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Figure 1: Illustration of our proposed Modality-Inconsistent Continual Learning (MICL), a novel
and practical continual learning scenario of Multimodal Large Language Models (MLLMs), where
tasks involve inconsistent modalities (image, video, or audio) and varying task types (captioning or
question-answering).

ABSTRACT

In this paper, we introduce Modality-Inconsistent Continual Learning (MICL),
a new continual learning scenario for Multimodal Large Language Models
(MLLMs) that involves tasks with inconsistent modalities (image, audio, or video)
and varying task types (captioning or question-answering). Unlike existing vision-
only or modality-incremental settings, MICL combines modality and task type
shifts, both of which drive catastrophic forgetting. To address these challenges, we
propose MoInCL, which employs a Pseudo Targets Generation Module to mitigate
forgetting caused by task type shifts in previously seen modalities. It also incorpo-
rates Instruction-based Knowledge Distillation to preserve the model’s ability to
handle previously learned modalities when new ones are introduced. We bench-
mark MICL using a total of six tasks and conduct experiments to validate the
effectiveness of our proposed MoInCL. The experimental results highlight the su-
periority of MoInCL, showing significant improvements over representative and
state-of-the-art continual learning baselines.

1 INTRODUCTION

Multimodal Large Language Models (MLLMs), leveraging the generative capabilities of LLMs,
have demonstrated remarkable performance across diverse modality-specific tasks (Li et al., 2022b;
2023; Zhang et al., 2023b; Liu et al., 2023; Panagopoulou et al., 2023; Liu et al., 2024). MLLMs
typically consist of a pre-trained modality encoder, like CLIP (Radford et al., 2021) for visual data,
a pre-trained LLM, and a modality adapter that projects modality-specific features into the language
token space. During training, the modality encoder is usually frozen to preserve its pre-trained
knowledge, while the adapter and, optionally, the LLM are fine-tuned to align cross-modal repre-
sentations and enhance task performance.

While fine-tuned MLLMs have demonstrated promising performance across various multimodal
tasks, including impressive zero-shot capabilities on unseen instructions (He et al., 2023), adapt-
ing to novel tasks still requires task-specific fine-tuning. Nevertheless, existing studies (He et al.,
2023; Zeng et al., 2024; Zheng et al., 2024) indicate that fine-tuning MLLMs on new tasks can
lead to significant performance degradation on previously learned tasks, a phenomenon known as
catastrophic forgetting, which remains the key challenge in continual learning. To address this is-
sue, several works explore new approaches to enable continual training of MLLMs while mitigating
the catastrophic forgetting issue. For instance, He et al. (2023) introduce the continual instruc-
tion tuning scenario for multimodal large language models, and propose an adapter-based method
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to handle it. Zheng et al. (2024) further explore the negative forward transfer problem in contin-
ual instruction tuning of MLLMs and propose a prompt-based method to mitigate these problems.
Cao et al. (2024) propose a MLLM-based continual learning framework but mainly focusing on
class-incremental image classification. While existing methods have demonstrated their abilities in
alleviating the catastrophic problem in the continual learning scenario of MLLMs, they primarily
focus on image modality, ignoring more general multimodal scenarios beyond image. Recently, Yu
et al. (2024) introduced a modality-incremental setting for MLLMs, but treated each modality as a
single, non-incremental task, ignoring the incremental nature of task types within modalities.

To address these issues, in this paper, we introduce Modality-Inconsistent Continual Learning
(MICL), a novel continual learning scenario for MLLMs. In MICL, different task types, such as
captioning and question-answering (QA), are introduced incrementally across learning steps incor-
porated with inconsistent modalities, as illustrated in Fig. 1. Unlike existing incremental learning
settings of MLLMs, MICL not only highlights the modality-inconsistent (modality-incremental)
scenario but also emphasizes the potential catastrophic forgetting problem arising from task type
incrementality combined with modality inconsistency.

Moreover, we propose MoInCL (Modality-Inconsistent Continual Learning), a novel continual
learning approach designed to address the MICL problem. By leveraging the generative capabil-
ities of the LLM backbone, MoInCL introduces a Pseudo Target Generation Module (PTGM) to
handle the task type shifts inherent in the task. Additionally, an Instruction-based Knowledge Dis-
tillation (IKD) constraint for LLM backbone is incorporated to preserve its ability to understand
modality- and task-aware knowledge, preventing the degradation of its learned capabilities.

We evaluate our method across image, audio, and video modalities, combined with captioning and
question-answering (QA) tasks, resulting in six multimodal incremental tasks (Image Captioning,
Image QA, Audio Captioning, Audio QA, Video Captioning, and Video QA). Our experiments
demonstrate that MoInCL significantly outperforms representative and state-of-the-art continual
learning methods, effectively addressing both modality and task type shifts within MICL. In sum-
mary, this paper contributes the following:

• We propose the Modality-Inconsistent Continual Learning, a more general and practical
continual learning scenario of MLLMs, where different modalities are introduced incre-
mentally combined with different task types.

• We propose a novel continual learning approach named MoInCL to tackle the task. In
MoInCL, a Pseudo Target Generation Module (PTGM) is introduced to address the task
type shift problem of previously learned modalities through incremental steps. Moreover,
we propose the Instruction-based Knowledge Distillation (IKD) constraint to prevent the
LLM from the forgetting of learned both modality- and task-aware knowledge in old tasks.

• We benchmark the proposed MICL across three modalities—image, audio, and video—and
two task types: captioning and question-answering, resulting in six incremental tasks. Ex-
perimental results demonstrate that our approach, MoInCL, significantly outperforms rep-
resentative and state-of-the-art continual learning methods, showcasing its effectiveness in
mitigating catastrophic forgetting from both modality and task type perspectives.

2 RELATED WORK

2.1 MULTIMODAL LARGE LANGUAGE MODELS

Recent advances have extended Large Language Models (LLMs) to handle multimodal inputs such
as images, audio, and video. Early work like CLIP (Radford et al., 2021) demonstrated the effec-
tiveness of aligning textual and visual representations for zero-shot image classification. Flamingo
(Alayrac et al., 2022) further integrated vision encoders with LLMs via cross-attention, signifi-
cantly improving visual question answering (VQA) and image captioning. Subsequent models like
BLIP (Li et al., 2022b) and PaLM-E (Driess et al., 2023) scaled multimodal pre-training, with
BLIP using a two-stage training strategy and PaLM-E incorporating embodied reasoning. More
recently, LLaVA (Liu et al., 2023), InstructBLIP (Dai et al., 2023), X-InstructBLIP (Panagopoulou
et al., 2023), Audio Flamingo (Kong et al., 2024; Ghosh et al., 2025; Goel et al., 2025), VideoL-
LaMA (Zhang et al., 2023a; Cheng et al., 2024; Zhang et al., 2025), Qwen-VL (Wang et al., 2024;
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Bai et al., 2025), etc., have leveraged instruction tuning to refine the alignment between multimodal
inputs and language, pushing the boundaries of multimodal reasoning and generation. Despite this
progress, challenges persist as models scale to new modalities or tasks. Effectively integrating each
modality without degrading performance on others remains a key issue. Moreover, robust continual
learning strategies are crucial to prevent catastrophic forgetting and maintain knowledge across both
previously learned and newly introduced modalities as new modalities or task types are integrated.

