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ABSTRACT

Diagnosing the root cause of an anomaly in a complex interconnected system is
a pressing problem in today’s cloud services and industrial operations. We pro-
pose In-Distribution Interventions (IDI), a novel algorithm that predicts root cause
as nodes that meet two criteria: 1) Anomaly: root cause nodes should take on
anomalous values; 2) Fix: had the root cause nodes assumed usual values, the
target node would not have been anomalous. Prior methods of assessing the fix
condition rely on counterfactuals inferred from a Structural Causal Model (SCM)
trained on historical data. But since anomalies are rare and fall outside the train-
ing distribution, the fitted SCMs yield unreliable counterfactual estimates. IDI
overcomes this by relying on interventional estimates obtained by solely prob-
ing the fitted SCM at in-distribution inputs. We present a theoretical analysis
comparing and bounding the errors in assessing the fix condition using interven-
tional and counterfactual estimates. We then conduct experiments by systemat-
ically varying the SCM’s complexity to demonstrate the cases where IDI’s in-
terventional approach outperforms the counterfactual approach and vice versa.
Experiments on both synthetic and PetShop RCD benchmark datasets demon-
strate that IDI consistently identifies true root causes more accurately and ro-
bustly than nine existing state-of-the-art RCD baselines. Code will be released
at https://github.com/nlokeshiisc/IDI_release.

1 INTRODUCTION

In recent years, cloud services have become increasingly popular due to their advantages in resource
sharing, scalability, and cost efficiency (Newman, 2021). These systems consist of multiple inter-
connected nodes operating over a complex topology (Ashok et al., 2024; Hardt et al., 2024; Gu et al.,
2024). To ensure the health of cloud systems, each node continuously monitors key performance
indicators (KPIs), such as node latency, request counts, CPU utilization, and disk I/O (Meng et al.,
2020). However, given the inherent complexity of these environments, faults are inevitable. These
faults often manifest as anomalies—significant deviations from normal behavior—which are rare
but can propagate across the system, impacting neighboring nodes and potentially compromising
the entire application (Lomio et al., 2020). Timely identification of the root cause of such anomalies
is crucial to minimizing downtime and reducing operational costs. While cloud systems can detect
anomalies by identifying deviations in KPI patterns, automated root cause diagnosis (RCD) remains
a significant challenge (Chen et al., 2019a).

We define root cause as nodes that satisfy two key conditions: (1) Anomaly condition: the root
cause node exhibits anomalous behavior even while its causal parents are operating usually; and (2)
Fix condition: had the root cause nodes assumed their usual values, the anomaly at the target node
would not have occurred. While many prior RCD methods address the anomaly condition (Chen
et al., 2014; Lin et al., 2018; Liu et al., 2021; Li et al., 2022), the fix condition is often overlooked,
with some notable exceptions (Budhathoki et al., 2022b; Okati et al., 2024; Budhathoki et al., 2022a)
that assess it via counterfactuals. Counterfactual estimation relies on learning a Structural Causal
Model (SCM) (see Sec. A). Given a causal graph linking the system’s nodes, an SCM learns a set
of functional equations that model the generation of each node as a function of its causal parents
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Figure 1: This figure demonstrates how abduction errors in counterfactuals impact RCD performance. In
panel (a), an instance x shows an anomaly at the purple target node x4, with the root cause being the gold node
x1, which is affected by an abnormal intervention. Hence x1 takes OOD values, and influences its downstream
nodes also to take on OOD values. Latent exogenous nodes are shown in grey. Panel (b) illustrates the true
CF xCF(1) obtained by applying the fix. Panel (c) presents the estimated CF for the fix, using exogenous
estimates ϵ̂ – involving abduction that requires SCM evaluations in OOD regions. Finally, panel (d) shows the
interventional estimate, which uses sampled ϵ̃, yielding a resulting x̂

int(1)
4 that conforms to the usual regime.

Our theory in Sec 4 captures this rigorously.

and latent exogenous variables. Such causal graphs can be derived from inverted call graphs that are
easily available for cloud deployments Hardt et al. (2024).

A key challenge with SCMs is that they are typically trained on historical data collected under
usual operating conditions. As a result, while SCMs can produce accurate counterfactuals for
in-distribution data, they become unreliable for anomalies that lie outside the training distribu-
tion (Okati et al., 2024). Our work reveals that these reliability issues stem from the first step in
counterfactual estimation – abduction, where the functional equations in the SCM need to be in-
verted to estimate exogenous variables. Fig. 1 provides an illustration.

If the oracle values of latent exogenous variables were available, counterfactuals would be an ideal
method for RCD. In practice, however, exogenous variables are never observed and must be esti-
mated from causal mechanisms learned from observational training data. These causal mechanisms
are trained on data predominantly representing usual behavior, leading to significant estimation er-
rors in exogenous variables compared to their oracle values. To address this, we introduce IDI (In-
Distribution Interventions), which evaluates the fix condition using in-distribution interventions. A
key feature of IDI is that, when assessing the fix condition for the true root cause, it requires in-
ference of the SCM only in in-distribution regions, ensuring a robust diagnosis. Our theoretical
analysis compares IDI with counterfactual methods, demonstrating that the latter’s error scales with
the total variation distance between the usual training distribution and the rare anomalous distribu-
tion, which can be high for outliers. In contrast, IDI’s error is bounded by the standard deviation of
the latent exogenous variables. Experiments using cloud-based synthetic SCMs and a widely used
RCD benchmark dataset with known causal graph (PetShop) demonstrate that IDI achieves greater
robustness and accuracy in RCD compared to eleven baselines.

2 RELATED WORK

Several anomaly detection methods (Akoglu, 2021; Chandola et al., 2009) use an anomaly scoring
function g and a threshold τ to detect anomalies when an instance x has g(x) > τ . Our focus in
this work is on RCD, and we group existing RCD approaches into Correlation and causal methods.

Correlation Approaches. Non-causal RCD methods typically rely on correlation-based analy-
ses (Pham et al., 2024; cor, 2024; Chen et al., 2019b; Zhang et al., 1996; Chen et al., 2022; Luo
et al., 2014; Ma et al., 2020; 2019; Yu et al., 2023) to assess relationships between a candidate
root cause and the anomalous target node. Sometimes, spurious correlations make these methods
predicting nodes that are not even causal ancestors of the target, leading to misleading conclusions.

Causal Approaches. Causal methods use a causal graph G to limit root cause search to ancestors.
Some methods propose learning the graph Ĝ, and may yield better results than the Correlation ones.
In cloud deployments, it is best to leverage the easily available call graphs as learning a causal graph
from training dataset requires some strong, and untestable assumptions (Glymour et al., 2019).
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Figure 2: IDI’s pipeline: During training, we use samples Dtrn, a causal graph, and anomaly thresholds τi
to learn anomaly detectors ϕi, and structural equations fi as part of SCM training. During inference, we are
given a root cause test case. The example illustrates two nodes X1, X4 with abnormal interventions. The
edge weights indicate the strength of parent’s influence (e.g., f̂5(x2, x4) = x2 + 0.01x4). While applying the
anomaly condition, IDI discards X2 in Rcand because of its anomalous parent X1. Finally, the fix conditions
excludes X4 because it is insufficient to restore X5 to its usual value. IDI declares X1 as the root cause.

Causal Anomaly Approaches. Some methods appraoch RCD using just the anomaly condition
to identify nodes with disrupted local causal mechanisms (Chen et al., 2014; Lin et al., 2018; Liu
et al., 2021; He et al., 2022; Meng et al., 2020; Xin et al., 2023; Yang et al., 2022; Okati et al.,
2024; Yu et al., 2021; Wang et al., 2018; Li et al., 2022; Shan et al., 2019). They predict nodes xj

with low empirical sampling probabilities P trn
Xj

(xj |Paxj ) conditioned on their causal parents as root
causes. Some methods (Budhathoki et al., 2022a) attribute such abnormalities to latent exogenous
disturbances, and they aim to infer abnormalities in the latent variables ϵj . Causal Fix Approaches.
Sometimes, an abnormal ancestor may have a negligible causal effect on the target, disqualifying it
as a root cause. The fix condition becomes necessary to disregard such nodes. Prior methods assess
the fix condition via soft interventions (Jaber et al., 2020; Ikram et al., 2022), interventions (Okati
et al., 2024), and counterfactuals (Budhathoki et al., 2022b;a). SAGE (Gan et al., 2021) is a promi-
nent method in this category that leverages conditional variational autoencoders to model SCMs and
estimates counterfactuals by sampling from latent distribution predicted by the encoder. However,
in the RCD context, the encoder itself is conditioned on OOD inputs during inference. Most meth-
ods probe their trained models with OOD inputs. In contrast, our approach, IDI, aims for RCD by
probing its trained SCM on in-distribution inputs, thereby leading to a robust RCD approach.

3 PROBLEM FORMULATION

3.1 TRAINING SETUP

Our training dataset comprises the causal graph G, and a set of N samples {xi}Ni=1, where
each xi ∈ Rn. These samples are assumed to be drawn from an oracle SCM, S = (X =
{X1, . . . , Xn}, ϵ = {ϵ1, . . . , ϵn},F = {f1, . . . , fn}, P trn

ϵ ). Our training dataset Dtrn encompasses
samples that are obtained as follows from the Oracle SCM 1) sample ϵi i.i.d. from P trn

ϵ , and 2)
compute xi using the structural equations F . Thus, most of the samples in Dtrn exhibit usual be-
havior. To assess the anomaly level of each node xi ∈ x, we train a set of anomaly detectors
φ = {(g1, τ1), (g2, τ2), . . . , (gn, τn)}. Each detector φi consists of a scoring function gi : Xi 7→ R+

and an anomaly threshold τi > 0. Thus, φi(xi) = 1gi(xi)>τi is the binary indicator for xi be-
ing anomalous. These detectors can be trained unsupervised on Dtrn using algorithms such as Z-
score (Eidleman, 1995), isolation forest (Liu et al., 2008), or IT score (Budhathoki et al., 2022b).
Given a test instance x = (x1, . . . , xn) where an anomaly is detected at xn, our goal is to trace the
root cause of this anomaly to nodes in the system that caused it. We defer a detailed discussion on
Structural Causal Models (SCMs) and the process of computing counterfactuals and interventions
using SCMs to Appendix A.

3.2 QUALIFYING CRITERIA FOR ROOT CAUSE

For ease of exposition, let us assume there is a unique root cause xj , and establish the criteria that
Xj needs to meet to qualify as a root cause. First, Xj must be actionable; i.e., these must exist a fix
value xfix

j such that applying it to Xj avoids anomaly at xn. Furthermore, the abnormality at the root
cause node should not have originated from any of its ancestors; otherwise, resolving the anomaly
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at xn may also require fixing other nodes upstream of xj . More formally, a root cause should satisfy
the following two criteria:

1. Anomaly Condition: xj must be anomalous, while its parent nodes are not, i.e., φj(xj) = 1 and
φp(xp) = 0 for any parent node p ∈ PaXj .

2. Fix Condition: Setting Xj to its fix value xfix
j should have resolved the anomaly xn. This implies

the counterfactual xCF(j), obtained by intervening on Xj = xfix
j , should exhibit usual behavior at

Xn; i.e., φn(x
CF(j)
n ) = 0.

