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Abstract

This paper introduces an approach to endow generative diffusion processes the
ability to satisfy and certify compliance with constraints and physical principles.
The proposed method recast the traditional sampling process of generative diffu-
sion models as a constrained optimization problem, steering the generated data
distribution to remain within a specified region to ensure adherence to the given
constraints. These capabilities are validated on challenging applications when
synthesizing new materials with precise morphometric properties and generating
physics-informed motion governed by ordinary differential equations constraints.

1 Introduction

Generative diffusion models excel at robustly synthesizing content from raw noise through a sequential
denoising process [13, 23]. They have revolutionized high-fidelity creation of complex data, and their
applications have rapidly expanded beyond mere image synthesis, finding relevance in areas such as
engineering [27, 31], automation [3, 15], chemistry [1, 14], and medical analysis [2, 6]. Although
diffusion models excel at generating content that is coherent and aligns closely with the original data
distribution, their direct application in scenarios requiring stringent adherence to predefined criteria
poses significant challenges. Particularly the use of diffusion models in domains where the generated
data needs to not only resemble real-world examples but also rigorously comply with established
specifications and physical laws remains an open challenge.

Given these limitations, one might consider training a diffusion model on a dataset that already
adheres to specific constraints. However, even with “feasible” training data, this approach does
not guarantee adherence to desired criteria due to the stochastic nature of the diffusion process.
Furthermore, there are frequent scenarios where the training data must be altered to generate outputs
that align with specific properties, potentially not present in the original data. This issue often leads
to a distribution shift further exacerbating the inability of generative models to produce “valid” data.
As we will show in a real-world experiment (§6.1), this challenge is particularly acute in scientific
and engineering domains, where training data is often sparse and confined to specific distributions,
yet the synthesized outputs are required to meet stringent properties or precise standards [27].

This paper addresses these challenges and introduces Physics-aware Diffusion Models (PDM), a
novel approach that recast the traditional sampling strategy in diffusion processes as a constrained-
optimization problem. This perspective allows us to apply traditional techniques from constraint
optimization to the sampling process. In this work, the problem is solved by iteratively projecting the
diffusion sampling process onto arbitrary constraint sets, ensuring that the generated data adheres
strictly to imposed constraints or physical principles. We provide theoretical support for PDM’s
capability to not only certify adherence to the constraints but also to optimize the generative model’s
original objective of replicating the true data distribution. This alignment is a significant advantage
of PDM, yielding state-of-the-art FID scores while maintaining strict compliance with the imposed
constraints.
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Contributions. In summary, this paper makes the following key contributions: (1) It introduces
PDM, a new framework that augments diffusion-based synthesis with arbitrary constraints in order
to generate content with high fidelity that also adheres to the imposed specifications. (2) Empirical
evaluation is conducted for adherence to morphometric properties in real-world material science
experiments and generation of physics-informed motion governed by ordinary differential equations,
showcasing PDM’s ability to produce content that adheres to complex constraints. (3) We further
show that PDM is able to generate out-of-distribution samples that meet stringent constraints, even in
scenarios with extremely sparse training data and when the training data does not satisfy the required
constraints. (4) Finally, we provide a theoretical basis elucidating the ability of PDM to generate
highly accurate content while ensuring constraint compliance, underpinning the practical implications
of this approach.

2 Preliminaries: Diffusion models

Diffusion-based generative models [13, 23] expand a data distribution, whose samples are denoted x0,
through a Markov chain parameterization {xt}Tt=1, defining a Gaussian diffusion process p(x0) =∫
p(xT )

∏T
t=1 p(xt−1|xt)dx1:T .

In the forward process, the data is incrementally perturbed towards a Gaussian distribution. This
process is represented by the transition kernel q(xt|xt−1) = N (xt;

√
1− βtxt−1, βtI) for some

0 < βt < 1, where the β-schedule {βt}Tt=1 is chosen so that the final distribution p(xT ) is nearly
Gaussian. The diffusion time t allows an analytical expression for variable xt represented by
χt(x0, ϵ) =

√
αtx0 +

√
1− αtϵ, where ϵ ∼ N (0, I) is a noise term, and αt =

∏t
i=1 (1− βi). This

process is used to train a neural network ϵθ(xt, t), called the denoiser, which implicitly approximates
the underlying data distribution by learning to remove noise added throughout the forward process.
The training objective minimizes the error between the actual noise ϵ and the predicted noise
ϵθ(χt(x0, ϵ), t) via the loss function:

min
θ

E
t∼[1,T ], p(x0),N (ϵ;0,I)

[
∥ϵ− ϵθ(χt(x0, ϵ), t)∥2

]
. (1)

The reverse process uses the trained denoiser, ϵθ(xt, t), to convert random noise p(xT ) iteratively
into realistic data from distribution p(x0). Practically, ϵθ predicts a single step in the denoising
process that can be used during sampling to reverse the diffusion process by approximating the
transition p(xt−1|xt) at each step t.