2.2 CONTINUAL LEARNING

Continual learning aims to enable models to learn incrementally while retaining previously acquired
knowledge. Regularization-based methods, such as Elastic Weight Consolidation (EWC) (Kirk-
patrick et al., 2017), assign importance to model parameters to prevent drastic updates (Kim et al.,
2023). Knowledge distillation (KD) (Li & Hoiem, 2017; Rebuffi et al., 2017; Pian et al., 2023; Mo
et al., 2023; Ahn et al., 2021; Douillard et al., 2020) and memory replay (Rebuffi et al., 2017; Pian
et al., 2024; Chaudhry et al., 2019; Lopez-Paz & Ranzato, 2017) are other common strategies, where
KD-based methods preserve past learned knowledge by aligning the predictions or internal features
of a new model with those of an older one, and memory replay-based methods utilize a small mem-
ory set to store samples from old tasks, allowing the model to review a small number of old data
while training on the current task (Rebuffi et al., 2017; Pian et al., 2024; Chaudhry et al., 2019;
Lopez-Paz & Ranzato, 2017). Pseudo-rehearsal approaches (Odena et al., 2017; Ostapenko et al.,
2019) take this a step further by generating synthetic examples via a generative model, reducing the
need to store large amounts of data.

For MLLMs, where multiple modalities (e.g., images, audio, video) interact with language mod-
els, catastrophic forgetting is especially severe. Recent adapter-based continual instruction tun-
ing (He et al., 2023) and prompt-based strategies (Zheng et al., 2024) help retain previously learned
knowledge. HiDe-LLaVA (Guo et al., 2025) proposes a hierarchical decoupling strategy to sep-
arate instruction and perception components, allowing better task adaptation. SEFE (Chen et al.,
2025) addresses forgetting by distinguishing between essential and superficial knowledge in con-
tinual instruction tuning. CL-MoE (Huai et al., 2025) introduces a dual momentum mixture-of-
experts framework for continual visual question answering. However, these approaches mainly
target image-text modalities. A modality-incremental scenario (Yu et al., 2024) has been explored,
treating each modality as a separate task. However, it does not fully address evolving task types
within each modality. To tackle this gap, we propose a new Modality-Inconsistent Continual Learn-
ing (MICL) scenario along with a novel approach to handle it effectively.

3 METHOD

3.1 PROBLEM FORMULATION

In this subsection, we formalize the definition of our proposed Modality-Inconsistent Continual
Learning (MICL). Given a sequence of T tasks {T1, T2, . . . , TT}, MICL aims to train the Multimodal
Large Language Model (MLLM) FΘ with parameters Θ across these tasks incrementally. For the
i-th task Ti, we have Ti = {(xi,j , ti,j ,yi,j)

ni
j=1,Mi, Pi}, where Mi and Pi denote the modality and

task type of task Ti, respectively. xi,j , ti,j , and yi,j present the modality’s input data, the input
text, and the target text of the j-th data sample of task Ti. In our setting, the input text ti,j varies
depending on the task type. For captioning tasks, it may consist of a simple instruction, such as
“Describe the image/video/audio.” For question-answering (QA) tasks, the input text
consists of sample-specific questions tailored to each instance. Moreover, the target text yi,j typi-
cally consists of detailed description sentences for captioning tasks, while for QA tasks, it is usually
limited to a few answer words. Please note that, the output yi,j is always a text sequence, consistent
with the design of LLMs and MLLMs, which generate natural language outputs across diverse tasks.
Tasks with non-textual outputs (e.g., image or video generation) are beyond the scope of our current
formulation, as they typically require fundamentally different architectures and objectives. We de-
fine Di = {(xi,j , ti,j ,yi,j)

ni
j=1} as the available training data when training the model FΘ on task

Ti. Following the settings in modality-incremental learning (Yu et al., 2024), we do not include the
memory set for replay in our MICL scenario, resulting in a memory-free continual learning setting.

3
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Figure 2: Overview of our proposed MoInCL, which mainly consists of a Multimodal Large Lan-
guage Model (MLLM), a Pseudo Target Generation Module (PTGM), and a Instruction-based
Knowledge Distillation (IKD). The red fire icon denotes the component is trainable in the current
task, and the snowflake icon denotes the component is frozen during the training of the current task,
while the blue fire icon means the associate component is trainable with LoRA (Hu et al., 2022)
when training on the current task.

In summary, the training process on an incremental task Ti can be presented as:

Θi = argmin
Θi−1

E(x,t,y)∼Di
[L(FΘi−1

(x, t),y)], (1)

where L denotes the cross-entropy loss function between the generated results and the target text for
training the MLLM.

Please note that, in this work, we focus on two task types (captioning and question-answering) since
they are among the most commonly studied in multimodal and continual learning scenarios (He
et al., 2023; Yu et al., 2024). Following common practice, we adopted these tasks to establish
benchmarks for comparison. Additionally, most of multimodal task types such as audio-visual event
localization, vision-language navigation, etc, can often be reformulated into question-answering
tasks, making these two task types a natural choice in our setting.

3.2 FRAMEWORK OVERVIEW

To address our proposed Modality-Inconsistent Continual Learning (MICL), we introduce a novel
continual learning method, MoInCL, as illustrated in Fig. 2. MoInCL primarily comprises a Pseudo
Target Generation Module (PTGM) and an Instruction-based Knowledge Distillation (IKD) con-
straint. For the MLLM, we adopt the LLaVA-like (Liu et al., 2023) architecture, which contains
the same core components as LLaVA (modality encoder, projection layer, and LLM). However, we
do not directly use LLaVA or its pre-trained parameters, as it is designed to process only the vi-
sual modality, and its visual pre-training could introduce biases in the context of continual learning.
Please note that, for fair comparison, all the baseline methods use the same model architecture as
our method. During training, the modality encoders remain frozen, while the LLM is fine-tuned
using LoRA (Hu et al., 2022).

3.3 PSEUDO TARGET GENERATION MODULE

We now describe the Pseudo Target Generation Module (PTGM). Our key motivation is to leverage
the text generation capability of the LLM component in the MLLM to address the task type shift
challenge in continual learning. PTGM generates input and target text for different task types based
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on the modality input data of the current task. By utilizing the generated pseudo input text and
pseudo targets, the model can effectively handle both the current task type and previously learned
task types within the current modality.

