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Abstract

Visual foundation models have recently emerged to offer similar promise as their
language counterparts: The ability to produce representations of visual data that
can be successfully used in a variety of tasks and contexts. One common way this
is shown in research literature is through “domain generalization” experiments of
linear models trained from representations produced by foundation models (i.e.
linear probes). These experiments largely limit themselves to a small number of
benchmark data sets and report accuracy as the single figure of merit, but give
little insight beyond these numbers as to how different foundation models represent
shifts. In this work we perform an empirical evaluation that expands the scope of
previously reported results in order to give better understanding into how domain
shifts are modeled. Namely, we investigate not just how models generalize across
domains, but how models may enable domain transfer. Our evaluation spans a
number of recent visual foundation models and benchmarks. We find that not only
do linear probes fail to generalize on some shift benchmarks, but linear probes
trained on some shifted data achieve low train accuracy, indicating that accurate
transfer of linear probes is not possible with some visual foundation models.

1 Introduction

An emerging trend in computer vision research is the development of general-purpose neural network
models that are meant to be adapted to a variety of tasks and application contexts. These visual
“foundation” models can be fine-tuned using application-specific data to perform tasks ranging from
object detection to semantic segmentation to image classification. In many cases, high-performant
models can be learned by training simple, small models from representations produced by a larger,
more complex foundation models and with relatively little training data. As such, these foundation
models have the potential to enable computational and data efficient means to build state-of-the-art
predictive models, effectively lowering the barrier to powerful computer vision capabilities.

One common adaptation strategy is known as “linear-probing” where a simple linear model is trained
to map a foundation model’s representation to logits used for classification. While their simplicity has
benefits, it also makes linear probes highly reliant on the expressivity of the foundation models they
are trained with. In order for linear probes to successfully classify images, the foundation models
they are built from must be able to produce representations of images that are discriminative with
respect to classes in the application domain.

In this work, we aim to better understand the capability of current visual foundation models when
used as a basis for linear probes. More specifically, we focus on the problem of learning under domain
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shift, where train and test distributions differ. Linear probed foundation models seem uniquely
suited for this learning setting, as foundation models are meant to produce generally applicable
representations that can be applied to a many different domains, and linear probing does not change
these representations, but builds simple models on top of them. Thus, much of the generalization
benefits in the original foundation model’s representation should remain intact.

We expand current understanding of the performance, utility, and empirical characteristics of linear
probed foundation models by performing a series of experiments on a number of current, popular
models across a variety of domain shift benchmarks. Through these, we provide new empirical
evidence to the limits of current foundation models, as well as some insight into how foundation
models differ. We find that 1) perhaps unsurprisingly, linear probes do not generalize to all shifts, but
also 2) for some benchmarks, linear probes are not expressive enough to achieve high train accuracy,
implying even supervised domain transfer of a linear probe would be difficult. Finally, we highlight
trends in performance across different foundation model pre-training strategies and architectures.

2 Preliminaries

A visual foundation model can be defined as a function fθ : Rn1×n2×n3 7→ Rd that maps an image
to a vector representation that is meant to be adapted to a down-stream visual prediction task. Most
foundation models are characterized by 1) the architecture of f , and 2) the pre-training task used
to find parameters θ. Prior to the term “foundation model” becoming widely used, convolutional
or residual neural networks pretrained for image classification were often used as “backbones” for
visual tasks such as for object detection [14, 31, 25]. More recently, focus has shifted from using
repurposed models to ones trained with the explicit goal of being adapted to a variety of visual learning
tasks. These are typically transformers [10], and pre-training tasks are mostly either weakly [29] or
self-supervised [6, 37, 16] learning tasks on large-scale data scraped from the web. Thus, recent
visual foundation models distinguish themselves from traditional backbones largely by pre-training
objectives, the scale of pre-training data, and the size and complexity of network architectures.

2.1 Adapting Visual Foundation Models

The two most popular ways of adapting visual foundation models to down-stream tasks are fine-
tuning and last layer(s) retraining. In both cases, model parameters are added to f that map from
a foundation model’s representation of an input to predictions. Let gϕ : Rd 7→ Rd′

, be the added
task-specific portion of model and g ◦ f be the full end-to-end model for the down-stream task. In
fine-tuning, all parameters θ ∪ ϕ are optimized using an objective function and data relevant for the
down-stream application and task, while in last-layer retraining just ϕ are optimized. In this work, we
focus on the last-layer retraining case where gw,b (z) = wz+ b, commonly called linear-probing
for image classification. Here, w ∈ Rc×d and b ∈ Rc, where c is the number of classes.

