
Exploring quasi-geodesics on Stiefel manifolds
in order to smooth interpolate between domains

Jorge Batista* Krzysztof Krakowski** Fátima Silva Leite***

Abstract— Manifold-based algorithms are receiving in-
creasing attention in computer vision and pattern recognition.
Geodesic curves in the Graßmann manifold have proven to
be very useful in modeling domain shift between a source
and target domain, represented as subspaces. To obtain an
invariant domain representation, the data is projected into a
set of subspaces along the geodesic.

In contrast to previous works that mainly explore interme-
diate subspaces along geodesics, in this paper we propose an
alternative approach to address multiple source domain adapta-
tion, by taking advantage of smooth interpolating curves on the
Stiefel manifold to walk along a set of multiple domains. This
aspect is particularly interesting in temporally or dynamically
evolving events that are represented by discrete subsets of the
data.

To generate such curves, we apply a recent technique
based on successive quasi-geodesic interpolation on the Stiefel
manifold, that results from a modification of the Casteljau
algorithm.

To evaluate the usefulness of these smooth interpolating
curves in pattern recognition problems, several experiments
were conducted. We show the advantage of using such curves
in multi-source unsupervised domain adaptation problems and
in object recognition problems across dynamically evolving
datasets.

I. INTRODUCTION

Stiefel and Graßmann manifolds arise naturally in com-
puter vision applications and pattern recognition, since fea-
tures and patterns that describe visual objects may be rep-
resented as elements in those manifolds. These geometric
representations facilitate the analysis of the underlying ge-
ometry of the data. In this paper we define the Graßmann
manifold as the set of all k-dimensional subspaces in Rn and
the Stiefel manifold as the set of all k orthonormal vectors
in Rn.

Graßmann and Stiefel manifolds are clearly related, but
the former is a symmetric space which makes its geometry
less complicated than the geometry of the latter. This reflects
even on solutions of simple formulated problems, such as that
of finding explicit formulas for geodesics that join two given
points, which in turn is a basic step to solve other impor-
tant problems, namely averaging, fitting and smoothing. A
formula for the geodesic that joins two points on Graßmann
manifolds and depends explicitly only on those points can
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be found in [1]. But for Stiefel manifolds, even the simpler
problem of finding a geodesic that starts at a given point
with a prescribed velocity is not so straightforward, as can
be seen for instance in the work of [2].

Geodesic curves on Graßmann manifold have proven to
be very useful in modeling domain shift between a source
and target domain represented as subspaces. In contrast,
multiple source domain shifts on manifold has received much
less attention, in particular those related with temporally or
dinamically evolution. The majority of the multiple source
domain adaptation solutions that use subspace representa-
tions to model the domains are based on leveraging or
selecting source domains, making use of a single subspace to
represent the multiple source domains. This single subspace
can be obtained through a Karcher mean computation or by
selecting the most representative domains, either by means
of a rank of domains or by learning optimal weights for
different source domains.

In the present paper we explore a recent technique to
generate a smooth curve on a Stiefel manifold that interpo-
lates a given set of data frames. This provides an alternative
approach to address multiple source domain adaptation,
where a smooth interpolation curve on the Stiefel manifold
is used to walk along a set of multiple domains.

The interpolating smooth curve on the Stiefel manifold
will be generated by a recent geometric algorithm presented
in [3] which results from a modification of the Casteljau
algorithm on manifolds in which geodesics are replaced by
quasi-geodesics, simple curves that can be defined explicitly.
This algorithm is intrinsic to the manifold since the whole
geometric construction, which is based on successive quasi-
geodesic interpolation. lives on the Stiefel manifold.

Main contribution: We present a new approach, based
on the Stiefel manifold of k-frames in Rn, to address the
multiple source domain adaptation problem. We demons-
trate the applicability of the interpolation algorithm on face
recognition across expressions and illumination variations,
cross dataset object recognition, and report the improved
performance of our approach over existing multiple-source
unsupervised domain adaptation methods.

II. RELATED WORK

Domain adaptation is a fundamental problem in machine
learning that has attracted the attention of a multitude of
related research fields. A nice survey of the recent advances
in visual domain adaptation can be found in [4], [5]. For the
purpose of this paper, we briefly review what we consider
the more relevant work to our methodology.



Geodesic curves on a Graßmann manifold have proven
to be very useful in modeling domain shift between a
source and a target domain represented as subspaces. A
pioneer work oriented to unsupervised domain adaptation on
manifolds was presented in [6]. Instead of considering just
the information provided by the source and target domains,
[6] uses incremental learning by finite sampling intermediate
subspaces along the geodesic curve connecting the source
and target subspaces on the Graßmann manifold. That paper
was the forerunner of other domain adaptation solutions that
explored the idea of interpolation on manifolds (see [5]).

