As more 1104

quadruple-based facts are added, e.g. from (100) to 1105

(66), |Epri|/|Rpri| grows and some entities/relations 1106

only existed in qualifiers will appear in primary 1107
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quadruples, leading to smaller |EQual|/|RQual|. This1108

does not mean that (100)/(66)/(33) datasets share1109

different pools of qualifier-augmented facts. Note1110

that the proportions of facts with at least one qual-1111

ifier in the original Wiki-hy and YAGO-hy are1112

9.59% and 6.98% (Table 1), respectively, which1113

are much smaller than 33%.

Dataset Ntrain Nvalid Ntest |Epri| |EQual| |Rpri| |RQual| |T |

Wiki-hy(100) 21, 210 2, 764 2, 696 3, 392 1, 648 25 49 507
Wiki-hy(66) 31, 815 4, 146 4, 044 8, 786 1, 643 58 47 507
Wiki-hy(33) 63, 630 8, 292 8, 088 10, 656 1, 642 72 46 507

YAGO-hy(100) 7, 232 1, 530 1, 452 1, 739 414 9 33 187
YAGO-hy(66) 10, 848 2, 295 2, 178 4, 844 392 10 33 188
YAGO-hy(33) 21, 696 4, 590 4, 356 7, 339 378 10 33 188

Table 13: (100)/(66)/(33) dataset statistics.