While fine-tuning typically produces more accurate classifiers, there are a number of advantages to
linear-probing. First, linear-probes are less computationally demanding to train than an entire end-
to-end model, so the computational barrier to create image classifiers is lower than with fine-tuning.
Second, with a standard cross-entropy loss, optimizing for w and b is a convex optimization problem,
for which there are a number of efficient, easy to use linear solvers that can find globally optimal
solutions, even for high-dimensional d. Third, because linear-probes are much simpler models, fewer
labeled instances are typically required for training. Finally, it has been shown that full fine-tuning
can distort the features learned during pre-training [24], resulting in classifiers that do not generalize
well to domain shifts. For these reasons, not only is linear-probing attractive for it’s advantages in
practicality, but also because of its potential to generalize across domains.

2.2 Domain Shifts

In the domain shift setting it is assumed that a classifier is trained on a set of n labeled images{(
x1
s, y

1
s

)
, ..., (xn

s , y
n
s )
}
∼ Ds, where xi

s is an image, yis is a label, and Ds is a source distribu-
tion/domain. Then, during deployment, the classifier will be tasked to predict the correct class
for instances

{(
x1
t , y

1
t

)
, ...

}
∼ Dt, where Dt is a target distribution/domain. We assume that the

data-generating distributions have shifted from train time to deployment (Ds ̸= Dt). We also assume
that ∀i,j yis, y

j
t ∈ {1, ...c}, i.e. labels from both domains come from the same closed set of classes.
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Figure 1: Depictions of the Effects of Domain Shifts on Linear Probes.

Note that for analysis and more focused methodology development it is often useful to assume a
formal relationship between Ds and Dt (such as covariate or label shift). Because we focus on
foundation models that make no formal claims of the kinds of shifts they model, we intentionally
make no relationship explicit in our problem definition.

In domain generalization, the goal for a classifier is to learn solely from data from Ds to successfully
classify images from Dt. In general without further assumptions on the nature of shifts, a classifier
that achieves high accuracy in a source domain does not imply high accuracy in the target domain [13].
While this may make domain generalization seem hopeless, there are a number of techniques that
make implicit or explicit assumptions that attempt to solve this problem [33]. On the other hand,
domain transfer assumes that a limited number of (unlabeled or labeled) images from the target
domain Dt are also available to learn a classifier. Here, the assumption is that data or model
parameters from the source domain can lessen the data burden required to learn a model in the
target domain. Most recent methods that attempt domain transfer (also sometimes known as domain
adaptation) focus on learning end-to-end neural network models [12, 27, 7] instead of building simple,
parameter-efficient extensions from foundation models, such as linear probes.

It is important to note that while domain generalization and domain transfer are related, they have
different implications for the representations used to learn linear probes. Consider the notional linear
classification examples in Figure 1. On the left, the classifier trained on the source data is able to
separate both the source and target classes well. This is because both the source and target classes are
represented similarly, and as a result, the source classifier generalizes well to the target domain. In
the center, the source classifier does not separate the target classes well, as there is a shift that makes
many instances of the classes cross the linear decision boundary. However, given data from the target
distribution, a linear model could be learned that separates the target classes. This indicates that
while domain generalization using a linear model with this representation is challenging, successful
domain transfer is possible. Now consider the scenario on the right. Here, the source classsifier is
approximately as accurate as in the center example. However, no linear model can separate the target
classes well, thus neither accurate domain generalization nor domain transfer is possible with a linear
model. We argue that because no foundation model can produce a representation that generalizes to
all shifts, it is important to understand whether foundation models produce representations amenable
to domain generalization, domain transfer, or neither. In the next section, we perform a series of
experiments that 1) expand upon existing published benchmark results in domain generalization for
linear probed foundation models and 2) provide some insight into whether popular visual foundation
models produce representations amenable to domain transfer of linear probes.

3 Experiments

In our experiments we evaluate the following models, as “base models” for linear probes:

ResNet50 [17] A standard 50 layer residual network pretrained on ImageNet-1K [9].