To avoid the ad-hoc sampling of intermediate subspaces
used in [6], kernelized solutions were proposed that extended
the sampling problem to the infinite case, defining a new
kernel equivalent to integrating over all common subspaces
that lie on the geodesic flow connecting the source and
target subspaces [7], [8], [9]. Supported on this kernelized
solution, [10] proposed a solution based on the parallel
transport of union of the source subspaces on the Graßmann
manifold.

The idea of interpolating subspaces through dictionary
learning to link the source and the target domain was pre-
sented in [11]. This unsupervised domain adaptive dictionary
learning solution allows the synthesis of data associated with
the intermediate domains while exploiting the discriminative
power of generative dictionaries. Recognition under domain
shifts is accomplished using a classifier built with synthetic
data obtained from the intermediate domains. This idea of
dictionary learning was used to model dynamically evolving
events, which was also explored in [12], [13], [14], and
[15] on their domains adaptation approaches oriented to
continuous temporal evolution of the target domain.

More recently, [16] extended the concept of interpolating
between subspaces to the deep learning paradigm. Under this
paradigm, the DLIB solution is able to learn a hierarchical
representation of the data while trying to take into account
domain shift.

The idea of interpolating domains has also been explored
in [17] by means of shifting covariance. By representing the
domains as covariance matrices, intermediate domains are
interpolated along geodesics on the SPD manifold to model
the domain shift between the domains.

Multiple source domain shifts on manifold has also called
the attention of the community[18], [19], [20], [21], [22],
[8], [9], [17], [23]. The problem of multi-source domain
adaptation on manifolds was addressed in [24], by exploring
the concept of rolling to generate a C1-smooth interpolating
curve on the Graßmann manifold. This approach uses rolling
to project the data from the manifold to a vector space, then
interpolation on this simple space is performed, and finally
the resulting curve is mapped back to the manifold.

Contrary to the idea of rolling on manifolds, [23] explored
the idea of sampling subspaces along smooth curves on
Graßmann by computing interpolating curves intrinsically
on the manifold. The idea of shifting covariance [17] has
also been extended to the problem of multi-source domain
adaptation by computing each geodesic curve that connects

a source domain to a target domain and jointly learning
multiple classifiers and optimal weights for each source
domains.

What we propose on this paper is to compute interpolation
curves intrinsically on the Stiefel manifold, using a conve-
nient modification of the Casteljau algorithm, which consists
on replacing successive geodesic interpolation by successive
quasi-geodesic interpolation. This overcomes the difficulties
that arise from not knowing explicit formulas for geodesics
that join two arbitrary points on the Stiefel manifold. Fitting
smoothing curves on certain manifolds using only a set of
indexed samples was also addressed in [25].

By interpolating along smooth curves on manifolds, our
algorithm is able to correctly model the domain shifts
between temporally or dynamically evolving domains.

III. REVISITING STIEFEL MANIFOLDS

We include here basic facts about Stiefel manifolds that
can be found in [2] and also refer to [3] for further details.

Let s(n) and so(n) denote respectively the set of all
n× n real symmetric matrices and the set of all n× n real
skew-symmetric matrices. For P ∈ s(n), define soP (n) :=
{X ∈ so(n) : XP + PX = X }.

The Stiefel manifold, hereafter denoted by Sn,k, is the set
of orthonormal k-frames in Rn. In matrix representation

Sn,k :=
{
S ∈ Rn×k : STS = Ik

}
.

The tangent space to Sn,k at a point S ∈ Sn,k is usually
defined as TSSn,k =

{
V ∈ Rn×k : V TS + STV = 0

}
,

but it can also be parametrized as

TSSn,k = {V = XS + SΩ : X ∈ soP (n),Ω ∈ so(k) } , (1)

where P = SST. Moreover, if V ∈ TSSn,k is known, one
can obtain X and Ω in (1) since, as proved in [3],

X = V ST − SV T + 2SV TSST and Ω = STV. (2)

The Stiefel manifold is considered equipped with the cano-
nical metric defined by

〈V1, V2〉 = tr
(
V T

1 (I − 1
2SS

T)V2

)
, for V1, V2 ∈ TSSn,k.

We are interested in finding explicit formulas for simple
curves that join two points in the Stiefel manifold. Geodesics
would be the natural candidates, but it turns out that, except
for some particular cases, explicit formulas for the geodesic
that joins two arbitrary points are not known. We need some
extra facts before introducing those alternative curves.

