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Abstract

Universal domain adaptation aims to align the classes and reduce the feature1

gap between the same category of the source and target domains. The target2

private category is set as the unknown class during the adaptation process, as it3

is not included in the source domain. However, most existing methods overlook4

the intra-class structure within a category, especially in cases where there exists5

significant concept shift between the samples belonging to the same category. When6

samples with large concept shift are forced to be pushed together, it may negatively7

affect the adaptation performance. Moreover, from the interpretability aspect, it is8

unreasonable to align visual features with significant differences, such as fighter9

jets and civil aircraft, into the same category. Unfortunately, due to such semantic10

ambiguity and annotation cost, categories are not always classified in detail, making11

it difficult for the model to perform precise adaptation. To address these issues,12

we propose a novel Memory-Assisted Sub-Prototype Mining (MemSPM) method13

that can learn the differences between samples belonging to the same category14

and mine sub-classes when there exists significant concept shift between them.15

By doing so, our model learns a more reasonable feature space that enhances the16

transferability and reflects the inherent differences among samples annotated as17

the same category. We evaluate the effectiveness of our MemSPM method over18

multiple scenarios, including UniDA, OSDA, and PDA. Our method achieves19

state-of-the-art performance on four benchmarks in most cases.20

1 Introduction21

Unsupervised Domain Adaptation (UDA) [15, 22, 41, 44, 9, 19, 21] has become a crucial research22

area of transfer learning, as it allows models trained on a specific dataset to be applied to related but23

distinct domains. However, traditional UDA methods are limited by the assumption that the source24

and target domains have to share the same label space. This assumption is problematic in real-world25

scenarios where the target distribution is complex, open, and diverse. Universal Domain Adaptation26

(UniDA) represents a strategy to address the limitations of traditional unsupervised domain adaptation27

methods. In the UniDA, the target domain have a different label set than the source domain. The28

goal is to correctly classify target domain samples belonging to the shared classes in the source label29

set, while any samples not conforming to the source label set are treated as "unknown". The term30

"universal" characterizes UniDA as not relying on prior knowledge about the label sets of the target31

domain. UniDA relaxes the assumption of a shared class space while aims to learn domain-invariant32

features across a more broad range of domains.33

Despite being widely explored, most existing universal domain adaptation methods [24, 47, 40, 39, 6,34

34, 8, 26] overlook the internal structure intrinsically presented within each image category. These35

methods aim to align the common classes between the source and target domains for adaptation, but36
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Figure 1: Illustration of our motivation. (a) Examples of concept shift and intra-class diversity in DA
benchmarks. For the class of alarm clock, we find that digital clock, pointer clock and alarm bell
should be set in different sub-classes. For the class of airplane, we find that images containing more
than one plane, single jetliner, and turboprop aircraft should be differently treated for adaptation.
(b) Previous methods utilize one-hot labels to guide classifying without considering the intra-class
distinction. Consequently, the model forces all samples from the same class to converge towards
a single center, disregarding the diversity in the class. Our method clusters samples with large
intra-class difference into separate sub-class, providing a more accurate representation. (c) During
domain adaptation by our design, the samples in the target domain can also be aligned near the
sub-class centers with similar features rather than just the class centers determined by labels.

usually train a model to learn the class "prototype" representing each annotated category. This is37

particularly controversial when significant concept shift exists between samples belonging to the same38

category. These differences can lead to sub-optimal feature learning and adaptation if the intra-class39

structure is neglected during training. Since such kind of semantic ambiguity without fine-grained40

category labels almost happens in all the DA benchmarks, all the methods will encounter this issue.41

In this paper, we aim to propose a method to learn the detailed intra-class distinction and mine "sub-42

prototypes" for better alignment and adaptation. This kind of sub-prototype is the further subdivision43

of each category-level prototype, which represents the "sub-class" of the annotated categories. The44

main idea of our proposed approach lies in its utilization of a learnable memory structure to learn sub-45

prototypes for their corresponding sub-classes. This can optimize the construction and refinement of46

the feature space, bolstering the classifier’s ability to distinguish class-wise relationships and improve47

the model’s transferability across domains. A comparison between our proposed sub-prototypes48

mining approach and previous methods is illustrated in Figure 1. In previous methods, samples within49

a category were forced to be aligned together in the feature space regardless of whether there exist50

significant differences among them because the labels were one-hot encoded. Contrastively, our51