Defining the Root Cause Distribution. We define the distribution Q
RC(j)
X that governs unique root

cause samples x, where xj is the root cause of anomaly at xn. Such a distribution will have ϵ−j ,
representing all exogenous variables except ϵj , drawn from their usual distribution. Whereas, ϵj
must be sampled strong enough to induce an anomaly at both Xn, Xj .

Definition 1 We define the anomalous distribution Q
RC(j)
X for unique root cause at Xj as:

QRC(j)
ϵ (ϵ) = QRC(j)

ϵ (ϵ−j)Q
RC(j)
ϵ (ϵj |ϵ−j) (1)

These two factors are defined as:
QRC(j)

ϵ (ϵ−j) = P trn
ϵ (ϵ−j) (2)

QRC(j)
ϵ (ϵj |ϵ−j) = P trn

ϵ (ϵj |ϵ−j , φj(xj) = 1, φn (xn) = 1) (3)

We denote the distribution induced by Q
RC(j)
ϵ on the observed X through the SCM S as QRC(j)

X .

We determine the fix value xfix
j to be applied to the root cause node by sampling from the conditional

distribution P trn
X (Xj | Paxj

), reflecting how humans would naturally adjust Xj in practice. This
approach also aligns with prior research (Budhathoki et al., 2022b), which samples an exogenous fix
ϵfix
j to induce usual values in Xj as a consequence. To estimate the causal effect of propagating xfix

j

downstream to the target node Xn, we consider two approaches: the counterfactual estimate x̂
CF(j)
n

from Budhathoki et al. (2022b) and an alternative interventional estimate x̂int(j)
n that we propose. We

begin with a theoretical analysis to compare the errors associated with these two methods.

4 INTERVENTIONS VS. COUNTERFACTUALS FOR RCD

We begin with the definitions used in our theoretical analysis.

Definition 2 For two distributions P,Q defined over a space X , the total variational dis-
tance (Redko et al., 2019) between them is defined as: tvd(P,Q) = 1

2

∫
x∈X |P (x)−Q(x)|dx.

Definition 3 We say that an SCM S is an additive noise model when the structural equations are of
the form xi = fi(PaXi

) + ϵi, where fi is a deterministic function, and ϵi is the exogenous variable.

Let ˆP trn
ϵi denote the estimate for latent exogenous distribution P trn

ϵi , obtained from a validation dataset
DV . For additive noise models, ˆP trn

ϵi is simply the empirical distribution of the error residuals xi −
f̂i(Paxi

) computed for each x ∈ DV . We need to use validation set to avoid the overfitting bias in
estimation, that otherwise arises from using the train set (Chernozhukov et al., 2018).

Definition 4 Consider an additive noise model S , and let Ŝ be its estimate learned from training
data (Dtrn,G). For a fix xfix

j applied to the node Xj , let xCF(j) be the true counterfactual from S,
and x̂CF(j), x̂int(j) be the estimated counterfactual and intervention from Ŝ. Then, the following
equations show how these quantities are derived:

x
CF(j)
j+1 = fj+1(x

fix
j ) + ϵj+1 where ϵj+1 = xj+1 − fj+1(xj) (4)

x̂
CF(j)
j+1 = f̂j+1(x

fix
j ) + ϵ̂j+1 where ϵ̂j+1 = xj+1 − f̂j+1(xj) (5)

x̂
int(j)
j+1 = f̂j+1(x

fix
j ) + ϵ̃j+1 where ϵ̃j+1 ∼ P̂ϵj+1 (6)

This procedure iterates for j + 2, . . . , n in a topological order.
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Since assessing the fix relies on φn(x
CF(j)
n ), we bound the error incurred in estimating the true xCF(j)

n

derived from the Oracle SCM S using x̂
CF(j)
n from a fitted SCM Ŝ.

Theorem 5 Suppose the oracle SCM S is an additive noise model over a chain graph G = X1 →
· · · → Xn, with structural equations of the form fi(xi−1) + ϵi, where each ϵi has bounded vari-
ance σ2, and each function fi is K-Lipschitz. Consider the hypothesis class H = {Hi}ni=1, where
each Hi comprises bounded K-Lipschitz functions, resulting in losses bouned by M > 0. Let
Ŝ be the SCM fitted on training data Dtrn, with estimated functions {f̂i}ni=1. Then, for test sam-
ples x drawn from the root cause distribution Q

RC(j)
X , with Xj as the unique root cause; for a fix

xfix
j ∼ ˆP trn

X (Xj |xj−1) sampled from its empirical distribution, the estimated counterfactual x̂CF(j)
n

computed from Ŝ satisfies:

E
x∼Q

RC(j)
X

[|xCF(j)
n − x̂CF(j)

n |] ≤
∑
i>j

Kn−i

[
2n−i+1Exi−1∼P trn

Xi−1

[
|fi(xi−1)− f̂i(xi−1)|

]
+Mn−i+1 ·

(
tvd

(
P trn
Xi−1

, Q
RC(j)
Xi−1

)
+ tvd

(
P trn
Xi−1

, ˆP trn
Xi−1

))] (7)

Proof Sketch: The main issue stems from abduction in Eq. 12, where f̂j+1 is inferred at an OOD
input xj . This introduces tvd(P,Q) terms in the bound. The exogenous error at a node propagates
downstream to their descendants, further compounding the error at the target node. Please refer Fig.
1 for an illustration.

Remark: We first discuss the tvd(P trn
Xi−1

, Q
RC(j)
Xi−1

) terms that arise from abduction. In a geometric

series, the leading term dominates the sum. Here, the leading term involves tvd(P trn
Xj

, Q
RC(j)
Xj

), where
φj(xj) = 1. Thus, for the root cause Xj the above discrepancy lies between the usual training
distribution and the anomalous test distribution. Since this discrepancy is substantial, x̂CF(j)

n is a
poor estimate of x

CF(j)
n . Other terms in the bound reflect discrepancies between i.i.d. train, test

errors, and can be shown to reduce with increasing training size |Dtrn| using generalization bounds
like VC-dimensions, etc. (Redko et al., 2019).

Next, we conduct a similar analysis to assess the error in using x̂
int(j)
n as an estimate for xCF(j)

n .

Theorem 6 Under the same conditions laid out in Theorem 5, the error between the true counter-
factual xCF(j)

n and the estimated intervention x̂
int(j)
n admits the following bound:

E
x∼Q

RC(j)
X

[
|xCF(j)

n − x̂int(j)
n |

]
≤

∑
i>j

Kn−i

[
Exi−1∼P trn

Xi−1

[
|fi(xCF(j)

i−1 )− f̂i(x
CF(j)
i−1 )|

]
+Mn−i+1 tvd

(
P trn
Xi−1

, ˆP trn
Xi−1

)
+ std(ϵi)

+ std(ϵ̃i) +
∣∣E[ϵi]− E[ϵ̃i]

∣∣]
(8)

where std(•) denotes the standard deviation.

Proof Sketch: Unlike in the CF case, the estimation of x̂int(j)
n does not need abduction. Instead, it

samples ϵ̃j+1 as shown in Eq. 6, and the error from abduction is limited by the standard deviation
of the oracle ϵj . A key advantage of this is that the challenging tvd(P,Q) terms are eliminated from
the bound, and these samples ϵ̃j+1 result in only in-distribution inputs to the fitted SCM.

Corollary 7 Suppose in Theorem 6, the exogenous variables ϵi are zero-mean in addition to having
bounded variance for any i ∈ [n], then the two terms std(ϵ̃i) and |E[ϵi]−E[ϵ̃i]| can be dropped from
the bound in Theorem 6.
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Remark: All terms, except std(ϵi), can be simplified using generalization bounds. Importantly,
interventional estimates remain stable despite the drift between the training distribution P trn

X and the
anomalous distribution Q

RC(j)
X . Thus, when exogenous variables have low variance, interventions

provide a more robust method for estimating x
CF(j)
n and evaluating the fix condition.

We defer all proofs to Appendix C.

5 OUR APPROACH: IDI

IDI uses interventions motivated by the analysis in Sec. 4 as they offer a robust approach to RCD.
We illustrate the training and inference procedure of IDI in Fig. 2. IDI first applies the anomaly
condition to filter the promising root cause candidates into a set Rcand. Then, it applies the fix
condition to nodes in Rcand to diagnose the root cause. We lay down the procedure for unique root
cause and multiple root cause scenarios separately. For multiple root cause diagnosis, we need the
following assumption to be met:

Assumption 1 At most one root cause exists in every simple path that leads to the target Xn in G.

X1 Xi Xj Xn

Figure 3: A chain graph with more
than one root cause in a simple path.
Dotted lines denote a directed path.

Step 1 of IDI: Assessing the anomaly condition. The goal
of this step is to identify nodes whose exogenous variables
are abnormal. IDI’s approach is straightforward; it iterates
over all ancestors of Xn in G, adding node Xi to Rcand if
Xi shows an anomaly but none of its parents do. Theorem
4.5 in (Okati et al., 2024) proves that this approach is sound
for chain graphs. To assess anomalies, we use the Z-Score,
defined for Xi as Z-score(xi) =

|xi−µi|
σi

where µi and σi are the sample mean and standard deviation
computed for the ith node in the training data. IDI can easily accommodate any other methods
proposed for the anomaly criterion (Chen et al., 2014; Li et al., 2022; Okati et al., 2024).

Next, We illustrate the need for assumption 1 using a chain graph in Fig. 3 that comprises two
root cause nodes, Xi and Xj , along a simple directed path to Xn. Since Xi is a root cause, it is
anomalous and is likely to influence its downstream nodes to take on anomalous values, including
Xj’s parent. As a result, IDI may discard Xj incorrectly.

Step 2 of IDI: Assessing the fix Condition. We first describe the procedure for the simpler of
unique root cause, and then generalize to multiple root causes.

Unique root cause: In this case, IDI applies the fix condition on nodes in Rcand iteratively. Suppose
Xj is the true cause, our fix value xfix

j applied to Xj suppresses the only abnormal ϵj that caused
the anomaly xn. Since IDI samples all other exogenous variables downstream of Xj from their
usual distributions, the fix condition for true root cause is assessed by probing the learned SCM at
in-distribution inputs. Therefore, φn(x̂

int(j)
n ) would evaluate to 0 and IDI correctly predicts Xj .

Xi Xj

Xk

Xn

Figure 4: An exam-
ple graph with more
than one root cause.

Multiple root causes: In this case, we require set-valued fixes to avoid
OOD evaluations. We justify this need with an example in Fig. 4. Let
α⋆ = {Xi, Xj} be two root cause nodes. Since they intersect at a common
descendant Xk, a fix applied to Xi leads to an OOD evaluation at Xk due
to the influence of its anomalous ancestor Xj . This can potentially causing
errors in x̂

int(i)
k inference that propagate to x̂

int(i)
n . However, when both Xi

and Xj are fixed simultaneously, all evaluations will be in-distribution.