ConvNextV2 [35] A convolutional network that has been scaled to the size of visual transformers
using many of the same advancements including self-supervised pre-training (on ImageNet-22k [9])

CLIP [29] A visual transformer, pre-trained using Contrastive Language-Image Pre-training (CLIP).
CLIP learns image representations by co-embedding images and corresponding captions from a data
set consisting of 400 million image/caption pairs gathered by querying a web search engine.
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Base Model Size Val v2 C A R Cartoon Drawing
ResNet50 78.204 66.414 5.982 6.320 24.807 56.146 27.116

ConvNeXtV2 Large 86.074 75.874 53.802 38.013 46.623 79.524 56.942
Tiny 81.316 69.402 41.470 13.480 36.947 69.242 43.794

CLIP Large 83.246 72.727 22.374 43.600 57.777 71.388 52.312
Base 79.000 67.970 11.342 25.480 44.690 61.716 37.042

DINOV2 Large 84.920 75.969 49.946 50.307 57.503 80.136 62.766
Small 80.166 69.467 11.632 18.693 38.743 68.914 34.776

Table 1: Source Model ImageNet Experiment Results

Base Model Size Val Clipart Quickdraw Infograph Painting Sketch
ResNet50 80.068 34.345 1.960 17.697 34.345 23.726

ConvNeXtV2 Large 88.394 57.527 3.933 27.613 57.527 44.348
Tiny 84.505 47.481 6.683 21.003 47.481 36.644

CLIP Large 90.842 74.073 15.337 46.318 74.073 64.453
Base 88.250 64.972 9.600 41.690 64.972 55.231

DINOV2 Large 88.463 67.708 7.538 34.711 67.708 59.479
Small 85.504 51.371 6.494 26.397 51.371 43.251

Table 2: Source Model DomainNet Experiment Results

Base Model Size iWC(ID) iWC(OOD) FMOW(ID) FMOW(OOD) C17(ID) C17(OOD)
ResNet50 67.844 62.684 35.711 31.278 96.332 87.832

ConvNeXtV2 Large 74.614 71.637 44.107 39.262 97.625 92.700
Tiny 71.315 70.945 38.501 35.191 95.328 90.565

CLIP Large 72.750 73.279 55.187 49.643 96.812 91.601
Base 70.530 70.781 49.254 44.179 96.386 90.653

DINOV2 Large 76.049 76.039 48.760 42.962 97.288 91.287
Small 73.252 74.724 41.414 37.168 95.647 93.563

Table 3: Source Model Wilds Data Sets Experiment Results

DINOV2 [26] A visual transformer pre-trained using a number of separately developed self-
supervised learning techniques on a collection of various data sources, together called LVD-142M.

The ResNet50 and ConvNeXtV2 models represent classic “backbone” models orginally trained for
classification. CLIP and DINOV2 represent popular, visual transformer-based foundation models
learned via weak and self supervised techniques, respectively. We evaluate two versions of each base
model (besides ResNet50): “Large” variants that are roughly the same size in terms of number of
parameters, and smaller variants (i.e. “Tiny”, “Small”, or “Base”, depending on availability). The
large variants allow for direct comparisons across base model types, while their smaller variants allow
for comparisons within base model types to see the effect of model size.

Additionally, we utilize three different sets of domain shift benchmark data sets:

ImageNet A popular image classification benchmark with 1,000 classes. For source data we use
the train set of ImageNet-1k [9], and for shifted target sets we use the test sets of ImageNetv2 [30],
ImageNet-C [19], ImageNet-A [20], ImageNet-R [18], and ImageNet-Cartoon/Drawing [32].
DomainNet [27] A collection of six data sets, each labeled with the same set of 345 coarse-grained
classes. For source data we use the train set of the “Real” data set. For shifted target data sets we use
the train sets of the “Clipart”, “Infograph”, “Painting”, “Quickdraw”, and “Sketch” data sets.
Wilds [23] A collection of ten data sets, of which we use three: iWildCam (iWC) [5], Functional
Map of the World (FMOW) [8], and Camelyon17 (C17) [4]. We use the in-distribution (ID) train sets
as the source data sets, and the out-of-distribution (OOD) validation sets as the target sets for each.