sub-prototypes’ feature space distinguishes sub-classes with apparent differences within the category,52

thus improving the model’s accuracy of domain adaption and interpretability.53

Our proposed approach, named memory-assisted sub-prototype mining (MemSPM), is inspired by the54

memory mechanism works [17, 10, 45, 36]. In our approach, the memory generates sub-prototypes55

that embody sub-classes learned from the source domain. During testing of the target samples,56

the encoder produces embedding that are compared to source domain sub-prototypes learned in57

the memory. Subsequently, a embedding for the query sample is generated through weighted sub-58

prototype sampling in the memory. This results in reduced domain shifts before the embedding give59

into the classifier. Our proposal of sub-prototypes mining, which are learned from the source domain60
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memory, improves the universal domain adaptation performance by promoting more refined visual61

concept alignment.62

MemSPM approach has been evaluated on four benchmark datasets (Office-31 [37], Office-Home [46],63

VisDA [33],and Domain-Net [32]), under various category shift scenarios, including PDA, OSDA,64

and UniDA. Our MemSPM method achieves state-of-the-art performance in most cases. Moreover,65

we design a visualization module for the sub-prototype learned by our memory to demonstrate the66

interpretability of MemSPM. Our contributions can be highlighted as follows:67

• We study the UniDA problem from a new aspect, which focuses on the negative impacts68

caused by overlooking the intra-class structure within a category when simply adopting69

one-hot labels.70

• We propose Memory-Assisted Sub-Prototype Mining(MemSPM), which explores the mem-71

ory mechanism to learn sub-prototypes for improving the model’s adaption performance72

and interpretability. Meanwhile, visualizations reveal the sub-prototypes stored in memory,73

which demonstrate the interpretability of MemSPM approach.74

• Extensive experiments on four benchmarks verify the superior performance of our proposed75

MemSPM compared with previous works.76

2 Related Work77

Closed-Set Domain Adaptation (CSDA). To mitigate the performance degradation caused by78

the closed-set domain shift, [16, 29, 48] introduce adversarial learning methods with the domain79

discriminator, aiming to minimize the domain gap between source and target domains. Beyond80

the use of the additional domain discriminator, some studies [41, 23, 50, 30, 13] have explored the81

use of two task-specific classifiers, otherwise referred to as bi-classifier, to implicitly achieve the82

adversarial learning. However, the previously mentioned methods for CSDA cannot be directly83

applied in scenarios involving the category shift.84

Partial Domain Adaptation (PDA). PDA posits that private classes are exclusive to the source85

domain. Representative PDA methods, such as those discussed in [3, 49], employ domain discrimi-86

nators with weight adjustments or utilize source samples based on their resemblance to the target87

domain [5]. Methods incorporating residual correction blocks in PDA have been introduced by Li et88

al. and Liang et al. [25, 27]. Other research [7, 11, 38] explores the use of Reinforcement Learning89

for source data selection within the context of PDA.90

Open-Set Domain Adaptation (OSDA). Saito et al. [42] developed a classifier inclusive of an91

additional ’unknown’ class intended to differentiate categories unique to the target domain. Liu et al.92

[28] and Shermin et al. [43] propose assigning individual weights to each sample depending on their93

importance during domain adaptation. Jang et al. [20] strive to align the source and target-known94

distributions, while concurrently distinguishing the target-unknown distribution within the feature95

alignment process. The above PDA and OSDA methods are limited to specific category shift.96

Universal Domain Adaptation (UniDA) You et al. [47] proposed Universal Adaptation Network97

(UAN) to deal with the UniDA setting that the label set of target domain is unknown. Li et al.98

[24] proposed Domain Consensus Clustering to differentiate the private classes rather than treat the99

unknow classes as one class. Saito et al. [40] suggested that using the minimum inter-class distance in100

the source domain as a threshold can be an effective approach for distinguishing between “known” and101