In our PTGM, we maintain a set LM = {} to represent all learned modalities. For example,
LM = {“image”, “audio”} indicates that the model has been trained on tasks involving image or
audio modalities. And for learned modalities, we maintain a modality-specific set LTM = {} to
denote the learned task types of modality M . For instance, LTimage = {“captioning”} if only
image captioning task has been learned for image modality. Since different task types have distinct
forms, the pseudo target generation process varies accordingly for each task type. Specifically, for
a current task Ti with the modality of Mi, if Mi is a learned modality, i.e. Mi ∈ LM , the PTGM
will be used to generate pseudo targets for task types within LTMi

. If “captioning” ∈ LTMi
,

the pseudo input text should be a simple instruction guiding the model to generate a description
of the input data. In this case, the pseudo input text generation process can be implemented by
automatically filling the template to produce the result “Describe the Mi”. On the other hand,
if “QA” ∈ LTMi , directly applying a template is not suitable, as the pseudo QA pair should be
specifically tailored to the modality’s data rather than relying on generic templates. To overcome
this issue, we utilize the generation ability of the LLM to generate the pseudo QA pair from the
caption text of the current modality’s data. Please note that in our MICL scenario, the task types
considered are captioning and question-answering. Therefore, when generating pseudo QA pairs,
the current task should correspond to the captioning task of the current modality. To generate QA
pairs from captions, we employ a three-round generation process by prompting the pre-trained LLM
component of the MLLM F . Details of this process can be found in the Appendix. In summary, we
use the following formulation to denote the pseudo target generation process:

t̃, ỹ = PTGM(x,y, p),

s.t. Mi ∈ LM, Pi /∈ LTMi
,

(2)

where p ∈ LTMi
is a learned task type of modality Mi (please note that p ̸= Pi), t̃ and ỹ denote the

generated pseudo input text and pseudo target, respectively. x and y are the modality data and target
text sampled from Di. Please note that only x is used for generating pseudo targets, while only y is
utilized for generating pseudo QA pairs.

After obtaining the pseudo input text and pseudo target, a dual consistency constraint is applied
between (1) the pseudo outputs of the current model FΘi

and the old model FΘi−1
, and (2) the

pseudo target and the pseudo output of the current model. This process is formulated as:

Lp. = E(x,t)∼Di

[
λiLCE(ŷ

′||ỹ) + λ′
iLKL(ŷ

′||ŷ′
o)
]
,

s.t. ŷ′ = FΘi
(x, t̃), ŷ′

o = FΘi−1
(x, t̃),

(3)

where ŷ′
o and ŷ′ denote the pseudo output from the old model and current model, respectively. λi

and λ′
i present the weights to balance the two loss values for task Ti.

3.4 INSTRUCTION-BASED KNOWLEDGE DISTILLATION

In the previous subsection, we introduced the proposed PTGM to address the task type shift problem
in the MICL scenario. However, when new modalities are introduced, the model faces a modality
shift, leading to catastrophic forgetting of previously learned modalities. Additionally, as the PTGM
generates pseudo targets only for seen modalities, the task type shift problem persists when training
on tasks involving novel modalities. Furthermore, different modalities do not share the modality
encoder or the modality projection, meaning that the shift problems primarily arise from updates to
the LLM component in the MLLM. This results in the degradation of the LLM’s ability to handle
previously learned modalities. To address these issues, we propose Instruction-based Knowledge
Distillation (IKD), a text instruction-based constraint designed to prevent the LLM from forgetting
its learned capabilities in dealing with old modalities. Specifically, as illustrated in Fig. 2, IKD aligns
the outputs of the LLM component from both the old and current models by applying a consistency
loss, i.e. KL divergence, on their responses to the same text instruction input. In this way, instead
of merely learning to handle tasks from new modalities, the current LLM’s generative ability is
also aligned with that of the previous LLM, thereby mitigating degradation in its ability to handle
previously learned modalities. To achieve this, we introduce a pure text instruction set within IKD,
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which is maintained throughout the incremental steps. Since this pure text instruction set contains
only text and no modality-specific data, it is not considered part of any multimodal tasks in our
MICL scenario. As a result, maintaining this set does not violate the continual learning constraint
that prohibits access to data from previous tasks during future tasks. This process can be formulated
as:

Lins. = Et′∼I

[
LKL(fθi(t

′)||fθi−1(t
′))

]
, (4)

where I denotes the pure text instruction set, fθi and fθi−1 denote the LLM component of the FΘi

and FΘi−1 , respectively.

3.5 OVERALL TRAINING TARGET

Above, we present our proposed Pseudo Target Generation Module (PTGM) and Instruction-based
Knowledge Distillation (IKD) constraint. When training on a current task Ti, we have the main loss
function:

Lmain = E(x,t,y)∼Di

[
LCE(ŷ||y)

]
,

s.t. ŷ = FΘi
(x, t),

(5)

where ŷ is the output of the output of the current model FΘi by taking data samples from current
task’s training data Di as input.

Finally, in our overall training target, the dual consistency constraint for generated pseudo targets
Lpseudo and the IKD constraint Lins. are combined with the main training loss of task Ti:

L = Lmain + Lp. + Lins. (6)

Additionally, inspired by the parameters/weights fusion mechanism proposed in existing
works (Xiao et al., 2023; Sun et al., 2024), which have demonstrated effectiveness in preserving
learned knowledge from previous tasks by applying a weighted sum between the old and current
models’ parameters/weights, we also adopt the parameters fusion mechanism on the LLM com-
ponent of the MLLM to further prevent it from forgetting the capabilities of handling previously
learned modalities, which can be denoted as:

θi = αiθi + (1− αi)θi−1, (7)

where θ denotes the parameters of the LLM component of the MLLM, αi is the weight for bal-
ancing the two groups of parameters. For the overall algorithm of our MoInCL, please refer to the
Appendix.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Dataset. In our proposed Modality-Inconsistent Continual Learning (MICL), we include six tasks:
Image Captioning, Image QA, Audio Captioning, Audio QA, Video Captioning, and Video QA.
Each task is represented by a commonly used dataset. Specifically, we use the Flickr30K (Young
et al., 2014) dataset for the Image Captioning task, the OK-VQA (Marino et al., 2019) dataset for
the Image QA task, the AudioCaps (Kim et al., 2019) dataset for the Audio Captioning task, the
Clotho-AQA (Lipping et al., 2022) dataset for the Audio QA task, the MSR-VTT (Xu et al., 2016)
dataset for the Video Captioning task, and the MSVD-QA (Xu et al., 2017) dataset for the Video
QA task. More dataset details are provided in the Appendix.

Baselines. In our experiments, we compare our proposed MoInCL with the following contin-
ual learning methods: Fine-tuning, LwF (Li & Hoiem, 2017), EWC (Kirkpatrick et al., 2017),
EWF (Xiao et al., 2023), PathWeave (Yu et al., 2024), and BECAME (Li et al., 2025). Among these,
LwF, EWC, EWF, and BECAME are representative general continual learning methods, while Path-
Weave is the most recent state-of-the-art continual learning method designed for MLLMs, which
involves a modality-aware adapter-in-adapter mechanism to address the modality-shift problem in

6
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Table 1: Results on the two task orders for different methods. Bold values indicate the best results
in each column, while underlined values represent the second-best results in each column.

Methods
Order 1 Order 2

Avg. CIDEr ↑ Avg. Acc. ↑ Avg. Forget. ↓ Avg. CIDEr ↑ Avg. Acc. ↑ Avg. Forget. ↓
Fine-tuning 30.64 40.58 41.17% 10.82 37.01 65.56%
LwF (Li & Hoiem, 2017) 34.80 40.21 39.26% 12.37 38.79 61.84%
EWC (Kirkpatrick et al., 2017) 39.06 37.04 38.79% 9.92 37.65 66.40%
EWF (Xiao et al., 2023) 24.59 36.34 48.55% 13.92 45.85 46.64%
PathWeave (Yu et al., 2024) 34.20 36.19 44.36% 11.11 41.13 61.47%
BECAME (Li et al., 2025) 24.36 38.50 46.96% 10.61 43.20 54.10%
MoInCL (Ours) 55.31 42.29 14.21% 51.13 45.22 8.93%
Upper Bound (Joint training) 66.69 48.97 - 66.69 48.97 -

modality-incremental learning of MLLMs. Please note that, for a fair comparison, all baseline meth-
ods use the same model architecture as our approach, including the Large Language Model (LLM)
component. We also conduct the experiment of joint training with all tasks as the Upper-Bound.