Though important for fully interpreting results, we omit broad discussion of the shifts induced for
each of these benchmarks due to space limitations, but do highlight some of them in subsequent
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Base Model Size v2 C A R Cartoon Drawing
ResNet50 99.970 89.694 100 99.157 99.852 99.794

ConvNeXtV2 Large 99.905 99.082 100 99.630 99.498 99.616
Tiny 99.675 92.856 99.560 94.400 97.706 95.204

CLIP Large 99.994 84.254 99.987 99.773 99.554 98.530
Base 99.941 63.864 99.573 98.413 96.986 90.646

DINOV2 Large 99.905 98.480 100 99.667 99.410 99.494
Small 98.965 57.936 95.467 89.567 91.974 80.850

Table 4: Target Model ImageNet Experiment Results

Base Model Size Clipart Quickdraw Infograph Painting Sketch
ResNet50 98.765 95.019 84.585 98.861 95.904

ConvNeXtV2 Large 98.777 83.316 84.285 98.774 96.797
Tiny 95.591 74.833 65.975 95.505 86.238

CLIP Large 98.649 83.421 93.265 98.652 97.256
Base 96.764 75.115 86.192 96.755 91.809

DINOV2 Large 98.213 84.388 84.973 98.273 95.709
Small 89.411 69.144 59.876 89.447 80.134

Table 5: Target Model DomainNet Experiment Results

Base Model Size iWC(OOD) FMOW(OOD) C17(OOD)
ResNet50 97.542 94.839 97.536

ConvNeXtV2 Large 95.576 85.562 98.621
Tiny 94.609 70.839 96.891

CLIP Large 95.541 85.467 98.189
Base 94.127 73.670 97.370

DINOV2 Large 96.069 82.183 98.182
Small 92.000 60.621 97.089

Table 6: Target Model Wilds Data Sets Experiment Results

sections as part of the discussion of results. Further details pertaining to the base models, the methods
used to train linear probes, and data preparation and preprocessing can be found in Appendix A.

3.1 Domain Generalization Experiments

We began our experiments by investigating the question: Do modern visual foundation models
produce representations that can generalize across shifts? Tables 1, 2, and 3 show results of linear
probes trained on the training source sets described above. For each base model and size variant
(rows), we report accuracy values of the linear probes on 1) the validation sets of the source data (3rd
column), and 2) their corresponding shifted target data sets (columns after the third). Note that for
the Wilds experiments in Table 3, the columns designated (ID) are the source validation sets.

We were able to achieve linear probing validation performance comparable (within 1-3 points of
accuracy) to those published in the original papers these methods were introduced, as well as results
similar to domain generalization results reported in [26]. Consistent with other domain generalization
results, almost all models perform worse on the shifted targets than the validation sets. In some cases
(e.g. the Wilds data sets), the drop in performance from source validation to target sets is minimal,
especially for DINOV2 and CLIP base models. However, on other experiments (e.g. ImageNet-C,
DomanNet-Quickdraw) the drop in accuracy is considerably larger. This shows that for some shifts,
foundation models tend to generalize well while for others they notably fail.

3.2 Target Class Discriminability Experiments

Since the evaluated foundation models failed to generalize on a number of the benchmarks we tested
them on, we then shifted our investigation to whether they had the representational power to enable
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domain transfer, a potential solution when generalization fails. More specifically we asked: When
foundation models fail to generalize, does there exist any linear probe that can discriminate target
classes? Stated another way: Is accurate linear probe transfer possible in these benchmarks?

Tables 4, 5, and 6 show the train accuracy of linear probes when trained on the target sets themselves,
thus showing the upper limit on domain transfer accuracy. For some data sets (e.g. ImageNet-A) the
target probes can be trained to perfect or near perfect accuracy despite the generalization accuracy
being considerably lower when trained on source data. In these cases, the base models are expressive
enough to discriminate target classes, but fail at generalizing from the source set. In other cases
(e.g. DomainNet-Quickdraw and FMOW), training linear probes on the target data cannot result
in near perfect target accuracy. For example, our results show that no linear probe trained from a
CLIP-Large model, learned via transfer from source data or otherwise, can achieve better than ∼85%
accuracy on the DomainNet-Quickdraw data set. These results indicate a fundamental limitation in
these foundation models’ ability to represent data in some target domains, which can be seen as a
potentially significant shortcoming: for some foundation models and for some shifts, accurate transfer
of linear probes is not possible and more sophisticated techniques must be used.