“unknown” samples in the target domain. However, most existing methods [24, 47, 40, 39, 6, 34, 8, 26]102

overlook the intra-class distinction within one category, especially in cases where there exists103

significant concept shift between the samples belonging to the same category.104

3 Proposed Methods105

3.1 Preliminaries106

In unsupervised domain adaptation, we are provided with labeled source samples Ds = {xs
i , y

s
i )}n

s

i=1107

and unlabeled target samples Dt = {(xt
i)}n

t

i=1. As the label set for each domain in UniDA setting108

may not be identical, we use Cs and Ct to represent label sets for the two domains, respectively.109
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Figure 2: Our model first utilizes a fixed pre-trained model as the encoder to extract input-oriented
embedding given an input sample. The extracted input-oriented embedding is then compared with
sub-prototypes learned in memory to find the closest K. These K are then weighted-averaged into a
task-oriented embedding to represent the input, and used for learning downstream tasks. During the
UniDA process, we adopt the cycle-consistent matching method on the task-oriented embedding Ẑ
generated from the memory. Moreover, a decoder is designed to reconstruct the image, allowing for
visualizing of the sub-prototypes in memory and verifying of the effectiveness of sub-class learning.

Then, we denote C = Cs ∩ Ct as the common label set. Ĉs, Ĉt are denoted as the private label sets110

of the source domain and target domain, respectively. We aim to train a model on Ds and Dt to111

classify target samples into |C|+ 1 classes, where private samples are treated as unknown class.112

Our method aims to address the issue of intra-class concept shift that often exists within the labeled113

categories in most datasets, which is overlooked by previous methods. Our method enables the114

model to learn an adaptive feature space that better aligns fine-grained sub-class concepts, taking115

into account the diversity present within each category. Let X denotes the input query, Z denotes the116

embedding extracted by the encoder, L denotes the data labels, Ẑ denotes the embedding obtained117

from the memory, X̂ denotes the visualization of the memory, L̂ denotes the prediction of the input118

query, and the K denotes the top-K relevant sub-prototypes, respectively. The overall pipeline is119

presented in Figure 2. More details will be described in the following sub-sections.120

3.2 Input-Oriented Embedding vs. Task-Oriented Embedding121

Usually, the image feature extracted by a visual encoder is directly used for learning downstream tasks.122

We call this kind of feature as input-oriented embedding. However, it heavily relys on the original123

image content. Since different samples of the same category always varies significantly in their visual124

features, categorization based on the input-oriented embedding sometimes is unattainable. In our125

pipeline, we simply adopt a CLIP-based[35] pre-trained visual encoder to extract the input-oriented126

embeddings, which is not directly used for learning our downstream task.127

In our MemSPM, we propose to generate task-oriented embedding, which is obtained by serving128

input-oriented embedding as a query to retrieve the sub-prototypes from our memory unit. We define129

ffixed
encode(·) : X → Z to represent the fixed pre-trained encoder and fUniDA

class (·) : Ẑ → L̂ to represent130

the UniDA classifier. The input-oriented embedding Z is used to retrieve the relevant sub-prototypes131

from the memory. The task-oriented embedding Ẑ is obtained using the retrieved sub-prototypes for132

classification tasks. In conventional ways, Ẑ = Z, which means the Ẑ is obtained directly from Z.133

Our method obtains the Ẑ by retrieving the sub-prototypes from the memory, which differenciates Ẑ134

with Z, and eliminates the domain-specific information from the target domain during the testing135

phase. As a result, it improves the performance of fUniDA
class (·) when performing UniDA.136

3.3 Memory-Assisted Sub-Prototype Mining137

The memory module proposed in MemSPM consists of two key components: a memory unit138

responsible for learning sub-prototypes, and an attention-based addressing [18] operator to obtain139

better task-oriented representation Ẑ for the query, which is more domain-invariant.140
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3.3.1 Memory Structure with Partitioned Sub-Prototype141

The memory in MemSPM is represented as a matrix, denoted by M ∈ RN×S×D, where N indicates142

the number of memory items stored, S refers to the number of sub-prototypes partitioned in each143

memory item, and D represents the dimension of each sub-prototype. For convenience, we assume D144

is the same to the dimension of Z ∈ RC ( RD=RC ). Let the vector mi,j , ∀i ∈ [N ] denote the i-th row145

of M , where [N ] denotes the set of integers from 1 to N , ∀j ∈ [S] denote the j-th sub-prototype of146

M items, where [S] denotes the set of integers from 1 to S. Each mi denotes a memory item. Given a147

embedding Z ∈ RD, the memory module obtains Ẑ through a soft addressing vector W ∈ R1×1×N148

as follows:149

Ẑ = W ·M = ΣN
i=1wi,j=si ·mi,j=si , (1)

