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Abstract

Measuring the alignment between representations lets us understand similarities
between the feature spaces of different models, such as Vision Transformers trained
under diverse paradigms. However, traditional measures for representational align-
ment yield only scalar values that obscure how these spaces agree in terms of
learned features. To address this, we combine alignment analysis with concept
discovery, allowing a fine-grained breakdown of alignment into individual concepts.
This approach reveals both universal concepts across models and each represen-
tation’s internal concept structure. We introduce a new definition of concepts as
non-linear manifolds, hypothesizing they better capture the geometry of the feature
space. A sanity check demonstrates the advantage of this manifold-based definition
over linear baselines for concept-based alignment. Finally, our alignment analysis
of four different ViTs shows that increased supervision tends to reduce semantic
organization in learned representations.

1 Introduction

Vision Transformers (ViTs) [11] are gaining increased popularity as backbones for various computer
vision tasks. There is a large zoo of pre-trained models covering different learning paradigms and
supervision levels, with different capabilities [19] and thereby different internal representations.
Consequently, understanding and comparing these representations is essential for practitioners when
selecting pre-trained models, assessing robustness and generalization properties, and designing fine-
tuning protocols. This opens up questions like: Where does the model representation change the most
and how? Which concepts (i.e. dominant structures in representation space) are encoded in lower
layers vs. upper layers? Does the model encode semantically similar concepts in spatial proximity
to each other? How are the representations of model A aligned to that of model B across layers?
One way to address these questions is by examining patterns in hidden activations and measuring
representational alignment[35, 44], yet existing methods often provide only a single scalar to indicate
similarity[41], leaving finer details unexamined.

In this paper, we propose a fine-grained alignment analysis based on concepts that structure the
latent representation. This gives insights into universal concepts between representations of different
layers or models, as well as how a single representation is structured. To achieve concept-based
alignment we need solutions for concept discovery, and measuring the alignment between concept
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Figure 1: We combine concept discovery with alignment analysis for fine-grained insights into
structures within and differences between latent activations. To this end, we investigate latent
activations formed by intermediate layers, which according to the manifold hypothesis can be
organized in terms of low-dimensional manifolds. We recover these concept manifolds using
density-based clustering (HDBSCAN) applied to UMAP embeddings of the latent representations.
The discovered structures in latent space allow to characterize a single layer and the formation of
structures between layers.

proximity scores. Previous work on concept discovery has ranged from identifying individual neurons
or other discrete units [1] to defining linear directions in feature space [14], with the most general
approach so far viewing concepts as multi-dimensional linear subspaces [42]. However, there is
growing evidence that linearity may be too strong an assumption [2, 8]. In contrast, we posit that to
capture the underlying geometry of a representation more faithfully, concepts should be treated as the
most general structure they can form—namely, nonlinear manifolds. For alignment measurement,
previous methods typically characterize the similarity of similarities (e.g., via CKA [28]), collapsing
the results into a single scalar score. We instead measure fine-grained distances between concept
pairs. Specifically, we represent activations as proximity scores to discovered concepts and employ a
generalized Rand index with pseudo-metric properties [24], which we partition into pairwise concept
distances.

• We combine concept discovery with alignment analysis to reveal not only which concepts
are universal between two representations but also how a single representation is internally
structured (Sec. 2.2).

• We propose a novel definition of concepts as nonlinear manifolds and demonstrate—via a
sanity check—the superiority of this definition for alignment analysis when compared to
simpler and linear concept definitions (Sec. 4.2).

• In our concept-based alignment analysis of different ViTs, we find that their representations
exhibit markedly different structures; specifically, increased supervision correlates with
reduced semantic structure in the learned representations (Sec. 4.3).

2 Concept Discovery for Representational Alignment

This section consists of two parts. First, we introduce our novel non-linear concept definition –
motivated by the manifold hypothesis – and describe our approach to discovering these concepts
in latent activations (Fig. 1). Second, we show how this concept-based representation of hidden
activations can be used to measure alignment across different models or layers, enabling a fine-grained
analysis that goes beyond single-scalar metrics.
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2.1 Concept Discovery

Motivation According to the manifold hypothesis, which is widely accepted in machine learning,
many datasets, including image data that nominally lie in a high-dimensional space, can be described
in terms of a few underlying latent factors and are thus concentrated on a (potentially disconnected)
low-dimensional manifold embedded in high-dimensional space [20]. [32] shows how a neural
network trained on a toy classification problem solves the task by transforming the topology of the
input data, and layerwise reducing the Betti numbers of the class-wise components. We hypothesize
that state-of-the-art vision models behave similarly and try to recover the connected components in
the hidden representations, which we call concepts.

Definition We analyze the hidden representation at an intermediate feature layer of a neural network.
To this end, we divide the model f into two parts, f = gl ◦ hl, where hl is the mapping to a hidden

feature layer l. Our definition then relies on hidden representations hl(xi) ∈ R
N ′×F of input samples

xi from a set S. N ′ is the number of spatially separable elements in the representation, i.e., the
number of tokens in a transformer model or the number of superpixels in a convolutional feature map.
We spatially decompose the feature maps h(xi) into a set of N = N ′ · |S| feature vectors φ ∈ R

F .
Previously, concepts have been mostly defined as linear structures [14, 46]. The most general linear
structure would be affine subspaces, which would already represent an extension compared to the
recently considered definition as linear subspaces [42]. In this work, we generalize this idea even one
step further and define concepts as manifolds in the F -dimensional feature space.