Another issue with interventions is that any superset of α⋆ may appear to
resolve the anomaly, leading to over-prediction of root causes. For instance,
applying a fix to α ⊂ α⋆ suppresses the abnormalities in both the root causes
in α⋆ and also some redundant nodes in α⋆ \ α. To address this, we leverage
Shapley values (Shapley, 1953) from cooperative game theory. Given a set
U of m items and a utility function ϕ : 2U 7→ R+ that assigns a score to
each subset α ⊆ U , Shapley values provide a fair method to distribute credit among the m players.
A player i that achieves a high score of ϕ(α ∪ {i}) − ϕ(α) across multiple α ⊂ U receives a
high Shapley value. We treat Rcand as the items and define the utility function for α ⊆ Rcand as
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Figure 5: Assessing the impact of variance of ϵi using a four variable additive noise toy dataset.

the reduction in raw anomaly scores at Xn after fixing α: gn(xn) − gn(x̂
int(α)
n ). Any subset that

includes α⋆ reduces the raw anomaly scores significantly thereby achieving high Shapley values.
The pseudocode for the multi-root-cause diagnosis algorithm is presented in Alg 1 in the Appendix.

6 EXPERIMENTS

We conduct a toy experiment on a four-variable dataset to showcase when interventions outper-
form counterfactuals and vice versa. We then test our approach on PetShop and multiple synthetic
datasets, comparing it against a broader set of baseline RCD methods.

6.1 TOY EXPERIMENTS

We consider a causal graph where the root nodes X1, X2, X3 each have an edge to a common
child X4. We instantiate two Oracle SCMs: a linear additive noise model and a non-linear one.
We sample the linear weights w1, w2, w3 from N (0, 1) and define the non-linear model as X4 =
sin(X1)+

√
|X2|+exp(−X3)

3 + ϵ4. We draw the exogenous variables ϵ1, ϵ2, ϵ3 from N (0, 1) and define
the structural equations for the root nodes as Xi = fi(ϵi) = ϵi for i ∈ {1, 2, 3}. To create root cause
test samples, we assign one of {X1, X2, X3} a value from U [3, 10], ensuring at least a 3-standard
deviation shift that induces an abnormality at X4. We generate n ∈ {25, 50, 100, 1000} training
samples, along with 100 validation and 100 test samples, each with a unique root cause. Since we
consider a simple SCM with a single function over 3 variables and the linear model is estimated in
closed form, small training sample sizes are chosen to study SCM fitting errors. Learning Ŝ reduces
to fitting f̂4: we fit the linear model using closed-form regression and train the non-linear model
as a three-layer MLP with 10 hidden nodes and ReLU activations via gradient descent. For the toy
experiment, we sample xfix

j from its true distribution N (0, 1). We assess the following errors:

1. Validation Error: Measures the accuracy of f̂4 on in-distribution data; |f4(xval
1:3)− f̂4(x

val
1:3)|2.

2. Test (RC) Error: Measures the prediction accuracy on OOD samples; |f4(xRC
1:3)− f̂4(x

RC
1:3)|2

3. Counterfactual Error: Quantifies the error arising from using CFs; |xCF(j)
4 − x̂

CF(j)
4 |2.

4. Interventional Error: Measures the error for using interventions; |xCF(j)
4 − x̂

int(j)
4 |2.
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We defer a detailed description of the toy setup and additional experiments to Appendix D. Figure 5
presents results across different ϵ4 variance levels. Each panel in the figure compares linear (left)
and non-linear (right) settings. We make the following key observations.

• Low Variance: Linear models generalize well to the OOD root cause distribution, leading to
small CF errors (Fig. 5a). Non-linear models, however, overfit, resulting in high CF errors.

• Medium Variance: Trends remain consistent, confirming that CF error correlates with OOD test
error whereas interventional error remains bounded by the standard deviation of ϵ4.

• High Variance: Interventions outperform CFs, especially in low-data regimes, as high ϵ4 vari-
ance destabilizes the learning f̂4 leading to very poor OOD generalization.

• Very High Variance: CFs slightly outperform interventions, but only because the additive noise
assumption holds. This fails when the assumption is violated, as we will see in Sec. 6.4 (RQ3).

Summary: This simple toy experiment shows that while interventional error is bounded by the
standard deviation of ϵ4, CF error closely aligns with the test error on OOD root cause samples.
Thus, when the learned SCM deviates from the true SCM on distributions unseen during training,
interventional estimates provide a more reliable approach to root cause diagnosis.

6.2 COMPARISON WITH BASELINES

We compare IDI against following baselines:

• Correlation This class includes ϵ-diagnosis (Shan et al., 2019), which identifies
root causes by testing for significant behavior changes during anomalies, and ranked
correlation (Hardt et al., 2024), which assigns root cause to nodes correlated with the target.

• Causal Anomaly This class encompasses traversal methods (Chen et al., 2014; Lin et al.,
2018; Liu et al., 2021; Meng et al., 2020), broadly grouped by (Okati et al., 2024), including the
smooth traversal method introduced by them. These methods implement a version our
anomaly condition. CIRCA (Li et al., 2022) identifies nodes connected to the target through fully
anomalous paths, while random walk methods (Yu et al., 2021) use heuristics.

• Causal Fix This includes Hierarchical RCD (HRCD) (Ikram et al., 2022), which predicts root
causes as nodes that suffered local mechanism changes affecting the target. TOCA (Okati et al.,
2024) implements the fix condition jointly over all nodes. The CF Attribution (Budhathoki
et al., 2022b) method uses Shapley values to perform CF contribution analysis on all n nodes.

We implemented IDI in the RCD library released by PetShop (Hardt et al., 2024)1. PetShop
uses Dowhy (Sharma & Kiciman, 2020) and gcm (Blöbaum et al., 2022) for causal inference and
PyRCA (Liu et al., 2023) for root cause analysis. To ensure fair comparisons, we applied the same
experimental settings for IDI as those used for the baselines in PetShop.

Evaluation Metric. We assess root cause prediction accuracy using Recall@k (Ikram et al., 2022).
Let α⋆ ⊂ X be the ground truth root causes, and α̂ the ordered list of predicted root causes, where
α̂[1] is the most prominent. For any k > 0

Recall@k(α̂, α⋆) =

∑|α⋆|+k−1
i=1 1α̂[i]∈α⋆

|α⋆|
; 1α̂[i]∈α⋆ = 1 if α̂[i] ∈ α⋆ (9)

For k = 1, we see that Recall@1(α̂, α⋆) = 1 iff every node in α⋆ is present in α̂[1 : k], while for
larger k, we need α⋆ to be present in the first |α⋆|+k−1 predictions of α̂. We assess using k = 1, 3.

6.3 EXPERIMENTS ON PETSHOP: RCD IN A DEPLOYED CLOUD SYSTEM

PetShop (Hardt et al., 2024) is a recent dataset designed for benchmarking RCD methods in the
cloud domain, featuring a call graph G that causally links key performance indicators (KPIs). The
baseline methods in the PetShop library use a linear additive noise model Ŝ, which we also adopted
for IDI. This dataset encompasses three types of latency issues: low, high, and temporal, with many
methods successfully identifying the temporal issues. Overall, IDI outperforms other methods in
most settings, except for Recall@3 in high latency, where CIRCA emerged as the best performer.
CIRCA identifies root causes as nodes connected to the target through all anomalous nodes, and

1https://github.com/amazon-science/petshop-root-cause-analysis
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Low High Temporal
Recall@ k=1 k=3 k=1 k=3 k=1 k=3

Correlation Random Walk (Yu et al., 2021) 0.00 0.10 0.00 0.20 0.00 0.33
Ranked Correlation (Hardt et al., 2024) 0.40 0.60 0.70 0.90 0.50 0.67
ϵ-Diagnosis (Shan et al., 2019) 0.00 0.00 0.00 0.00 0.17 0.17

Causal Anomaly Circa (Li et al., 2022) 0.60 0.80 0.60 1.00 0.67 1.00
Traversal (Chen et al., 2014) 0.80 0.80 0.90 0.90 1.00 1.00
Smooth Traversal (Okati et al., 2024) 0.40 0.60 0.00 0.60 0.50 1.00

Causal Fix
HRCD (Ikram et al., 2022) 0.07 0.21 0.00 0.07 0.25 0.75
TOCA (Okati et al., 2024) 0.40 0.40 0.20 0.20 0.00 0.00
CF Attribution (Budhathoki et al., 2022b) 0.40 0.60 0.40 0.70 0.00 0.50
IDI (Ours) 0.90 0.90 0.90 0.90 1.00 1.00

Table 1: Diagnosing root causes of latency issues in PetShop, a cloud-based microservices dataset. Methods
are categorized into Correlation, Causal Anomaly, and Causal Fix.

possibly high latency test cases showed such a favorable behavior. Otherwise, Traversal proved
to be a strong contender against IDI. The improvements observed in IDI across various settings
can be attributed solely to its robust implementation of the fix condition. In contrast, the gains
seen in other methods assessing the fix condition are less pronounced compared to Causal Anomaly
methods, as their evaluations involve applying Ŝ to out-of-distribution inputs.

6.4 EXPERIMENTS ON SYNTHETIC SCMS

Next, we design synthetic experiments to answer three key research questions:

RQ1 Linear SCM: How effective is RCD when the Oracle SCM S has linear structural equations,
so that an Ŝ fit using samples from the usual distribution also generalizes OOD?

RQ2 Non-Lin Invertible SCM: How effective is RCD when Ŝ closely approximates a non-linear S
within the usual regime, and S allows abduction, meaning fi is invertible with respect to ϵi?

RQ3 Non-Lin Non-Invertible SCM: What are the implications for root cause identification when Ŝ
closely matches a non-linear S in the usual distribution, but S does not support abduction?

We evaluate each option under unique and multiple root cause scenarios. For multiple root causes,
we ensure they follow the assumption 1, and later perform ablations under its violations in Table
5. Our synthetic setup involved a single anomalous test sample for RCD, so we did not run two
baselines: 1) ϵ-diagnosis method, which requires multiple anomalous samples for conducting
two-sample tests, and 2) HRCD which learns the causal graph solely from anomalous samples.

Generating the Oracle SCM S: We randomly sample a causal graph G using the Networkx li-
brary Hagberg et al. (2008). We select the node with the most ancestors as the anomaly target, and
the root cause nodes α⋆ arbitrarily. Since cloud KPIs, such as node latency and CPU utilization, are
typically positive (Meng et al., 2020), we ensured that all nodes in the synthetic data assume posi-
tive values. Exogenous variables follow a uniform distribution ϵi ∼ U [0, 1] making their standard
deviation std(ϵi) = 0.3. We explore other choices for ϵi in Appendix G. Finally, We generate the
training dataset Dtrn by sampling exogenous variables ϵ, and then use S to generate the observed
nodes x in a topological order. Each node in G is assigned a local causal mechanism as follows:

• For linear SCMs in RQ1, we define the functional equations as linear, with random coefficients
as: xi = w⊤

i Paxi
where wi ∼ U [0.5, 2].

• For non-lin invertible SCMs in RQ2, we set each local mechanism fi as an additive noise three
layer ELU activation based MLP.

• For non-lin non-invertible SCMs, we use the same MLP architecture, but without additive noise.
In this case, each MLP fi receives both the parents Paxi and the noise ϵi as inputs.

For linear SCM, we fit a linear additive noise SCM Ŝ, whereas for both RQ2 and RQ3, we fit an
additive noise MLP-based SCM Ŝ . We show some example graphs in Appendix I.