Evaluation Metrics. Following Panagopoulou et al. (2023), we use the CIDEr score (Vedantam
et al., 2015) and prediction accuracy as evaluation metrics to evaluate captioning tasks and QA tasks,
respectively. For all baselines and our method, we report the average final performance across all
learned tasks, i.e., the average performance of all tasks after completing the training of the final task.
Since captioning and QA tasks use different evaluation metrics, we separately report the average
final performance for each task type: the average final CIDEr score for captioning tasks and the
average final accuracy for QA tasks. We formulate them as:

Avg.CIDEr =
1

Ncap.

T∑
i=1

cTi ,

s.t. Pi =“Captioning”,

(8)

where Ncap. denotes the number of captioning tasks, cTi denotes the CIDEr score of task Ti after
completing the training of task TT if task Ti is a captioning task. Similarly, the average final accuracy
can be formulated as:

Avg.Acc. =
1

NQA

T∑
i=1

aTi ,

s.t. Pi = “QA”,

(9)

where NQA denotes the number of QA tasks, aTi denotes the accuracy of task Ti after completing
the training of task TT if task Ti is a QA task. Furthermore, to evaluate the anti-forgetting capability
of each method, we propose two metrics: the forgetting ratio and the average forgetting ratio. The
forgetting ratio measures the proportion of performance drop for each task after completing the
training of the final task, while the average forgetting ratio represents the mean forgetting ratio
across all tasks, which can be formulated as:

Forget.i =(sii − sTi )/s
i
i,

Avg.Forget. =
1

T

T∑
i=1

Forget.i
(10)

where sii and sTi denotes the testing score of task Ti after the training of task Ti and TT , respectively.

4.2 EXPERIMENTAL COMPARISON

We conduct experiments using two random task orders. For Order 1, the tasks are arranged as: Au-
dio Captioning→ Image Captioning→ Video QA→ Audio QA→ Image QA→ Video Captioning.
For Order 2, the task sequence is: Image Captioning→ Video Captioning→ Video QA→ Image
QA→ Audio Captioning→ Audio QA. Additional experimental results on more task orders are pro-
vided in Appendix A.8, where we demonstrate that our framework can handle highly challenging
task orders involving severe modality and task shifts.

7
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Table 2: Detailed testing results of the first three tasks of Order 2. The evaluation metric used for the
Flickr30K and MSR-VTT datasets is CIDEr score, while that for the MSVD-QA dataset is accuracy.

Methods Flickr30k MSR-VTT MSVD-QA

Fine-tuning
Step 1 77.50 - -
Step 2 64.04 48.03 -
Step 3 12.12 8.64 46.20

LwF (Li & Hoiem, 2017)
Step 1 77.50 - -
Step 2 53.87 48.70 -
Step 3 10.20 7.80 47.64

EWC (Kirkpatrick et al., 2017)
Step 1 77.50 - -
Step 2 62.65 47.73 -
Step 3 10.45 9.66 45.79

EWF (Xiao et al., 2023)
Step 1 77.50 - -
Step 2 69.16 45.30 -
Step 3 56.10 9.69 45.33

PathWeave (Yu et al., 2024)
Step 1 77.22 - -
Step 2 53.60 50.01 -
Step 3 7.36 8.35 47.87

BECAME (Li et al., 2025)
Step 1 77.50 - -
Step 2 77.22 47.64 -
Step 3 52.16 9.82 47.35

MoInCL (Ours)
Step 1 77.50 - -
Step 2 73.59 48.03 -
Step 3 70.88 48.34 43.11

The main results are shown in Tab. 1. We can see that our proposed MoInCL achieves state-of-the-
art performance compared to all baseline methods. Except the average final accuracy of the Order 2,
our method has the best performance on all three metrics across both orders. Specifically, in Order
1, our method surpasses the best baseline results by 16.25, 1.71, and 24.58 in terms of average
final CIDEr score, average final accuracy, and average forgetting ratio, respectively. In Order 2, our
method outperforms the best baseline results by 37.21 and 37.71 for average final CIDEr score and
average forgetting ratio, respectively.

The testing results of the first three incremental tasks (Image Captioning → Video Captioning →
Video QA) are shown in Tab. 2. From these results, we observe that when the modality shift occurs
from the Image Captioning task to the Video Captioning task, the performance of the previous task
(Image Captioning) drops significantly across all baseline methods, with CIDEr score reductions
ranging from 8.34 to 23.63. Additionally, when the task type shift occurs from the Video Cap-
tioning task to the Video QA task, the performance of the previous task (Video Captioning) also
decreases significantly, with CIDEr score reductions ranging from 35.61 to 41.66. These results
further validate our insight that both modality shift and task type shift directly contribute to the
catastrophic forgetting problem, underscoring the core challenges of our proposed MICL scenario.
For our method, the performance drop for the Image Captioning task is only 3.91 when the modality
shift occurs. Moreover, we observe that the performance of the Video Captioning task improves
after training on the Video QA task which introduces the task type shift issue. These findings further
highlight the effectiveness of our method in mitigating the catastrophic forgetting problem in MICL
by addressing both modality shift and task type shift challenges. For detailed results of each task
and qualitative analysis, please refer to Sec. A.9, A.10 and A.11 in Appendix.

4.3 ABLATION STUDIES

To further assess the effectiveness of each key component in our proposed MoInCL, we conduct
ablation studies on the Pseudo Target Generation Module (PTGM) and Instruction-based Knowledge
Distillation (IKD) across two random task orders. The experimental results, presented in Tab. 3,
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Table 3: Ablation results on the two task orders on each key component of our MoInCL. Bold values
indicate the best results in each column, while underlined values represent the second-best results in
each column.

Methods
Order 1 Order 2

Avg. CIDEr ↑ Avg. Acc. ↑ Avg. Forget. ↓ Avg. CIDEr ↑ Avg. Acc. ↑ Avg. Forget. ↓
MoInCL w/o PTGM 26.61 37.18 45.64% 9.95 47.51 49.62%
MoInCL w/o IKD 53.33 40.69 17.82% 49.32 43.40 13.03%
MoInCL 55.31 42.29 14.21% 51.13 45.22 8.93%

clearly demonstrate that removing either PTGM or IKD leads to a performance drop in both task
orders. This highlights the significance of each component in our framework.