Definition 1 We define a concept Cα, as a manifold in d-dimensional feature space, represented by
a point cloud {φφφα

j } consisting of the feature vectors φφφj that lie on the concept manifold with index α.

Benefits of concept manifold definition In the following, we want to compute concept proximity
scores by which we measure alignment. Incorrect assumptions about the structure of the concept
manifold, e.g., assuming it has no curvature (affine subspaces) or it is spherical and the distance to the
manifold can be estimated by the distance to the centroid, directly lead to distorted concept proximity
scores and hence to distorted alignment. Later, in a sanity check our definition performs better than
linear and non-linear spherical baselines for measuring representational alignment.

Clustering for concept discovery Having established our definition of concepts as manifolds in
feature space, we now turn to the challenge of discovering these concepts through clustering. As stated
above, we assume that feature vectors {φi} from a hidden representation are sampled from a set of
low-dimensional concept manifolds {Cα}. Recovering these concept manifolds in high-dimensional
space (F = 768 in our experiments) is a challenging clustering problem. Therefore, we revert to
density-based clustering on a low-dimensional embedding of the data [18, 22]. For this embedding,
we utilize UMAP (Uniform Manifold Approximation and Projection) [29], a dimensionality reduction
technique that preserves local and some global structure. Given that we have no a priori knowledge
about the number of clusters, we employ HDBSCAN (Hierarchical Density-Based Spatial Clustering
of Applications with Noise), which can handle clusters of varying densities [3]. HDBSCAN builds
a hierarchy of clusters based on density, represented by a condensed tree, and allows for robust
handling of noise, making it suitable for the possibly intricate structure of feature representation
spaces. While UMAP does not fully preserve density, its ability to maintain the overall structure of
the data makes it a valuable preprocessing step before applying HDBSCAN. We use the HDBSCAN
implementation from [30].

Concept proximity scores We leverage soft clustering with HDBSCAN based on the condensed
tree which is roughly a density function over the data points to compute fuzzy cluster membership
as described in [30], which we formalize in the appendix for the reader’s convenience. It is based
on the distance to concept anchor points of each cluster and an outlier score, both derived from
the condensed tree. We now have a fuzzy clustering P{φφφ} = {PPP (φφφ0), . . . ,PPP (φφφN )} with n clusters,

where PPP ∈ [0, 1]n holds the concept proximity scores of each concept Cα. We interpret the concept
proximity scores Pα(φ) as the probability that a feature vector φ belongs to a concept Pα in clustering
P . This approach contrasts with previous concept assignment paradigms [14, 42], which often rely
on hard clustering, where each feature vector is assigned to a single concept, or linear methods that
project onto specific concept directions, limiting the representation to a more rigid framework. In
contrast, our soft clustering method allows for nuanced membership scores that reflect the degree
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of belonging to multiple concepts. In the following, we refer to our concept discovery method as
NLMCD (non-linear multi-dimensional concept discovery).

2.2 Concept-based Representational Alignment

We now address the question of measuring representational alignment based on the concept proximity
scores derived from fuzzy clustering.

Pseudo-metric between fuzzy clusterings The concepts are at this point characterized by a prob-
abilistic clustering P{φφφ} = {PPP (φφφ0), . . . ,PPP (φφφn)}, where PPP (φφφi) = [P 1(φφφi), . . . , P

n(φφφi)]. We want
to measure the similarity between two probabilistic clusterings P,Q from two different representa-
tions to evaluate how aligned their concepts are. For this purpose, we leverage an extension of the
pair-based Rand index generalized to fuzzy clusterings proposed in [24]. The original Rand index
counts the number of concordant pairs (either two points are paired or not paired both clusterings)
and disconcordant pairs (two points are paired in one clustering but not in the other). The distance
between probabilistic clustering P,Q is based on a generalized degree of concordance that is based
on the distance between two membership vectors dms(PPP (φφφi),PPP (φφφj)):

dcross(P,Q) =
2

n(n− 1)

∑

i<j

|dms(PPP (φφφi),PPP (φφφj))− dms(QQQ(φφφi),QQQ(φφφj))| (1)

A commonly used choice for the distance d is dms(PPP (φφφi),PPP (φφφj)) = 1 − ||PPP (φφφi) − P (φφφj)||1 [9].
Finally, we refer to the similarity between two clusterings, derived from the uncovered concepts, as
Concept-Based Alignment (CBA):

CBA = 1− dcross(P,Q) (2)

We choose this measure because dcross(P,Q) is a pseudo-metric satisfying desirable properties4 that
ease interpretation Also, when P,Q are crisp partitions, CBA reduces to the original Rand index.

Distance between single clusters In contrast to conventional measures for representational align-
ment that yield a single scalar value, our approach provides a more nuanced measure of representa-
tional alignment by assessing differences between pairs of single clusters. To measure the distance
between two clusters Pα, Qβ from two clusterings P , Q, we decompose the distance in Eq. 1 into the
contribution of single concepts Pα, Qβ and measure the pairwise similarity between the membership
scores of each feature

dcross(P
α,Qβ) = 2

n(n−1)

∑

i<j

||Pα(φφφi)− Pα(φφφj)| − |Qβ(φφφi)−Qβ(φφφj)|| (3)

Due to the absolute value in Eq. 1, summing over all pairs α, β does not yield the total dcross(P,Q),
but by the triangle inequality

∑

α,β dcross(P
α, Qβ) ≥ dcross(P,Q) the sum is an upper bound for

the overall distance between two clusterings.