Score-based models [24, 25], while also operating on the principle of gradually adding and removing
noise, focus on directly modeling the gradient (score) of the log probability of the data distribution at
various noise levels. The score function∇xt

log p(xt) identifies the direction and magnitude of the
greatest increase in data density at each noise level. The training aims to optimize a neural network
sθ(xt, t) to approximate this score function, minimizing the difference between the estimated and
true scores of the perturbed data:

min
θ

E
t∼[1,T ],p(x0),q(xt|x0)

(1− αt)
[
∥sθ(xt, t)−∇xt

log q(xt|x0)∥2
]
, (2)

where q(xt|x0) = N (xt;
√
αtx0, (1− αt)I) defines a distribution of perturbed data xt, generated

from the training data, which becomes increasingly noisy as t approach T . This paper considers
score-based models.

3 Related work and limitations

While diffusion models are highly effective in producing content that closely mirrors the original
data distribution, the stochastic nature of their outputs act as an impediment when specifications or
constraints need to be imposed on the generated outputs. In an attempt to address this issue, two main
approaches could be adopted: (1) model conditioning and (2) post-processing corrections.

Model conditioning [12] aims to control generation by augmenting the diffusion process via a
conditioning variable c to transform the denoising process via classifier-free guidance:

ϵ̂θ
def
= λ× ϵθ(xt, t, c) + (1− λ)× ϵθ(xt, t,⊥),

2



where λ ∈ (0, 1) is the guidance scale and ⊥ is a null vector representing non-conditioning. These
methods have been shown effective in capturing properties of physical design [27], positional
awareness [3], and motion dynamics [30]. However, while conditioning may be effective to influence
the generation process, it lacks the rigor to ensure adherence to specific constraints. This results
in generated outputs that, despite being plausible, may not be accurate or reliable. Figure 2 (red
colors) illustrates this issue on a physics-informed motion experiment (detailed in §6.1). The figure
reports the distance of the model outputs to feasible solutions, showcasing the constraint violations
identified in a conditional model’s outputs. Notably, the model, conditioned on labels corresponding
to positional constraints, fails to generate outputs that adhere to these constraints, resulting in outputs
that lack meaningful physical interpretation.
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Figure 1: Sampling steps failing to converge
to feasible solutions in conditional models
(red) while minimizing the constraint diver-
gence to 0 under PDM (blue).

Additionally, conditioning in diffusion models often re-
quires training supplementary classification and regression
models, a process fraught with its own set of challenges.
This approach demands the acquisition of extra labeled
data, which can be impractical or unfeasible in specific sce-
narios. For instance, our experimental analysis will demon-
strate a situation in material science discovery where the
target property is well-defined, but the original data dis-
tribution fails to embody this property. This scenario is
common in scientific applications, where data may not
naturally align with desired outcomes or properties [18].

Post-processing correction. An alternative approach in-
volves applying post-processing steps to correct deviations
from desired constraints in the generated samples. This
correction is typically implemented in the last noise removal stage, sθ(x1, 1). Some approaches have
augmented this process to use optimization solvers to impose constraints on synthesized samples
[10, 18, 20]. However these approaches present two main limitations. First, their objective does
not align with optimizing the score function. This inherently positions the diffusion model’s role as
ancillary, with the final synthesized data often resulting in a significant divergence from the learned
(and original) data distributions, as we will demonstrate in §6. Second, these methods are reliant
on a limited and problem specific class of objectives and constraints, such as specific trajectory
“constraints” or shortest path objectives which can be integrated as a post-processing step [10, 20].

Other methods. Some methods explored modifying either diffusion training or inference to adhere
to desired properties. For instance, the methods in [9] and [16], support simple linear or convex
sets, respectively. Similarly, Fishman et al. [7, 8] focus on predictive tasks within convex polytope,
which are however confined to approximations by simple geometries like L2-balls. While important
contributions, these approaches prove insufficient for the complex constraints present in many real-
world tasks. Conversely, in the domain of image sampling, Lou and Ermon [17] and Saharia et al.
[22] introduce methods like reflections and clipping to control numerical errors and maintain pixel
values within the standard [0,255] range during the reverse diffusion process. These techniques, while
enhancing sampling accuracy, do not address broader constraint satisfaction challenges.

To overcome these gaps and handle arbitrary constraints, our approach casts the reverse diffusion
process to a constraint optimization problem that is then solved throught repeated projection steps.

4 Constrained generative diffusion

This section establishes a theoretical framework that connects the reverse diffusion process as an
optimization problem. This perspective facilitates the incorporation of constraints directly into the
process, resulting in the constrained optimization formulation presented in Equation (6).

The application of the reverse diffusion process of score-based models is characterized by iteratively
transforming the initial noisy samples xT back to a data sample x0 following the learned data
distribution q(x0). This transformation is achieved by iteratively updating the sample using the
estimated score function∇xt

log q(xt|x0), where q(xt|x0) is the data distribution at time t. At each
time step t, starting from x0

t , the process performs M iterations of Stochastic Gradient Langevin
Dynamics (SGLD) [28]:

xi+1
t = xi

t + γt∇xi
t
log q(xi

t|x0) +
√

2γtϵ, (3)
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where ϵ is standard normal, γt > 0 is the step size, and ∇xi
t
log q(xi

t|x0) is approximated by the
learned score function sθ(xt, t).