Let SO(n) denote the group of special orthogonal n× n
matrices. SO(n)× SO(k) acts transitively on Sn,k via

SO(n)× SO(k)×Sn,k −→ Sn,k
(Θ1,Θ2, S) 7→ Θ1SΘ2.

When X ∈ so(n) and Ω ∈ so(k), t 7→ etX and t 7→ etΩ are
geodesics in SO(n) and SO(k) respectively, passing through
the identity at t = 0, but the curve t 7→ β(t) = etX S etΩ in
Sn,k is not always a geodesic w.r.t. the canonical metric.
Nevertheless, these curves, called quasi-geodesics in [3],
have very interesting properties that are summarized in the



theorem below, where Dtγ̇ denotes covariant acceleration
along a curve γ and log(Y ) is the principal logarithm of a
nonsingular matrix Y, which always exists and is unique as
long as Y has no negative eigenvalues ([26]). We recall the
relationship between the rotation group SO(n), the Stiefel
manifold Sn,k and the Graßmann manifold Gn,k of all k-
dimensional linear subspaces in Rn, which has the following
matrix representation

Gn,k :=
{
P ∈ s(n) : P 2 = P and rank(P ) = k

}
.

Let ∆ :=

[
Ik
0

]
n×k

∈ Sn,k, and Λ := ∆∆T ∈ Gn,k.

The following commutative diagram, where π(Θ) := Θ∆,
ϕ(Θ) := ΘΛΘT, and ψ(S) := SST,

SO(n)

π

��

ϕ

##

Sn,k
ψ
// Gn,k

defines relationships between SO(n), Gn,k and Sn,k. In
particular, the projection map ψ sends a k-frame S into the
subspace it generates, hereafter represented by P = SST.
Moreover, this mapping is not one-to-one since for P ∈ Gn,k,

ψ−1(P ) =
{
S SO(k) : S ∈ Sn,k and SST = P

}
.

This set is called the fiber over the point S.
Theorem 1 ([3]): Let S1 and S2 be two distinct points in

Sn,k. Then, if

X = 1
2 log

(
(I − 2S2S

T
2 )(I − 2S1S

T
1 )

)
and Ω = log

(
ST

1 e
−XS2

)
,

the quasi-geodesic defined by

β(t) := etXS1e
tΩ,

satisfies the following properties:
1) β(0) = S1 and β(1) = S2;
2) ‖β̇(t)‖2 = − tr

(
ST

1 X
2S1 + 1

2Ω2
)

(constant speed);
3) Dtβ̇(t) = Xβ(t)Ω 6= 0, unless X = 0 or Ω = 0;
4) When X = 0, the curve β(t) := S1e

tΩ is a geodesic
living in the fiber over S1;

5) When Ω = 0, the curve β(t) := etXS1 is a geodesic;
6) ‖Dtβ̇(t)‖2 = tr

(
Ω2ST

1 X
2S1

)
(constant covariant ac-

celeration).
7) γ(t) = β(t)β(t)T = etXP1e

−tX is the geodesic in Gn,k
joining the points P1 = S1S

T
1 and P2 = S2S

T
2 .

The scheme in the next figure illustrates the relation-
ship between geodesics and quasi-geodesics in Stiefel, and
geodesics in Graßmann. In particular, if the frames S1 and S2

generate the same subspace, they can be joined by a geodesic
living in the fiber over S1. If the frames S1 and S2 do not
generate the same subspace, but S2 = eXS1, they can also be
joined by a geodesic. Otherwise, S1 and S2 can be joined by
a broken geodesic (two pieces of geodesics) or by a smooth
curve, a quasi-geodesic. There are some similarities between

this scheme and Fig. 1 in [27], but the quasi-geodesic doesn’t
appear in the latter.

Fig. 1. Scheme showing, in red, the quasi-geodesic that joins points S1

and S2 in Sn,k and showing, in black, the geodesic in Gn,k which is the
projection of the quasi-geodesic.

IV. SOLVING AN INTERPOLATION PROBLEM ON THE
STIEFEL MANIFOLD Sn,k

A. Formulation of the problem

Problem 1: Given a set of points {Si }mi=0 be-
longing to the Stiefel manifold Sn,k, and a vector
V0 ∈ TS0

Sn,k, find a C1-smooth interpolating
curve passing through these points and having
initial velocity equal to V0.

This is a particular interpolation problem on a Riemannian
manifold that can be solved using the generalization of
the Casteljau algorithm in [28] if explicit formulas for the
geodesic that joins two points on the manifold are available.
Generalizations of the Casteljau algorithm to manifolds ap-
peared more recently in [29], [30], [31] and [32]. Recently,
in [3], a modification of the Casteljau algorithm for the
Stiefel manifold was proposed, where geodesic interpolation
is replaced by quasi-geodesic interpolation. This is the ap-
proach taken here to solve Problem 1.