3 Related work

Alignment Representational alignment measures are categorized, with a particular emphasis on
Centered Kernel Alignment (CKA) in [28]. CKA evaluates the similarity of similarities, either linearly
or under a non-linear kernel. Similarly, [10] measure alignment through the similarities of binary
k-nearest neighbor adjacency matrices, which resembles CKA with a narrow Gaussian kernel. Our
method relates to CKA in that it condenses these similarities into clusters and subsequently measures
the similarity between these clusterings. In parallel to the initial release of this work, [26] introduced a
related concept-based alignment measure which relies on class-wise one-dimensional linear concepts.
In contrast, we analyze alignment across classes based on non-linear, multidimensional concepts.

Concept discovery Most existing methods model concepts as linear directions [17, 46, 15, 14, 23,
16]. Generalizing this definition, [42] suggest that concepts can be represented more faithfully as
multidimensional linear subspaces.While the above approaches operate unsupervised, without access
to concept labels, supervised concept discovery methods have explored more flexible geometries:

41) Identity: d(x, x) = 0 for all x, 2) Symmetry: d(x, y) = d(y, x) for all x, y, 3) Triangle Inequality:
d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z.
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[39] estimate concept manifolds as multi-dimensional ellipsoids, [7] employ kernel classifiers for
nonlinear concept discovery and report improvements over linear methods, and also [8] find evidence
for the existence of non-linear features. Unlike these approaches, our main goal in concept discovery
is representation summarization for alignment measurement, rather than interpretability or feature
enumeration. For this reason, we employ the most general, non-linear concept definition.

Comparison of Vision Models On the one hand, alignment measures such as CKA have been
used to compare the representations of various vision models, including ViTs and ResNets trained on
different tasks or datasets [6, 5]. This has been combined with the analysis of patterns in attention
maps [44, 35, 33], visualization of feature maps [12, 38], and linear probes [38]. On the other hand,
downstream performance is analyzed to guide the selection of pre-trained models for transfer learning
[27, 19].

4 Results

We evaluate concept discovery in Sec. 4.1, check the superiority of our new concept definition
over linear and simplified baselines for concept alignment analysis in Sec. 4.2, and perform a
concept-alignment analysis between four ViTs in Sec. 4.3.

4.1 Concept discovery

Experimental setup First, we outline the details of the concept discovery procedure as described
in Sec. 2.1 based on UMAP embeddings and HDBSCAN clustering. For concept discovery and
later analysis of representational alignment, we use a random subset of 25 % of the ImageNet train
set, stratified samples across all 1000 classes. We study four different ViTs [11] with the same
architecture (base, patch size 16, input size 224) but different training objectives and training datasets:
FS [40] trained supervised on ImageNet-1k [37] classification, CLIP [34] trained to contrast images
and text from WebImageText [34], DINO [4] trained on ImageNet-1k to enforce consistency between
augmented views of the same image, and MAE [21] trained to reconstruct missing pixels of input
data from ImageNet-1k. We perform concept discovery separately for the sequence (SEQ) and the
CLS token. We extract activations at the last MLP layer of each of the twelve transformer blocks. Due
to computational constraints of UMAP and HDBSCAN limiting the number of tokens for clustering,
we reduce the 196 SEQ tokens per image to a single representative token, which also facilitates
comparison with CLS experiments. We obtain this token by average pooling over a central 4 × 4
block of tokens, assuming the image center contains more diverse concepts, while peripheral regions
may predominantly capture repetitive background elements. Further, for SEQ tokens, we discard
the last block as for the considered models only the CLS token in the final layer enters the loss.
Hyperparameter tuning for UMAP and HDBSCAN (based on DBCV) and the final settings are
detailed in the appendix.

Evaluation We assess concept discovery using four metrics. First, we report the rate of points
classified as noise by HDBSCAN. Second, we compute the density-based cluster validity index
(DBCV) [31], which compares intra- vs. inter-cluster density and ranges from [−1, 1] (higher is
better).5 Third, we evaluate how well the UMAP-based clustering preserves distances by calculating
the root mean squared error between the original and embedded distance matrices, normalized by the
mean pairwise distance (NRMSE). Finally, we test the robustness of our approach by measuring the
alignment between two runs – with fixed model weights and input samples, but different initializations
for UMAP and HDBSCAN – using CBA from Eq. 2.

Results Turning to the results on embedding and clustering quality in Fig.2, we find that NRMSE
remains consistently low across most layers and models. Exceptions include the CLIP CLS rep-
resentation in layer one and the DINO CLS representation between layers six and eleven, where
NRMSE rises. The DBCV scores range between 0.4 and 0.7, indicative of medium clustering quality,
yet remain fairly consistent across both models and token types (SEQ vs. CLS). Given the inherent
complexity of the clustering task, this level of performance is reasonable, supported by the qualitative

5We do not weight the average DBCV by cluster size as proposed in Moulavi et al. [31] so that noise rate and
DBCV remain independent.
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Figure 2: Quality of concept discovery: The noise rate is the ratio of points classified as noise in
HDBSCAN. DBCV is a density-based clustering validity index that contrasts intra- vs inter-cluster
density with scores in [−1, 1] where higher is better. NRMSE measures the root mean squared error
between the distance matrix of the original and embedded activations, normalized by the average
distance in the original embedding, and shows how faithfully the UMAP embedding captures the
geometry of the representation. Robustness is measured between two runs by concept-alignment
from Eq. 2. Results are across layers for CLS (dotted) and SEQ (solid) token representations of the
models introduced in Sec. 4.1.

