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Abstract

Accelerating material discovery holds the potential to greatly help mitigate the
climate crisis. Discovering new solid-state materials such as electrocatalysts, super-
ionic conductors or photovoltaic materials can have a crucial impact, for instance,
in improving the efficiency of renewable energy production and storage. In this
paper, we introduce Crystal-GFN, a generative model of crystal structures that
sequentially samples structural properties of crystalline materials, namely the space
group, composition and lattice parameters. This domain-inspired approach enables
the flexible incorporation of physical and structural constraints, as well as the
use of any available predictive model of a desired physico-chemical property as
an objective function. To design stable materials, one must target the candidates
with the lowest formation energy, which is used as an objective to evaluate the
capabilities of Crystal-GFN. The formation energy of a crystal structure is predicted
here by a new proxy model trained on MatBench. The results demonstrate that
Crystal-GFN is able to sample diverse crystals with low formation energy.
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1 Introduction

Materials discovery plays a vital role in transforming numerous industries that are currently responsi-
ble for a significant fraction of the global greenhouse gas emissions. From developing new-generation
photovoltaic panels or solid-state batteries to tackling carbon capture or catalysis, the quest for
innovative materials with targeted properties has the power to reshape the technological landscape.

However, the discovery of new materials is an extremely complicated task at various levels of
innovation: crystal structure generation, property prediction and developing successful synthesis
protocols. In practice, before scientists can think of designing a material with a desirable property,
they must search through the vast space of possible materials and use their domain expertise to
investigate a few/ handful of promising structures. This traditional trial-and-error process is extremely
costly both in terms of time and efforts, providing machine learning (ML) with an opportunity to
greatly accelerate the generation and evaluation of promising candidates.

While ML has already made significant progress with respect to property prediction and generation of
small molecules [14}[19,/17, 25ﬂ its impact in the field of solid-state materials lags behind. At the root
of this discrepancy lies the particular structure of materials, whose periodicity in 3D space imposes
periodic boundary conditions that make it difficult to use finite graphs for crystal representation.
As a result, the sole task of generating a stable candidate is complex. It involves exploring the
combinatorial space of chemical compositions, considering all possible periodic arrangements of
atoms as well as respecting complex physics that make them viable, stable and metastable structures.

In this work, we introduce Crystal-GFN (Fig.[I), a generative model designed to sequentially sample
crystal structures in a space inspired by theoretical crystallography. Instead of directly generating
atomic positions, Crystal-GFN samples the space group, the composition and the lattice parameters
of a structure (Section [3). This domain-inspired approach facilitates the incorporation of chemical
and structural constraints, as well as the possibility to extend the sampling space, for example to
obtain atomic positions. The GFlowNet framework offers the ability to sample proportionally to a
reward function, which enables diverse sampling. Through an empirical evaluation (Section ) of
a Crystal-GFN trained with a predictive model of the formation energy, we demonstrate that our
proposed method is able to sample diverse candidates with low formation energy.

2 Background
In this section, we briefly review the necessary background on GFlowNets and crystallography.

2.1 GFlowNets

Generative Flow Networks [2]] (GFlowNets or GFN for short), were introduced as an amortised
inference method to sample from high-dimensional distributions, where both traditional methods
such as MC-MC and reinforcement learning are inefficient in terms of mode mixing. In essence,

2We refer the reader to Appendix for a more detailed related work overview.
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Figure 1: A schematic of the crystal generation process of Crystal-GFN.



GFlowNets are designed to learn a sampling policy 7 to generate objects © € X" proportionally to a
non-negative reward function R(z), that is 7(z) oc R(x). This facilitates the discovery of multiple
modes of a given function, which is a desirable objective in scientific discovery [12]. For instance,
GFlowNets have been successfully applied for biological sequence design and molecular property
prediction as part of active learning loops [[L1,9].

A key property of GFlowNets is that objects are generated sequentially. Starting from a special state
S0, transitions s;—s;+1 € A are applied between states s € S, forming trajectories 7 = (sg — s1 —
... — x), where A is a predefined action space and S the state space. This sequential construction of
objects, together with the fact that the transition policy is parameterised by a neural network (with
parameters ), provides amortisation and the potential of systematic generalisation. Here, we make
use of the Trajectory Balance objective [[15]], which has proven effective in various tasks [[11} |9} [15].