150
wi,j=si = argmax(wi,j , dim = 1), (2)

where W is a vector with non-negative entries that indicate the max attention weight of each item’s151

sub-prototype, si denotes the index of the sub-prototype in the i-th item and wi,j=si denotes the152

i, j = si-th entry of W . The hyperparameter N determines the maximum capacity for memory items153

and the hyper-parameter S defines the number of sub-prototypes in each memory item. The effect of154

different setting of hyper-parameters is evaluated in Section 4.155

3.3.2 Sub-Prototype Addressing and Retrieving156

In MemSPM, the memory M is designed to learn the sub-prototypes to represent the input-oriented157

embedding Z. We define the memory as a content addressable memory [17, 10, 45, 36] that allows158

for direct referencing of the content of the memory being matched. The sub-prototype is retrieved by159

attention weights W which are computed based on the similarity between the sub-prototypes in the160

memory items and the input-oriented embedding Z. To calculate the weight wi,j , we use a softmax161

operation:162

wi,j =
exp(d(z,mi,j))

ΣN
n=1Σ

S
s=1 exp(d(z,mn,s))

, (3)

where d(·, ·) denotes cosine similarity measurement. As indicated by Eq. 1 and 3, the memory163

module retrieves the sub-prototype that is most similar to Z from each memory item in order to164

obtain the new representation embedding Ẑ. As a consequence of utilizing the adaptive threshold165

addressing technique(Section 3.3.3), only the K can be utilized to obtain a task-oriented embedding166

Ẑ, that serves to represent the encoded embedding Z.167

3.3.3 Adaptive Threshold Technique for More Efficient Memory168

Limiting the amount of sub-prototypes retrieved can enhance memory utilization and avoid negative169

impacts on unrelated sub-prototypes during model parameter updates. Despite the natural reduction170

in the number of selected memory items, the attention-based addressing mechanism may still lead to171

the combination of small attention weight items into the output embedding Ẑ, which have negative172

impact on the classifier and sub-prototypes in the memory. Therefore, it is necessary to impose a173

mandatory quantity limit on the amount of the relevant sub-prototypes retrieved. To address this174

issue, we apply a adaptive threshold operation to restrict the amount of sub-prototypes retrieved in a175

forward process.176

ŵi,j=si =

{
wi,j=si , wi,j=si > λ

0, other
(4)

where ŵi,j=si denotes the i, j = si-th entry of ŵ, the λ denotes the adaptive threshold:177

λ = argmin(topk(w)). (5)

Directly implementing the backward for the discontinuous function in Eq. 4 is not a easy task. For178

simplicity, we use the method [17]that rewrites the operation using the continuous ReLU activation179

function as:180
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ŵi,j=si =
max(wi,j=si − λ) · wi,j=si

|wi,j=si − λ|+ ϵ
, (6)

where max(·, 0) is commonly referred to as the ReLU activation function, and ϵ is a small positive181

scalar. The prototype Ẑ will be obtained by Ẑ = Ŵ · M . The adaptive threshold addressing182

encourages the model to represent embedding Z using fewer but more relevant sub-prototypes,183

leading to learning more effective feature in memory and reducing the impact on irrelevant sub-184

prototypes.185

3.4 Visualization and Interpretability186

We denote funfixed
decode (·) : Ẑ → X̂ to represent the decoder. The decoder is trained to visualize187

what has been learned in the memory by taking the retrieved sub-prototype as input. From an188

interpretability perspective, each encoded embedding Z calculates the cosine similarity to find the189

top-K fitting sub-prototype representation for the given input-oriented embedding. Then, these190

sub-prototypes are combined to represent the Z in Ẑ. The sub-prototype in this process can be191

regarded as the visual description for the input embedding Z. In other word, the input image is192

much like the sub-classes represented by these sub-prototypes. In this way, samples with significant193

intra-class differences will be matched to different sub-prototypes, thereby distinguishing different194

sub-classes. The use of a reconstruction auxiliary task can visualize the sub-prototypes in memory195

to confirm whether our approach has learned intra-class differences for the annotated category. The196

results of this visualization are demonstrated in Figure 3.197

3.5 Cycle-Consistent Alignment and Adaption198

Once the sub-prototypes are mined through memory learning, the method of cycle-consistent match-199

ing, inspired by DCC [24], is employed to align the embedding Ẑ. The cycle-consistent matching200

is preferred due to it can provides a better fit to the memory structure compared to other UniDA201