Figure 3: Concept formation graph for the concept “apple(s)” in layer 9 of the FS model. Each
concept is represented by six randomly sampled images containing a token assigned to that concept
(highlighted in a yellow frame).

results in Fig.3 and Fig. 4. The noise rate is relatively high overall but diminishes in deeper layers.
Insufficiently dense sampling, constrained computationally by UMAP and HDBSCAN, may prevent
some noisy regions from crystallizing into valid concept clusters. Robustness decreases for all models
across layers but stagnates at around 0.84 for most models in the late layers. Finally, two random
baselines based on a randomly initialized model and/or randomized input (detailed in the appendix)
exhibit weaker clustering validity, confirming that concept discovery relies substantially on both the
learned representations and the underlying input distribution.

Concept formation graphs Finally, for a qualitative evaluation of our concept discovery method,
we construct concept formation graphs (CFGs). These are unweighted, directed graphs that show how
tokens transition from one concept to another across consecutive layers. In Fig. 3, we illustrate how
the “apples” concept develops from layer seven to layer nine in the FS model. Additional examples
for other models and the detailed algorithm for CFG construction are provided in the appendix.

4.2 Sanity checking concept structure for alignment and CKA comparison

Setup We use a sanity check to demonstrate how concept-based alignment analysis benefits from
representing concepts as non-linear manifolds, comparing these results to alternative concept def-
initions and discovery methods. Additionally, we compare CBA from Eq. 2 against CKA as an
established representational alignment measure that offers a single scalar to indicate alignment. This
sanity check relies on the assumption by [25] that adjacent layers should align more strongly than
distant ones. For each layer, we compute the weighted Kendall’s Tau correlation [43] between align-
ment scores and layer distances, separately for upstream and downstream layers. We use hyperbolic
weights to prioritize alignment between closer layers (whose alignment is more informative) and
separate upstream from downstream layers to accommodate different rates of representational change
(e.g., layer six may differ more from layer seven than from layer four). Averaging these correlations
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Table 1: Sanity check for concept alignment, based on weighted Kendall Tau [43] between alignment
and layer distance. We compare the suitability of NLMCD for Concept-Based Alignment (CBA)
concepts against other methods: one-dimensional linear subspaces (PCA), multi-dimensional linear
subspaces (MCD), and spherical non-linear concepts (KMeans). Additionally, we compare CBA
against CKA. Results within the same standard error interval as the top score for each model are bold
and those CBA results within the same interval as NLMCD-CBA are italic. NLMCD consistently
outperforms other concept approaches. While NLMCD-CBA and CKA are en-par, CBA offers the
advantage of fine-grained concept-based alignment.

SEQ CLS
FS CLIP DINO MAE FS CLIP DINO MAE

PCA-CBA 0.91(2) 0.91(3) 0.88(4) 0.84(3) 0.92(2) 0.91(2) 0.78(5) 0.78(4)
MCD-CBA 0.90(4) 0.92(4) 0.85(4) 0.87(4) 0.82(4) 0.73(4) 0.62(5) 0.73(5)
KMeans-CBA 0.94(2) 0.82(4) 0.87(4) 0.98(1) 0.96(3) 0.73(1) 0.89(5) 0.86(4)
NLMCD-CBA 0.97(1) 0.98(1) 0.92(2) 0.98(1) 0.93(2) 0.96(1) 0.91(2) 0.94(2)

CKA 0.98(1) 0.94(2) 0.99(0) 0.99(1) 0.93(2) 0.97(1) 0.89(3) 0.93(3)

across layers verifies whether the alignment measure reflects the expected structural relationships.
Using this sanity check, we compare CBA based on NLMCD concepts against one-dimensional
linear subspaces discovered by PCA [46, 14], multi-dimensional linear subspaces discovered by
MCD [42], and spherical non-linear concepts discovered by KMeans clustering [14]. For the linear
subspaces, we project feature vectors onto the concept subspace and clip negative values to zero to
obtain soft membership scores (arguing that a vector pointing in the opposite direction of a concept
is inactive). For KMeans concepts, we measure concept proximity by the euclidean distance to the

cluster centroid. We also normalize concept membership scores Pα′

= Pα/
∑

α Pα as their sum
is required to be less bounded by one

∑

α Pα ≤ 1 in Eq. 1. There is no direct way to estimate the
number of concepts for PCA, MCD and KMeans, so we use all F = 768 components for PCA as a
conservative baseline, and the number of concepts discovered by NLMCD for MCD and KMeans
discovery.

Results We present the sanity check in Tab. 1 for SEQ and CLS token alignment. We find that for
SEQ tokens, NLMCD shows higher scores than linear concepts except for DINO, where PCA can
match its performance. Further, only for DINO and MAE simple nonlinear KMeans is en par with
NLMCD. Similarly, for CLS tokens, NLMCD mostly outperforms other concept methods, while only
for FS can PCA, and for CLIP and MAE can KMeans match its performance. To complement this
quantitative evaluation of how well different concept definitions and discovery methods suit alignment
measurement, we visualize PCA, MCD, and KMeans concepts and their geometric structure (based
on our concept distance measure) in the appendix. By visual inspection, we find that the non-linear
NLMCD and KMeans concepts are most coherent within each concept cluster and also show the
highest coherence across groups of closely aligned concepts. When comparing to CKA, NLMCD-
CBA achieves similar performance for both SEQ and CLS tokens. However, it offers the additional
advantage of providing a fine-grained, concept-level view of alignment, unlike the single-scalar nature
of CKA.