2.2 Crystals

Crystals are highly structured solid materials defined by a unit cell made of atom types and coordinates
that repeat in the three spatial directions, as specified by the crystal’s periodic lattice. This ordered
structure gives them their unique shapes and properties and their understanding is crucial in the
development of new materials. While there exists an infinite number of crystal structures, the field of
theoretical crystallography has developed ways to systematically parameterise and classify crystals.

Lattice An n-dimensional /attice A can be defined as the set of integral combinations of the linearly
independent lattice basis vectors a; € R™: A = {}_" m;a; | m; € Z} . In 3D, the 3 lattice basis
vectors can be converted into 6 parameters: a, b, ¢ determine the lengths of each dimension and
«, 3,7 the angles between dimensions.

Composition We call composition the set of all atom types present in the crystal’s unit cell and their
respective quantities. Together with the lattice A, the atomic positions provide a complete description
of the crystal structure.

Space group A space group is the symmetry group of the crystal’s repeating pattern in space,
whose elements are the rigid transformations of the pattern that leave it unchanged. A space group
element can be described as a tuple (W, t), where W is the linear part of the transformation and t a
translation. An element maps a vector x € R™ to Wx + t. In three dimensions, space groups are
classified into 230 types.

3 Crystal-GFNs

In this section, we describe the details of Crystal-GFN. Drawing inspiration from crystallography,
we propose to represent crystals as the concatenation of three distinct components, or subspaces:
space group (SG), composition (C) and lattice parameters (LP) of the unit cell of a crystal. The union
of the spaces of these three components would make the state space S = Ssg X Sc X Spp and
sample space X = Xsg X Xo x X p of a naive, unrestricted implementation with GFlowNets. An
important advantage of the GFlowNet framework and of the domain-inspired data representation that
we propose to use is that it allows us to flexibly introduce domain knowledge such as well-studied
geometrical constraints from crystallography as well as chemical constraints. These constraints are
mostly introduced by restricting the action space A of the Crystal-GFN, both inter- and intra-subspace.
We design the Crystal-GFN such that trajectories first select the space group, then the composition
and finally the lattice parameters. Below we describe the three subspaces and the constraints we have
introduced.

3.1 Space group

The sample space of the space group subspace of our Crystal-GFN is Xs¢ = {1,2,...230},
corresponding to the space of the 230 symmetry groups that exist in three dimensions. As discussed
in Section GFlowNets rely on the decomposition of objects into multiple steps to facilitate
generalisation. Therefore, we draw inspiration from theoretical crystallography to incorporate
additional structure into the space group subspace.



Crystals are classified into seven crystal systems: triclinic, monoclinic, orthorhombic, tetragonal,
trigonal, hexagonal and cubic. Each crystal system comprises a set of point groups. Another
related but slightly different category is the lattice system, with also seven systems (see Fig. [3), each
comprising a set of Bravais lattices. The lattice system category is convenient for our purposes because
it imposes specific constraints on the lattice parameters. Here, we use a derived categorisation resulting
from the combination of a crystal system and a lattice system. We refer to it as crystal-lattice system
and it has eight categories: triclinic, monoclinic, orthorhombic, tetragonal, trigonal-rhombohedral,
trigonal-hexagonal, hexagonal-hexagonal and cubic.

Besides the crystal-lattice system, we introduce another category in the Crystal-GFN space group
subspace: the point symmetry (also known as site symmetry), which defines the type of symmetry
of a point group. We use the following five categories of point symmetries: centrosymmetric, non-
centrosymmetric, enantiomorphic, polar and enantiomorphic-polar. We choose these categories
because the combination of point symmetry and crystal system gives rise to one of the 32 crystal
classes or crystallographic point groups.

In sum, our space group subspace Ss¢ is a three-dimensional set where the entries correspond to the
crystal-lattice system, the point symmetry and the space group. We define the action space such that,
starting from the source state sq, the transitions can set any of the three dimensions. However, the
selection of an option along any dimension restricts the valid options for the remaining dimensions.
For example, if point symmetry “non-centrosymmetric” is selected from the source state, only three
crystal-lattice systems remain valid and the number of valid space groups is reduced to 25. The “stop”
action is valid if and only if the space group has been selected.