4.4 RESULTS ANALYSIS

We provide a more detailed analysis of the experimental results, specifically examining why the
average accuracy of QA tasks in Order 2 does not achieve the best performance. In Order 2, the last
four tasks follow the sequence: Video QA→ Image QA→ Audio Captioning→ Audio QA, where
QA tasks dominate. Consequently, the task type shift problem has a greater impact on captioning
tasks than on QA tasks. For the baseline methods, as they focus less on addressing the task type
shift problem, they prioritize QA tasks in the later stages of Order 2 rather than preserving knowl-
edge from earlier tasks. This explains why most baseline methods perform better on QA tasks in
Order 2 compared to Order 1. Nevertheless, our MoInCL still outperforms all other baselines in
terms of average accuracy of QA tasks, except for EWF, where the difference is marginal. Addi-
tionally, MoInCL exhibits a lower average forgetting ratio compared to all baselines in both orders,
and achieves lower forgetting ratio on each single task. Moreover, MoInCL maintains more stable
performance across both task orders, further demonstrating the robustness of our method.

5 CONCLUSION

In this paper, we explore the Modality-Inconsistent Continual Learning (MICL), a novel and prac-
tical continual learning scenario of Multimodal Large Language Models (MLLMs). To address the
introduced MICL, we propose MoInCL, which incorporates a Pseudo Targets Generation Modul
and an Instruction-based Knowledge Distillation constraint to mitigate the catastrophic forgetting
caused by the inherent task type shift and modality shift problem in the context of MICL. Experi-
ments on six multimodal incremental tasks demonstrate the effectiveness of our proposed MoInCL.
This paper introduces a new direction for the continual learning of MLLMs.

Broader Impact. Our proposed continual modality-inconsistent continual learning allows the
MLLMs to adapt to new modalities and task types without full retraining, which could enhance
efficiency and privacy by reducing the need to transmit and store sensitive data.

LIMITATIONS

Our Modality-Inconsistent Continual Learning (MICL) introduces a novel and practical continual
learning scenario by incorporating inconsistent modalities and varying task types across incremental
tasks. However, the scope of our work is constrained by the limited number of modalities (audio,
image, and video) and task types (captioning and question-answering) included in the experiments.
This restricts the generalizability of MICL to scenarios involving a broader range of modalities and
task types. Another limitation lies in the pseudo QA pairs generated by PTGM, which may not
fully capture the complete answer space of prior QA tasks, leading to incomplete supervision when
mitigating the task type shift from QA to captioning tasks. These imperfect pseudo targets may thus
still hinder a full resolution of the task type shift problem.

In the future, we plan to enhance our MICL framework by incorporating additional modalities,
such as depth, 3D, or even joint inputs like joint audio-visual modalities. We also aim to introduce
a broader range of task types, such as reasoning, grounding, decision-making, etc. Furthermore,
scaling up MICL to larger datasets within each task is also a key objective to better enable the model
to address the complexity and diversity of real-world multimodal tasks in continual learning.
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In this appendix, we provide implementation details in Sec. A.1, the overall algorithm of our pro-
posed method in Sec. A.2, and the process of generating three-round QA pairs from captions in
Sec. A.3. We also include dataset details, distinction from existing methods in Sec. A.4 and A.5,
respectively. Furthermore, we analyze the computation cost and transfer effectiveness between tasks
in Sec. A.6 and A.7. Experimental results on additional task orders, upper bound results, detailed
results of each task, and qualitative analysis are provided in Sec. A.8, A.9, A.10, and A.11, respec-
tively. Finally, we disclose the use of large language models (LLM) in this paper in Sec. A.12.

A.1 IMPLEMENTATION DETAILS

We implement our experiments using Pytorch (Paszke et al., 2019) and LaVIS (Li et al., 2022a)
framework. For the LLM component of the Multimodal Large Language Model (MLLM), we adopt
the Llama-3.2-1B-Instruct (Dubey et al., 2024) architecture and initialize it with pre-trained param-
eters at the start of the first task. Following the implementation in (Panagopoulou et al., 2023), we
apply the EVA-CLIP-ViT-G/14 (Fang et al., 2023) as the Image Encoder and Video Encoder, and
the BEATsiter3+ (Chen et al., 2023) as the Audio Encoder. Each video input consists of 4 frames,
and the audio input also consists of 4 frames with the sampling rate of 11kHz. For the video and
audio modalities, the Video Encoder and Audio Encoder process each frame individually and then
concatenate the encoded patches from all frames, following the approach in (Panagopoulou et al.,
2023). For the Image Projection, we use a two-layers MLP with the GELU (Hendrycks & Gimpel,
2016) activation function. For the Video and Audio Projection, both of them include a single convo-
lutional layer as a pooling layer to reduce the total number of patches, followed by a two-layers MLP
with the GELU activation function. All the modalities’ projection modules are initialized randomly
in both our MoInCL and baselines methods, and train them from scratch. For each task, we train
the model using the AdamW (Loshchilov & Hutter, 2019) optimizer with an initial learning rate of
1e-5, adjusted using the cosine decay strategy, and a weight decay of 5e-2. We train our proposed
MoInCL and all baseline methods on a NVIDIA RTX A6000 Ada GPU. During the training of our
approach, the pure text instructions in the Instruction-based Knowledge Distillation (IKD) constraint
are randomly sampled from the Natural Instructions (Mishra et al., 2022) dataset.

A.2 OVERALL ALGORITHM OF MOINCL

The overall algorithm of our proposed MoInCL is presented in Alg. 1.

A.3 THREE-ROUND QA PAIRS GENERATION FROM CAPTIONS

Inspired by the question answering text generation process in (Panagopoulou et al., 2023), we adopt
a similar three-round QA pair generation process from captions in our proposed Pseudo Targets
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Algorithm 1 Training of MoInCL on task Ti
Require: Old model FΘi−1 , training set Di, pure text instruction set I, current modality Mi, cur-

rent task type Pi, learned modalities set LM , learned task type for the current modality LTMi

(only if Mi ∈ LM ), learning rate η, scalars λi, λ
′
i, αi

1: Initialize current model FΘi
from FΘi−1

2: if Mi /∈ LM then
3: {} → LTMi

4: end if
5: while not converged do
6: Sample data (x, t,y) ∼ Di

7: L = LCE(FΘi(x, t)||y)
8: if Mi ∈ LM and LTMi ̸= ∅ then
9: t̃, ỹ = PTGM(x,y, p), s.t. p ∈ LTMi

10: ŷ′ = FΘi(x, t̃), ŷ
′
o = FΘi−1(x, t̃)

11: Lp. = λiLCE(ŷ
′||ỹ) + λ′

iLKL(ŷ
′||ŷ′

o)
12: L = L+ Lp.

13: end if
14: Sample instruction data t′ ∼ I
15: Lins. = LKL(fθi

(t′)||fθi−1
(t′))

16: L = L+ Lins.

17: Θi ← Θi − η∇L
18: θi ← αiθi + (1− αi)θi−1

19: end while

Generation Module (PTGM). Given a caption from the dataset of the current captioning task Ti,
the objective is to generate a QA pair to address the task type shift problem when training on a
captioning task within a seen modality. This process relies entirely on prompt engineering, where
the caption is used as input to the pre-trained Large Language Model (LLM) component of our
Multimodal Large Language Model (MLLM). Please note that, the LLM component employed in
this process uses pre-trained weights, i.e., the weights that are not fine-tuned on our incremental
tasks.