Test case generation: For the root cause set α⋆ to cause an anomaly at xn, we first sample ϵ−α⋆

from U [0, 1], then apply a grid search over ϵα⋆ so that (ϵα⋆ , ϵ−α⋆) together lead the SCM S to
induce an anomaly at xn. We also introduced some irrelevant anomalies at nodes that have weak
functional relationships with xn to assess the impact on methods that ignore the fix condition. We
repeat each experiment 10 times and report the average values of Recall@k ∈ {1, 3}.
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RQ1 Linear RQ2 Non-Lin Invertible RQ3 Non-Lin Non-Invertible
Number root causes Unique Multiple Unique Multiple Unique Multiple
Recall@ k = 1 k = 3 k = 1 k = 3 k = 1 k = 3 k = 1 k = 3 k = 1 k = 3 k = 1 k = 3

Random Walk 0.00 0.00 0.03 0.03 0.10 0.30 0.27 0.27 0.10 0.30 0.27 0.27
Ranked Correlation 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Traversal 0.50 1.00 0.40 0.67 0.00 1.00 0.03 0.48 0.00 0.80 0.00 0.33
Smooth Traversal 0.50 1.00 0.52 0.90 0.50 1.00 0.57 0.83 0.40 0.80 0.40 0.73
CIRCA 0.80 1.00 0.33 0.33 0.60 0.80 0.38 0.48 0.40 0.70 0.03 0.03
TOCA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CF Attribution 1.00 1.00 0.97 1.00 0.30 0.70 0.20 0.40 0.00 0.20 0.00 0.23

IDI (ours) 1.00 1.00 1.00 1.00 1.00 1.00 0.83 0.97 0.60 0.80 0.63 0.83

Table 2: Recall@k=1 and 3 values for experiments on synthetic SCMs. We present the recall values averaged
across ten runs. Best methods are highlighted in green, while the second best methods are shown in yellow.
Overall, IDI demonstrates the highest recall across all settings.

Results: Table 2 summarizes our findings. Correlation methods struggle across all settings as root
cause nodes correlate all descendants with the target Xn. In linear SCMs, many methods detect the
unique root cause. However, with multiple root causes, the number of anomalous downstream nodes
increases significantly, leading to more false positives. Among Causal Anomaly methods, smooth
traversal performs best. CF Attribution excels only in linear SCMs due to accurate abduc-
tion. TOCA evaluates all nodes indiscriminately, causing numerous OOD SCM evaluations, while
IDI efficiently focuses on Rcand. Overall, IDI achieves the best performance.

6.5 EXPERIMENT ON IDI VS. IDI (USING CFS)

Synthetic Oracle SCM PetShop Latency
Linear Non-Lin Inv Non-Lin Non Inv low high temporalUnique Multiple Unique Multiple Unique Multiple

CF Attribution 1.00 0.97 0.30 0.20 0.00 0.00 0.40 0.40 0.00
IDI (CF) 1.00 1.00 1.00 0.77 0.60 0.12 0.70 0.70 1.00
IDI 1.00 1.00 1.00 0.83 0.70 0.63 0.90 0.90 1.00

Table 3: Recall@1 for CF Attribution - as baseline method (Budhathoki et al., 2022b), IDI (CF) a version of
IDI that uses CF in step-2, and IDI. IDI performs the best.

In this experiment, we run IDI in counterfactual (CF) mode, denoted as IDI (CF). IDI (CF) first filters
root cause candidates Rcand and then applies Shapley analysis on estimated counterfactuals instead
of interventions. As a baseline, we compare a CF attribution method that skips Rcand filtering and
applies CF Shapley analysis to all nodes. Table 3 shows that CF attribution underperforms IDI (CF),
confirming that filtering Rcand isolates promising candidates for in-distribution SCM evaluations.
While IDI (CF) excels in linear settings, its performance drops elsewhere compared to IDI, solely
due to errors in abduction, highlighting interventions as the more effective approach.

7 LIMITATIONS AND CONCLUSION

Limitations: (1) IDI’s performance can degrade when Assumption 1 is violated. (2) In additive
noise models, when the training size is large enough for the estimated SCM to approach the oracle
SCM, errors in using interventional estimates of counterfactuals plateau at the std. deviation of the
exogenous variables (Appendix G). Whereas, counterfactual estimates converge to the true values.

Conclusion: In this paper, we introduced two key conditions—Anomaly and Fix—to identify root
causes of anomalies. While prior methods effectively addressed the anomaly condition, the fix
condition often relied on probing trained models with OOD inputs. To address this, we proposed
IDI, a novel in-distribution intervention method that ensures the fitted SCM is probed using in-
distribution inputs while evaluating the potential of true root cause nodes to resolve the anomaly.
Unlike previous methods that required a unique root cause assumption, IDI operates under the more
relaxed condition of at most one cause per path. We showed theoretically that IDI’s intervention
method is superior to counterfactual approaches for additive noise chain SCMs. Our experiments
with arbitrary SCMs reaffirmed IDI’s capability to deliver robust and accurate RCD.
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A PRELIMINARIES ON STRUCTURAL CAUSAL MODELS

Notation. Let X = {X1, X2, . . . , Xn} represent the n random variables denoting the Key Per-
formance Indicators (KPIs) for each node in a system. We use x = (x1, . . . , xn) to denote their
realizations. These nodes are interconnected via a topology defined by a graph G = (X,E) that is
assumed to be directed and acyclic. An edge (Xi, Xj) ∈ E indicates that changes to Xi affect the
values Xj can take, but not vice versa. We denote the parents of node i in the graph G as PaXi ,
and the corresponding values assigned to these parents in x as Paxi . We assume that each observed
instance xi is generated from its causal parents and a node specific latent exogenous variable ϵi via
a structural causal model (SCM) as outlined below.

Structural Causal Models (SCM). An SCM (Pearl, 2019) is a four-tuple S = (X, ϵ,F , Pϵ),
where Pϵ represents the distribution from which the exogenous variables are sampled. The observed
variables Xi ∈ X are determined by a set of structural equations F = {f1, . . . , fn}, where fi :
PaXi × ϵi 7→ Xi. This implies that, conditioned on its immediate parents, no other variable can
exert a causal influence on Xi—a principle known as modularity in causal inference. In summary,
an SCM models a data-generating process where an observed instance x is produced by sampling
the latent exogenous variables ϵ ∼ Pϵ first, and then subsequently computing the node values by
applying the structural equations in a topological order defined over the causal graph G.

Counterfactuals. Given an observed instance x = (x1, . . . , xn), we may want to generate a hypo-
thetical instance xCF(j) representing what x would have been if Xj had taken the value x′

j instead of
xj . This hypothetical instance, called a counterfactual, is computed using an SCM S in three steps:

1. Abduction: For each i, estimate ϵ̂i by inverting the function fi so that xi = fi(Paxi
, ϵi) holds in

the SCM S.
2. Action: Set xCF(j)

i = xi for any Xi that is not a descendant of Xj in G. For Xj , set xCF(j)
j = x′

j .

3. Prediction: For each descendant Xi of Xj , in topological order, set xCF(j)
i = fi(paCF(j)

xi
, ϵ̂i), using

ϵ̂i obtained during the abduction step.

Interventions. An intervention xint(j) represents the distributional effect of setting Xj to x′
j on its

descendants in the causal graph G. They are sampled as as follows:

1. Sample ϵ̃i from its marginal distribution Pϵi .
2. Steps 2 and 3 are the same as for counterfactuals, except that interventions use the sampled value

ϵ̃i in place of the abducted ϵ̂i during prediction; i.e., xint(j)
i = fi(paint(j)

xi
, ϵ̃i).

Note that the abduction step in counterfactuals necessitates each fi to be invertible with respect to
ϵi, whereas interventions do not need this requirement. Further, while xCF(j) is a point estimate,
xint(j) is a random variable due to the randomness in ϵ̃i.

B IDI ALGORITHM

We provide the pseudocode for IDI in Alg. 1.

C PROOFS

Definition 8 ((Redko et al., 2019)) For a loss function ℓ and hypothesis class H, we define the
discrepancy distance between two distributions P,Q as follows:

discHℓ (P,Q) = sup
h,h′∈H2

|Ex∼P [ℓ(h(x), h
′(x))]− Ex∼Q[ℓ(h(x), h

′(x))]|

Lemma 9 For bounded loss functions ℓ(•, •) ≤ M , where M > 0, we have:

discHℓ (P,Q) ≤ M tvd(P,Q)

See (Redko et al., 2019) (Proposition 3.1) for the proof.
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Algorithm 1 IDI Algorithm
Require: Data Dtrn, DAG G, anomalous instance x, anomaly config A

1: Ensure R̂ ◁ predicted root causes
2: {φi, gi} ← TrainAnomalyFns(Dtrn,G,A) ◁ A is part of problem spec; default gi is Z-Score
3: Rcand ← {i : φi(xi) = 1, and φp(xp) = 0 ∀ p ∈ PaXi} ◁ anomaly condition
4: Ŝ ← FitSCM(Dtrn,G) ◁ Fits structural equation f̂i for each xi on input Paxi using L2 loss
5: for α ∈ 2Rcand do
6: αt ← TopologicalSort(α,G) ◁ To apply the fixes in topological order
7: Set xfix

j ∼ P (Xj |Paxj )∀j ∈ αt ◁ Follow order αt

8: x̂int(α) ← Intervene(Ŝ,x, fix) ◁ Intervene on α using the SCM Ŝ
9: ϕ[α]← gn(xn)− E[gn(x̂int(α)

n )] ◁ Shapley utility for the subset α
10: end for
11: R̂ ← ShapleySort(ϕ, desc) ◁ Compute Shapley values and Sort R̂ descending
12: return R̂

Theorem 5 Suppose the true SCM S is an additive noise model defined over a chain graph G =
X1 → . . . → Xn with structural equations of the form fi(xi−1) + ϵi, where ϵi has bounded
variance σ2 and fi is K-Lipschitz. Let H = {Hi}ni=1 be the realizable hypothesis class for S, with
each Hi containing bounded functions that are K-lipschitz. Let Ŝ denote the SCM learned from
training data Dtrn. Ŝ encompasses the estimated functions {f̂i}ni=1. For any j, let QRC(j)

X denote the
distribution of samples with a unique root cause at Xj . Then, for x sampled from Q

RC(j)
X with fix

xfix
j ∼ ˆP trn

X (Xj |Xj−1 = xj−1) applied to the root cause Xj , the error in estimated counterfactual
at the target node Xn admits the following bound:

E
x∼Q

RC(j)
X

[|xCF(j)
n − x̂CF(j)

n |] ≤
∑
i>j

Kn−i

[
2n−i+1Exi−1∼P trn

Xi−1

[
|fi(xi−1)− f̂i(xi−1)|

]
+Mn−i+1 ·

(
tvd

(
P trn
Xi−1

, Q
RC(j)
Xi−1

)
+ tvd

(
P trn
Xi−1

, ˆP trn
Xi−1

))] (10)

Proof For the intervention xfix
j applied on Xj , let us denote the true counterfactual values obtained

from the SCM S as xCF(j), and the estimated counterfactual from the learned SCM Ŝ as x̂CF(j).
Then, at j + 1, we have:

x
CF(j)
j+1 = fj+1(x

fix
j ) + ϵj+1 where ϵj+1 = xj+1 − fj+1(xj) (11)

x̂
CF(j)
j+1 = f̂j+1(x

fix
j ) + ϵ̂j+1 where ϵ̂j+1 = xj+1 − f̂j+1(xj) (12)

Now, let us bound the error in the true CF xCF(j) and the estimated CF x̂CF(j) using Ŝ at index j+1.
Taking difference of Eqs. 11, 12

|xCF(j)
j+1 − x̂

CF(j)
j+1 | = |fj+1(x

fix
j )− fj+1(xj)− f̂j+1(x

fix
j ) + f̂j+1(xj)| (13)

≤ |fj+1(x
fix
j )− f̂j+1(x

fix
j )|+ |fj+1(xj)− f̂j+1(xj)| (14)

E
x∼Q

RC(j)
X

[|xCF(j)
j+1 − x̂

CF(j)
j+1 |] ≤ E

x∼Q
RC(j)
X

[
E
xfix
j ∼ ˆP trn

Xj
(Xj |xj−1)

[
|fj+1(x

fix
j )− f̂j+1(x

fix
j )|

]]
︸ ︷︷ ︸

term 1

+ E
x∼Q

RC(j)
X

[|fj+1(xj)− f̂j+1(xj)|]︸ ︷︷ ︸
term 2

(15)

Let us bound term 2 above.
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Recall that Ŝ is obtained by training from Dtrn, f̂j+1 is learned using N samples obtained i.i.d. from
P trn
Xj

. Further, the loss is assessed only for Xj+1; we have E
x∼Q

RC(j)
X

[|fj+1(xj) − f̂j+1(xj)|] =
E
xj∼Q

RC(j)
Xj

[|fj+1(xj)− f̂j+1(xj)|].