3.2 Composition

We represent a composition as the number of atoms of each element present in the unit cell. Specifi-
cally, for a vocabulary of D elements, where each element can have up to K atoms, we construct
D-dimensional vectors where each entry indicates the number of atoms of element d. This yields the
space S¢ = {(k1,...kp)lkq € {0,1,...K},d = 1,... D}. The action space of the composition
subspace consists of the choice of element and number of atoms, thatis Ac = {1,... D} x{1,... K},
plus the special “stop” action to finish a trajectory.

As per the law of electroneutrality, the sum of positive and negative charge in a solid must be equal.
Since we have control over the action space of the GFlowNet, we incorporate a hard constraint
to ensure that all the generated compositions can have a neutral charge. We argue that this is an
advantage over methods that aim at learning such properties implicitly from the data [22].

Finally, we also have an opportunity to incorporate inter-subspace constraints between the space group
and the composition. Because of the symmetry imposed by each space group, not all compositions
are possible given a space group, and given a composition not all space groups are valid. By way
of illustration, the most restrictive space group—international number 230—cannot accommodate
compositions with fewer than 16 atoms per element. Since here the trajectories of a Crystal-GFN
first sample a space group, we restrict the number of atoms per element in the composition given the
space group.

3.3 Lattice parameters

The lattice parameters (a, b, ¢, «, 3, 7y), in combination with the lattice system (or crystal system)
determine the shape of the unit cell in three dimensions. While both the composition and the space
group subspaces are discrete, the lattice parameters are real-valued and thus yield a continuous
sample space X2 = {(Umin, maz)> X Omin, Omaz)>} , Where i, and 4, are the minimum
and maximum lengths and 6,,,;, and 6,,,,, are the minimum and maximum angles, respectively.
In order to sample sets of continuous lattice parameters, the GFlowNet policy model outputs the
parameters of a six-dimensional mixture of Beta distributions.

Here, we incorporate an inter-subspace constraint from the space group. Every space group is
classified into a lattice system which, in turn, constrains the values of the lattice parameters. For
instance, for the cubic lattice system, a = b = ¢ and a = § = v = 90°. The remaining constraints
are illustrated in Fig.[3] This drastically reduces the state space and removes the need of having to
learn such relationships and constraints from the data.



3.4 Reward function

As explained in Section [2] our Crystal-GFN is trained to sample proportionally to a reward function.
This offers the flexibility of using as reward any quantity of interest, such as a desired property of
materials. As an initial proof of concept for the method, we choose the reward to be based on the
formation energy (FE) of the sampled crystal structure, in order to generate materials with higher
likelihood of being thermodynamically stable. Because the sampled crystal structure may be unknown
or not characterised in existing data bases, its true FE may be unknown too. This is why we train a
proxy machine learning model to predict the FE given a crystal x € X, which is parameterised as the
output of Crystal-GFN. In particular, we train a physics-informed Multi-Layer Perceptron (MLP) on
the MatBench [6] data set. Its architecture is detailed in Appendix [D.T}

4 Empirical evaluation

In this section, we present the results of experiments designed to serve as proof of concept for
Crystal-GFN. The motivation of using GFlowNet to generate crystal structures is two-fold: One,
we are interested in discovering structures with high scores of a property of interest, in this case
low formation energy. At the same time, we want to discover not just one but multiple and diverse
structures. The main reason to seek diverse samples is that often the target function is underspecified
and the true objective is multifaceted or unknown. A natural way of dealing with underspecification is
to try multiple candidates to increase the likelihood of finding successful structures for the downstream
applications [12,19]. Thus, we here aim at analysing whether Crystal-GFN is able to discover diverse
crystal structures with low formation energy.

4.1 Experimental setup

Exploring the infinitely large space of crystals to find the ones with certain properties is a daunting
“needle-in-a-haystack” task. In order to make the haystack a little smaller—though still infinitely
large—we restrict the search task to a subset of space groups and compositions, and to a limited range
of the lattice parameters, as described in Appendix [C] We train the Crystal-GFN for 50,000 iterations,
which amounts to 500,000 queries to the proxy model and about 12 hours on a CPU-only machine.
Further details about the experimental setup are provided in Appendix [C]

4.2 Results

In this section, we present results related to our proxy model, to the distribution of the formation
energy in Crystal-GFN samples and to the diversity of these samples.