methods. The other method, One-vs-All Network (OVANet), proposed by Saito et al. [40], needs202

to train the memory multiple times, which can lead to a significant computational overhead. In203

brief, the Cycle-Consistent Alignment provides a solution by iteratively learning a consensus set of204

clusters between the two domains. The consensus clusters are identified based on the similarity of the205

prototypes, which is measured using a similarity metric. The similarity metric is calculated on the206

feature representations of the prototypes. For unknown classes, we set the size N of our memory207

during the initial phase to be larger than the number of possible sub-classes that may be learned in the208

source domain. This size is a hyperparameter that is adjusted based on the dataset size. Redundant209

sub-prototypes are invoked to represent the Ẑ, when encountering unknown classes, allowing for an210

improved distance separation between unknown and known classes in the feature space.211

Training Objective. The adaptation loss in our training is similar to that of DCC, as LDA:212

LDA = Lce + λ1Lcdd + λ2Lreg , (7)

where the Lce denotes the cross-entropy loss on source samples, Lcdd denotes the domain alignment213

loss and Lreg denotes the regularizer. For the auxiliary reconstruction task, we add a mean-squared-214

error (MSE) loss function, denoted as Lrec. Thus, the model is optimized with:215

L = LDA + λ3Lrec = Lce + λ1Lcdd + λ2Lreg + λ3Lrec. (8)

4 Experiments216

4.1 Datasets and Evaluation Metrics217

We first conduct the experiments in the UniDA setting [47] where private classes exist in both218

domains. Moreover, we also evaluate our approach on two other sub-cases, namely Open-Set Domain219

Adaptation (OSDA) and Partial Domain Adaptation (PDA).220

Datasets. Our experiments are conducted on four datasets: Office-31 [37], which con-221

tains 4652 images from three domains (DSLR, Amazon, and Webcam); OfficeHome222
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Table 2: H-score (%) comparison in UniDA scenario on DomainNet, VisDA and Office-31,some
results are cited from [24, 34]

Method Backbone
DomainNet VisDA Office-31

P2R P2S R2P R2S S2P S2R Avg S2R A2D A2W D2A D2W W2A W2D Avg
UAN [47]

ResNet50

41.9 39.1 43.6 38.7 38.9 43.7 41.0 34.8 59.7 58.6 60.1 70.6 60.3 71.4 63.5
CMU [14] 50.8 45.1 52.2 45.6 44.8 51.0 48.3 32.9 68.1 67.3 71.4 79.3 72.2 80.4 73.1
DCC [24] 56.9 43.7 50.3 43.3 44.9 56.2 49.2 43.0 88.5 78.5 70.2 79.3 75.9 88.6 80.2

OVANet [40] 56.0 47.1 51.7 44.9 47.4 57.2 50.7 53.1 85.8 79.4 80.1 95.4 84.0 94.3 86.5
UMAD [26] 59.0 44.3 50.1 42.1 32.0 55.3 47.1 58.3 79.1 77.4 87.4 90.7 90.4 97.2 87.0
GATE [8] 57.4 48.7 52.8 47.6 49.5 56.3 52.1 56.4 87.7 81.6 84.2 94.8 83.4 94.1 87.6
UniOT [6] 59.3 47.8 51.8 46.8 48.3 58.3 52.0 57.3 83.7 85.3 71.4 91.2 70.9 90.84 82.2
GLC [34] 63.3 50.5 54.9 50.9 49.6 61.3 55.1 73.1 81.5 84.5 89.8 90.4 88.4 92.3 87.8
GLC [34]

ViT-B/16
51.2 44.5 55.6 43.1 47.0 39.1 46.8 80.3 80.5 80.4 77.5 95.6 77.7 96.9 84.8

DCC [24] 61.1 38.8 51.8 49.3 49.1 60.3 52.2 61.2 82.2 76.9 83.6 75.2 85.8 88.7 82.1
MemSPM+DCC 62.4 52.8 58.5 53.3 50.4 62.6 56.7 79.3 88.0 84.6 88.7 87.6 87.9 94.3 88.5

Table 3: H-score (%) comparison in UniDA scenario on Office-Home, some results are cited from
[24, 34]

Method Backbone
Office-Home

Ar2Cl Ar2Pr Ar2Rw Cl2Ar Cl2Pr Cl2Rw Pr2Ar Pr2Cl Pr2Rw Rw2Ar Rw2Cl Rw2Pr Avg
UAN [47]