In Round 1, the LLM takes an input with the format of: Given the Mi context: "y",
generate a potential short answer from it. Provide just one or
two words. The answer words should be strictly selected from the
context. Provide only the answer, nothing else. Answer:, where Mi is
the modality of the task Ti, y denotes the sampled caption text. And the output of the LLM is used
as the temporal short answer ȳ.

In Round 2, the LLM takes the following prompt as input: Given the Mi context:
"y" and the answer: "ȳ", generate a question for the answer that
can be inferred from the context. Provide only one question and
nothing else. Question:. The output of the LLM in Round 2 is the question we aim to
generate, which is denoted as t̃.

Finally, in Round 3, the LLM processes the following prompt as input: Answer the question
using the given context. The answer should be only one or two
words. Context: "y". Question: "t̃". Answer:, and generates the final
short answer ỹ.

Based the above three rounds, the pseudo QA pair is obtained, where t̃ represents the pseudo ques-
tion and ỹ denotes the pseudo answer.

A.4 DATASET DETAILS

In our experiments, we use the AudioCaps, Flickr30K, MSR-VTT, MSVD-QA, Clotho-AQA, and
OK-VQA datasets for Audio Captioning, Image Captioning, Video Captioning, Video QA, Audio
QA, and Image QA tasks, respectively. We summarize the details of these data in Tab. 4.
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Table 4: Details of the datasets used in our experiments.

Task Dataset
Sample number

Total Training Validation Testing

Image Captioning Flickr30K 31,784 29,783 1,000 1,000
Image QA OK-VQA 14,055 8,007 1,002 5,046
Audio Captioning AudioCaps 46,378 44,378 1,000 1,000
Audio QA Clotho-AQA 10,480 6,181 1,823 2,476
Video Captioning MSR-VTT 10,000 6,010 1,000 2,990
Video QA MSVD-QA 50,476 30,904 6,415 13,157

A.5 DISTINCTION FROM EXISTING METHODS

Our MoInCL introduces two key innovations: 1) a Pseudo Target Generation Module (PTGM) to
leverage the text generation capability of the LLM component in the MLLM to address the task type
shift challenge in our proposed MICL scenario, and 2) an Instruction-based Knowledge Distillation
(IKD) constraint to tackle the modality shift problem in the LLM component of the MLLM.

While existing works also utilize knowledge distillation techniques to preserve knowledge from old
tasks, they primarily focus on distilling final outputs or internal features between old and current
models by taking same training samples as input, as seen in methods like LwF (Li & Hoiem, 2017)
and EWF (Xiao et al., 2023). These approaches do not perform well in our MICL scenario, as they
significantly constrain the MLLM’s ability to learn new tasks, particularly in settings with substantial
gaps between tasks, such as in our proposed MICL.

In contrast, our IKD leverages pure text instructions as the input to the LLM component for knowl-
edge distillation, avoiding introducing negative impacts on the current training task. This approach
allows us to directly distill knowledge of the LLM without imposing additional constraints on the
MLLM’s ability to learn new tasks, ensuring that both knowledge preservation and new task learning
are achieved effectively in MICL.

As for the weight fusion strategy, we acknowledge that it is not one of our primary technical contri-
butions. However, our experiments demonstrate that this strategy can be seamlessly integrated with
PTGM and IKD to further enhance the anti-forgetting capability of our approach. For this reason,
we also include the weight fusion strategy in our method.

A.6 ANALYSIS ON THE COMPUTATIONAL COST

For each experiment, i.e., training a single baseline method or our MoInCL, we use a single RTX
A6000 Ada GPU with 48GB of memory. Compared to the pure fine-tuning baseline, the average
training time for our MoInCL increases by approximately 40% per epoch, while the inference time
remains the same. For example, during training on the audio captioning task with the AudioCaps
dataset, pure fine-tuning takes around 45 minutes per epoch, and our method requires approximately
64 minutes per epoch.

A.7 TASK TRANSFER EFFECTIVENESS

To investigate the mutual impact between different tasks, we evaluate the positive knowledge trans-
fer across tasks that share the same modality or task type. Specifically, we conduct experiments to
determine whether training on one task benefits a subsequent task within the same modality or task
type. The experimental results are presented in Tab. 5. As shown, transferring the captioning ability
from the image captioning task improves the CIDEr score of the video captioning task from 47.12
to 48.03. Similarly, transferring the question-answering capability from the video QA task enhances
the accuracy of the audio QA task from 58.28 to 59.94. These results further demonstrate that
transferring knowledge from a previous task to a new task with the same task type enhances the per-
formance of this new task. Additionally, the audio QA ability is enhanced by transferring knowledge
from the learned audio captioning task, improving accuracy from 58.28 to 61.75. Similarly, positive
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Table 5: Experimental results on task transfer effectiveness. We evaluate modality transfer effec-
tiveness within the same task type and task type transfer effectiveness within the same modality.

Modality Transfer Task Type Transfer

Video Cap Image Cap→ Video Cap Audio QA Video QA→ Audio QA Audio QA Audio Cap→ Audio QA
47.12 48.03 58.28 59.94 58.28 61.75

Task Type Transfer

Image QA Image Cap→ Image QA Video Cap Video QA→ Video Cap Image Cap Image QA→ Image Cap
35.00 36.50 47.12 51.25 77.50 81.93

Table 6: Experimental results on additional two task orders for different continual learning methods.
Bold values indicate the best results in each column, while underlined values represent the second-
best results in each column.

Methods
Order 3 Order 4

Avg. CIDEr ↑ Avg. Acc. ↑ Avg. Forget. ↓ Avg. CIDEr ↑ Avg. Acc. ↑ Avg. Forget. ↓
Fine-tuning 23.14 41.59 53.18% 46.16 19.94 56.11%
EWF (Xiao et al., 2023) 35.46 37.10 46.14% 46.92 36.72 29.66%
PathWeave (Yu et al., 2024) 28.46 40.50 51.73% 47.27 20.54 53.72%
MoInCL (Ours) 57.18 45.39 13.07% 57.77 40.81 14.93%
Upper Bound (Joint training) 66.69 48.97 - 66.69 48.97 -

knowledge transfer is observed within the image and video modalities, further demonstrating the
benefits of transferring knowledge across tasks within the same modality.

A.8 EXPERIMENTAL RESULTS ON ADDITIONAL TASK ORDERS

Apart from the random task orders in Sec. 4.2, we also conduct additional experiments to further
verify the effectiveness and robustness of our proposed MoInCL. Specifically, we construct a new
random order: Video Captioning→ Image QA→ Image Captioning→ Video QA→ Audio Cap-
tioning→ Audio QA, which we refer to as Order 3.

Additionally, we also manually create another task order: Image QA→ Video Captioning→ Audio
QA → Image Captioning → Video QA → Audio Captioning, one of the most challenging task
orders. This task order enforces frequent alternation between task types, following the pattern:
QA→ Captioning→ QA→ Captioning→ QA→ Captioning, which ensures no two tasks of the
same task type appear consecutively. Moreover, this order also introduces more frequent modality
shifts, avoiding repetition of the same modality in adjacent tasks. This setting helps mitigate task-
recency bias and offers a more rigorous evaluation of each method’s ability to generalize under
highly dynamic conditions. We refer to this extreme task order as Order 4.