Proxy model of the formation energy As presented in Section[3.4} our reward function is based
on a proxy MLP trained on MatBench. Since part of our analysis of the performance of the proposed
Crystal-GFN depends on the prediction of the formation energy by this proxy model, it is important
to first verify its accuracy. In contrast to other methods, it does not rely on atomic positions to predict
the FE of a crystal, but rather on a higher-level description of the crystal, namely its space group,
composition and lattice parameters, akin to the outputs of Crystal-GFN. It achieves a mean absolute
error (MAE) of 0.10 & 0.005 eV on the validation set. We further describe its hyper-parameters and
detailed performance in Appendices[D.2]and[D.3]

Predicted formation energy of samples Evaluating generative models is well-known to be a hard,
task-dependent problem. Here, in order to gain insights about the sampling policy of the trained
Crystal-GFN, we sample 10,000 crystals and compare the distribution with 1) the validation set from
MatBench and 2) 10,000 samples from a randomly initialised and untrained Crystal-GFN. Section[4.2]
shows the kernel density estimation of the formation energies predicted by our proxy model in the
aforementioned sets of samples. As main conclusion, we observe that training the Crystal-GFN shifts
the formation energy of the sampled crystals towards lower values, with a median of -3.1 eV, even
lower than the median energy in the validation set. Given the vast search space, it is remarkable that
with a relatively short training, Crystal-GFN learns to sample from a distribution where 95 % of the
structures have a formation energy lower than -2 eV (as predicted by the proxy model).
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Figure 2: A comparison of the distributions of the formation energy predicted by our proxy model in
three relevant distributions of samples: in blue, samples from Crystal-GFN after training; in orange,
the validation set, representative of the MatBench database; in pink, samples from an untrained
Crystal-GFN. As a main conclusion, we observe that Crystal-GFN, after training, manages to sample
crystals with predicted formation energies in the range of the validation set.

Diversity of samples As discussed before, an important goal in certain materials discovery appli-
cations is to find diverse candidates. In other words, sampling crystals with low formation energy
would be almost useless for most applications if all the crystals were the same or very similar. To
gain insights about the diversity, we analyse the crystal structures sampled by the trained Crystal-
GFN. The main conclusion is that Crystal-GFN samples candidates with very high diversity. In
particular, regarding the composition, we find that all 12 elements are found in the samples from the
Crystal-GFN, and 10 of them appear in the 100 samples with lowest predicted energy. Regarding
crystal categories and space groups, we find that 5 out of the 8 crystal-lattice systems and all 5 point
symmetries are found in just the top-100 samples. While not all 113 space groups are found in the
10,000 samples, we find 80 (70 %) of them. Finally, in terms of lattice parameters, we also observe
relatively similar distributions of lengths and angles, compared to the MatBench data set. Further
details and visualisations of these results are provided in Appendix [E]

5 Conclusions and future work

In this paper, we have introduced a new generative model, Crystal-GFN, to sample inorganic crystal
structures proportionally to a property of interest. A key feature of Crystal-GFN is its flexibility to be
trained with any available reward function and to incorporate domain constraints. The latter is due to
the fact that Crystal-GFN constructs crystals sequentially in the space of space groups, compositions
and lattice parameters of the unit cell. This parameterization, inspired by theoretical crystallography,
has allowed to flexibly incorporate constraints regarding the neutral charge of the composition, the
compatibility between composition and space group and between space group and lattice parameters.

By training a Crystal-GFN with a reward function based on the formation energy predicted by a
proxy model trained on the MatBench database, we have shown it learns to sample candidates with
low predicted formation energy (lower mean and median that the distribution of the MatBench data
set). Importantly, it does so by sampling highly diverse crystals, in terms of coverage of space groups,
compositions and lattice parameters.