Remark 2: At first glance, one may think that an efficient
method to solve the interpolation Problem 1 is to project the
data to the Graßmann manifold via the projection mapping
φ, then implement the Casteljau algorithm on this manifold
since explicit formulas for the geodesic that joins two points
in the Graßmann manifold are known (such formulas have
been derived in [1]), and finally projecting the interpolating
solution curve back on the Stiefel manifold. However, since
the projection mapping is not one-to-one, the smoothness
conditions in the final curve would be almost impossible to
meet.

B. Solving the interpolation problem

The interpolating curve is constructed segment by seg-
ment, each segment joining two consecutive data points, Si



and Si+1, results from a two-step procedure using quasi-
geodesics. An auxiliary point Ci is required to build each
segment. This point is called a control point since its choice
affects the shape of the curve. The first control point is
related to the prescribed initial velocity V0, and the other
control points are chosen in order that each segment joins
its neighbor segments smoothly. Without loss of generality,
we assume that all segments are parameterized in the [0, 1]
time interval.

1) The basic two-step procedure on a manifold: Given
a set of three points x0, x1, x2 in a manifold M, let t 7→
σ1(t, x0, x1) and t 7→ σ1(t, x1, x2) be two smooth curves
joining x0 to x1 and x1 to x2 respectively. Define a family
of curves

γ : [0, 1]× [0, 1]→M

as follows: For a fixed τ ∈ [0, 1], consider the curve
t 7→ γ(t, τ) joining the point σ1(τ, x0, x1) to the point
σ1(τ, x1, x2). Then, t 7→ σ2(t) = γ(t, t) is a smooth curve
in M joining x0 to x2, where x1 is the control point.

It turns out that the initial and final velocities of the curve
σ2 are related to the initial and final velocity of the curves σ1,
according to the following:

σ̇2(0) = 2σ̇1(0, x0, x1) and σ̇2(1) = 2σ̇1(1, x1, x2).

These identities establish a relationship between the initial
and final velocity of the curve σ2 and the control point x1. In
particular, when M = Sn,k and t 7→ σ1(t, xi, xi+1), i = 0, 1,
are quasi-geodesics, the control point x1 can be obtained
from the initial point and the initial velocity, both prescribed
in Problem 1.

2) Generating the first curve segment in Sn,k, joining S0

to S1: Following the basic two-step procedure, we first need
to find a control point C0, which is the end point of the quasi-
geodesic that starts at the point S0 with initial velocity equal
to 1

2V0. This quasi-geodesic is given by

β0(t) = etX0S0e
tΩ0 ,

where, according to (2),

X0 =
1

2
V0S

T
0 −

1

2
S0V

T
0 + S0V

T
0 S0S

T
0 , Ω0 =

1

2
ST

0 V0.

So, C0 = β0(1) = eX0S0e
Ω0 defines the control point.

We next proceed to the construction of the second quasi-
geodesic β1 that joins C0 to S1, using Theorem 1 with the
obvious adaptations. The first curve segment, joining S0 to
S1 with prescribed initial velocity equal to V0 can now be
obtained from quasi-geodesic interpolation of β0 and β1.

3) Generating consecutive segments: The second curve
segment joins S1 to S2 and must be C1-smooth at S1, which
means that the initial velocity for this second curve segment
must equal the end velocity of the previous curve segment,
which is already known. So, we are reduced to the generation
of a curve segment that joins S1 to S2 and whose initial
velocity at S1 is equal to σ̇(1). This data is enough to find
a new control point C1 which is necessary to generate the
second curve segment.

The other consecutive segments are generated similarly.
The procedure to generate the interpolating curve is summa-
rized in algorithms 1 and 2.

Algorithm 1: Calculate a set of K intermediate points σ(t)
in Sn,k, for t ∈ [0, 1], such that: σ(0) = S, σ(1) = Q

Input: K, t ∈ [0, 1], S,C,Q ∈ Sn,k , V0 ∈ TSSn,k , where S is the
initial point, Q is the final point and C is the control point

Output: σ(t), X1 ∈ soCCT (n), Ω1 ∈ so(k)
1 Calculate velocity components X0 and Ω0:

X0 =
1

2
log
(
(I− 2CCT) (I− 2SST)

)
Ω0 = log(ST exp(−X0)C)

2 Calculate velocity components X1 and Ω1:

X1 =
1

2
log
(
(I− 2QQT) (I− 2CCT)