The experimental results on these two new task orders are reported in Tab. 6. As shown, our method
consistently achieves significant improvements over the baseline methods. Furthermore, its perfor-
mance remains in line with the results on the original task orders, further highlighting the stability
and robustness of our approach.

Table 7: Experimental results of the Upper Bound (joint training) on each task.

Methods Flickr30k MSR-VTT MSVD-QA OK-VQA AudioCaps Clotho-AQA

Upper Bound (Joint training) 80.24 54.76 48.54 38.16 65.07 60.22

A.9 UPPER BOUND RESULTS

We present the testing results of the Upper Bound (joint training) on each task in Tab. 7.
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A.10 DETAILED RESULTS OF EACH TASK IN BOTH ORDERS

We present the forgetting ratio of each task in both orders in Tab. 8 and 9, from which we can see
that, our method outperforms baseline methods significantly, further demonstrating the superiority
of our proposed method in mitigating the catastrophic forgetting in our proposed MICL scenario.

We also present the detailed testing results for each task across the incremental steps in both or-
ders in Tab. 10 and 11. These results show that our proposed MoInCL exhibits less performance
drop compared to the baseline methods, demonstrating its superior ability to address catastrophic
forgetting in the proposed Modality-Inconsistent Continual Learning (MICL) scenario.

Table 8: Forgetting ratio of each task in Order 1. Bold values denote the best results in each column,
while underlined values indicate the second-best results in each column.

Methods
Forgetting Ratio ↓

AudioCaps Flickr30k MSVD-QA Clotho-AQA OK-VQA MSR-VTT

Fine-tuning 57.51% 85.04% 51.33% 7.15% 4.81% 0.00%
LwF (Li & Hoiem, 2017) 54.79% 72.52% 59.32% 2.76% 6.92% 0.00%
EWC (Kirkpatrick et al., 2017) 62.47% 46.55% 61.55% 9.95% 13.42% 0.00%
EWF (Xiao et al., 2023) 69.65% 92.51% 79.07% 0.47% 1.03% 0.00%
PathWeave (Yu et al., 2024) 75.49% 58.16% 61.74% 16.25% 10.18% 0.00%
BECAME (Li et al., 2025) 72.82% 92.70% 66.04% -0.13% 3.36% 0.00%
MoInCL (Ours) 27.52% 9.18% 36.58% 0.07% -2.28% 0.00%

Table 9: Forgetting ratio of each task in Order 2. Bold values denote the best results in each column,
while underlined values indicate the second-best results in each column.

Methods
Forgetting Ratio ↓

Flickr30k MSR-VTT MSVD-QA OK-VQA AudioCaps Clotho-AQA

Fine-tuning 93.02% 85.72% 31.23% 49.77% 68.06% 0.00%
LwF (Li & Hoiem, 2017) 91.20% 85.83% 31.51% 40.07% 60.60% 0.00%
EWC (Kirkpatrick et al., 2017) 91.08% 92.21% 40.49% 37.91% 70.31% 0.00%
EWF (Xiao et al., 2023) 89.86% 78.28% 6.04% 4.15% 54.89% 0.00%
PathWeave (Yu et al., 2024) 92.42% 87.54% 25.67% 35.51% 66.22% 0.00%
BECAME (Li et al., 2025) 90.50% 80.31% 15.48% 9.92% 74.29% 0.00%
MoInCL (Ours) 22.04% 2.25% 2.60% 3.33% 14.43% 0.00%

A.11 QUALITATIVE ANALYSIS

We present the qualitative results of the Fine-tuning, LwF (Li & Hoiem, 2017), EWC (Kirkpatrick
et al., 2017), EWF (Xiao et al., 2023), PathWeave (Yu et al., 2024), and our MoInCL in Fig. 3, 4, 5,
6, 7, and 8, respectively. From these results, we can see that our MoInCL can generate better results
with the incremental step increases, demonstrating the better capability in mitigating the catastrophic
forgetting problem in our proposed Modality-Inconsistent Continual Learning (MICL) scenario.

A.12 DISCLOSURE OF THE USE OF LARGE LANGUAGE MODELS (LLMS)

The authors used ChatGPT (Achiam et al., 2023) for minor grammar and language refinements. All
technical content, analysis, and writing were produced by the authors.
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Table 10: Detailed testing results for each task across the incremental steps in Order 1. The evalua-
tion metric used for the AudioCaps, Flickr30K, and MSR-VTT datasets is CIDEr score, while that
for the MSVD-QA, Clotho-AQA, and OK-VQA datasets is accuracy.

Fine-tuning

AudioCaps Flickr30K MSVD-QA Clotho-AQA OK-VQA MSR-VTT

Step 1 57.66 - - - - -
Step 2 26.42 85.83 - - - -
Step 3 8.34 30.83 47.67 - - -
Step 4 4.28 21.89 44.52 62.64 - -
Step 5 4.06 6.49 39.36 57.51 42.41 -
Step 6 24.50 12.84 23.20 58.16 40.37 54.59

LwF (Li & Hoiem, 2017)

Step 1 57.66 - - - - -
Step 2 26.32 86.97 - - - -
Step 3 4.61 30.38 47.47 - - -
Step 4 0.04 15.96 42.08 63.13 - -
Step 5 1.18 6.36 36.16 59.85 42.89 -
Step 6 26.07 23.90 19.31 61.39 39.92 54.44

EWC (Kirkpatrick et al., 2017)

Step 1 57.66 - - - - -
Step 2 38.59 85.27 - - - -
Step 3 5.67 25.23 46.03 - - -
Step 4 2.04 14.21 43.78 63.29 - -
Step 5 3.85 6.31 38.85 56.70 42.09 -
Step 6 21.64 45.58 17.70 56.99 36.44 49.95

EWF (Xiao et al., 2023)

Step 1 57.66 - - - - -
Step 2 49.84 82.73 - - - -
Step 3 38.01 71.03 44.33 - - -
Step 4 14.19 65.28 44.22 59.69 - -
Step 5 15.48 6.08 43.98 59.53 40.75 -
Step 6 17.50 6.20 9.28 59.41 40.33 50.07

PathWeave (Yu et al., 2024)

Step 1 59.86 - - - - -
Step 2 13.54 82.32 - - - -
Step 3 2.95 12.02 46.00 - - -
Step 4 0.54 9.07 37.28 63.13 - -
Step 5 4.19 6.26 28.97 57.84 42.42 -
Step 6 14.67 34.44 17.60 52.87 38.10 53.48

BECAME (Li et al., 2025)

Step 1 57.66 - - - - -
Step 2 55.71 81.46 - - - -
Step 3 18.34 63.77 45.61 - - -
Step 4 5.81 54.34 45.31 60.18 - -
Step 5 9.43 6.04 40.39 59.13 41.13 -
Step 6 15.67 5.95 15.49 60.26 39.75 51.47

MoInCL (Ours)

Step 1 57.66 - - - - -
Step 2 56.58 81.15 - - - -
Step 3 56.51 82.71 43.38 - - -
Step 4 43.44 81.91 43.43 57.71 - -
Step 5 43.01 74.19 43.51 57.51 40.75 -
Step 6 41.79 73.70 27.51 57.67 41.68 50.44

Upper Bound (Joint training) 65.07 80.24 48.54 60.22 38.16 54.76
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Table 11: Detailed testing results for each task across the incremental steps in Order 2. The evalua-
tion metric used for the AudioCaps, Flickr30K, and MSR-VTT datasets is CIDEr score, while that
for the MSVD-QA, Clotho-AQA, and OK-VQA datasets is accuracy.