4.3 Concept Alignment Analysis

We now investigate concept-based alignment described in Sec. 2.2 between representations across
layers and models. We structure the analysis into intra-model and inter-model to answer questions 1)
- 4) openend in the introduction. Due to limited space, we focus on SEQ representation and defer the
CLS representation analysis to the appendix. First, we analyze how representations are transformed
within one model and how they are structured across layers.

Intra-model: Where does the model representation change the most and how? First, we focus
on the intra-model alignment heatmaps between SEQ representations across layers measured by
CBA from Eq. 2 in the upper row of Fig. 4. In Fig. 5, we complement these findings with additional
concept clustering characteristics: alignment of concepts with ImageNet-1k labels, the intrinsic
dimensionality of each concept, and the number of concepts per layer. In CLIP, DINO, and MAE,
we observe a prominent break between layers one to six and layers six to eleven. The number of
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Figure 4: Intra-model relationships of SEQ representations. Upper row: We show CBA from Eq. 2
to visualize how representations are transformed across layers of the models introduced in Sec. 4.1
(darker pixels correspond to higher alignment). We observe a nucleation process between layer 9 and
10 in FS and smoother processing split into two major blocks between layer 1-6 and 6-11 in CLIP,
DINO and FS. Center and bottom row: we zoom into the representations at layer 6 and 11 and
partition the scalar CBA alignment into single concepts. We show a UMAP embedding constructed
from the pairwise distance of concept measured by dcross(P

α, P β) from Eq. 3. Each point in this
concept atlas corresponds to a distinct concept Pα. To convey their meaning, for some concepts, we
show four random input tokens from the members of the concept cluster Pα marked by a yellow box
in the entire image. The stronger the supervision during ViT training ranging from FS, over CLIP to
DINO and MAE, the less semantically organized are the representations at layer 11.

Figure 5: To supplement the intra-model alignment analysis, we evaluate alignment between concepts
and ImageNet-1k class labels, (based on CBA from Eq. 2), concept count, and the average intrinsic
dimensionality (based on [13]) across concepts.

concepts increases smoothly in the first part but rises sharply from layer seven onward. At that same
point, class label alignment shows a marked increase, whereas the average concept dimensionality
slightly decreases for DINO and MAE but increases for CLIP. In contrast, FS shows a distinct
transformation between layers nine and ten, leading to a sudden jump in both class alignment and the
number of concepts, accompanied by higher intrinsic dimensionality. This shift results in a lower
alignment between representations in the last two layers and earlier layers and suggests the formation
of distinct class-specific concepts, mirroring the “nucleation process” previously reported for ResNets
by Doimo et al. [10].

Intra-model: Which concepts are encoded in lower layers vs. upper layers? How structured
are the representations? We now zoom in on the representational alignment scores by examining
pairwise distances among individual concepts. Specifically, we use a concept atlas – a two-dim.
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Figure 6: Inter-model relationships of SEQ representations. Left: We show CBA from Eq. 2 to
visualize how representations differ between models(darker pixels correspond to higher alignment).
Right: We zoom into the concept-wise distances dcross(P

α, P β) from Eq. 3 between the represen-

tation of layer 10 in MAE and DINO. Alongside the pairwise distance matrix dcross(P
α, Qβ), we

present randomly chosen examples of concepts from MAE and their nearest matches in DINO, and
the distribution of the distances between nearest matches. We illustrate some random example pairs
with low to high distance (marked by a star in the distance distribution plot). Overall, concepts that
show a higher pairwise distance also appear slightly more distinct visually.

UMAP embedding of the pairwise concept distance matrix – to visualize the structures concepts form
at layers six and eleven across of all models (Fig. 6). We color-code each concept cluster according
to WordNet categories derived from ImageNet-1k labels 6 to guide the eye. At layer six, all ViT
models display a structured set of concepts which mostly focus on lower-level structures, shapes, and
object parts, rather than semantic WordNet-based groupings. In comparison, at layer eleven, CLIP,
DINO, and MAE concepts show strong semantic organization, illustrated by clearly separated canine
concepts and coherent groupings of human body parts such as neck, shoulder, and legs. In contrast,
FS at layer eleven appears less semantically organized – fully supervised training may push similar
concepts apart (for instance, different dog breeds) to reduce confusion and optimize for task-specific
accuracy. This, however, may have negative implications for generalization to other tasks.

Inter-model relations Second, we analyze how the representations between two different models
differ and present CBA from Eq. 2 between all layers of the models in the upper part of Fig. 6. We
observe higher alignment between the self-supervised models DINO and MAE than with CLIP and
the FS model in the alignment heatmaps. Further, layers of the first are more aligned than those of
the second half across all models pairs. We conclude that basic foundational features are learned
similarly across models, while later layers diverge as the models specialize to concepts serving their
pre-training task.

Inter-model: How is the representation of model A similar to that of model B? We now select
a pair of layers from two different models (layer ten in MAE and DINO) for a closer look at concept-
resolved differences in their representations. Alongside the pairwise distance matrix dcross(P

α, Qβ),
we present randomly chosen examples of concepts from MAE and their nearest matches in DINO,
as well as the distribution of the distances between nearest matches. Overall, concepts that show a
higher pairwise distance also appear slightly more distinct visually. Interestingly, around 62% of
concepts from MAE all match to only three singular concepts in DINO, which are marked in gray in
the distance distribution plot in Fig. 6 and excluded from example sampling. Upon inspection, those
singularly matched concepts have no visual resemblance. Instead, the singular concepts in DINO
exhibit low total activation across samples. Consequently, as our distance measures not only how
concepts activate similarly, but also how they similarly do not activate, they are closest match to
a variety of MAE concepts that have no close match otherwise – by virtue of their shared lack of
activation. Distances to these singular concepts span a range, depending on the activation strength of
the concept from the first model. We observe similar behavior for other pairs of layers.