)
Ω1 = log(CT exp(−X1)Q)

3 for k ← 0 to K do
4 t = k/K
5 Calculate quasi-geodesics β0(t) and β1(t):

β0(t) = exp(tX0)S exp(tΩ0)

β1(t) = exp(tX1)C exp(tΩ1)

6 Calculate velocity components X(t) and Ω(t) for the joining
segment:
X(t) =

1

2
log
((

I− 2 β1(t) βT
1 (t)

)(
I− 2 β0(t) βT

0 (t)
))

Ω(t) = log
(
βT
0 (t) exp(−X(t))β1(t)

)
7 Compute the point on the spline segment:

σ(t) = exp(tX(t))β0(t) exp(tΩ(t))

8 return σ, X1, Ω1.

Algorithm 2: Calculate control point C given the initial
point for the segment and velocity components of the previous
segment

Input: Q ∈ Sn,k , X1 ∈ soQQT (n) and Ω1 ∈ so(k)
Output: C ∈ Sn,k

1 Calculate the control point C:
C = exp(X1)Q exp(Ω1)

2 return C .

V. DOMAIN ADAPTATION

Consider D domains and a feature space of dimension n.
In each domain d = 1, . . . , D take md samples, each one
represented by a column vector xdi ∈ Rn, (i = 1, . . . ,md).
Such vectors form the columns of a matrix Xd ∈ Rn×md

which is the feature representation of the samples in domain
d.

To establish a common ground for comparison, we follow
very closely the protocol proposed in [6]. Specifically, or-
thogonal subspace estimation is applied to all samples in each
domain to produce D matrices, Θd, in SO(n). Projecting
each Θd on the Stiefel manifold Sn,k, via the projection
map π, one obtains D matrices Sd = π(Θd) = Θd∆, whose
columns form an orthonormal bases for the k-dimensional
subspaces P d = ψ(Sd) = Sd(Sd)T, which are points in
the Graßmann manifold Gn,k. Following Algorithm 3, which
builds from Algorithm 1, we obtain a smooth curve on the
manifold that interpolates the multiple domains represented



by the frames Sd ∈ Sn,k. By sampling the interpolation
curve at J different values of the parameter t, we collect
J intermediate frames Sj , j = 1, . . . , J that generate new
subspaces. Then, each sample from the multiple domains is
projected onto these new subspaces to obtain J projections
X̂j := (Sj)

TXi, j = 1, . . . , J , which are then concatenated
to form a vector in RJk. A discriminative classifier can be
trained to classify unlabeled samples of a target domain,
based on the high-dimensional feature vectors obtained using
the labeled samples from source domains.

Algorithm 3: Computing intermediate frames by sampling
smooth interpolation curves

Input: Multiple domain data Xd, subspace dimension k, number of
intermediate samples per curve segment K

Output: Sampled points S(j), j = 1, . . . , J , on Sn,k . Each point
represents a basis of vectors used to specify a subspace.

1 Perform PCA on each Xd to obtain the orthonormal k−frame in Rn,
Sd.

2 Perform ordering (indexation) of Sd.
3 Consider S2 as the control point for 1st curve segment.
4 Get K sample points and velocity components (first segment).

[S,X,Ω] = Alg1(S1, S2, S3)

for i← 3 to D − 1 do
5 Get control point for next segment

[C] = Alg2(Si, X,Ω)

Get K sample points and velocity components (next segment).
[S

′
, X,Ω] = Alg1(Si, C, Si+1)

Concatenate [S]← [S, S
′
]

6 return S

VI. EXPERIMENTS

To evaluate our solution, we conducted experiments on
cross-domain object recognition and face recognition across
expression and illumination variation. We compared our
results with some well established algorithms from the state-
of-art, the Geodesic Flow Kernel (GFK) algorithm [8], [9]
and the Karcher-Sampling Geodesic Flow (K-SGF) algo-
rithm [6], [22].

A. Object Recognition Across Datasets

For a quantitative evaluation, we followed the protocol
described in [8], [6], [22] using the OFFICE+Caltech10
benchmark dataset from [33] that contains four image
datasets: Caltech, Amazon, DSLR and Webcam.

Fig. 2. Example images from the OFFICE+Caltech10 dataset [8].

The domain shift in this dataset is due to changes in
object pose, image resolution, background clutters and scene

illumination. Instead of using the SURF based image repre-
sentation as in [33], [8], we used the VGG-Net features,
in particular the VGG-FC7 features, that were recently
extracted with the network model of [34] and also used in
[35].

In all experiments conducted, sets of three source domains
were considered and only samples from the source domains
were labeled. The same 10 common categories reported
in [8] were considered for evaluation. As discriminative
classifier a simple 1-KNN classifier was used.