4.1 Casting the reverse process as an optimization problem

First note that SGLD is derived from discretizing the continuous-time Langevin dynamics, which are
governed by the stochastic differential equation:

dX(t) = ∇ log q(X(t)) dt+
√
2 dB(t), (4)

where B(t) is standard Brownian motion. Under appropriate conditions, the stationary distribution
of this process is q(xt) [21], implying that samples generated by Langevin dynamics will, over time,
be distributed according to q(xt). In practice, these dynamics are simulated using a discrete-time
approximation, leading to the SGLD update in Equation (3). Therein the noise term

√
2γt ϵ

i
t allows

the algorithm to explore the probability landscape and avoid becoming trapped in local maxima.

Next notice that, as detailed in [28, 29], under some regularity conditions this iterative SGLD
algorithm converges toward a stationary point, bounded by d2

σ1/4λ∗ log(1/ϵ), where, σ2 represents
the variance schedule, λ∗ denotes the uniform spectral gap of the Langevin diffusion, and d is the
dimensionality of the problem. Thus, as the reverse diffusion process progresses towards T → 0, and
the variance schedule decreases, the stochastic component becomes negligible, and SGLD transitions
toward deterministic gradient ascent on log q(xt). In the limit of vanishing noise, the update rule
simplifies to:

xi+1
t = xi

t + γt∇x log q(xi
t|x0), (5)

which is standard gradient ascent aiming to maximize log q(xt). This allow us to view the reverse
diffusion process as an optimization problem minimizing the negative log-likelihood of the data
distribution q(xt|x0) at each time step t.

In traditional score-based models, at any point throughout the reverse process, xt is unconstrained.
When these samples are required to satisfy some constraints, the objective remains unchanged, but the
solution to this optimization must fall within a feasible region C, and thus the optimization problem
formulation becomes:

minimize
xT ,...,x1

∑
t=T,...,1

− log q(xt|x0) (6a)

s.t.: xT , . . . ,x0 ∈ C. (6b)

Operationally, the negative log likelihood is minimized at each step of the reverse Markov chain, as
the process transitions from xT to x0. In this regard, and importantly, the objective of the PDM’s
reverse sampling process is aligned with that of traditional score-based diffusion models.

4.2 Constrained guidance through iterative projections

The score network sθ(xt, t) directly estimates the first-order derivatives of Equation (6a), providing
the necessary gradients for iterative gradient-based updates defined in Equation (3). In the presence of
constraints (6b), however, an alternative iterative method is necessary to guarantee feasibility. PDM
models a projected guidance approach to provide this constraint-aware optimization process.

First, we define the projection operator, PC, as a constrained optimization problem,

PC(x) = argmin
y∈C

||y − x||22, (7)

that finds the nearest feasible point to the input x. The cost of the projection ||y − x||22 represents the
distance between the closest feasible point and the original input.

To retain feasibility through an application of the projection operator after each update step, the paper
defines physics-aware diffusion model sampling step as

xi+1
t = PC

(
xi
t + γt∇xi

t
log q(xt|x0) +

√
2γtϵ

)
, (8)

where C is the set of constraints and PC is a projection onto C. Hence, iteratively throughout the
Markov chain, a gradient step is taken to minimize the objective defined by Equation (6a) while ensur-
ing feasibility. Convergence is guaranteed for convex constraints sets [19] and empirical evidence in
§6 showcases the applicability of this methods to arbitrary constraint sets. Importantly, the projection
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Algorithm 1: PDM

1 x0
T ∼ N (0, σT I)

2 for t = T to 1 do
3 γt ← σ2

t/2σ2
T

4 for i = 1 to M do
5 ϵ ∼ N (0, I);

g ← sθ∗(xi−1
t , t)

6 xi
t = PC(xi−1

t + γtg +
√
2γtϵ)

7 x0
t−1 ← xM

t

8 return x0
0

operators can be warm-started during the repeated
sampling step providing a piratical solution even
for hard non-convex constrained regions. The full
sampling process is detailed in Algorithm 1.

By incorporating constraints throughout the sam-
pling process, the interim learned distributions are
steered to comply with these specifications. This
is empirically evident from the pattern in Figure 1
(blue curves): remarkably, the constraint viola-
tions decrease with each addition of estimated
gradients and noise and approaches 0-violation as
t nears zero. This trend not only minimizes the
impact but also reduces the optimality cost of pro-
jections applied in the later stages of the reverse process. We provide theoretical rationale for the
effectiveness of this approach in §5 and conclude this section by noting that this approach can
be clearly distinguished from other methods which use a diffusion model’s sampling process to
generate starting points for a constrained optimization algorithm [10, 20]. Instead, PDM leverages
minimization of negative log likelihood as the primary objective of the sampling algorithm akin to
standard unconstrained sampling procedures. This strategy offers a key advantage: the probability of
generating a sample that conforms to the data distribution is optimized directly, rather than an external
objective, while simultaneously imposing verifiable constraints. In contrast, existing baselines often
neglect the conformity to the data distribution, which, as we will show in the next section, can lead
to a deviation from the learned distribution and an overemphasis on external objectives for solution
generation, resulting in significant divergence from the data distribution, reflected by high FID scores.