6These are derived from the ImageNet-1k labels of the images from which the patches were extracted. We
first map these labels to more abstract categories (provided in the appendix). Second, we perform a majority
vote among all patches in a cluster to assign the category. This labeling is only a proxy and may not accurately
reflect the actual content of the patches—e.g. a patch might show grass on which an animal stands.
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5 Conclusion

We propose a novel approach that combines concept discovery with representational alignment
analysis in ViTs. With concept-based alignment analysis, we answer the questions raised in the
introduction and examine the structure of feature spaces of different ViTS, as well as fine details be-
tween the concepts of two different models. These insights are not available through traditional scalar
alignment measures. Understanding the structured nature of latent spaces can guide practitioners in
choosing models that not only perform well on benchmark datasets but also exhibit robust feature
representations for downstream tasks. For instance, the nucleation process in FS emphasizes the
importance of model structure over mere classification accuracy when selecting a pre-trained model.

Limitations The computational scalability of HDBSCAN limits the sampling of feature vectors
which makes undersampled concept regions appear as noise. The limited variability of ImageNet-1k
might obfuscate the meaning of a concept, e.g. when a concept represents a color but there are only
dog patches of that color. Further, the computational complexity of CBA requires subsampling of
feature vectors.
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NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We summarize the contribution of our work in the introduction and in the
abstract.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We include a section on limitations of our work in Section 5.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: We do not present any theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe our methods, the dataset, models, metrics, and parameters we
used.

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

15



Answer: [Yes]

Justification: We provide our code and use models, datasets and methods that are publicly
available.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specifiy all models, dataset subset, methods and hyperparameters.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the standard error across layers for our sanity check in Tab. 1.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide details about the hardware we used and run-time for our experi-
ments in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our work fully confirms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We briefly describe the positive impact through enhanced model understanding
in the conclusion - we do not see any negative societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release new datasets or trained models, so there is no risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite all models, datasets, and methods that we use.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provided our code and use and reference publicly available models, datasets
and methods.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We did not conduct studies with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We did not conduct studies with human participants.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

19



16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: We did not use LLMs in the core method development of this work.

Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A HDBSCAN

After concept discovery with HDBSCAN, we compute concept proximity scores P{φφφ} =
{PPP (φφφ0), . . . ,PPP (φφφN )}, PPP ∈ [0, 1]n holds the concept membership scores Pα(φφφ) of each concept Cα.
These rely on the implementation of soft clustering with HDBSCAN from [30], which we formalize
here for the reader’s convenience.

Clustering HDBSCAN first transforms the feature space using a density-informed metric called
mutual reachability distance

MRD(φφφi,φφφj) = max(coreDistancek(φφφi),

coreDistancek(φφφj), d(φφφi,φφφj)) (4)

where coreDistancek(φφφ) is the distance between a point φφφ and its k-nearest neighbor. Based on
the mutual reachability distance between all pairs, a minimum spanning tree is constructed that
connects all points and minimizes the sum of the edges weighted by MRD. From this, a hierarchical
tree is constructed via robust single linkage clustering. The hierarchical tree is condensed by
eliminating insignificant clusters and simplifying the hierarchy. This is achieved by selecting a range
of persistence values λ, which are the inverses of the mutual reachability distances (λ = 1/MRD).
Clusters that persist over significant ranges of λ, i.e. they are stable across multiple density levels, are
retained, while clusters that exist only over narrow ranges of λ are considered noise and pruned from
the tree. The result is a condensed tree that focuses on the most significant clusters. Finally clusters
are extracted from the condensed tree either based on their stability across different density levels or
simply the leaf nodes are identified as clusters.

Soft clustering with HDBSCAN The soft cluster membership scores combine a distance-based
membership with and an outlier score.

For the distance-based membership to cluster Cα, first k exemplar points {φφφα
i }, i ∈ [1, k], are

extracted. A single centroid is not enough to characterize a cluster as its shape can be arbitrary. The
exemplar points are the points within the leaf nodes beneath cluster Cα with maximum persistence λ
in the condensed tree, i.e. the densest points where the cluster persists. Then, the distance membership
score between a point φφφ and a cluster Cα is the inverse minimum distance across the exemplar points
{φφφα

i },

Mα(φφφ)dist =
[mini(d(φφφ,φφφ

α
i ))]

−1

∑

β [minj(d(φφφ,φφφ
β
j ))]

−1
, (5)

normalized across all clusters. The outlier-based membership compares a point’s membership
persistence to the total persistence of a cluster:

Mα(φφφ)membership =
λφφφ→Cα − λCα

birth

λCα

max − λCα

birth

. (6)

Here, λCα

birth is the persistence value at which cluster Cα first appears, i.e. its birth point in the
condensed tree and λφφφ→Cα is the persistence value at which point φφφ would join cluster Cα. Fi-
nally, distance and outlier-based membership are combined with stronger emphasis on outlier-based
membership,

Mα(φφφ) = (Mα(φφφ)dist)
1/2 · (Mα(φφφ)membership)

2 , (7)

and normalized Mα
norm(φφφ) = Mα(φφφ)/

∑

β M
β(φφφ). This membership score Mα

norm(φφφ) can be inter-

preted as the probability that a point φφφ belongs to cluster Cα, given that the point belongs to some
cluster,