ResNet50

51.6 51.7 54.3 61.7 57.6 61.9 50.4 47.6 61.5 62.9 52.6 65.2 56.6
CMU [14] 56.0 56.9 59.2 67.0 64.3 67.8 54.7 51.1 66.4 68.2 57.9 69.7 61.6
DCC [24] 58.0 54.1 58.0 74.6 70.6 77.5 64.3 73.6 74.9 81.0 75.1 80.4 70.2

OVANet [40] 62.8 75.6 78.6 70.7 68.8 75.0 71.3 58.6 80.5 76.1 64.1 78.9 71.8
UMAD [26] 61.1 76.3 82.7 70.7 67.7 75.7 64.4 55.7 76.3 73.2 60.4 77.2 70.1
GATE [8] 63.8 75.9 81.4 74.0 72.1 79.8 74.7 70.3 82.7 79.1 71.5 81.7 75.6
UniOT [6] 67.2 80.5 86.0 73.5 77.3 84.3 75.5 63.3 86.0 77.8 65.4 81.9 76.6
GLC [34] 64.3 78.2 89.8 63.1 81.7 89.1 77.6 54.2 88.9 80.7 54.2 85.9 75.6
GLC [34]

ViT-B/16
68.5 89.8 91.0 82.4 88.1 89.4 82.1 69.7 88.2 82.4 70.9 88.9 82.6

DCC [24] 62.6 88.7 87.4 63.3 68.5 79.3 67.9 63.8 82.4 70.7 69.8 87.5 74.4
MemSPM+DCC 78.1 90.3 90.7 81.9 90.5 88.3 79.2 77.4 87.8 78.8 76.2 91.6 84.2

[46], a more difficult dataset consisting of 15500 images across 65 categories and 4223

domains (Artistic images, Clip-Art images, Product images, and Real-World images);224

Table 1: The division on label set,
Common Class (C) / Source-Private
Class (Ĉs) / Target Private Class (Ĉt).

Dataset Class Split(C/Ĉs/Ĉt)
PDA OSDA UniDA

Office-31 10 / 21 / 0 10 / 0 / 11 10 / 10 / 11
OfficeHome 25 / 40 / 0 25 / 0 / 40 10 / 5 / 50

VisDA 6 / 6 / 0 6 / 0 / 6 6 / 3 / 3
DomainNet —— —— 150 / 50 / 145

VisDA [33], a large-scale dataset with a synthetic source do-225

main of 15K images and a real-world target domain of 5K226

images; and DomainNet [32], the largest domain adaptation227

dataset with approximately 600,000 images. Similar to pre-228

vious studies [14], we evaluate our model on three subsets of229

DomainNet (Painting, Real, and Sketch).230

As in previous work [24, 41, 2, 4, 47], we divide the label set231

into three groups: common classes C, source-private classes232

Ĉs, and target-private classes Ĉt. The separation of classes233

for each of the four datasets is shown in Table 1 and is determined according to alphabetical order.234

Evaluation Metrics. We report the averaged results of three runs. For the PDA scenario, we235

calculate the classification accuracy over all target samples. The usual metrics adopted to evaluate236

OSDA are the average class accuracy over the known classes OS∗, and the accuracy of the unknown237

class UNK. In the OSDA and UniDA scenarios, we consider the balance between “known” and238

“unknown” categories and report the H-score [1]:239

H-score = 2× OS∗ × UNK

OS∗ + UNK
, (9)

which is the harmonic mean of the accuracy of “known” and “unknown” samples.240

Implementation Details. Our implementation is based on PyTorch [31]. We use ViT-B/16 [12] as241

the backbone pretrained by CLIP [35] for the MemSPM is hard to train with a randomly initialized242

encoder. The classifier consists of two fully-connected layers, which follows the previous design243

[4, 47, 41, 14, 24]. The weights in the L are empirically set as λ1 = 0.1, λ2 = 3 and λ3 = 0.5 fellow244

DCC [24]. For a fair comparison, we also adopt ViT-B/16 as backbone for DCC [24] and state-of-245

art method GLC [34]. We use the official code of DCC [24] (https://github.com/Solacex/246

Domain-Consensus-Clustering) and GLC [34] (https://github.com/ispc-lab/GLC).247
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Table 4: H-score (%) comparison in OSDA scenario on Office-Home, VisDA and Office-31, some
results are cited from [24, 34]