5 Effectiveness of PDM: A theoretical justification

Next, we theoretically justify the use of iterative projections to guide the sample to the constrained
distribution. The analysis assumes that the feasible region C is a convex set. All proofs are reported
in the Appendix. We start by defining the update step.
Definition 5.1. The operator U defines a single update step for the sampling process as,

U(xi
t) = xi

t + γtsθ(x
i
t, t) +

√
2γtϵ. (9)

The next result establishes a convergence criteria on the proximity to the optimum, where for each
time step t there exists a minimum value of i = Ī such that,

∃Ī s.t.
∥∥∥(xĪ

t + γt∇xĪ
t
log q(xĪ

t |x0))
∥∥∥
2
≤ ∥ρt∥2 (10)

where ρt is the closest point to the global optimum that can be reached via a single gradient step from
any point in C.
Theorem 5.2. Let PC be a projection onto C, xi

t be the sample at time step t and iteration i, and
‘Error’ be the cost of the projection (7). Assume∇xt

log p(xt) is convex. For any i ≥ Ī ,
E
[
Error(U(xi

t),C)
]
≥ E

[
Error(U(PC(x

i
t)),C)

]
(11)

The proof for Theorem 5.2 is reported in §G. This result suggests that PDM’s projection steps ensure
the resulting samples adhere more closely to the constraints as compared to samples generated
through traditional, unprojected methods. Together with the next results, it will allow us to show that
PDM samples converge to the point of maximum likelihood that also satisfy the imposed constraints.

The theoretical insight provided by Theorem 5.2 provides an explanation for the observed discrepancy
between the constraint violations induced by the conditional model and PDM, as in Figure 1.
Corollary 5.3. For arbitrary small ξ > 0, there exist t and i ≥ Ī such that:

Error(U(PC(x
i
t)),C) ≤ ξ.

The above result uses the fact that the step size γt is strictly decreasing and converges to zero, given
sufficiently large T , and that the size of each update step U decreases with γt. As the step size
shrinks, the gradients and noise reduce in size. Hence, Error(U(PC(x

i
t)) approaches zero with t, as

illustrated in Figure 1 (right). This diminishing error implies that the projections gradually steer the
sample into the feasible subdistribution of p(x0), effectively aligning with the specified constraints.
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Feasibility guarantees. PDM provides feasibility guarantees when solving convex constraints.
This assurance is integral in the sensitive settings explored, where strict adherence to the constraint
set is necessary.

Corollary 5.4. PDM provides feasibility guarantees for convex constraint sets, for arbitrary density
functions∇xt

log p(xt).

6 Evaluation

We compare PDM against three methodologies, each employing state-of-the-art specialized methods
tailored to the various applications tested:: (1) Conditional diffusion models (Cond ) [12] are the state-
of-the-art methods for generative sampling subject to a series of specifications. While conditional
diffusion models offer a way to guide the generation process towards satisfying certain constraints,
they do not provide compliance guarantees. (2) To encourage constraints satisfaction, we additionally
compare to conditional models with a post-processing projection step (Cond+), emulating the post-
processing approaches of [10, 20] in various domains presented next. Finally, (3) we use a score-based
model identical to our implementation but with a single post-processing projection operation (Post+)
performed at the last sampling step.

The performance of these models are evaluated by the feasibility, diversity, and accuracy of the
generated samples. Feasibility is assessed by the degree and rate at which constraints are satisfied,
expressly, the percentage of samples which satisfy the constraints with a given error tolerance.
Diversity and accuracy is measured by the FID score, a standard metric in synthetic sample evaluation.
In §6.1 accuracy is also assessed by the domain-specific, heuristic-based methods (see Figure 4).

0 20 40 60
Error Tolerance (%)

0

20

40

60

80

100

Sa
tis

fa
ct

io
n 

(%
)

Porosity Constraint Satisfaction
Cond

Figure 2: Conditional diffusion model
(Cond): Frequency of porosity con-
straint satisfaction (y-axis) within an
error tolerance (x-axis) over 100 runs.

Ground P(%)
Generative Methods

PDM Cond Post+ Cond+

10

30

50
FID scores: 30.7±6.8 31.7±15.6 41.7±12.8 46.4±10.7

Figure 3: Porosity constrained microstructure visualization at varying
of the imposed porosity constraint amounts (P) and FID scores.

6.1 Constrained materials (low data regimes and constraint-violating distributions)

This setting focuses on a real-world application in material science, conducted as part of an experiment
to expedite the discovery of structure-property linkages. From a sparse, uniform collection of
microstructure materials, we aim to generate new structures with desired, previously unobserved
porosity levels.

Microstructures are pivotal in determining material properties. Current practice relies on physics-
based simulations conducted upon imaged microstructures to quantify intricate structure-property
linkages [4]. However, acquiring real material microstructure images is both costly and time-
consuming, lacking control over attributes like porosity, crystal sizes, and volume fraction, thus
necessitating “cut-and-try” experiments. Hence, the capability to generate realistic synthetic material
microstructures with controlled morphological parameters can significantly expedite the discovery of
structure-property linkages.
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There are two key challenges in this setting: (1) Data sparsity: A critical factor in this setting is the
cost of producing training data. Our dataset, obtained from the authors of [5], consists of 64× 64
image patches subsampled from a 3, 000× 3, 000 pixel microscopic image, with pixel values scaled
to [−1, 1]. These patches are upscaled to 256 × 256 for model training. (2) Out-of-distribution
constraints: Constraints on the generated material’s porosity, defined by pixels below a threshold
representing damage, are far from those observed in the original dataset.