Instead of using PCA to define the subspaces, supervised
PLS and OLPP [36] were used for that purpose. Subspace
dimension and the number of intermediate subspaces were
selected empirically and their values are presented in the
performance tables.

For our results, accuracy was obtained by averaging over
20 experiment trials; each trial containing a random set
of labeled samples from each one of the source domains.
We report performance on different sources-target combina-
tions. We also evaluated the performance when intermediate
subspaces are sampled along non-smooth curves, broken
geodesics (B-Geod), obtained by simply concatenating the
geodesic curves σ1(t, xi, xi+1). Results are shown in Table I.
For comparative evaluation we include also several results
reported in [35] using the same VGG-FC7 features. For each
target domain we show the mean average result obtained
from all possible indexation of source domains and also the
best result.

Multi-source domain adaptation consistently achieved
good results being the C1-smooth interpolation ranked among
top performers, which empirically proves the advantage of
our solution. Only in cases where extremely good adaptabil-
ity between a particular pair of source and target domains
exists, our solution does not reach top performance. This hap-
pened when image datasets, like Webcam and DSLR, were
combined as source-target pair. In these favorable conditions
(note the similarity in appearance between datasets Webcam
and DSLR in Fig. 3), the incorporation of additional infor-
mation coming from less similar datasets does not increase
the discriminative power of the features. When compared
to the K-SGF our solution always yields an increase in
performance of almost 3%, which empirically validates the
benefits of sampling along C1-smooth curves upon geodesic-
based solutions. This increase is even larger when compared
to the standard single-source domain approaches, performing
on-par with the recent solution presented in [35], but using
a much simpler approach. As expected, performance can be
improved when more adequate solutions are used to obtain
the domain’s subspaces.

B. Face recognition across facial expression and illumina-
tion variation

Face recognition experiments were conducted using im-
ages from two different datasets: 1) the Karolinska Directed
Emotional Faces (KDEF) [37] and 2) the extended YaleB
Face [38]. The Karolinska Directed Emotional Faces (KDEF)
is a dataset of 4900 pictures of human facial expressions of



TABLE I
RECOGNITION ACCURACIES ON TARGET DOMAINS WITH unsupervised ADAPTATION (C: CALTECH, A: AMAZON, W: WEBCAM, AND D: DSLR).

RESULTS OBTAINED CONSIDERING SUBSPACES WITH DIMENSION k = 40 AND A NUMBER OF K = 12 SAMPLED SUBSPACES PER GEOMETRIC SPLINE

(J = 25). BEST RESULT IS SHOWN IN BRACKETS. *RESULTS REPORTED IN [35].

Multi-Source Single Source
Sd→T B-Geod+OLPP C1-smooth+OLPP K-SGF+OLPP GFK-OLPP CORAL* ILS* S→T

93.3% 94.6% 88.2% W→D
(A,C,W)→D 89, 5%(89.9%) 90.8%(91.7%) 86.3%(88.4%) 66.4% 63.8% 67.1% C→D

63.2% 61.3% 71.3% A→D
80.9% 82.0% 86.7% W→A

(D,C,W)→A 84, 6%(85.9%) 85.8%(86.2%) 83.4%(83.8%) 82.8% 88.6% 87.1% C→A
75.7% 71.2% 76.5% D→A
94.1% 93.5% 91.8% D→W

(A,C,D)→W 93, 1%(94.0%) 93.2%(93.8%) 91.2%(91.4%) 80.5% 76.0% 80.1% C→W
79.2% 71.8% 80.9% A→W
73.4% 73.7% 76.3% W→C

(A,D,W)→C 78, 5%(79.1%) 80.8%(81.5%) 73.9%(74.1%) 69.5% 63.0% 66.2% D→C
71.9% 78.6% 78.4% A→C

Fig. 3. Example images from the KDEF dataset (top) and extended YaleB
dataset (bottom).

emotions. The set contains images from 70 individuals of
both gender, each displaying 7 different emotional expres-
sions, each expression being photographed (twice) from 5
different angles. Frontal faces were used for evaluation, being
cropped to 191× 186 pixels and finally resized to 15%. The
extended YaleB dataset contains 2414 frontal face images of
38 individuals of both gender. There are about 64 images for
each person. The original images were cropped to 192×168
pixels and resized to 20%. This dataset is challenging due
to varying illumination conditions.