Therefore, we have:

E
xj∼Q

RC(j)
Xj

[|fj+1(xj)− f̂j+1(xj)|] (16)

= E
xj∼Q

RC(j)
Xj

[|fj+1(xj)− f̂j+1(xj)|] + Exj∼P trn
Xj

[|fj+1(xj)− f̂j+1(xj)|]

− Exj∼P trn
Xj

[|fj+1(xj)− f̂j+1(xj)|]

≤ Exj∼P trn
Xj

[|fj+1(xj)− f̂j+1(xj)|] +
∫
xj

|fj+1(xj)− f̂j+1(xj)| · |P trn
Xj

(xj)−Q
RC(j)
Xj

(xj)|dxj

(17)

≤ Exj∼P trn
Xj

[|fj+1(xj)− f̂j+1(xj)|] (18)

+ sup
h,h′∈H2

j+1

∫
xj

|h(xj)− h′(xj)| · |P trn
Xj

(xj)−Q
RC(j)
Xj

(xj)|dxj

= Exj∼P trn
Xj

[|fj+1(xj)− f̂j+1(xj)|] + discHj+1

ℓ1
(P trn

Xj
(xj), Q

RC(j)
Xj

(xj)) (19)

The last inequality is valid as long as fj+1 ∈ Hj+1 which is true because Hj+1 is realizable. Further
since Hj+1 encompasses bounded functions, we can bound the L1 loss ℓ1 using a constant M > 0.
Therefore,

E
x∼Q

RC(j)
Xj

[|fj+1(xj)− f̂j+1(xj)|] ≤ Exj∼P trn
Xj

[|fj+1(xj)− f̂j+1(xj)|]︸ ︷︷ ︸
term 1

+M tvd(P trn
Xj

(xj), Q
RC(j)
Xj

(xj))︸ ︷︷ ︸
term 2

(20)

where term 1 represents a classical divergence between empirical risk and true risk, and can be
bounded using classical VC, Rademacher complexity based generalization bounds. Term 2 is more
interesting as it captures the divergence between the standard training distribution and the root cause
distribution that governs when an anomaly occurs.

Combining Eqs. 15, 20 for the error at Xj+1, we get

E
x∼Q

RC(j)
X

[|xCF(j)
j+1 − x̂

CF(j)
j+1 |] ≤ E

x∼Q
RC(j)
X

[
E
xfix
j ∼ ˆP trn

Xj
(Xj |xj−1)

[
|fj+1(x

fix
j )− f̂j+1(x

fix
j )|

]]
︸ ︷︷ ︸

term 1

(21)

+ Exj∼P trn
Xj

[|fj+1(xj)− f̂j+1(xj)|] +M · tvd(P trn
Xj

, Q
RC(j)
Xj

)︸ ︷︷ ︸
term 2

Now, we reduce the first term above. For a fix xfix
j ∼ ˆP trn

Xj
(Xj |xj−1), the following holds:

E
x∼Q

RC(j)
X

[
E
xfix
j ∼ ˆP trn

Xj
(Xj |xj−1)

[
|fj+1(x

fix
j )− f̂j+1(x

fix
j )|

]]
(22)

= E
x∼Q

RC(j)
X

[
E
xfix
j ∼ ˆP trn

Xj
(Xj |xj−1)

[
|fj+1(x

fix
j )− f̂j+1(x

fix
j )|

]]
+ E

x∼Q
RC(j)
X

[
Exfix

j ∼P trn
Xj

(Xj |xj−1)

[
|fj+1(x

fix
j )− f̂j+1(x

fix
j )|

]]
− E

x∼Q
RC(j)
X

[
Exfix

j ∼P trn
Xj

(Xj |xj−1)

[
|fj+1(x

fix
j )− f̂j+1(x

fix
j )|

]]
≤ Exj∼P trn

Xj

[
|fj+1(xj)− f̂j+1(xj)|

]
+M · tvd(P trn

Xj
, ˆP trn

Xj
) (23)
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This follows from the definition of QRC(j) 1. First observe that for the indices till {1, . . . , j−1}, both
root cause distribution Q

RC(j)
X and the training distribution P trn

X agree; i.e., QRC(j)
X (X1, . . . , Xj−1) =

P trn
X (X1, . . . , Xj−1). The only index that changes is j at which the root cause occurs. But since,

while applying a fix, we sample it from P trn
X (Xj |xj−1), the marginal distribution of the fix simply

reduces to P trn
Xj

.

Finally, combining the inequalities in 21, 23, we get:

E
xj∼Q

RC(j)
X

[|xCF(j)
j+1 − x̂

CF(j)
j+1 |] ≤ 2Exj∼P trn

Xj
[|fj+1(xj)− f̂j+1(xj)|] (24)

+M ·
[
tvd(P trn

Xj
, Q

RC(j)
Xj

) + tvd(P trn
Xj

, ˆP trn
Xj

)
]

Now, let us carry forward these arguments to j + 2.

x
CF(j)
j+2 = fj+2(x

CF(j)
j+1 ) + ϵj+2 where ϵj+2 = xj+2 − fj+2(xj+1) (25)

x̂
CF(j)
j+2 = f̂j+2(x̂

CF(j)
j+1 ) + ϵ̂j+2 where ϵ̂j+2 = xj+2 − f̂j+2(xj+1) (26)

(27)

Now for the estimated counterfactual at Xj+2, we have the error

|xCF(j)
j+2 − x̂

CF(j)
j+2 | = |fj+2(x

CF(j)
j+1 )− fj+2(xj+1)− f̂j+2(x̂

CF(j)
j+1 ) + f̂j+2(xj+1)| (28)

≤ |fj+2(x
CF(j)
j+1 )− f̂j+2(x̂

CF(j)
j+1 )|︸ ︷︷ ︸

term 1

+ |fj+2(xj+1)− f̂j+2(xj+1)|︸ ︷︷ ︸
term 2

(29)

The term 2 above admits the same proof technique as we derived for Xj+1.

E
x∼Q

RC(j)
X

[|fj+2(xj+1)− f̂j+2(xj+1)|] ≤ Exj+1∼P trn
Xj+1

[|fj+2(xj+1)− f̂j+2(xj+1)|] (30)

+M · tvd(P trn
Xj+1

, Q
RC(j)
Xj+1

)

Now, let us analyze the first term.

Since f̂j+2 is K-Lipschitz, we have |f̂j+2(x̂
CF(j)
j+1 )− f̂j+2(x

CF(j)
j+1 )| ≤ K|x̂CF(j)

j+1 −x
CF(j)
j+1 |. Therefore,

E
x∼Q

RC(j)
X

[|fj+2(x
CF(j)
j+1 )− f̂j+2(x̂

CF(j)
j+1 )|] (31)

= E
x∼Q

RC(j)
X

[|fj+2(x
CF(j)
j+1 )− f̂j+2(x

CF(j)
j+1 ) + f̂j+2(x

CF(j)
j+1 )− f̂j+2(x̂

CF(j)
j+1 )|]

≤ E
x∼Q

RC(j)
X

[|fj+2(x
CF(j)
j+1 )− f̂j+2(x

CF(j)
j+1 )|] + E

x∼Q
RC(j)
X

[|f̂j+2(x
CF(j)
j+1 )− f̂j+2(x̂

CF(j)
j+1 )|] (32)

≤ E
x∼Q

RC(j)
X

[|fj+2(x
CF(j)
j+1 )− f̂j+2(x

CF(j)
j+1 )|] +KE

x∼Q
RC(j)
X

[|xCF(j)
j+1 − x̂

CF(j)
j+1 |] (33)

Using the same arguments as used in Eq. 23, it can be shown that:

E
x∼Q

RC(j)
X

[|fj+2(x
CF(j)
j+1 )− f̂j+2(x

CF(j)
j+1 )|] ≤ Exj+1∼P trn

Xj+1
[|fj+2(xj+1)− f̂j+2(xj+1)|] (34)

+M · tvd(P trn
Xj+1

, ˆP trn
Xj+1

)

Finally, we have:
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E
x∼Q

RC(j)
X

[|xCF(j)
j+2 − x̂

CF(j)
j+2 |] ≤ 2Exj+1∼P trn

Xj+1
[|fj+2(xj+1)− f̂j+2(xj+1)|] (35)

+KE
x∼Q

RC(j)
X

[|xCF(j)
j+1 − x̂

CF(j)
j+1 |]

+M ·
[
tvd(P trn

Xj+1
, Q

RC(j)
Xj+1

) + tvd(P trn
Xj+1

, ˆP trn
Xj+1

)
]

Now, we can extend this result to assess the error at Xn as follows:

E
x∼Q

RC(j)
X

[|xCF(j)
n − x̂CF(j)

n |] ≤
∑
i>j

Kn−i

[
2n−i+1Exi−1∼P trn

Xi−1

[
|fi(xi−1)− f̂i(xi−1)|

]
+Mn−i+1 ·

(
tvd

(
P trn
Xi−1

, Q
RC(j)
Xi−1

)
+ tvd

(
P trn
Xi−1

, ˆP trn
Xi−1

))] (36)

The above inequality holds because from definition of Q
RC(j)
X 1, we have E

x∼Q
RC(j)
X

[|xCF(j)
i −

x̂
CF(j)
i |] = 0 for any i < j. Further at Xj , because of performing an intervention we have

x
CF(j)
j = x̂

CF(j)
j = xfix

j .