Interesting directions for future work include extending Crystal-GFN with more domain-inspired
constraints as well as with additional subspaces to sample the atom positions in the unit cell. Alterna-
tively, crystal structure prediction from the samples could be performed using pre-trained machine
learning models that generate atomic coordinates. Furthermore, it would be interesting to explore
other properties of interest beyond the formation energy of the sampled crystals.
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A Related Work

Material and Molecule generation. There exists a myriad of generative methods for molecular
and crystal generation, generally falling into one of these catagories: Variational Auto Encoders
(VAE) [19}117], Generative Adversarial Networks (GANs) [3} 16, [14], Normalizing flows [20\ [1]] and
Diffusion models [25} 23]]. In general, these methods are trained to reconstruct the training data from
a latent distribution by maximising its likelihood or minimising the discrepancy between generated
sampled and the real distribution. Once trained, they can generate new instances by sampling from
the learned latent space.

[LO, 14} 5] treat materials as 3D voxel images, but the process of decoding images back to atom
types and coordinates often results in low validity, and the models are not rotationally invariant.
Several methods [[18, |13} 24] encode unit cell related information to generate crystals. GANCSP [[13]]
and CubicGAN [24]] use as input fractional coordinates, element properties, and lattice parameters,
to build models that generate crystals conditioned on composition or both composition and space
group. Such models are generally not invariant to any Euclidean transformations. One close baseline,
CDVAE [22], employs a diffusion model in conjunction with a VAE to sample new materials,
leveraging lattice parameters. However, it is does not enable one to impose domain-expertise based
constraints into the generation process. [4] leveraged physics and symmetry-based constraints to solve
an optimization problem over crystal graphs to obtain atomic coordinates, but requires a composition
and lattice information as input.

Finally, auto-regressive methods like G-SchNet [8] or G-SphereNet generates 3D molecules sequen-
tially, placing atom-by-atom. They are unaware of periodicity and cannot generate the lattice, making
them ill-suited for crystals. This also applies to flow models [21].

As these models directly sample 3D positions, they struggle to embed essential physical constraintﬂ
often leading to physically unrealistic and unstable structures. Unlike them, by selecting the composi-
tion, lattice, and space group and imposing validity constraints, our approach inherently incorporates
domain knowledge about materials science and crystallography ensuring that the generated crystals
adhere to fundamental principles and constraints, resulting in more physically valid structures.

GFlowNets: GFlowNets are a new [2] class of trained generative models that can be used to sample
objects through a series of constructive steps, allowing for high reward samples and also diversity in
sampling. They have the potential of being employed in a variety of different materials discovery
avenues [12], starting from sample design to experiment design. In particular, they have already
shown promise in the area of drug-discovery, having been used to sequentially construct small
molecules[2] and biological sequences such as peptides and DNA/protein sequences|11]].
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Figure 3: The seven lattice systems and the constraints they impose on the lattice parameters. In order
a—g: triclinic, monoclinic, orthorhombic, tetragonal, rhombohedral, hexagonal and cubic. Source of
the figures: Wikimedia Commons, licensed under the |Creative Commons Attribution-Share Alike 3.0
Unported license.

Materials encompass the substances that make up objects. Their distinctive characteristics arise
from a combination of factors, including their composition, structure, and manufacturing processes.

3like energy minimization, dihedral angles geometric constraints or bonding preferences between atom types.
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While materials come in various forms, our primary focus will be on solid-state materials, specifically
crystals, owing to their significance in many machine learning applications we have encountered.

Solid state materials consist of a multitude of smaller building blocks, such as atoms or molecules,
securely positioned in fixed locations. They exhibit high-density packing and strong mutual attraction,
resulting in a stable structure with a well-defined volume. Materials that possess a well-ordered,
infinitely repetitive structure are categorized as crystals, while those lacking such long-range positional
order are termed amorphous.

Crystals, also known as crystalline materials, represent a category of solid substances characterised
by their periodic structure. This entails a consistent and predictable repetition of atom or molecule
placement within the crystal across all spatial dimensions. It is this inherent periodicity that sets
crystals apart from smaller molecules and confers unique properties upon crystals. They manifest in
diverse forms and showcase exceptional attributes like transparency and elevated melting points. The
study of crystals offers a pathway to precise characterization and controlled manipulation, opening
up avenues for engineering materials with targeted properties to fulfill a wide range of needs. The
subsequent section delves into how machine learning models address and harness this periodicity.