1114

Experiments We report the performance of Hy-1115

peTKG and its first three variants on all created1116

datasets in Table 14 and 15. Regardless of the1117

proportion of qualifier-augmented facts, we have1118

two findings: (1) HypeTKG and Variant B & C1119

benefit from qualifiers on all datasets, confirming1120

the importance of learning qualifiers for reason-1121

ing hyper-relational temporal facts. (2) Variant1122

B & C constantly underperform HypeTKG on all1123

datasets, proving the effectiveness of both qualifier1124

modeling components. Note that (100)/(66)/(33)1125

datasets have different data distributions as the orig-1126

inal datasets. Therefore, it is not meaningful to di-1127

rectly compare each model variant’s performance1128

among them (e.g., compare Variant A across Wiki-1129

hy (100)/(66)/(33)). Our findings are based on dif-1130

ferent variants’ performance on the same dataset1131

(e.g., compare Variant A, B, C and HypeTKG on1132

Wiki-hy(100)).1133

J Case Study Details1134

A: Effectiveness of Qualifier Matcher We give1135

an insight of how our qualifier matcher improves1136

HTKG reasoning with three cases (Table 5). Hy-1137

peTKG ranks the ground truth missing entities in1138

these cases as top 1 and achieves optimal predic-1139

tion. As discussed in Sec. 4.2, we learn a global1140

qualifier feature in the qualifier matcher by consid-1141

ering the contribution of all the existing qualifiers1142

related to the subject entity of the LP query. Each1143

qualifier is assigned an attention score ηl indicat-1144

ing its contribution. Note that numerous queries1145

are derived from the facts that are without any1146

qualifier. For example, in Case A1, no qualifier1147

is provided in predicting which reward did An-1148

drey Kolmogorov receive in 1941 (Case A1 and1149

A2 are taken from YAGO-hy). HypeTKG extracts 1150

all the qualifiers related to Andrey Kolmogorov 1151

from other facts in YAGO-hy and computes the 1152

global qualifier feature based on them. We find 1153

that it assigns a great attention score to the quali- 1154

fier (country of citizenship, Soviet Union) and this 1155

qualifier can directly be taken as a hint to predict 1156

the ground truth missing entity USSR State Prize 1157

since USSR is also interpreted as Soviet Union. 1158

We also find that (field of work,mathematics) is 1159

also dominant in the global qualifier feature. This 1160

is also reasonable because Andrey Kolmogorov 1161

is a mathematician and he is awarded USSR 1162

State Prize of mathematics in 1941. Compared 1163

with these two qualifiers, the last qualifier, i.e., 1164

{(country, Soviet Union)}), is not so important in 1165

prediction, and thus is assigned a low attention 1166

score by HypeTKG. Case A1 implies that to reason 1167

the facts without qualifiers, i.e., quadruple-based 1168

facts, our qualifier matcher can find the clues from 1169

the subject-related qualifiers existing in other hyper- 1170

relational facts and support prediction. In Case A2, 1171

we find that the qualifier matcher focuses more on 1172

the qualifiers from other facts but not the one from 1173

the query. Note that the query qualifiers have been 1174

explicitly modeled with a query-specific qualifier 1175

feature h
que
Qual before computing the global qualifier 1176

feature. This indicates that our qualifier matcher 1177

can maximally extract important information from 1178

the extra qualifiers rather than only focusing on 1179

the query qualifiers, enabling efficient information 1180

fusion. Case A3 is taken from Wiki-hy. Since 1181

qualifier relations and primary relations have inter- 1182

section, some extra subject-related qualifiers from 1183

other HTKG facts can directly indicate the answers 1184

to the queries. In Case A3, we observe that Hy- 1185

peTKG manages to recognize such qualifiers to 1186

improve prediction. This further proves that our 1187

qualifier matcher is able to help capture the corre- 1188

lation between qualifiers and temporal validity. To 1189

summarize, our qualifier matcher achieves reason- 1190

ing enhancement by efficiently utilizing additional 1191

information from the extra qualifiers related to the 1192

query subject. 1193

B: Effectiveness of TI Knowledge We demon- 1194

strate how TI relational knowledge enhances 1195

HTKG reasoning with two cases (Table 6). In 1196

both cases, HypeTKG achieves optimal prediction 1197

(ranks ground truth answers as top 1) by lever- 1198

aging TI knowledge, and makes mistakes with- 1199

out considering it. Case B1 is taken from Wiki- 1200
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Setting Wiki-hy (33) Wiki-hy (66) Wiki-hy (100)
Model Time Q Att Match MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

Variant A ✓ ✗ ✗ 0.499 0.420 0.624 0.522 0.457 0.622 0.629 0.562 0.739
Variant B ✓ ✗ ✓ 0.520 0.462 0.626 0.570 0.528 0.638 0.669 0.622 0.749
Variant C ✓ ✓ ✗ 0.519 0.461 0.622 0.567 0.524 0.639 0.662 0.607 0.749
HypeTKG ✓ ✓ ✓ 0.546 0.492 0.642 0.573 0.531 0.642 0.682 0.640 0.750

Table 14: Study of qualifier-augmented fact proportion on Wiki-hy.

Setting YAGO-hy (33) YAGO-hy (66) YAGO-hy (100)
Model Time Q Att Q Match MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

Variant A ✓ ✗ ✗ 0.650 0.624 0.694 0.574 0.531 0.644 0.593 0.576 0.622
Variant B ✓ ✗ ✓ 0.692 0.673 0.701 0.640 0.629 0.668 0.685 0.672 0.706
Variant C ✓ ✓ ✗ 0.687 0.669 0.700 0.638 0.625 0.667 0.683 0.670 0.705
HypeTKG ✓ ✓ ✓ 0.696 0.678 0.703 0.645 0.632 0.669 0.688 0.676 0.712

Table 15: Study of qualifier-augmented fact proportion on YAGO-hy.