Remark: Several prior works (Chen et al., 2014; Lin et al., 2018; Liu et al., 2021) defined root
cause as a node that is anomalous and is connected to target node Xn through a chain of anomalous
nodes. i.e., they expect φi(xi) = 1 for all i ≥ j, and in such a case, we see that tvd

(
P trn
Xi

, Q
RC(j)
Xi

)
is large for any i > j. Nonetheless, the leading term in the above geometric progression has
tvd

(
P trn
Xj

, Q
RC(j)
Xk

)
for which we know φj(xj) = 1 by root cause definition, and therefore, in

practice x̂CF(j) is a poor estimate for xCF(j). All the other terms can be bounded using classical
generalization bounds, and they go down with the size of training data |Dtrn|.
Theorem 6 Under the same conditions laid out in Theorem 5, the error between the true counter-
factual xCF(j) and the estimated intervention x̂int(j) admits the following bound:

E
x∼Q

RC(j)
X

[
|xCF(j)

n − x̂int(j)
n |

]
≤

∑
i>j

Kn−i

[
Exi−1∼P trn

Xi−1

[
|fi(xCF(j)

i−1 )− f̂i(x
CF(j)
i−1 )|

]
+Mn−i+1 tvd

(
P trn
Xi−1

, ˆP trn
Xi−1

)
+ std(ϵi)

+ std(ϵ̃i) +
∣∣E[ϵi]− E[ϵ̃i]

∣∣]
(37)

where bias(f̂i) = Exi∼P trn
Xi
[fi(xi)− f̂i(xi)]. For an unbiased learner, bias is zero.

Proof For the intervention xfix
j applied on Xj , let us denote the true counterfactual values obtained

from the SCM S as xCF(j), and the estimated intervention from the learned SCM Ŝ as x̂int(j). Then,
at j + 1, we have:

x
CF(j)
j+1 = fj+1(x

fix
j ) + ϵj+1 where ϵj+1 = xj+1 − fj+1(xj) (38)

x̂
int(j)
j+1 = f̂j+1(x

fix
j ) + ϵ̃j+1 where ϵ̃j+1 ∼ ˆP trn

ϵj+1
(39)

where, ˆP trn
ϵj+1

represents the empirical distribution of the marginal P trn
ϵj+1

, obtained from a validation
dataset DV ⊂ Dtrn. For additive noise models, this is simply the empirical distribution of the error
residuals, xj+1 − f̂j+1(xj) for x ∈ DV .
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Now, let us bound the error in the true CF xCF(j) and the estimated intervention x̂int(j) using Ŝ at
index j + 1. Taking difference of above Eqs.

E
x∼Q

RC(j)
X

[|xCF(j)
j+1 − x̂

int(j)
j+1 |] = E

x∼Q
RC(j)
X

[
E
xfix
j ∼ ˆP trn

Xj
(Xj |xj−1)

[
|fj+1(x

fix
j )− f̂j+1(x

fix
j )|

]]
︸ ︷︷ ︸

term 1

(40)

+ E
x∼Q

RC(j)
X

Eϵ̃j+1∼P̂ϵj+1
[|ϵj+1 − ϵ̃j+1|]︸ ︷︷ ︸

term 2

We use Eq. 23 to reduce term 1 to Exj∼P trn
Xj

[
|fj+1(xj)− f̂j+1(xj)|

]
+M · tvd(P trn

Xj
, ˆP trn

Xj
).

Now, let us analyze term 2. Since Xj is the unique root cause, we have Q
RC(j)
ϵj+1 = P trn

ϵj+1
. Therefore,

E
ϵj+1∼Q

RC(j)
ϵj+1

Eϵ̃j+1∼P̂ϵj+1
[|ϵj+1 − E[ϵ̃j+1]|] = Eϵj+1∼P trn

ϵj+1
Eϵ̃j+1∼P̂ϵj+1

[|ϵj+1 − E[ϵ̃j+1]|] (41)

Now,

|ϵj+1 − ϵ̃j+1| = |ϵj+1 − E[ϵj+1] + E[ϵj+1]− E[ϵ̃j+1] + E[ϵ̃j+1]− ϵ̃j+1| (42)
≤ |ϵj+1 − E[ϵj+1]|+ |E[ϵj+1]− E[ϵ̃j+1]|+ |E[ϵ̃j+1]− ϵ̃j+1| (43)

using |a+ b| ≤ |a|+ |b|. Note that |E[ϵj+1]− E[ϵ̃j+1]| is a constant.

Taking expectation on both sides, we get:

Eϵj+1∼P trn
ϵj+1

Eϵ̃j+1∼P̂ϵj+1
[|ϵj+1 − E[ϵ̃j+1]|] (44)

≤ Eϵj+1∼P trn
ϵj+1

[|ϵj+1 − E[ϵj+1]|] + Eϵ̃j+1∼P̂ϵj+1
[|E[ϵ̃j+1]− ϵ̃j+1|] + |E[ϵj+1]− E[ϵ̃j+1]|

≤
√
Eϵj+1∼P trn

ϵj+1
[(ϵj+1 − E[ϵj+1])2] +

√
Eϵ̃j+1∼P̂ϵj+1

[(E[ϵ̃j+1]− ϵ̃j+1)2] + |E[ϵj+1]− E[ϵ̃j+1]|
(45)

= std(ϵj+1) + std(ϵ̃j+1) + |E[ϵj+1]− E[ϵ̃j+1]| (46)

where std(ϵj+1) is the standard deviation of the latent noise ϵj+1.

Remark: It is common in causal literature to assume that ϵi are zero-mean in addition to having
bounded variance. When zero mean assumption holds, we can use ϵ̃j+1 = 0, and in that case, we
will have E

ϵ∼Q
RC(j)
ϵj+1

Eϵ̃j+1∼P̂ϵj+1
[|ϵj+1 − E[ϵ̃j+1]|] ≤ σ(ϵj+1).

Finally, for the estimated intervention at Xj , we have:

E
x∼Q

RC(j)
X

[|xCF(j)
j+1 − x̂

int(j)
j+1 |] ≤ Exj∼P trn

Xj

[
|fj+1(xj)− f̂j+1(xj)|

]
(47)

+M · tvd(P trn
Xj

, ˆP trn
Xj

) + std(ϵj+1) + std(ϵ̃j+1) + |E[ϵj+1]− E[ϵ̃j+1]|

For the estimated intervention at Xj+2, we have:

x
CF(j)
j+2 = fj+2(x

CF(j)
j+1 ) + ϵj+2 where ϵj+2 = xj+2 − fj+2(xj+1) (48)

x̂
int(j)
j+2 = f̂j+2(x̂

int(j)
j+1 ) + E[ϵ̃j+2] where ϵ̃j+2 ∼ ˆP trn

ϵj+2
(49)

Therefore, the error at j + 2 is:

E
x∼Q

RC(j)
X

[|xCF(j)
j+2 − x̂

int(j)
j+2 |] = E

x∼Q
RC(j)
X

[
|fj+2(x

CF(j)
j+1 )− f̂j+2(x̂

int(j)
j+1 )|

]
︸ ︷︷ ︸

term 1

(50)

+ E
x∼Q

RC(j)
X

[|ϵj+2 − E[ϵ̃j+2]|]︸ ︷︷ ︸
term 2
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We know that we can bound E
x∼Q

RC(j)
X

[|ϵj+2 − E[ϵ̃j+2]|] ≤ std(ϵj+2) + std(ϵ̃j+2) + |E[ϵj+2] −
E[ϵ̃j+2]|.
To bound the first term, we use Lipschitz property.

E
x∼Q

RC(j)
X

[|fj+2(x
CF(j)
j+1 )− f̂j+2(x

CF(j)
j+1 )|] ≤ E

x∼Q
RC(j)
X

[|fj+2(x
CF(j)
j+1 )− f̂j+2(x

CF(j)
j+1 )|] (51)

+KE
x∼Q

RC(j)
X

[|xCF(j)
j+1 − x̂

int(j)
j+1 |]

≤ Exj+1∼P trn
Xj+1

[
|fj+2(xj+1)− f̂j+2(xj+1)|

]
(52)

+M · tvd(P trn
Xj+1

, ˆP trn
Xj+1

)

Finally, we have:

E
x∼Q

RC(j)
X

[|xCF(j)
j+2 − x̂

int(j)
j+2 |] ≤ E

x∼Q
RC(j)
X

[|fj+2(x
CF(j)
j+1 )− f̂j+2(x

CF(j)
j+1 )|] (53)

+KE
x∼Q

RC(j)
X

[|xCF(j)
j+1 − x̂

int(j)
j+1 |]

+ std(ϵj+2) + std(ϵ̃j+2) + |E[ϵj+2]− E[ϵ̃j+2]|

We can extend this result ts assess the error at Xn as follows:

E
x∼Q

RC(j)
X

[
|xCF(j)

n − x̂int(j)
n |

]
≤

∑
i>j

Kn−i

[
Exi−1∼P trn

Xi−1

[
|fi(xCF(j)

i−1 )− f̂i(x
CF(j)
i−1 )|

]
+Mn−i+1 tvd

(
P trn
Xi−1

, ˆP trn
Xi−1

)
+ std(ϵi)

+ std(ϵ̃i) +
∣∣E[ϵi]− E[ϵ̃i]

∣∣]
(54)

Corollary 7 Suppose in Theorem 6, the exogenous variables ϵi are zero-mean in addition to having
bounded variance for any i ∈ [n], then the error between interventions and counterfactuals admits
the following bound:

E
x∼Q

RC(j)
X

[|xCF(j)
n − x̂int(j)

n |] ≤
∑
i>j

Kn−i

[
Exi−1∼P trn

Xi−1

[
|fi(xCF(j)

i−1 )− f̂i(x
CF(j)
i−1 )|

]

+Mn−i+1 tvd
(
P trn
Xi−1

, ˆP trn
Xi−1

)
+ std(ϵi)

]
(55)

Proof If we know that the latent exogenous variables are zero-mean, we can set ˆP trn
ϵj+1

in Eq. 39 to
the dirac-delta distribution δ(ϵ̃j+1 = 0).

Then we can see from the remark below Eq. 46 that the proof simply follows.

D TOY EXPERIMENTS

Section 6.1 outlined the experiments on toy datasets. Here, we provide a detailed description of the
dataset generation process and conduct additional experiments to further highlight the differences
between interventional and counterfactual estimates for RCD.
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X1 X2 X3

X4

X1 = ϵ1 X2 = ϵ2 X3 = ϵ3

X4 = f4(X1, X2, X3) = w1X1 + w2X2 + w3X3 + ϵ4

(a) Linear

X1 X2 X3

X4

X1 = ϵ1 X2 = ϵ2 X3 = ϵ3

X4 = f4(X1, X2, X3) =

(
sin(X1)+

√
|X2|+exp(−X3)

)
3 + ϵ4

(b) Non-Linear

Figure 6: This figure illustrates a toy causal graph with four variables: root nodes X1, X2, and X3, and a child
node X4, which is connected to all three root nodes. Panel (a) depicts a linear SCM where the root nodes are
direct copies of the exogenous noise terms ϵ, while X4 is a linear function of the root nodes. Panel (b) presents
a non-linear version, where X4 is the average of three non-linear functions applied to the root nodes. In both
panels, the SCM follows an additive noise model.

Figure 7: Four variable toy SCMs.