Method Backbone
Office-Home Office-31 VisDA

Ar2Cl Ar2Pr Ar2Rw Cl2Ar Cl2Pr Cl2Rw Pr2Ar Pr2Cl Pr2Rw Rw2Ar Rw2Cl Rw2Pr Avg Avg Avg
OSBP [41]

ResNet50

55.1 65.2 72.9 64.3 64.7 70.6 63.2 53.2 73.9 66.7 54.5 72.3 64.7 83.7 52.3
CMU [14] 55.0 57.0 59.0 59.3 58.2 60.6 59.2 51.3 61.2 61.9 53.5 55.3 57.6 65.2 54.2
DCC [24] 56.1 67.5 66.7 49.6 66.5 64.0 55.8 53.0 70.5 61.6 57.2 71.9 61.7 72.7 59.6

OVANet [40] 58.6 66.3 69.9 62.0 65.2 68.6 59.8 53.4 69.3 68.7 59.6 66.7 64.0 91.7 66.1
UMAD [26] 59.2 71.8 76.6 63.5 69.0 71.9 62.5 54.6 72.8 66.5 57.9 70.7 66.4 89.8 66.8
GATE [8] 63.8 70.5 75.8 66.4 67.9 71.7 67.3 61.5 76.0 70.4 61.8 75.1 69.0 89.5 70.8
ROS [6] 60.1 69.3 76.5 58.9 65.2 68.6 60.6 56.3 74.4 68.8 60.4 75.7 66.2 85.9 66.5

GLC [34] 65.3 74.2 79.0 60.4 71.6 74.7 63.7 63.2 75.8 67.1 64.3 77.8 69.8 89.0 72.5
GLC [34]

ViT-B/16
68.4 81.7 84.5 76.0 82.4 83.8 69.9 59.6 84.6 73.3 66.8 83.9 76.2 90.1 81.6

DCC [24] 62.9 73.3 78.4 49.8 69.2 75.0 59.3 61.5 80.9 68.1 62.5 80.0 68.4 81.9 66.2
MemSPM+DCC 69.7 83.2 85.2 72.0 79.2 81.2 72.3 66.7 85.2 72.7 66.0 84.5 76.5 95.6 79.7

Table 5: H-score (%) comparison in PDA scenario on Office-Home, VisDA and Office-31, some
results are cited from [24, 34]

Method Backbone
Office-Home Office-31 VisDA

Ar2Cl Ar2Pr Ar2Rw Cl2Ar Cl2Pr Cl2Rw Pr2Ar Pr2Cl Pr2Rw Rw2Ar Rw2Cl Rw2Pr Avg Avg Avg
ETN [5]

ResNet50

59.2 77.0 79.5 62.9 65.7 75.0 68.3 55.4 84.4 75.7 57.7 84.5 70.4 96.7 59.8
BA3US [27] 60.6 83.2 88.4 71.8 72.8 83.4 75.5 61.6 86.5 79.3 62.8 86.1 76.0 97.8 54.9

DCC [24] 54.2 47.5 57.5 83.8 71.6 86.2 63.7 65.0 75.2 85.5 78.2 82.6 70.9 93.3 72.4
OVANet [40] 34.1 54.6 72.1 42.4 47.3 55.9 38.2 26.2 61.7 56.7 35.8 68.9 49.5 74.6 34.3
UMAD [26] 51.2 66.5 79.2 63.1 62.9 68.2 63.3 56.4 75.9 74.5 55.9 78.3 66.3 89.5 68.5
GATE [8] 55.8 75.9 85.3 73.6 70.2 83.0 72.1 59.5 84.7 79.6 63.9 83.8 74.0 93.7 75.6
GLC [34] 55.9 79.0 87.5 72.5 71.8 82.7 74.9 41.7 82.4 77.3 60.4 84.3 72.5 94.1 76.2
GLC [34]

ViT-B/16
63.2 80.7 86.5 76.0 77.9 84.1 74.5 56.8 84.7 79.8 57.4 83.0 75.4 91.5 86.2

DCC [24] 59.4 78.8 83.2 61.95 78.6 79.3 64.2 44.4 82.9 76.5 70.7 84.6 72.1 93.7 79.8
MemSPM+DCC 64.7 81.1 84.5 74.8 74.7 77.5 58.7 60.3 84.2 70.3 77.2 85.8 74.5 94.4 87.9