A crystal structure includes the type and position of every atom as well as the translational axes which
allow the structure to repeat. Since crystal structures extend infinitely, we need to define some small
section that can be repeated. We call this small section a unit cell. Unit cells are made of a lattice and
basis. Lattices tell you how the crystal is repeated, the basis tells you what is repeated. There are six
parameters of a unit cell: 3 edges a, b, ¢ and the angles between the edges «, 3, . The edges of a
unit cell may be or may not be perpendicular to each other. A crystal structure combines the lattice
(how atoms are translated) with a basis (which atoms are translated) which theoretically describes
every atom in the crystal. The lattice is just a mathematical idea, but the basis is the “real” component
which is repeated according to the mathematical lattice.

Lattice The lattice is fully specified by its basis vectors a; and is associated with a group of
translations T'y. The lattice A is the underlying structure of the unit cells, which have the property of
tilling the space R when translated by lattice vectors. Of particular prominence is the primitive cell
U for the basis a;: U = {} .} z;a; | 0 < x; < 1}.

In a material, the unit cell comprises a set of atomic positions S = {(Z;,x;) | x; € U}, where x;
is the atom position (called the basis vector) and Z; its atomic number. .S can contain an arbitrary
number of atoms and is not constrained to a particular structure.

Periodic boundary conditions (pbc) are commonly used to represent the infinite repeating nature of
crystals and other periodic systems. Rather than confining the analysis to a single unit cell housing
all atoms, pbc envision an infinite array of identical unit cells extending indefinitely in all directions.
This means that if an atom or molecule exits the cell on one side, it effectively re-enters from the
opposite side, as if traversing a continuous lattice. This approach enables scientists to simulate the
behavior of an infinitely extending crystal using a finite computational domain.

C Experimental setup

In this section, we provide additional details about the hyper-parameters and experimental setup used
to train the Crystal-GFN to obtain the results presented in Section 4]

In order to reduce the search space in our experiments, we apply the following restrictions:

» Compositions consist of up to 5 different elements from the subset of these 12 elements:
H, Li, C, N, O, F, Mg, Si, P, S, Cl and Fe. These are the most common elements in the
MatBench data set used to train the proxy model.

* Compositions can contain up to 50 atoms in total and up to 16 atoms per element. This
number is obtained by finding the lowest Wyckoff position multiplicity for each space group,
and then computing the maximum of these values across all space groups. This means that
16 is the lowest possible value that still makes it possible for the Crystal-GFN to generate
samples from all space groups while respecting their symmetry constraints.

» Space groups are the intersection of train and validation space groups, from the proxy
model’s data set. There are 113 of them.
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* The minimum and maximum lengths of the unit cell are 0.9 and 100 angstroms, respectively;
the minimum and maximum angles are 50° and 150°, respectively.

We train the Crystal-GFN by sampling 10 trajectories per iteration from the current forward policy.
In order to encourage further exploration, 10 % of the steps in the trajectories are sampled at random
from a uniform distribution. In total, we train for 50,000 iterations, which amounts to 500,000 queries
to the proxy model. This took about 12 hours on a CPU-only machine.

The architecture of both the forward and the backward GFlowNet policy models is a 3-layer multi-
layer perceptron with 256 units per layer. We trained with the Adam optimiser and a learning rate of
0.0001. As is common with the Trajectory Balance objective [15], we set a higher learning rate (0.01)
for the 16 learning weights used to parameterised partition function. In order to sample structures
with lower (negative) formation energy, we set a temperature of 8 in the reward function defined in
Section[3.4

The distribution to sample the increments of the lattice parameters subspace is a mixture of 5 Beta
distributions. In order to ensure numerical stability during training, we restrict the values of the
coefficients of the Beta distributions to the range [0.1,100]. One of the conditions that must be
satisfied by generalised GFlowNets is that trajectories must have finite length. To this end we set a
minimum increment of 10 % the range of each dimension.