Fine-tuning

Flickr30K MSR-VTT MSVD-QA OK-VQA AudioCaps Clotho-AQA

Step 1 77.50 - - - - -
Step 2 64.04 48.03 - - - -
Step 3 12.12 8.64 46.20 - - -
Step 4 5.86 8.23 39.38 37.13 - -
Step 5 9.63 14.05 24.91 17.24 63.19 -
Step 6 5.41 6.86 31.77 18.65 20.18 60.62

LwF (Li & Hoiem, 2017)

Step 1 77.50 - - - - -
Step 2 53.87 48.70 - - - -
Step 3 10.20 7.80 47.64 - - -
Step 4 7.41 8.44 37.14 36.51 - -
Step 5 12.51 18.08 31.44 19.47 59.37 -
Step 6 6.82 6.90 32.63 21.88 23.39 61.87

EWC (Kirkpatrick et al., 2017)

Step 1 77.50 - - - - -
Step 2 62.65 47.73 - - - -
Step 3 10.45 9.66 45.79 - - -
Step 4 7.19 7.85 37.42 35.90 - -
Step 5 12.10 4.24 27.59 21.09 64.40 -
Step 6 6.91 3.72 27.25 22.29 19.12 63.41

EWF (Xiao et al., 2023)

Step 1 77.50 - - - - -
Step 2 69.16 45.30 - - - -
Step 3 56.10 9.69 45.33 - - -
Step 4 8.26 9.85 44.74 34.95 - -
Step 5 8.04 10.24 43.31 33.10 53.36 -
Step 6 7.86 9.84 42.59 33.50 24.07 61.47

PathWeave (Yu et al., 2024)

Step 1 77.22 - - - - -
Step 2 53.60 50.01 - - - -
Step 3 7.36 8.35 47.87 - - -
Step 4 6.99 7.14 41.17 36.38 - -
Step 5 8.01 7.86 33.89 22.27 62.90 -
Step 6 5.85 6.23 35.58 23.46 21.25 64.34

BECAME (Li et al., 2025)

Step 1 77.50 - - - - -
Step 2 77.22 47.64 - - - -
Step 3 52.16 9.82 47.35 - - -
Step 4 7.24 9.59 46.36 34.48 - -
Step 5 8.04 8.81 43.11 31.62 58.74 -
Step 6 7.36 9.38 40.02 31.06 15.10 58.52

MoInCL (Ours)

Step 1 77.50 - - - - -
Step 2 73.59 48.03 - - - -
Step 3 70.88 48.34 43.11 - - -
Step 4 63.32 47.56 42.27 33.35 - -
Step 5 61.91 47.78 42.24 33.46 53.79 -
Step 6 60.42 46.95 41.99 32.24 46.03 61.43

Upper Bound (Joint training) 80.24 54.76 48.54 38.16 65.07 60.22
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Describe the image.

A man in a red jacket 
plays the guitar on the 
sidewalk.

(a)

Describe the image.

A man in a red shirt 
playing the guitar.

(b)

Describe the image.

Man.

(c)

Describe the image.

Hat.

(d)

Describe the image.

Man walking down 
street.

(e)

Describe the image.

Trotting.

(f)

Figure 3: Qualitative results of the Fine-tuning method in Order 2. The sample is randomly selected
from the test set of Task 1 (Image Captioning). The results are generated using models trained after
after (a) Task 1, (b) Task 2, (c) Task 3, (d) Task 4, (e) Task 5, and (f) Task 6.

Describe the image.

A man in a red jacket 
plays the guitar on the 
sidewalk.

(a)

Describe the image.

A man in a red coat 
playing the guitar.

(b)

Describe the image.

Man.

(c)

Describe the image.

Guitar.

(d)

Describe the image.

A man is playing music.

(e)

Describe the image.

Singing. 

(f)

Figure 4: Qualitative results of the LwF (Li & Hoiem, 2017) method in Order 2. The sample is
randomly selected from the test set of Task 1 (Image Captioning). The results are generated using
models trained after after (a) Task 1, (b) Task 2, (c) Task 3, (d) Task 4, (e) Task 5, and (f) Task 6.
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Describe the image.

A man in a red jacket 
plays the guitar on the 
sidewalk.

(a)

Describe the image.

A man in red is playing 
the guitar.

(b)

Describe the image.

Man.

(c)

Describe the image.

Singer.

(d)

Describe the image.

Sneakers are dirty.

(e)

Describe the image.

Talking.

(f)

Figure 5: Qualitative results of the EWC (Kirkpatrick et al., 2017) method in Order 2. The sample
is randomly selected from the test set of Task 1 (Image Captioning). The results are generated using
models trained after after (a) Task 1, (b) Task 2, (c) Task 3, (d) Task 4, (e) Task 5, and (f) Task 6.

Describe the image.

A man in a red jacket 
plays the guitar on the 
sidewalk.

(a)

Describe the image.

A man in a red jacket 
playing the guitar.

(b)

Describe the image.

A man is playing the 
guitar.

(c)

Describe the image.

Musician.

(d)

Describe the image.

Singer.

(e)

Describe the image.

Guitar.

(f)

Figure 6: Qualitative results of the EWF (Xiao et al., 2023) method in Order 2. The sample is
randomly selected from the test set of Task 1 (Image Captioning). The results are generated using
models trained after after (a) Task 1, (b) Task 2, (c) Task 3, (d) Task 4, (e) Task 5, and (f) Task 6.
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Describe the image.

A man in a red shirt 
playing the guitar on 
the street.

(a)

Describe the image.

A man in a red hat is 
playing the guitar.

(b)

Describe the image.

Man.

(c)

Describe the image.

Banjo.

(d)

Describe the image.

Music playing.

(e)

Describe the image.

Music.

(f)

Figure 7: Qualitative results of the PathWeave (Yu et al., 2024) method in Order 2. The sample is
randomly selected from the test set of Task 1 (Image Captioning). The results are generated using
models trained after after (a) Task 1, (b) Task 2, (c) Task 3, (d) Task 4, (e) Task 5, and (f) Task 6.

Describe the image.

A man in a red jacket 
plays the guitar on the 
sidewalk.

(a)

Describe the image.

A man in a red jacket 
is playing the guitar.

(b)

Describe the image.

A man in a red jacket 
is playing the guitar.

(c)

Describe the image.

A man is playing the 
guitar.

(d)

Describe the image.

A man is playing the 
guitar.

(e)

Describe the image.

A man is playing the 
guitar.

(f)

Figure 8: Qualitative results of our proposed MoInCL in Order 2. The sample is randomly selected
from the test set of Task 1 (Image Captioning). The results are generated using models trained after
after (a) Task 1, (b) Task 2, (c) Task 3, (d) Task 4, (e) Task 5, and (f) Task 6.
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