hy. In B1, HypeTKG predicts the false answer1201

Kingdom of Prussia without the support of TI facts.1202

However, after considering them, HypeTKG man-1203

ages to make accurate prediction because Pisa1204

should share the same official language with the1205

country that contains it. Case B2 is taken from1206

YAGO-hy. In B2, since both Tbilisi and Moscow1207

belonged to Russian Empire in 1903, it is hard1208

for HypeTKG to distinguish them during predic-1209

tion without any further information. However,1210

by knowing that Aram Khachaturian’s native lan-1211

guage is same as the official language of Tbilisi,1212

i.e., Georgian, HypeTKG can exclude the influence1213

of Moscow because people speak Russian there.1214

The presented cases illustrate how our model better1215

reasons HTKGs with TI knowledge.1216

K Related Work Details1217

Traditional KG & TKG Reasoning Extensive1218

researches have been conducted for KG reason-1219

ing. A series of works (Bordes et al., 2013; Trouil-1220

lon et al., 2016; Sun et al., 2019; Zhang et al.,1221

2019; Cao et al., 2021) designs KG score functions1222

that compute plausibility scores of triple-based KG1223

facts, while another line of works (Schlichtkrull1224

et al., 2018; Vashishth et al., 2020) incorporates1225

neural-based modules, e.g., graph neural network1226

(GNN) (Kipf and Welling, 2017), into score func-1227

tions for learning better representations. On top1228

of the existing KG score functions, some recent1229

works develop time-aware score functions (Leblay1230

and Chekol, 2018; Xu et al., 2020; Goel et al., 2020;1231

Shao et al., 2022; Messner et al., 2022; Li et al.,1232

2023; Pan et al., 2024) that further model time1233

information for reasoning over traditional TKGs. 1234

Another group of TKG reasoning methods employ 1235

neural structures. Some of them (Jin et al., 2020; 1236

Wu et al., 2020; Han et al., 2021b; Zhu et al., 2021; 1237

Li et al., 2021, 2022; Liu et al., 2023) achieve tem- 1238

poral reasoning by first learning the entity and rela- 1239

tion representations of each timestamp with GNNs 1240

and then using recurrent neural structures, e.g., 1241

LSTM (Hochreiter and Schmidhuber, 1997), to 1242

compute time-aware representations. Other meth- 1243

ods (Jung et al., 2021; Han et al., 2021a; Ding 1244

et al., 2022) develop time-aware relational graph 1245

encoders that directly perform graph aggregation 1246

based on the temporal facts sampled from differ- 1247

ent time. There are two settings in TKG LP, i.e., 1248

interpolation and extrapolation. In extrapolation, 1249

to predict a fact happening at time t, models can 1250

only observe previous TKG facts before t, while 1251

such restriction is not imposed in interpolation. 1252

Among the above mentioned works, (Leblay and 1253

Chekol, 2018; Xu et al., 2020; Goel et al., 2020; 1254

Shao et al., 2022; Messner et al., 2022; Wu et al., 1255

2020; Jung et al., 2021; Ding et al., 2022; Li et al., 1256

2023; Pan et al., 2024) are for interpolation and 1257

(Jin et al., 2020; Han et al., 2021b; Zhu et al., 2021; 1258

Li et al., 2021; Han et al., 2021a; Li et al., 2022; 1259

Liu et al., 2023) are for extrapolation. Traditional 1260

TKG reasoning methods cannot optimally reason 1261

over HTKG facts because they are unable to model 1262

qualifiers. In our work, we only focus on the inter- 1263

polated LP on HTKGs and leave extrapolation for 1264

future work. 1265

Hyper-Relational KG Reasoning Mainstream 1266

HKG reasoning methods can be categorized into 1267
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Case Query Answer Subject-Related Qualifiers Attention Score

A1 ((Andrey Kolmogorov, award received, ?, 1941), ∅) USSR State Prize
(country of citizenship, Soviet Union) 9.39e−1

(field of work,mathematics) 6.09e−2

(country, Soviet Union) 2.61e−10

A2 ((Andrey Kolmogorov, place of death, ?, 1987), Moscow
(country of citizenship, Soviet Union) 0.99

(field of work,mathematics) 1.64e−21

{(country, Soviet Union)}) (country, Soviet Union) 5.00e−22

A3 ((Wernher von Braun, academic degree, ?, 1934), ∅) Doctor of Philosophy (academic degree,Doctor of Philosophy) 0.99
(academic major, physics ) 6.00e−10

Table 16: Case study A: cases for studying qualifier matcher.

Case Query Prediction w. TI Prediction w.o. TI Related TI Facts

B1 ((Pisa, country, ?, 1860), ∅) Kingdom of Sardinia Kingdom of Prussia
(Pisa, official language, Italian)

(Kingdom of Sardinia, official language, Italian)
(Kingdom of Prussia, official language,German)

B2 ((AK, place of birth, ?, 1903), {(country,Russian Empire)}) Tbilisi Moscow (AK, native language,Georgian)
(Tbilisi, official language,Georgian)

Table 17: Case study B: cases for studying the effectiveness of TI relational knowledge. Prediction w./w.o. TI
means the prediction result with/without using time-invariant facts. AK is the abbreviation of the entity Aram
Khachaturian.

three types. The first type of works (Zhang et al.,1268

2018; Liu et al., 2020; Fatemi et al., 2020; Di1269

et al., 2021; Wang et al., 2023) treats each hyper-1270

relational fact as an n-ary fact represented with1271

an n-tuple: rabs(e1, e2, ..., en), where n is the non-1272

negative arity of an abstract relation rabs
21 repre-1273

senting the number of entities involved within rabs1274

and e1, ..., en are the entities appearing in this n-1275

ary fact. RAE (Zhang et al., 2018) generalizes1276

traditional KG reasoning method TransH (Wang1277

et al., 2014) to reasoning n-ary facts and improves1278

performance by considering the relatedness among1279

entities. Similarly, HypE (Fatemi et al., 2020) and1280

GETD (Liu et al., 2020) derive the n-ary fact rea-1281

soning models by modifying traditional KG score1282

functions SimplE (Kazemi and Poole, 2018) and1283

TuckER (Balazevic et al., 2019), respectively. S2S1284

(Di et al., 2021) improves GETD by enabling rea-1285

soning over mixed-arity facts. HyConvE (Wang1286

et al., 2023) employs convolutional neural networks1287

to perform 3D convolution capturing the deep in-1288

teractions of entities and relations. Although these1289

methods show strong effectiveness, the way of treat-1290

ing HKG facts as n-ary facts naturally loses the1291

semantics of the original KG relations and would1292

lead to a combinatorial explosion of relation types1293

(Galkin et al., 2020). The second type of works1294

(Guan et al., 2023; Liu et al., 2021) transforms1295

each hyper-relational fact into a set of key-value1296

pairs: {(ri : ei)}ni=1. NaLP (Guan et al., 2023)1297

21Abstract relation rabs is derived from a combination of
several KG relations by concatenating the relations in the
primary triple and qualifiers (Galkin et al., 2020).