3.3 Discussion of Results

Trends A number of trends emerged from these experiments. First, larger models outperformed
their smaller counterparts in terms of generalization accuracy as well as target class discriminability.
Second, neither CLIP and DINOV2 uniformly outperformed the other. While deeper investigation
into these two models is required to understand why one performs better than another on a given
benchmark, their relative generalization accuracy seems to correspond to relative target accuracy.
This may indicate that discriminability of classes in the target domains plays a role in domain
generalization. Third, ConvNeXtV2, despite being trained for ImageNet classification and not for
the specific goal of being used as a foundation model, performs particular well on a number of
benchmarks. This may be expected for the ImageNet benchmarks, but it also generalizes better
than CLIP on iWC and better than both CLIP and DINOV2 on FMOW. This shows that classical
pre-training methods, such as training for large-scale image classification, can still lead to models
competitive with those that utilize more recently-developed pre-training techniques.

Value of Evaluating Target Class Discriminability We argue that simply evaluating for domain
generalization is insufficient when assessing foundation models. In many of the benchmarks it is
unclear whether it is practically reasonable to expect a model to generalize from source to target. For
instance, one could argue that it’s not only desirable but achievable to build classifiers that robust
to the shifts from the Wilds benchmarks (changes in imaging equipment/procedures, geographic
location, etc.). It is less clear whether a classifier trained on real images of objects should be expected
generalize to hastily drawn, black and white sketches of those objects as in DomainNet. Expecting
foundation models to represent classes in a way that universally generalize to all realizable shifts,
even in very constrained environments, seems unreasonable. For this reason, we argue that it equally
important to evaluate whether a foundation model can be useful for transfer from a source to a
target domain as it is to evaluate whether it generalizes across domains. Our target discriminability
experiments represents a basic first step in understanding if efficient transfer is possible.

Future Work While we believe this work provides more empirical evidence to the strengths and
weaknesses of visual foundation models in representing data across domains, it is limited by not
directly measuring the performance of a linear probe learned via transfer from source to target.
Indeed, our experiments show the best possible accuracy that a linear probe could achieve in the
target domain, but not whether a source domain can be used to learn an accurate target classifier in
this setting. To do this, there needs to be further study into the appropriate mechanism to transfer a
source probe to a target domain, which would likely motivate transfer learning methods specific to
linear probing foundation models. We hope this work provides an initial basis for such work.

We argue in this work for the importance not just of evaluating foundation models for their ability to
generalize across domains, but whether they are amenable to transfer across them. More generally,
we argue that foundation model research could benefit from more well-defined goals. In Appendix B
we elaborate on what we feel are possible targets for visual foundation model research.
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Base Model Size Model Link

ResNet50 https://pytorch.org/vision/main/models/generated/torchvision.models.resnet50.html
IMAGENET1K_V2 weights

ConvNeXtV2 Large https://huggingface.co/facebook/convnextv2-large-22k-224
Tiny https://huggingface.co/facebook/convnextv2-tiny-22k-224

CLIP Large https://huggingface.co/openai/clip-vit-large-patch14
Base https://huggingface.co/openai/clip-vit-base-patch16

DINOV2 Large https://huggingface.co/facebook/dinov2-large
Small https://huggingface.co/facebook/dinov2-base

Table 7: Links to Base Model Checkpoints used in Experiments

A Experiment Implementation Details

Each image in our experiments was resized to 256x256, center cropped to 224x224, and then
normalized using the ImageNet mean and covariance as a means of preprocessing. Though better
accuracy could likely be attained using various data augmentation techniques, we chose to not to
perform further augmentation in order to more directly measure performance of the base models
themselves. Preprocessed images were fed through each base model to get base model specific
representations. Table 7 contains the web links to each of the base model checkpoints used in our
experiments. The resulting representations of images were then normalized according to the mean
and covariance specific to the train data set they belonged to and base model that was used to extract
the representation. We trained linear probes using stochastic gradient descent with momentum
(momentum parameter set to 0.9) and no weight decay or weight regularization. We found that
optimizing for 100 epochs with an initial learning rate of 0.1 and a cosine annealing learning rate
scheduler was sufficient for convergence across base models and data sets. All code to run our
experiments will be released publicly after publication of this work. Finally, ImageNet-C is not a
single data set but a number of corruptions to ImageNet images. For our experiments we used the
Gaussian Blur corruption with difficulty of 5, the highest allowed by the data set code.