We conducted two different experiments with these
datasets: 1) Using the KDEF, we evaluate face recognition
across facial expression variations, by clustering the faces
in each one of the seven facial expressions (neutral, happy,
sad, disgust, fear, hanger and surprise). For each expression’s
cluster, images from 50 randomly selected individuals con-
tributed to the training dataset while the images from the
remaining 20 were used for testing. Each domain subspace
frame was obtained using just the training datasets, which
means that during training and smooth curve interpolation

TABLE IV
RECOGNITION ACCURACIES ACROSS EXPRESSION VARIATION (ANGRY,
DISGUSTED, AFFRAID, HAPPY, SAD, SURPRISED, NEUTRAL) USING

GFK+PLS. RESULTS OBTAINED CONSIDERING SUBSPACES WITH

DIMENSION k = 100. MEAN AVERAGE ACCURACY COMPUTE OVER ALL

SOURCE 7→TARGETS COMBINATIONS.

GFK + PLS Target Domains
Source Domain Mean (Std) Min Max

AN 64, 2%(±7, 4%) 52, 5% (SU) 72, 2% (SA)
DI 64, 6%(±7, 3%) 51, 0% (SU) 71, 5% (SA)
AF 69, 4%(±3, 2%) 64, 5% (AN) 73, 5% (NE)
HA 67, 6%(±8, 4%) 56, 2% (AN) 81, 6% (NE)
SA 63, 4%(±8, 7%) 51, 3% (SU) 70, 2% (NE)
SU 64, 2%(±7, 4%) 50, 8% (DI) 73, 8% (NE)
NE 71, 0%(±5, 6%) 62, 8% (DI) 76, 0% (SA)

several individuals do not contribute with any sample to a
certain domain. 2) Using the YaleB we evaluate face reco-
gnition across illumination variations, by clustering frontal
faces acquired with illumination source located at one of the
nine azimuth angles (±110◦,±70◦,±35◦,±20◦, 0◦). Train-
ing was conducted using a reduced set of the evolving illumi-
nation clusters, being the remaining used for testing, which
means that using interpolation intermediate illumination data
can be synthesized.

In both experiments, each cluster represents a domain

TABLE V
RECOGNITION ACCURACIES ACROSS ILLUMINATION VARIATION

(AZIMUTE ANGLES θi, i ∈ [0◦,±20◦,±35◦,±70◦,±110◦]) USING

GFK+PLS. RESULTS OBTAINED CONSIDERING SUBSPACES WITH

DIMENSION k = 100.

GFK + PLS Target Domains
Source Domain −70◦ −35◦ −20◦ +20◦ +35◦ +70◦

−110◦ 71, 9% 35.5% 23, 4% 18, 4% 14, 4% 15, 4%
0◦ 48, 7% 83.9% 99, 8% 99, 6% 79, 7% 46, 4%

+110◦ 14, 0% 16, 7% 17, 1% 21, 4% 32, 0% 62, 5%



TABLE II
RECOGNITION ACCURACIES ACROSS EXPRESSION VARIATION (ANGRY, DISGUSTED, AFFRAID, HAPPY, SAD, SURPRISED, NEUTRAL). RESULTS

OBTAINED CONSIDERING SUBSPACES WITH DIMENSION k = 100 AND A NUMBER OF K = 12 SAMPLED SUBSPACES FRAMES PER GEOMETRIC SPLINE.

Source Domains Target Domains
AN,DI,AF,HA,SA,SU AN DI AF HA SA SU NE

∑
tdi

C1-smooth+PLS 84, 2% 86, 7% 93, 9% 92, 3% 96, 4% 83, 0% 93, 0% 89, 0%
K-SGF+PLS 81, 9% 84, 4% 88, 7% 88, 1% 90, 5% 78, 9% 89, 6% 86, 7%

TABLE III
RECOGNITION ACCURACIES ACROSS ILLUMINATION VARIATION (AZIMUTE ANGLES θi, i ∈ [0◦,±20◦,±35◦,±70◦,±110◦] ). RESULTS OBTAINED

CONSIDERING SUBSPACES WITH DIMENSION k = 100 AND A NUMBER OF K = 15 SAMPLED SUBSPACES FRAMES PER GEOMETRIC SPLINE.

Source Domains Target Domains
−110◦,0◦,+110◦ −70◦ −35◦ −20◦ +20◦ +35◦ +70◦

∑
tdi

C1-smooth+PLS 81, 5% 85, 6% 99, 8% 97, 5% 83, 2% 81, 2% 88, 2%
K-SGF+PLS 72, 8% 82, 7% 98, 7% 98, 5% 78, 8% 80, 6% 83, 9%

and several evaluations were conducted. We also synthesized
additional domain shifts on frontal images by applying eight
different levels of motion blur in the YALE dataset and six
small in-plane face rotations in the KDEF dataset.