D Proxy MLP

D.1 Architecture

For a given crystal structure, the input to the proxy MLP is the concatenation of: a physical em-
bedding of the crystal’s elements using PhAST [[7], a learned embedding for its space group and
the standardized lattice parameters. We stratify the MatBench data set into train, validation and test
sets, controlling for the distribution in target FE. The final reward function is a Boltzmann version of

the proxy: R(x) = exp ( — %@)) where T is a temperature hyper-parameter. This ensures that
lower FE yields higher positive reward, and we can control our preference for lower energies with the
temperature 7.

Overall, the architecture consists of concatenated representations for the composition (h¢), the
space group hgg and the lattice parameters (hzp) that are used as input to a prediction MLP
9§ = MLP,¢([hc, hsa, hrp]). In the following we describe how each h is obtained from the data:

* h¢: Each element Z; in the composition is embedded with PhAST [[7]: it is a concatenation
of 1/ static physical properties Py projected into some latent space with a small MLP 2/ a
learned embedding for the atomic number Z, Period P and the Group G of the element,
noted E;:

he = MLPC<[MLPP(PZ), Ez,Ep, EG]) (M

* hga: Each space group is embedded as a lookup in a learnable embedding matrix.

* hyp: Lattice parameters are first standardize element-wise using the training set statistics.
This 6-dimensional vector is then passed through a small MLP:

LP(LC) — Htrain (LP)
Otrain (LP)

hrp = MLPp( ) 2

D.2 Performance

Our proxy MLP model achieves an overall Mean Absolute Error of 0.10 &= 0.005 eVﬂ For reference,
best performing methods in Matbench leaderboar(ﬂ can achieve up to 10x better performance.

495% confidence interval, computed modeling the MAE as a log-normal distribution. This is further justified

by Fig.[5l
https://matbench.materialsproject.org/Leaderboards%20Per-Task/matbench_v0.1_
matbench_mp_e_form/
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Figure 4: Proxy MLP performance on the validation set and data split FE distributions. The average
MAE is 0.10eV. We can also see the effect of the stratification algorithm wich yields similar FE
distributions between the train and validation data set splits.

However, they all use 3D positions of the crystals, and remarkably, our approach outperforms some
of them, indicating that leveraging composition, space-group and lattice parametrs serves as a viable
representation in the formation energy estimation task.

In Figures @] and [5] we detail further the performance of our Proxy MLP on the MatBench validation
set. In particular we observe that it maintains good performance for structures with FE up to ~ 0.3ev.
The MAE beyond that FE level becomes high and unstable, but this is expected as those are the
regions of the target space with least data available. Additionally we can verify in Figure ] that our
stratification algorithm works as expected, with similar FE distributions in the validation and train
splits.

D.3 Hyper parameters

We present the hyper parameters of our Proxy MLP in Table[I]along with a description of their role
in the architecture.

E Additional results

In this section, we provide additional results demonstrating the diversity of the samples generated by
the Crystal-GFN. They are displayed in Figure[6} Figure 8] Figure[9]and Figure
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Figure 5: Distribution of FE values in the validation set and associated Proxy MLP MAE, with
25%,50% and 75% MAE quantiles.
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Hyper parameter Value Description
properties_proj_size 64 Projection size of atomic properties h = Wpy
group_emb_size 16 Embedding size of element’s group
period_emb_size 256 Embedding size of element’s period
z_emb_size 128 Embedding size of element’s atomic number
sg_emb_size 128 Crystal space group embedding size
lat_hidden_channels 284 Hidden channels for layers processing the lattice parameters
lat_num_layers 1 Number of hidden layers for the lattice parameters MLP
Number of layers for final MLP processing composition,
num_layers 5
space group and lattice parameters hidden representations
hidden_channels 576 Size of final MLP hidden layers.
optimizer Adam
Ir 0.0017 Learning rate
batch_size 448
Divide learning rate by 2 when validation MAE
scheduler ReduceLROnPlateau
does not improve for 4 epochs
es_patience 11 Early stopping patience (in epochs)
epochs 100 Total epochs (effective after early stopping: 97)

Table 1: Proxy MLP hyper parameters
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Figure 6: Distribution of total element prevalence per data set (10k Crystal-GFN samples, MatBench
val, MatBench train). Each element is counted as per its stoichiometry in the crystal.
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Figure 7: Distribution of binary element prevalence per data set (10k Crystal-GFN samples, MatBench
val, MatBench train). Each element is counted only once per crystal.
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