Mα
norm(φφφ) ≡ P (φφφ ∈ Cα | ∃β : φφφ ∈ Cβ) . (8)

We want to compute the joint probability P (φφφ ∈ Cα), which includes the probability that φφφ may be
noise,

P (φφφ ∈ Cα) = P (φφφ ∈ Cα | ∃β : φφφ ∈ Cβ)P (∃β : φφφ ∈ Cβ) . (9)

Here, P (∃β : φφφ ∈ Cβ) is the probability thatφφφ belongs to some cluster. To estimate P (∃β : φφφ ∈ Cβ),
the λ value at which φφφ would join the nearest cluster is compared to the maximum λ value of that
cluster,

P (∃β : φφφ ∈ Cβ) =
λφφφ→Cα

λCα

max

, (10)
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where λφφφ→Cα is the persistence value at which point φφφ would join its nearest cluster Cα and λCα

max is
the maximum λ value of cluster Cα. Thus, the final probability, that point φφφ belongs to cluster Cα is,

Pα(φφφ) =
λφφφ→Cα

λCα

max

·Mα
norm(φφφ) . (11)

B Details on experimental setup

Here, we provide further details on the experiments.

ViT sources We list the URL of each Vision Transformer provided by the timm library [45]:

• FS: https://huggingface.co/timm/vit_base_patch16_224.augreg_in1k

• CLIP: https://huggingface.co/timm/vit_base_patch16_clip_224.openai

• DINO: https://huggingface.co/timm/vit_base_patch16_224.dino

• MAE: https://huggingface.co/timm/vit_base_patch16_224.mae

Hyperparameters for UMAP and HDBSCAN We tune hyperparameters of UMAP and HDB-
SCAN such that the density-based validity index DBCV is maximized across models and layers.
Here, for DBCV, the average across clusters is weighted by their respective size such that the noise
rate is indirectly included. We list the effect of the most influential hyperparameters that we tune and
state the final value we used:

• Minimal distance in UMAP: a low minimal distance in UMAP enhances local cluster
density but may also increase noise. We use a value of 0.01 in all experiments.

• Number of neighbours in UMAP: the number of neighbors controls the local structure,
the smaller the finer it captures local neighborhoods but distorts global structure which is
important for concept alignment analysis later. We use a value of 30 in all experiments.

• Embedding dimensionality in UMAP: We use the practical limit for HDBSCAN of
F ′ = 50 in all experiments.

• Minimum cluster size in HDBSCAN: a too small minimum cluster size may identify noise
as a cluster, whereas, when too large, distinct clusters will merge. We use a value of 50 in
all experiments.

• Min samples in HDBSCAN: controls how conservative the algorithm is about noise. We
need this to be rather low because of sampling limitations which means that most likely some
concept manifolds are not sampled densely enough. We use a value of 20 in all experiments.

Additionally, we assume that clusters are rather uniform in size and select the leaf nodes in the
HDBSCAN hierarchical condensed tree as clusters. Sampling one pooled SEQ token or one CLS
token from each representation of images within a 25% subset of the ImageNet1-1k train set results in
315.770 feature vectors φi for clustering. We use the cuML [36] versions of HDBSCAN and UMAP
for computation on the GPU.

In Tab. 2 and Tab. 3, we show a hyperparameter sensitivity study (at layer 11 of DINO SEQ repre-
sentations) that varies UMAP and HDBSCAN parameters one at a time (the other hyperparameters
are fixed at the default values stated above) and observe that concept discovery evaluation metrics
are reasonably stable within a quite broad hyperparameter range. Only NRMSE shows a rather
high range when varying the embedding dimension and UMAP minimal distance with minimum of
< 1.0 for small embedding dimensions (≤ 40) and very small minimal distance. This is likely not a
sign of a superior embedding, but rather an counter intuitive behavior of this metric due to extreme
compression of pairwise distances in the embedding.

Cluster label in Concept Atlas To assign a label from the WordNet Hierarchy to each concept
cluster, we first assign the ImageNet-1k label of the image from which a token is extracted to its
representation feature vector φi. Then we map this to a label higher in the WordNet hierarchy by the
mapping in Tab. 4. We then assign the most frequent label among the cluster members {φα

j } to the
cluster Cα.
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Hyperparameter Range NRMSE Noise ratio DBCV Robustness

Embedding dim. F ′
20 − 100 0.7 < 9.5 < 15.1 0.66 < 0.66 < 0.66 0.56 < 0.58 < 0.59 0.84 < 0.84 < 0.87

UMAP min. dist. 0.005 − 0.5 0.7 < 9.5 < 13.6 0.64 < 0.66 < 0.72 0.53 < 0.58 < 0.58 0.81 < 0.85 < 0.86

UMAP neighbors 10 − 40 6.4 < 9.5 0.65 < 0.66 < 0.66 0.58 < 0.58 < 0.61 0.84 < 0.85 < 0.85

Table 2: Impact of UMAP hyperparameters on embedding and clustering quality at layer 11 of DINO
SEQ representations. UMAP parameters are varied one at a time while all other hyperparameters are
fixed at the default values stated above. Results are reported as min<default<max.

Hyperparameter Range Noise ratio DBCV Robustness

Min. cluster size 20 − 100 0.57 < 0.66 < 0.73 0.57 < 0.58 < 0.59 0.83 < 0.84 < 0.85

Min. samples 10 − 50 0.66 < 0.66 < 0.67 0.50 < 0.58 < 0.65 0.83 < 0.84 < 0.85

Table 3: Impact of HDBSCAN hyperparameters on clustering quality at layer 11 of DINO SEQ
representations. HDBSCAN parameters are varied one at a time while all other hyperparameters are
fixed at the default values stated above. Results are reported as min<default<max.