Projections. The porosity of an image is represented by the number of pixels in the image which
are classified as damaged regions of the microstructure. Provided that the image pixel intensities are
scaled to [-1, 1], a threshold is set at zero, with pixel intensities below this threshold being classified
as damage regions. To project, we implement a top-k algorithm that leaves the lowest and highest
intensity pixels unchanged, while adjusting the pixels nearest to the threshold such that the total
number of pixels below the threshold precisely satisfies the constraint.

Conditioning. Previous work has shown that conditional generative adversarial networks (GAN)
[11] can be used for this end [5], but these studies have been unable to impose verifiable constraints
on the satisfaction of these desired properties. To provide a conditional baseline, we implement
a conditional DDPM modeled after the conditional GAN used by Chun et al. [5] with porosity
measurements used to condition the sampling. This baseline is conditioned on the porosity values of
the training samples. The implementation of this model is as described by Ho and Salimans.

Original training data. We include samples from the original training data to visually illustrate
how closely our results perform compared to the real images. As the specific porosities we tested on
are not adhered to in the dataset, we illustrate this here as opposed to in the body of the text.

Results. We observe that only Cond and PDM synthesize images that visually adhere to the
distribution, while post-processing methods do not provide adequate results for this complex setting.
Previous work demonstrated the use of conditional GANs [5, 11] to material generation, but these
studies failed to impose verifiable constraints on desired properties. To establish a conditional
baseline (denoted as Cond), we implement a conditional diffusion model, following the state-of-
the-art approach by Chun et al. [5], conditioning the sampling on porosity measurements. Figure 2
reports the constraint violations achieved by this model. The plot depicts the frequency of constraint
satisfaction (y-axis) as a function of the error tolerance (x-axis), in percentage. Observe that this
state-of-the-art model struggles to adhere to the imposed constraints.

In contrast, PDM ensures both exact constraint satisfaction and identical image quality to the
conditional model, which is significant given the complexity of the original data distribution. Figure 3
visualizes the outputs and FID scores obtained by our proposed model compared to various baselines.
The constraint correction step applied by Post+ and Cond+ leads to a noticeable decrease in image
quality, evident both visually and in the FID scores, rendering the generated images unsuitable.
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Figure 4: Distributions of the morphometric parameters, comparing the ground truth to PDM and Cond models.

Additionally, we find that PDM outperforms Cond in generating microstructures that resemble those
in the ground truth data (Figure 4). When analyzing both real and synthetic materials, heuristic-guided
metrics are often employed to extract information about microstrucutres present in the material. When
analyzing the quality of synthetic samples, the extracted data can then be used to assess how well
the crystals and voids in the microstructure adhere to the training data, providing an additional
qualitative metrics for analysis. Hence, we include the distribution of three metrics describing these
microstructures in Figure 4, mirroring those used by Chun et al.
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We observe that the constraint imposition present in PDM improves the general adherence of the
results to the ground truth microstructures. This suggests that the Cond model tends to generate
to certain microstructures at a frequency that is not reflected in the training data. By imposing
various porosity constraints, PDM is able to generate a more representative set of microstructures in
the sampling process. These results are significant: the ability to precisely control morphological
parameters in synthetic microstructures has broad impact in material synthesis, addressing critical
challenges in data collection and property specification.

t Earth (in distribution) Moon (out of distribution)
Ground PDM Post+ Cond+ Ground PDM Post+ Cond+

1

3

5
PDM Post+ Cond Cond+

FID 26.5 ± 1.7 52.5 ± 1.0 22.5 ± 0.1 53.0 ± 0.3

Figure 5: Sequential stages of the physics-informed models for in-distribution
(Earth) and out-of-distribution (Moon) constraint imposition.

Figure 6: Conditional diffusion
model (Cond): Frequency of
constraint satisfaction (y-axis)
given an error tolerance (x-axis)
over 100 runs.

6.2 Physics-informed motion (ODEs and out-of-distribution constraints)

Finally, we show the applicability of PDM in generating video frames adhering to physical principles.
In this task, the goal is to generate frames depicting an object accelerating due to gravity. The
object’s position in a given frame is governed by

pt = pt−1 +

(
vt +

(
0.5× ∂vt

∂t

))
(12a) vt+1 =

∂pt

∂t
+

∂vt

∂t
(12b)

where p is the object position, v is the velocity, and t is the frame number. This positional information
can be directly integrated into the constraint set of PDM, with constraint violations quantified by the
pixel distance from their true position. In our experiment, the training data is based solely on earth’s
gravity and we test the model to simulate gravitational forces from the moon and other planets, in
addition to earth. Thus there are two challenges in this setting (1) satisfying ODEs describing our
physical principle and (2) generalize to out-of-distribution constraints.