B Possible Goals for Future Visual Foundation Model Research

In most published work that propose new foundation models, the models are evaluated on downstream
task performance, which is the most direct way of measuring their practical utility. However, we feel
such empirical, end-task driven pursuits can benefit from both more principled focus into what makes
a “good” foundation model, as well as more rigorous investigation into the data and objectives used
for pre-train them. In the remainder of this section, we highlight three main empirical findings of this
work and use them to highlight possible ways forward in foundation model research.

Finding #1: Some linear probed foundation models achieve high accuracy in domains different
than that in which they were trained, but fail in others. Our work highlights that visual founda-
tion models do not represent class structure in such a general way that any conceivable definition of a
class as defined in a domain is distinct from potential other classes in that domain. For instance, our
results indicate that a linear probe trained using DINOV2 on ImageNet generalizes well to cartoon
renderings of the ImageNet test set. On the other hand, probes trained on DomainNet-Real images
do not generalize well to DomainNet-Quickdraw images. We argue that this isn’t an unreasonable
failing of foundation models, as there will always be some limit to their generalizability in practice,
but if the foundation models are treated as black boxes, it is unclear what class semantics are captured
by the models without testing for each such case. This necessitates the need for further understanding
of the practical limits of generalization of foundation models.

Generalization of deep neural networks has been a focus from the learning theory community for
many years [11, 3, 22, 34, 36]. However, most of these results focus on the setting where models are
trained directly for a task. In the case where foundation models are pre-trained on a one task and then
adapted for another, there is much less principled understanding of generalization. We feel that a
simple, but compelling problem formulation of this form that is amenable to generalization analysis
would be a critical starting point for generalization research in foundation models. From such a point,
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more and more complex settings can be studied and pre-training tasks can be developed that are more
grounded in principled understanding.

More practically, better understanding of generalization could be achieved by releasing the pre-
training data along with foundation models, so the research community can analyze it in comparison
to empirical observations of model performance. In the cases where this is not possible, it would
be beneficial to provide information about the scope, intent, and procedure for collecting data as
well as curation efforts. What exactly this information entails is open for debate, but the driving
motivation should be transparancy that allows for understanding of the limits of models pre-trained
on the data. Complicating this is the fact that many of the foundation model we tested and in wide
use were pre-trained on data scraped from the web with relatively little definition of a specific scope
or efforts to curate the data. This represents a tension between collecting more data to produce more
general foundation models and scoping data collecting so the capabilities of foundation models are
better understood. We argue that limiting the scope of pre-training data would be beneficial in that it
would be more intuitive to reason about the limits of a foundation model’s generalizability.

Finding #2: In some domains, foundation models represent classes such that they cannot be
fully separated by linear probes. The domains where linear probes could not fully discriminate
classes (DomainNet-Quickdraw, DomainNet-Infograh, FMOW, etc.) posed fine-grained classification
tasks. This may indicate that foundation models learned on coarse-grained pre-training data do not
represent fine-grained classes well. Similar to the discussion on the previous finding, we believe
that this phenomenon can be better understood by research focused on more tightly coupling the
pre-training procedure and data to downstream application domains of foundation models.

Finding #3: Foundation models with different pre-training objectives and data sources per-
formed inconsistently relative to each other with respect to target domain accuracy. The direct
relationship among pre-training objectives, the data used to train foundation models, and general-
ization of down-stream tasks across domains is not widely known. Future work may benefit from
well-argued formal targets on what desirable end state of data representation for pre-training would
be. From a targeted end state, objectives, data augmentations, and even desirable characteristics
of pre-training data could be developed. For instance, if linear discriminability is a target what
inductive biases (regularization, training objectives, architecture designs, etc.) can be imposed during
pre-training to achieve it?

C Note on Linear Separability in High Dimensions

It is a much studied and observed phenomenon (see [15] for one such treatment of this phenomenon)
that even random partitions of data in high-dimensions are linearly separable. Given that the
dimensionality of the representations learned by the models in our evaluation range from hundreds
to thousands, it may be expected that any target data we evaluated would be linearly separable.
However, as our results show, our target training procedure did not result in 100% train accuracy
on all data sets. We believe this shows that the intrinsic dimensionality (the number of dimensions
needed to minimally represent data) is lower than the full dimensionality output by these models
for some data sets. This aligns with prior work on the effective rank of representations learned
by deep networks [1, 2, 28, 21]. While this can have benefits for classification in-domain, learned
representations with lower intrinsic dimensionality may not be expressive enough for linear models
to discriminate classes in out-of-domain classification tasks. We believe our results show evidence of
this.
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