X1 X2 X3 X4

Training xtrn N (0, 1) N (0, 1) N (0, 1) f4(x
trn
1:3) +N (0, σ2)

Validation xval N (0, 1) N (0, 1) N (0, 1) f4(x
val
1:3) +N (0, σ2)

Test xRC N (0, 1) U [3, 10] N (0, 1) f4(x
tst
1:3) +N (0, σ2)

Counterfactual x̂CF(2) xRC
1 N (0, 1) xRC

3 f4(x̂
CF(2)
1:3 ) + ϵ̂4

Intervention x̂int(2) xRC
1 N (0, 1) xRC

3 f4(x̂
int(2)
1:3 ) + ϵ̃4

Table 4: This table outlines the process for generating each sample in our toy simulation study. The node X4

draws its ϵ4 from a normal distributionN (0, σ2), with σ2 varied between 0.5 and 5 in our experiments. For the
test sample shown here, the root cause lies at X2, and the corresponding ϵ2 is sampled from uniform U [3, 10].
The fix xfix

2 is sampled fromN (0, 1). For counterfactuals, ϵ̂4 represents the abducted ϵ, while for interventions,
ϵ̃4 corresponds to a randomly sampled error residual obtained from the validation data.

We illustrate the four-variable toy SCM for both linear and non-linear cases in Figure 7. Table 4
presents the equations used to generate the toy dataset samples.

We now provide a detailed analysis of the key observations from the results shown in Figure 5 in
our main paper.

• Low Variance: (a) A linear model, being convex, generalizes well across both training and test
domains. As a result, the abducted values of ϵ̂4 closely approximate the true values. This trend
is evident in Fig. 5a, where the interventional error plateaus around the standard deviation 0.5,
while the counterfactual (CF) error decreases with more training. (b) In contrast, for the non-
linear model, interventional estimates significantly outperform CF estimates (note the log scale
on the Y-axis). Nonlinear models are non-convex, leading to local minima or overfitting during
training. Consequently, while validation error decreases rapidly, the test (RC) error remains high
as training increases. This results in poor CF accuracy when f̂4 is evaluated on out-of-distribution
(OOD) inputs.

• Medium Variance: Similar trends are observed in this setting. Figs. 5a and 5b together show
that CF error correlates strongly with OOD test (RC) error, while interventional estimates remain
bounded by the standard deviation. These results confirm the tightness of our theoretical bounds
in practice.

• High Variance: In the linear dataset, the trends remain consistent. However, in the nonlinear
dataset, interventional estimates show more pronounced advantages over CFs, especially in low-
data regimes. This is because, in such scenarios, high variance ϵ4 destabilizes f̂4’s training,
leading to high variance in its parameters. Only with sufficient training samples (e.g., 1000) does
the validation error approach zero, causing the CF error to be comparable with the interventional
error.

• Very High Variance: In this regime, we observe the first instance where CF error outperforms
interventional error for the nonlinear model. One interpretation of the extreme variance in ϵ4 is
that the features X1, X2, X3 collected in the training data are insufficiently rich to explain the
variance of X4. This means that certain additional features must be collected, and thereby reduce
the variance σ2. Moreover, CFs perform better in this scenario only because their assumption of
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additive noise holds. We will demonstrate in the subsequent experiment that CFs perform very
poorly when this assumption is violated.

• Summary: While interventions may appear less favorable for linear models, we observed them
to be adequate for in the root cause diagnosis problem. This is because, even if the estimated
x̂

int(2)
4 deviates from the true x

CF(j)
4 , it suffices to infer the correct signal ϕ4(x

CF(2)
4 ) regarding

whether the fix suppresses the root cause at the target. Consequently, both interventions and CFs
achieve near-perfect recall in our linear experiments, as reported in the main paper. However, for
non-linear models, interventions surely emerge as a better choice.

D.1 ADDITIONAL EXPERIMENTS ON LINEAR TOY DATASET
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(a) Linear toy dataset with multi collinear features in the high training size regime and very high variance
regime
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(b) Linear toy dataset with multi collinear features in the low training size regime and very high variance regime

Figure 8: Assessing the impact of variance of ϵi using a four variable toy dataset.

We extended the four-variable linear toy dataset above in the very high variance setting to examine
scenarios where counterfactuals (CFs) and interventions perform differently. We considered low
training size with 50 samples and high training size with 1000 samples to study the impact of such
correlated features on the intervention and counterfactual errors. The input features, X , were ex-
panded to six dimensions. The first three features, X[:, 0 : 3], were sampled i.i.d. from a standard
Gaussian distribution as before. The remaining three features were designed to be correlated with
the first three as follows:

X[:, 4] = X[:, 1] +N (0, ρ), X[:, 5] = X[:, 2] +N (0, ρ), X[:, 6] = X[:, 3] +N (0, ρ)

Here, ρ takes values in {0.01, 0.1, 0.5, 1}. When ρ = 0.01, the fourth column is heavily correlated
with the first, while for ρ = 1, the correlation coefficient is less pronounced.

The results shown in Fi. 8b, 8a reveal the following observations:

For high training size and high variance settings:

• When ρ is small, interventions outperform CFs because multicollinearity induces high error in the
abnormal root cause regime for CFs. Validation error remains close to zero across all ρ settings,
but CF test error blows up in the abnormal regime.
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• As ρ increases (e.g., ρ > 0.5), the effects of multicollinearity diminish, and CFs regain their
dominance over interventions.

For low training size across all ρ values:

• Interventions consistently outperform CFs. CF error escalates to as high as 103, while interven-
tions remain robust with their error bounded by the standard deviation of ϵ.

General Insights: The central thesis of our work is that while there are specific scenarios where
counterfactuals (CFs) outperform interventions—such as when the abducted values are accurately
estimated and closely align with the oracle values (e.g., when f̂i ≈ fi)—these cases are exceptions
rather than the norm. When consolidating the performance across the diverse SCMs examined in
our study, interventions surely emerge as the superior approach for RCD compared to CFs.

E DESCRIPTION OF DATASETS

E.1 PETSHOP

The PetShop application is a microservices-based pet adoption platform deployed on Amazon Web
Services (AWS). It allows users to search for pets and complete adoption transactions. The system is
built using multiple interconnected microservices, which include storage systems, publish-subscribe
systems, load balancers, and other custom application based logic. These services were container-
ized and deployed using Kubernetes. The main focus of this dataset is to diagnose the root cause
for anomalies that occur at a target node called PetSite – the front-end interface where users interact
to browse for the pets displayed in the website. An anomaly is triggered at Petsite upon a viola-
tion of the service level objective (SLO), such as when the website’s response time exceeds 200
microseconds.

Causal Graph. The service dependencies in the PetShop application are captured in a directed
graph, with edges indicating the call relationships between services. This call graph is inverted by
reversing the edge directions to obtain the underlying causal graph for this dataset. While the Oracle
causal graph is available in PetShop, the Oracle SCM remains unavailable since the true structural
equations underlying the Oracle SCM are unknown. Moreover, obtaining the exact Oracle SCM (i.e.,
the precise functions fi) is infeasible for any real-world dataset, and rather only observed samples
can be recorded. Previous studies leveraging PetShop, such as (Okati et al., 2024) have adopted a
learning-based approach, approximating the Oracle SCM by training the structural equations on the
collected finite samples. Our work also follows the same methodology.

Node KPIs. The target node, PetSite, has several ancestor nodes, including PetSearch ECS Fargate,
petInfo DynamoDB Table, payforadoption ECS Fargate, lambdastatusupdater Lambda Function,
and petlistadoptions ECS Fargate. Key Performance Indicators (KPIs) for these nodes were col-
lected using Amazon CloudWatch, with system traces logged at 5-minute intervals. Metrics include
the number of requests, and latency (both average and quantiles) for each microservice. Overall,
the dataset includes 68 injected issues across five nodes, with each issue associated with a unique
ground-truth root cause. Consequently, each test case in this dataset features a unique root cause.

Root Cause Test cases. The issues injected into the system span various types, including request
overloads, memory leaks, CPU hogs, misconfigurations, and artificial delays. These issues affect
different services, such as petInfo DynamoDB Table, payforadoption ECS Fargate, and lambdasta-
tusupdater Lambda Function. Each root cause test case is created by selecting a root cause node
and then issuing an abnormally high number of requests through that node. This surge in traffic
from the selected root cause node ultimately triggers an SLO violation at the Petsite node. The
dataset includes three types of root cause test cases: Low, High, and Temporal latency. On average,
the request rates were 485 requests per second for Low latency, 690 for High latency, and 571 for
Temporal latency cases. In the High and Temporal latency cases, the root cause nodes deviated
significantly from the request patterns observed during training, allowing baseline methods such as
traversal to perform well. However, for the more challenging Low latency cases, where the statis-
tical discrepancy of the root cause nodes between the training regime and the abnormal root cause
regime is less pronounced, IDI demonstrated the best performance.
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The delays are parameterized with varying severities and affect different services, such as:

• PetSearch ECS Fargate: 500-2000ms delays for bunny search requests
• payforadoption ECS Fargate: 250-1000ms delays for all requests
• Misconfiguration errors: Affecting 1-10% of requests depending on the service

E.2 SYNTHETIC DATASETS

We experiment with several synthetic datasets to benchmark the perfomance of the baselines against
IDI. We desribe the generation of the causal graph first.

Causal Graph. We follow the graph generation procedure outlined in prior work (Budhathoki et al.,
2022b). Given the total number of nodes n and the number of root nodes nr, the causal graph is
constructed as follows: The nodes X1, X2, . . . , Xnr

are assigned as root nodes. For each internal
node Xk (where k > nr), we randomly select its parent nodes from the set of preceding nodes
X1, X2, . . . , Xk−1. Each internal node has at most one parent, with a slight bias towards selecting a
single parent. This sampling strategy helps to maintain a hierarchical structure and ensures the graph
remains sufficiently deep. Once the parent nodes are chosen, directed edges are added from each
parent to Xk. This process is repeated until all n nodes are connected, forming a directed acyclic
graph. Finally, we randomly choose a node that is at least 10 levels deep from a root node to serve
as the target anomalous node. We show some example causal graphs in Fig. 14.

Node KPIs. Since cloud KPIs take on positive values – such as latency, number of requests, through-
put, and availability (Hardt et al., 2024; Meng et al., 2020)—which are the commonly logged met-
rics, we ensured that all the nodes remain positive. To achieve this at root nodes, we sample ϵi from
a uniform distribution U [0, 1]. For the internal nodes, we generate their observed values using one
of the following three approaches:

• Linear: For a node Xi with parents PaXi
, we define the functional equation linearly with random

coefficients as: xi = w⊤
i Paxi

+ ϵi where wi ∼ U [0.5, 2]. These coefficients ensure that the KPI
remains positive. We did not use U [0, 1] for the weights because doing so caused deeper nodes
in the graph to diminish, eventually reaching zero.

• Non-Linear Invertible: For non-linearity, we define each local mechanism fi as an additive
noise three-layer ELU-activated MLP. We initialized the MLP weights using uniform distribution
to ensure that even the internal nodes remain positive. Since many Xi nodes have only one parent,
we found that using four hidden nodes in the MLP was sufficient to generate non-trivial test cases.
In this case, the equation becomes: Xi = mlp(PaXi

) + ϵi where ϵi ∼ U [0, 1].
• Non-Linear Non-Invertible: In this setting, we use the same MLP architecture as in the previous

case, but without additive noise. Here, each MLP fi receives both the parents Paxi
and the noise

ϵi as inputs. Thus, the equation is: Xi = mlp(PaXi
, ϵi) with ϵi ∼ U [0, 1]. This configuration

generates the most complex test cases in our experiments.