The dataset is generated with object starting points sampled uniformly in the interval [0, 63]. For
each data point, six frames are included with the position changing as defined in Equation 12 and the
initial velocity v0 = 0. Pixel values are scaled to [-1, 1].

Projections. Projecting onto positional constraints requires a two-step process. First, the current
position of the object is identified and all the pixels that make up the object are set to the highest pixel
intensity (white), removing the object from the original position. The set of pixel indices representing
the original object structure are stored for the subsequent step. Next, the object is moved to the
correct position, as computed by the constraints, as each pixel from the original structure is placed
onto the center point of the true position. Hence, when the frame is feasible prior to the projection,
the image is returned unchanged, which is consistent with the definition of a projection.

Conditioning. For this setting, the conditional video diffusion model [26] takes two ground truth
frames as inputs, from which it infers the trajectory of the object and the starting position.

Results. Figure 5 (left) shows randomly selected generated samples, with ground-truth images
provided for reference. The subsequent rows display outputs from PDM, post-processing projection
(Post), and conditional post-processing (Cond+). For this setting, we used a state-of-the-art masked
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conditional video diffusion model, following Voleti et al. [26]. Samples generated by conditional
diffusion models are not directly shown in the figure, as the white object outline in the Cond+

frames shows where the Cond model originally positioned the object. Notice that, without constraint
projections, the score-based generative model produce samples that align with the original data
arbitrarily place the object within the frame (white ball outlines in the 3rd column). Post-processing
repositions the object accurately but significantly reduces image quality. Similarly, Cond+ shows
inaccuracies in the conditional model’s object positioning, as indicated by the white outline in the 4th
column. These deviations from the desired constraints are quantitatively shown in Figure 6 (light red
bars), which depicts the proportion of samples adhering to the object’s behavior constraints across
varying error tolerance levels. Notably, this approach fails to produce any viable sample within a
zero-tolerance error margin. In contrast, PDM generates frames that exactly satisfy the positional
constraints, with FID scores comparable to those of Cond. Using the model proposed by Song et al.
[25] further narrows this gap (see §C).

Next, Figure 5 (right) shows the behavior of the models in settings where the training data does not
include any feasible data points. Here we adjust the governing equation (12) to reflect the moon’s
gravitational pull. Remarkably, PDM not only synthesizes high-quality images but also ensures no
constraint violations (0-tolerance). This stands in contrasts to other methods, that show increased
constraint violations in out-of-distribution contexts, as shown by the dark red bars in Figure 6. PDM
can be adapted to handle complex governing equations using ODEs and can be guarantee satisfaction
of out-of-distribution constraints with no decrease in sample quality.

7 Discussion and limitations

In many scientific and engineering domains and safety-critical applications, constraint satisfaction
guarantees are a critical requirement. It is however important to acknowledge the existence of an
inherent trade-off, particularly in computational overhead. In applications where inference time is a
critical factor, it may be practical to adjust the time step t at which iterative projections begin, which
guides a trade-off between the FID score associated with the starting point of iterative projections
and the computational cost of projecting throughout the remaining iterations (§E). Other avenues to
improve efficiency also exists, from the adoption of specialized solvers within the application domain
of interest to the adoption of warm-start strategies for iterative solvers. The latter, in particular, relies
exploiting solutions computed in previous iterations of the sampling step and was found to be a
practical strategy to substantially decrease the projections overhead.

We also note the absence of constraints in the forward process. As illustrated empirically, it is
unnecessary for the training data to contain any feasible points. We hold that this not only applies to
the final distribution but to the interim distributions as well. Furthermore, by projecting perturbed
samples, the cost of the projection results in divergence from the distribution that is being learned.
Hence, we conjecture that incorporating constraints into the forward process will not only increase
computational cost of model training but also decrease the FID scores of the generated samples.

Finally, while this study provides a framework for imposing constraints on diffusion models, the
representation of complex constraints for multi-task large scale models remains an open challenge.
This paper motivates future work for adapting optimization techniques to such settings, where
constraints ensuring accuracy in task completion and safety in model outputs bear transformative
potential to broaden the application of generative models in many scientific and engineering fields.

8 Conclusions

This paper was motivated by a significant challenge in the application of diffusion models in contexts
requiring strict adherence to constraints and physical principles. It presented Physics-Aware Diffusion
Models (PDM), an approach that recasts the score-based diffusion sampling process as a constrained
optimization process that can be solved via the application of repeated projections. Empirical
evaluation synthesizing morphometric properties in generative material science processes and physics-
informed motion for video generation governed by ordinary differentiable equations illustrate the
ability of PDM to generate content of high-fidelity that also adheres to complex constraints.
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A Broader impacts

The development of Physics-Aware Diffusion Models (PDM) may significantly enhance the appli-
cation of diffusion models in fields requiring strict adherence to specific constraints and physical
principles. The proposed method enables the generation of high-fidelity content that not only re-
sembles real-world data but also complies with complex constraints, including non-convex and
physical-based specifications. PDM’s ability to handle diverse and challenging constraints in sci-
entific and engineering domains, particularly in low data environments, may potentially lead to
accelerating innovation and discovery in various fields.