captures the relatedness among all the ri : ei pairs 1298

by using neural networks. RAM (Liu et al., 2021) 1299

introduces a role learning paradigm that models 1300

both the relatedness among different entity roles as 1301

well as the role-entity compatibility. Formulating 1302

hyper-relational facts into solely key-value pairs 1303

would also cause a problem. The relations from the 1304

primary fact triples and qualifiers cannot be fully 1305

distinguished, and the semantic difference among 1306

them is ignored (Galkin et al., 2020). To overcome 1307

the problems incurred in first two types of methods, 1308

recently, some works (Guan et al., 2020; Rosso 1309

et al., 2020; Galkin et al., 2020; Wang et al., 2021; 1310

Xiong et al., 2023) formulate hyper-relational facts 1311

into a primary triple with a set of key-value qual- 1312

ifier pairs: {((s, r, o), {(rqi , eqi)}ni=1)}. NeuInfer 1313

(Guan et al., 2020) uses fully-connected neural net- 1314

works to separately model each primary triple and 1315

its qualifiers. HINGE (Rosso et al., 2020) adopts 1316

a convolutional framework that is iteratively ap- 1317

plied on the qualifiers for information fusion. StarE 1318

(Galkin et al., 2020) develops a qualifier-aware 1319

GNN which allows jointly modeling an arbitrary 1320

number of qualifiers with the primary triple rela- 1321

tion. GRAN (Wang et al., 2021) models HKGs 1322

with edge-biased fully-connected attention. It uses 1323

separate edge biases for the relations in the primary 1324

triples and qualifiers to distinguish their semantic 1325

difference. ShrinkE (Xiong et al., 2023) models 1326

each primary triple as a spatial-functional trans- 1327

formation from the primary subject to a relation- 1328

specific box and let qualifiers shrink the box to 1329

narrow down the possible answer set. 1330
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A recent work (Hou et al., 2023) proposes a new1331

type of TKG, i.e., n-tuple TKG (N-TKG), where1332

each hyper-relational fact is represented with an1333

n-tuple: (r, {ρi : ei}ni=1, t). n and t are the arity1334

and the timestamp of the fact, respectively. ρi is1335

the labeled role of the entity ei. r denotes fact1336

type. Compared with HTKG, N-TKG has limita-1337

tion: HTKGs explicitly separate primary facts with1338

additional qualifiers, while N-TKGs mix all the1339

entities from the primary facts and qualifiers and1340

are unable to fully emphasize the importance of1341

primary facts. Besides, N-TKGs pair each entity1342

with a labeled role. A large proportion of roles are1343

not directly extracted from the associated KBs and1344

are manually created depending on the fact type1345

(e.g., the proposed NICE dataset in (Hou et al.,1346

2023)). In our work, qualifiers are directly taken1347

from the Wikidata KB, which guarantees that all1348

the additional information conforms to the original1349

KB and requires no further effort of manual label-1350

ing. Another drawback of (Hou et al., 2023) is that1351

the proposed NICE N-TKG dataset in this work is1352

based on ICEWS KB. As discussed in App. B, us-1353

ing ICEWS for constructing hyper-relational KGs1354

does not fully align to the motivation of introduc-1355

ing qualifiers into traditional TKGs. Our proposed1356

HTKGs are both based on Wikidata KB, which is1357

much more meaningful. To achieve extrapolated1358

LP over N-TKGs, (Hou et al., 2023) develops a1359

model called NE-Net that jointly learns from histor-1360

ical temporal information and entity roles. NE-Net1361

performs well on N-TKG extrapolation, but it is1362

not optimal for interpolation over hyper-relational1363

facts because it is unable to encode the graph in-1364

formation after the timestamp of each LP query.1365

Our proposed HTKG reasoning model HypeTKG1366

is able to capture the temporal factual information1367

along the whole timeline of HTKGs, serving as a1368

more reasonable method for interpolated LP.1369
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