Root Cause Test cases. We consider two cases for the root cause test cases:

• Unique: In this case, we randomly sample a node from the ancestors of the target node.
• Multiple: Here, we randomly sample at most three nodes from the ancestors, ensuring that our

assumption 1 holds. Specifically, no two root causes lie on the same path to the target. We
experiment with test cases that satisfy this assumption and perform ablations to investigate its
impact.

Suppose α⋆ denotes the root cause node set. For α⋆ to cause an anomaly at xn, we apply a grid
search over ϵα⋆ such that (ϵα⋆ they lead the SCM S to induce an anomaly at xn. We start our search
from 0 and increase them in steps of size 0.25 until the Z-score of the target node ϕn(xn) hits the
anomaly threshold 3.

E.3 EXPERIMENTS UNDER ASSUMPTION 1 VIOLATIONS

In this experiment, we injected root causes at arbitrary nodes, resulting in Assumption 1 violations.
The results are shown in Table 5. Both IDI and other Causal Anomaly methods face challenges in
this scenario as they need parents of a root cause node to be usual. While CF attribution per-
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Linear Non-Lin Inv Non-Lin Non-Inv
Top-1 Top-3 Top-1 Top-3 Top-1 Top-3

Random Walk (Yu et al., 2021) 0.10 0.10 0.13 0.13 0.13 0.13
Ranked Correlation (Hardt et al., 2024) 0.00 0.00 0.00 0.00 0.00 0.00
Traversal (Chen et al., 2014) 0.00 0.40 0.03 0.27 0.00 0.27
Smooth Traversal (Okati et al., 2024) 0.23 0.50 0.17 0.47 0.30 0.43
CIRCA (Li et al., 2022) 0.13 0.13 0.27 0.27 0.13 0.13
TOCA (Okati et al., 2024) 0.07 0.07 0.03 0.03 0.00 0.00
CF Attribution (Budhathoki et al., 2022b) 0.83 0.97 0.33 0.57 0.07 0.23

IDI 0.57 0.57 0.53 0.60 0.40 0.53

Table 5: Experiment under Assumption 1 violations. A simple path to Xn can features more than one root
cause.

forms best in the linear setting, it struggles in other settings due to abduction errors being amplified
by the presence of multiple root causes in the same path. For non-lin inv SCMs, IDI achieves the
highest Recall, while in non-lin non-inv cases, it surpasses the CF method by 2× Recall. Overall,
IDI achieved the best method Recall even under assumption 1 violations.

F TIMING ANALYSIS

Method PetShop Syn Linear Syn Non-Linear

Correlation Random Walk (Yu et al., 2021) 2.36 1.74 4.81
Ranked Correlation (Hardt et al., 2024) 0.60 0.21 2.99
ϵ-Diagnosis (Shan et al., 2019) 2.11 – –

Causal Anomaly Circa (Li et al., 2022) 0.52 0.36 2.73
Traversal (Chen et al., 2014) 0.27 0.24 1.05
Smooth Traversal (Okati et al., 2024) 0.30 0.26 0.99

Causal Fix
HRCD (Ikram et al., 2022) 11.69 – –
TOCA (Okati et al., 2024) 1.96 0.95 9.16
CF Attribution (Budhathoki et al., 2022b) 9.71 22.99 178.47

Ours IDI (CF) 0.42 0.38 8.31
IDI 0.37 1.29 9.62

Table 6: Running time (in seconds) for datasets with unique root causes. ”–” indicates that the baseline was
not consider for the corresponding dataset.

We present the running time required for predicting the unique root cause across all methods for one
test case in Table 6. We show the results for the semi-synthetic PetShop dataset, as well as the Linear
and Non-Linear versions of our synthetic datasets. Note that we omit the Non-Linear Non-Invertible
cases because their running times were comparable to the Non-Linear Invertible cases. We make the
following observations:

1. The Correlation and Causal Anomaly methods demonstrate the best performance in terms of
running time.

2. Causal Fix approaches, on the contrary, are bottlenecked by the need to learn the Structural Causal
Model (SCM). Learning the SCM involves fitting a lightweight regression model f̂i : PaXi 7→ Xi

for each node i. Recall that these models are lightweight because they only need to regress the
parent covariates of the nodes. The Linear methods incur less time compared to the Non-Linear
ones, as they can be learned using closed-form expressions, whereas Non-Linear methods require
gradient descent-based training.

3. For predicting the unique root cause, both IDI (CF) and IDI do not require Shapley value com-
putations, allowing them to run in significantly less time.

4. The baseline CF Attribution method, however, performs Shapley analysis across all nodes, even
for the unique root cause, making it the worst-performing method in terms of running time.

Table 7 presents the results for the running time required to predict multiple root causes. Unlike
the unique root cause, our method IDI and its CF ablation IDI (CF) require Shapley analysis in this
setting. However, Shapley values are computed only for the subset of nodes in Rcand, identified after
the first step of our algorithm (the Anomaly condition). We make the following observations:
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Method Syn Linear Syn Non-Lin Inv Syn Non-Lin Non-Inv

Corr.
Random Walk (Yu et al., 2021) 8.63 6.73 9.1
Ranked Correlation (Hardt et al., 2024) 0.26 1.54 1.9

Causal Anomaly Circa (Li et al., 2022) 0.38 2.34 2.23
Traversal (Chen et al., 2014) 0.22 2.26 1.99
Smooth Traversal (Okati et al., 2024) 0.26 2.37 1.95

Causal Fix TOCA (Okati et al., 2024) 1.3 11.66 13.58
CF Attribution (Budhathoki et al., 2022b) 23.48 120.61 190.08

Ours IDI (CF) 7.08 40.12 73.41
IDI 8.2 42.6 76.24

Table 7: Running time (in seconds) for datasets with multiple root causes.

1. The running time for the random walk-based approach increases due to the presence of multiple
anomalous paths leading to the target node.

2. All other baseline approaches exhibit running times comparable to those observed in the unique
root cause test cases.

3. The running times for IDI and IDI (CF) increase because of the additional Shapley computa-
tions. However, this increase is significantly smaller compared to CF Attribution, as the former
computes Shapley values over a subset of nodes, while the latter evaluates them across all nodes.

Dataset CF Attrib. IDI (Ours)
Linear 36.4± 3.6 6.0± 1.6
Non-Linear Invertible 35.8± 4.2 6.0± 1.9
Non-Linear Non-Invertible 37.1± 3.8 6.2± 1.9

Table 8: Number of nodes considered for Shapley Analysis: We report the mean ± standard deviation com-
puted across all the test cases.

We report the number of nodes involved in computing the Shapley values in Table 8. Since Shap-
ley value computations are NP-Hard, in practice, Monte Carlo simulations are commonly used to
approximate these values by sampling permutations of the nodes. In our work, we sampled 500
permutations for all methods to ensure tractability. Table 8 presents the mean number of nodes in-
volved, along with the standard deviation across all test cases. Overall, we observe a 6× reduction in
the number of nodes for IDI compared to the CF Attribution baseline. Notably, if exact computation
of Shapley values were performed, this reduction factor would be even more significant.

G EXPERIMENTS WITH HIGH VARIANCE OF ϵi

In this section, we experiment with different sampling distributions for ϵi to evaluate their impact on
interventional and counterfactual estimates. We begin with a simple four-variable toy example.

G.1 SYNTHETIC SETTING

In this subsection, we evaluate the impact of ϵi variance on other datasets used in our study.

PetShop. For the real-world PetShop dataset, the exogenous variables ϵ are latent, preventing us
from characterizing or controlling their variance. So we cannot experiment with this dataset.

All the synthetic experiments outlined below use 100 i.i.d. training samples to learn the SCM Ŝ.

Linear SCM. In the main paper, we conducted experiments with each ϵi sampled from U [0, 1].
Here, we explore broader distributions by sampling from U [0, b], with b ∈ {0.5, 2, 3, 5}. To reduce
clutter, we focus on the best-performing baselines from the main results. Figure 9 presents results
for the Linear SCM. The left panel corresponds to unique root cause test cases, while the right panel
shows multiple root cause test cases, with Recall@1 on the Y-axis. As expected, in the linear setting,
both interventional and counterfactual variants of IDI achieve Recall of 1 across all variance settings,
with the CF Attribution baseline standing out as a strong competitor.
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Figure 9: Linear Oracle SCM

Non-Linear Invertible. Figure 10 presents results for this setting. For unique root cause test cases,
IDI slightly outperforms the IDI (CF) variant of our approach. Among the baselines, CIRCA and
Smooth Traversal emerge as strong competitors, while CF Attribution performs poorly at high vari-
ance. For multiple root causes, IDI falls slightly short of IDI (CF) in high variance scenarios, likely
due to the overfitting or unstable training of the SCM Ŝ. We infact observed high validation errors
during training for high variances ϵis.
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Figure 10: Non Linear Invertible Oracle SCM

Non-Linear Non-Invertible. This setting is the most challenging among all datasets because ϵi is
not identifiable, causing CF approaches to struggle. As shown in Fig. 11, both CF Attribution and
our IDI (CF) variant perform poorly, often achieving near-zero recall at high variance. While IDI
also experiences performance drops compared to previous datasets, it remains comparatively robust
when compared against the baselines. IDI stands out as the best approach across all variance settings
in this dataset.
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Figure 11: Non Linear Non Invertible Oracle SCM

H SENSITIVITY ANALYSIS OF THE ANOMALY THRESHOLD

We conducted this experiment on the PetShop dataset. In our main paper, we used a default anomaly
threshold of 5. In this section, we assess the impact of baselines that implement the anomaly condi-
tion and IDI under varying anomaly thresholds, τi. For Z-Score, the threshold determines how many
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standard deviations a sample must deviate from the mean to be considered anomalous. We experi-
mented with thresholds ranging from 2 to 7 and report the results in Table 9. Overall, we observed
that IDI and the other baselines remained robust across different threshold choices, with IDI only
showing performance degradation at a threshold of 2. We acknowledge that tuning the threshold is
important in practice. However to tune it, we abnormal root cause test samples during training, since
most samples in Dtrn are non-anomalous. In the absence of such abnormal test samples, specifying
this hyperparameter involves domain expertise.

Recall@1 Recall@3
2 3 4 5 6 7 2 3 4 5 6 7

Traversal 0.73 0.80 0.87 0.90 0.87 0.80 0.73 0.83 0.87 0.90 0.87 0.80
Smooth Traversal 0.30 0.48 0.30 0.30 0.30 0.30 0.73 0.73 0.70 0.67 0.73 0.67
IDI (CF) 0.80 0.80 0.80 0.80 0.80 0.80 0.90 0.90 0.90 0.90 0.90 0.90
IDI 0.73 0.93 0.90 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93

Table 9: Results under variation of the anomaly detection threshold in the PetShop dataset. We show
both Recall@1 and Recall@3.
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Figure 12: An example Synthetic test case
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Figure 13: An example Synthetic test case

Figure 14: Random graphs sampled for our Synthetic Experiments

We show two instances of random graphs in Fig. 14. The purple node is the anomaly for which we
need to find the root cause. The ground truth root cause nodes are shown in yellow. We typically
observed that all nodes that are descendants of the yellow nodes also tend to exhibit anomalous
behavior.
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