B Expanded related work

Diffusion models with soft constraint conditioning. Variations of conditional diffusion models [12]
serve as useful tools for controlling task specific outputs from generative models. These methods
have demonstrated the capacity capture properties of physical design [27], positional awareness [3],
and motion dynamics [30] through augmentation of these models. The properties imposed in these
architectures can be viewed as soft constraints, with stochastic model outputs violating these loosely
imposed boundaries.

Post-processing optimization. In settings where hard constraints are needed to provide meaningful
samples, diffusion model outputs have been used as starting points for a constrained optimization
algorithm. This has been explored in non-convex settings, where the starting point plays an important
role in whether the optimization solver will converge to a feasible solution [20]. Other approaches
have augmented the diffusion model training objective to encourage the sampling process to emulate
an optimization algorithm, framing the post-processing steps as an extension of the model [10, 18].
However, an existing challenge in these approaches is the reliance on an easily expressible objective,
making these approaches effective in a limited set of problems (such as the constrained trajectory
experiment) while not applicable for the majority of generative tasks.

Hard constraints for generative models. Frerix et al. [9] proposed an approach for implementing
hard constraints on the outputs of autoencoders. This was achieved through scaling the generated
outputs in such a way that feasibility was enforced, but the approach is to limited simple linear
constraints. [16] proposed an approach to imposing constraints using “mirror mappings” with
applicability exclusively to common, convex constraint sets. Due to the complexity of the constraints
imposed in this paper, neither of these methods were applicable to the constraint sets explored in
any of the experiments. Alternatively, work by Fishman et al. [2023, 2024] broadens the classes
of constraints that can be represented but fails to demonstrate the applicability of their approach to
a empirical settings similar to ours, utilizing an MLP architecture for trivial predictive tasks with
constraints sets that can be represented by convex polytopes. We contrast such approaches to our
work, noting that this prior work is limited to constraint sets that can be approximated by simple
neighborhoods, such as an L2-ball, simplex, or polytope, whereas PDM can handle constraint sets of
arbitrary complexity.

Sampling process augmentation. Motivated by the compounding of numerical error throughout
the reverse diffusion process, prior work has proposed inference time operations to bound the pixel
values of an image dynamically while sampling [17, 22]. Proposed methodologies have either applied
reflections or simple clipping operations during the sampling process, preventing the generated image
from significantly deviating from the [0,255] pixel space. Such approaches augment the sampling
process in a way that mirrors our work, but these methods are solely applicable to mitigating sample
drift and do not intersect our work in general constraint satisfaction.

C PDM for score-based generative modeling through stochastic differential
equations

While the majority of our analysis focused on the developing these techniques to the sampling
architecture proposed for Noise Conditioned Score Networks [24], this approach can directly be
adapted to the diffusion model variant Score-Based Generative Modeling with Stochastic Differential
Equations proposed by Song et al. Although our observations suggested that optimizing across a
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Figure 7: In distribution sampling for physics-informed model via Score-Based Generative Modeling with SDEs.
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Figure 8: Out of distribution sampling for physics-informed model via Score-Based Generative Modeling with
SDEs.

continuum of distributions resulted in less stability in diverse experimental settings, we find that this
method is still effective in producing high-quality constrained samples in others.

We included an updated version of Algorithm 1 adapted to these architectures.

Algorithm 2: PDM Corrector Algorithm

1 x0
N ∼ N (0, σ2

maxI)
2 for t←− T to 1 do
3 for i←− 1 to M do
4 ϵ ∼ N (0, I)
5 g←− sθ*(x

i−1
t , σt)

6 γ ←− 2(r||ϵ||2/||g||2)2
7 xi

t ←− PC(x
i−1
t + γg +

√
2γϵ)

8 x0
t−1 ←− xM

t

9 return x0
0

We note that a primary discrepancy between this algorithm and the one presented in Section 4.2 is the
difference in γ. As the step size is not strictly decreasing, the guidance effect provided by PDM is
impacted as Corollary 5.3 does not hold for this approach. Hence, we do not focus on this architecture
for our primary analysis, instead providing supplementary results in the subsequent section.
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C.1 Results

We provide additional results using the Score-Based Generative Modeling with Stochastic Differential
Equations. This model produced highly performative results for the Physics-informed Motion
experiment, with visualisations included in Figures 7 and 8. This model averages an impressive
inception score of 24.2 on this experiment, slightly outperforming the PDM implementation for Noise
Conditioned Score Networks. Furthermore, it is equally capable in generalizing to constraints that
were not present in the training distribution.

D Additional results
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Figure 9: Porosity constrained microstructure visualization at varying of the imposed porosity constraint amounts
(expanded from Figure 3).
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Figure 10: Visualization of the decreasing upper
bound on error introduced in a single sampling
step for PDM, as opposed to the strictly increasing
upper bound of conditional (Cond) models.

We provide additional examples at differing porosity
levels in Figure 9. Again, we observe that only Cond
and PDM synthesize images that are viable samples,
with post-processing methods being ineffective at any
porosity level.

D.2 Convergence of PDM

As shown in Figure 1, the PDM sampling process
converges to a feasible subdistribution, a behavior
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that is generally not present in standard conditional models. Corollary 5.3 provides insight into this
behavior as it outlines the decreasing upper bound on ‘Error’ that can be introduced in a single
sampling step. To further illustrate this behavior, the decreasing upper bound can be illustrated in
Figure 10.