For the experiments conducted with the Yale database,
the two most extreme illumination clusters (±110◦) and the
frontal illumination cluster were used as source domains. In
the KDEF experiments, all training sets were used as source
domains and 10 different sets of training/test individuals were
used to evaluate performance.

Results reported in Tables II-V confirm the benefits of
sampling synthetic data along C1-smooth curves, when deal-
ing with face recognition tasks in evolving events. In all
experiments conducted, sampling along C1-smooth curves
consistently yields top performance. When compared to sin-
gle source domain adaptation solutions, our solution yields
a significant increase in performance, above 5% when com-
pared with the K-SGF (multi-source domain), and an average
increase above 20% when compared with the Geodesic
Flow Kernel approach (single-source domain). Note the
good accuracy obtained with test conducted on NEutral face
expression, a domain that was not included on the smooth
interpolating curve.

C. Stiefel Interpolation vs. Graßmann Interpolation

In contrast to the majority of solutions found in the
literature, that mainly explore smooth interpolation in the
Graßmann manifold, the algorithm proposed on this paper
is the first one to explore smooth interpolation in the Stiefel
manifold. In spite the mathematical complexity inherant to
this manifold, performing interpolation in Stiefel has some
advantages:

1) When compared to its dual solution in the Graß-
mann [23], C1-smooth interpolation in the Stiefel is
computationally more efficient for low k-dimensional
subspaces;

2) Depending on the metric used in the discriminative
classifier, improved adaptation ability is observed when
smooth interpolation is performed in Stiefel;

3) Complete smoothness of the interpolation curve is ob-
tained in Stiefel, which is not guaranteed when the
interpolation is performed in Graßmann [3].

Analyzing the computational costs involved in the inter-
polation algorithms in both manifolds, it is clear that for
low k-dimensional subspaces computing C1-smooth curves
in Stiefel is more efficient than in Graßmann. This efficiency
vanishes as k increases.

To evaluate the domain adaptation ability of the subspaces
interpolation along both C1-smooth curves, face recognition
across facial expression variation was conducted for the
NEutral face expression domain, a domain that was not
included in the smooth curve interpolation process. Two
discriminative classifiers were used: KNN and PLS+KNN.
Different metrics were considered for these two classifiers:
Cosine, Euclidean and Standardized Euclidean; As can be
observed in table VI, the adaptation ability when subspace
interpolation is performed in Stiefel is beneficial depending
on the classifier and also on the metrics used. The advantage
of using smooth interpolating curves in Stiefel vanishes when
inner-product based metrics are used in the KNN classifier.
In the case of these metrics (Cosine and Euclidean) the
projection map ψ sends the k-frame Sj into the subspace it
generates, represented by Pj = SjS

T
j , which ends up being

the same as using a smooth interpolating curve in Graßmann.

TABLE VI
DOMAIN ADAPTATION ABILITY USING INTERPOLATING CURVES IN THE

STIEFEL AND GRASSMANN MANIFOLDS. RECOGNITION ACCURACIES

ACROSS EXPRESSION VARIATION. SOURCE DOMAINS:{
AN,DI,AF,HA,SA,SU}. TARGET DOMAIN:{NE}

Classifiers & Metrics
cosine euclidean Stand. euclidean

KNN PLS+KNN KNN PLS+KNN KNN PLS+KNN
Sn,k 91, 67% 93.3% 93, 8% 94, 3% 93, 7% 95, 3%
Gn,k 91, 67% 92.7% 93, 8% 94, 0% 93, 1% 92, 4%



VII. CONCLUSIONS

We have presented an alternative approach to solve the
problem of multi-source domain adaptation via smooth in-
terpolation on the Stiefel manifold. By sampling intermediate
subspaces along smooth curves that interpolate the multiple
domains, our solution is able to model more effectively the
domain shifts between those domains. The generation of
smooth interpolating curves in the Stiefel manifold was ac-
complished through the implementation of a recent intrinsic
algorithm based on a modification of the Casteljau approach,
where successive geodesic interpolation was replaced by
successive quasi-geodesic interpolation.

The algorithm proposed in the paper may have a great
impact in computer vision and related fields, since a curve
that interpolates a set of points on the Stiefel manifold
may correspond to the evolution of an event or dynamic
scene from which only a limited number of observations
was captured, envisaging new pathways for a multitude of
related problems.

Experiments on cross-domain object recognition and face
recognition across dynamically evolving datasets have been
conducted in order to evaluate the proposed solution. On
standard benchmark tasks, our solution consistently outper-
forms other competing algorithms, empirically validating the
importance of our work.
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