4.2 Comparison with State-of-The-Arts248

We compare our method with previous state-of-the-art algorithms in three sub-cases of unsupervised249

domain adaptation, namely, object-specific domain adaptation (OSDA), partial domain adaptation250

(PDA), and universal domain adaptation (UniDA). In UniDA, we compare our method to previous251

universal domain adaptation approaches, which do not take into account the prior that private classes252

exist only in either the source domain (PDA) or the target domain (OSDA). Additionally, we compare253

our method to the OSDA and PDA baselines that consider the prior information unique to each254

sub-case.255

Results on UniDA. In the most challenging setting, i.e. UniDA, our MemSPM approach achieves256

the state-of-the-art performance. Table 2 shows the results on DomainNet, VisDA and Office-31,257

and result of Office-Home is summarized in Table 3. We mainly compare with GLC and DCC using258

ViT-B/16 as backbone. On Office-31, the MemSPM+DCC outperform previous state-of-art method259

GLC by 3.7% and surpasses the DCC by 6.4%. On visda, our method surpasses the DCC by a huge260

margin of 16.1%. Our method also surpasses the GLC by 9.9% and the DCC by 4.5% on DomainNet.261

On the Office-Home, we surpasses the DCC by 9.8% and the GLC by 3.7%.262

Results on OSDA and PDA. In table 4 and table 5, we present the results on Office-Home, Office-31263

and VisDA under OSDA and PDA scenarios. In the OSDA scenario, MemSPM+DCC still achieves264

state-of-the-art performance. Specifically, MemSPM+DCC obtains 95.6% H-score on Office-31,265

with an improvement of 5.5% compared to GLC and 13.7% compared to DCC. In the PDA scenario,266

MemSPM still achieves comparable performance compared to methods tailored for PDA. The267

MemSPM+DCC surpasses the DCC by 8.1% on the VisDA.268

4.3 Ablation Studies269

Visualization with Reconstruction and tSNE We first visualize what the memory learns from Office-270

Home by sampling a single sub-prototype and adapting an auxiliary reconstruction task: X → X̂ . We271

also provide the tSNE of the Ẑ which retrieving the most related sub-prototypes. The visualization is272

shown in Figure 3. The tSNE visualization depicts the distribution of sub-classes within each category,273

indicative of MemSPM’s successful mining of sub-prototypes. The reconstruction visualization shows274

what have been learned by MemSPM, demonstrating its ability to capture intra-class diversity.275
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Figure 3: (a) The tSNE visualization shows the feature space of the sub-classes belonging to the each
category, which demonstrate the MemSPM mining the sub-prototypes successfully. (b) The results of
different values of S and N . (c) The reconstruction visualization shows what have been learned in
the memory, which demonstrate the intra-class diversity have been learned by MemSPM.

Effect of Memory-Assisted Sub-Prototype Mining. As the results shown in table 2, table 3, table 4276

and table 5, the MemSPM+DCC evaluted on four benchmarks has surpassed the DCC on UniDA,277

OSDA and PDA scenarios. The MemSPM can significantly improve the performance of the DCC278

when using ViT-B/16 as backbone. The reason for utilizing the ViT-B/16 is that the memory module279

of the MemSPM with huge latent space is initialized by randomly normal distribution, which make it280

hard to retrieve the different sub-prototypes at early stages of training. So, we need ViT as backbone,281

which have learned a more global feature space.282

Sensitivity to Hyper-parameters. We conducted experiments on the VisDA dataset under the UniDA283

setting to demonstrate the impact of hyperparameters S and N on the performance of our method.284

The impact of S are shown in Figure 3. When S ≥ 20, the performance achieve a comparable level.285

At the same time, the performance of the model is not sensitive to the value of N , when S = 30.286

5 Conclusion287

In this paper, we propose the Memory-Assisted Sub-Prototype Mining (MemSPM) method, which can288

learn the intra-class diversity by mining the sub-prototypes to represent the sub-classes. Compared289

with the previous methods, which overlook the intra-class structure by using one-hot label, our Mem-290

SPM can learn the class feature from a more subdivided sub-class perspective to improve adaptation291

performance. At the same time, the visualization of the tSNE and reconstruction demonstrates the292

sub-prototypes have been well learned as we expected. Our MemSPM method exhibits superior293

performance in most cases compared with previous state-of-the-art methods on four benchmarks.294
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