E Computational costs

To compare the computational costs of sampling with PDM to our baselines, we record the execution
times for the reverse process of a single sample. The implementations of PDM have not been optimized
for runtime, and represent an upper bound. All sampling is run on two NVIDIA A100 GPUs. All
computations are conducted on these GPUs.

Method Runtime

PDM 26.89
Post+ 26.01
Cond 18.51
Cond+ 18.54

Table 1: Average sampling
run-time in seconds.

We implement projections at all time steps in this analysis, although prac-
tically this is can be optimized to reduce the total number of projections
as described in the subsequent section. Additionally, we set M = 100
and T = 10 for each experiment. The increase in computational cost
present in PDM is directly dependant on the tractability of the projections
and the size of M .

The computational cost of the projections is largely problem dependant,
and we conjecture that these times could be improved by implementing
more efficient projections. However, these improvements are beyond the
scope of this paper.

Additionally, the number of iterations for each t can often be decreased below M = 100 or the
projection frequency can be adjusted (as has been done for in this section for the CPU implemented
projections), offering additional speed-up.
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Figure 11: Iterative projections using model trained with variational lower bound objective.

F Variational lower bound training objective

As defined in Equation 2, PDM uses a score-matching objective to learn to the gradients of the log
probability of the data distribution. This understanding allows the sampling process to be framed
in a light that is consistent to optimization theory, allowing equivalences to be drawn between the
proposed sampling procedure and projected gradient descent. This aspect is also integral to the theory
presented in Section 4.2.

Other DDPM and DDIM implementation utilize a variation lower bound objective, which is a tractable
approach to minimizing the negative log likelihood on the network’s noise predictions. While this
approach was inspired by the score-matching objective, we empirically demonstrate that iterative
projections perform much worse in our tested settings than models optimized using this training
objective, producing clearly inferior solutions in the Physics-informed experiments and failing to
produce viable solutions in the material science domain explored.

This approach (visualized in Figure 11) resulted in an FID score of 388.2 ± 13.0 on the Constrained
Materials experiment, much higher than those produced using the score-matching objective, adopted
in our paper. We hold that this is because the approach proposed in our paper is more theoretically
sound when framed in terms of a gradient-based sampling process.
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G Missing proofs

Proof of Theorem 5.2

Proof. By optimization theory of convergence in a convex setting, provided an arbitrarily large
number of update steps M , xM

t will reach the global minimum. Hence, this justifies the existence of
Ī as at some iteration as i −→∞,

∥∥∥xi
t + γt∇xi

t
log q(xi

t|x0)
∥∥∥
2
≤ ∥ρt∥2 will hold for every iteration

thereafter.

Consider that a gradient step is taken without the addition of noise, and i ≥ Ī . Provided this, there
are two possible cases.

Case 1: Assume xi
t + γt∇xi

t
log q(xi

t|x0) is closer to the optimum than ρt. Then, xi
t is infeasible.

This claim is true by the definition of ρt, as xi
t + γt∇xi

t
log q(xi

t|x0) is closer to µ than is achievable
from the nearest feasible point to µ. Hence, xi

t must be infeasible.

Furthermore, the additional gradient step produces a point that is closer to the optimum than possible
by a single update step from the feasible region. Hence it holds that

Error(xi
t + γt∇xi

t
log q(xi

t|x0)) > Error(PC(x
i
t) + γt∇PC(xi

t)
log q(PC(x

i
t)|x0)) (13)

as the distance from the feasible region to the projected point will be at most the distance to ρt. As
this point is closer to the global optimum than ρt, the cost of projecting xi

t + γt∇xi
t
log q(xi

t|x0) is
greater than that of any point that begins in the feasible region.

Case 2: Assume xi
t + γt∇xi

t
log q(xi

t|x0) is equally close to the optimum as ρt. In this case, there
are two possibilities; either (1) xi

t is the closest point in C to µ or (2) xi
t is infeasible.

If the former is true, xi
t = PC(x

i
t), implying

Error(xi
t + γt∇xi

t
log q(xi

t|x0)) = Error(PC(x
i
t) + γt∇PC(xi

t)
log q(PC(x

i
t)|x0)) (14)

Next, consider that the latter is true. If xi
t is not the closest point in C to the global minimum, then it

must be an equally close point to µ that falls outside the feasible region. Now, a subsequent gradient
step of xi

t will be the same length as a gradient step from the closest feasible point to µ, by our
assumption.

Since the feasible region and the objective function are convex, this forms a triangle inequality, such
that the cost of this projection is greater than the size of the gradient step. Thus, by this inequality,
Equation 13 applies.

Finally, for both cases we must consider the addition of stochastic noise. As this noise is sampled
from the Gaussian with a mean of zero, we synthesize this update step as the expectation over,

E
[
Error(xi

t + γt∇xi
t
log q(xi

t|x0) +
√
2γtϵ)

]
≥ E

[
Error(PC(x

i
t) + γt∇PC(xi

t)
log q(PC(x

i
t)|x0) +

√
2γtϵ)

]
(15)

or equivalently as represented in Equation 11.
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