Computation of alignment Our concept-based alignment measure CBA is based on pairs of feature
vectors (φi, φj). To reduce run-time, we sub-sample 20% of the 315.770 feature vectors before
computing CBA. Some concepts become under-sampled in this process, indicated by their total
activation in the subsample being much lower than 20% of their activation over all samples. Such
under-sampled concepts appear close to nearly all other concepts due to the missing activations. To
address this, we exclude them by filtering out concepts whose total activation in the subsample is
below 17% of their total activation across the entire dataset (this filters out around 4% of concepts in
the examples shown here and in the main paper).

Runtime Collecting activations for a 25% subset of the ImageNet1-1k train set, concept discovery
and concept discovery evaluation (NRMSE, DBCV) takes around 1.5 hours per layer. We performed
around 30 runs for UMAP and HDBSCAN hyperparameter tuning. Computing scalar concept
alignment for all pairs of layers depends on the total number of concepts, requiring about 1.25 hours
for the FS model, which has the largest concept count. Concept-wise distance computations also
scale with the number of concepts: for example, the fine-grained inter-model analysis shown in Fig. 6
in the main paper took about 6 hours on MAE vs. DINO at layer 10 with 477 and 684 concepts,
respectively. All experiments were conducted on a Tesla V100 GPU.

C Baselines for concept discovery evaluation

Here, we describe two baselines for our evaluation of NLMCD concept discovery quality in Sec. 4.1
of the main paper. We present them alongside the concept discovery results for FS, CLIP, DINO, and
MAE in Fig.7.

Random/ImageNet Baseline We feed ImageNet samples (the same subset as in Sec. 4.1) to a
randomly initialized ViT. Although the input images themselves contain discriminative patterns,
the model itself has no learned structure. Here, noise rate remains almost constant across layers,
comparable to middle or later layers of trained models. UMAP preserves distances well in this setting,
resulting in good NRMSE. DBCV scores (measuring cluster seperation by density) are overall lower
than in trained models but not as low as one might expect. Visually, clusters seem to capture pixel
color similarities rather than semantic concepts (see examples in Fig.7). However, robustness of
concept discovery is much lower: different initializations of UMAP and HDBSCAN lead to different
color-driven clusters. In short, while input structure alone can induce clustering, it mainly reflects
superficial color patterns rather than meaningful learned semantics with slightly reduced cluster
separation and lower robustness.

Random/Noise Baseline Here, a randomly initialized ViT receives Gaussian noise patches. With
no structure in the data or the model weights, HDBSCAN labels most points as noise, leading to a
higher noise rate than concept discovery with ImageNet inputs or trained models. Similarly, DBCV
values drop noticeably, whereas NRMSE remains only slightly higher, indicating that UMAP still
preserves pairwise distances. Interestingly, robustness is relatively high in this scenario, simply
because most tokens are consistently categorized as noise. This extreme setting underscores that
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Figure 7: Two baselines for concept discovery evaluation based on a randomly initialized model
with ImageNet or gaussian noise input. Left: The noise rate is the ratio of points classified as
noise in HDBSCAN. DBCV is a density-based clustering validity index that contrasts intra- vs
inter-cluster density with scores in [−1, 1] where higher is better. NRMSE measures the root mean
squared error between the distance matrix of the original and embedded activations, normalized by
the average distance in the original embedding, and shows how faithfully the UMAP embedding
captures the geometry of the representation. Robustness is measured between two runs by concept
alignment from Eq. 2. Results are across layers for SEQ (upper row) and CLS (bottom row) token
representations. Right: Randomly chosen examples for concepts discovered at layer 1, 6, 11 in the
SEQ representations of the randomly initialized model, all corresponding to color patterns.

both structured data and learned parameters are essential for creating meaningful clusters in concept
discovery.

Summary Overall, the Random/ImageNet baseline shows that the input distribution alone can drive
clustering based on superficial pixel color regularities in representations, but naturally fails to produce
semantically rich clusters driven by the model’s learned concepts. The Random/Noise baseline
confirms that without both learned parameters and structured data, clustering breaks down almost
entirely, highlighting the fundamental role of learned representations for robust and meaningful
concept discovery.

D Concept Formation Graphs

Notation. Let Cl,α, with α ∈ 1, . . . , N l, denote a concept cluster in layer l. For a token i ∈ 1, . . . , k,
we use the notation φφφl

i ∈ Cl,α to indicate that the token representation φφφl
i in layer l is assigned to that

cluster. Let Cl,∗ denote the target concept for which a concept formation graph (CFG) is constructed.

Given k tokens sampled from the training dataset and their cluster assignments, the algorithm for
constructing the CFG is defined as follows:

1. Transition matrix calculation: First, we compute transition matrices Tl,l+1 ∈ Z
N l×N l+1

for each pair of consecutive layers (l, l + 1). Each entry represents the count of tokens

transitioning from a concept Cl,α in layer l to a concept Cl+1,β in layer l + 1:

(Tl,l+1)αβ = #
{

i ∈ {1, . . . , k} :

φφφl
i ∈ Cl,α and φφφl+1

i ∈ Cl+1,β
}

(12)

where #{·} denotes the count of tokens.

2. Recursive graph construction: Initializing the set of CFG nodes with the target concept
node Cl,∗, we recursively add all predecessor concept nodes whose “contribution” (the
proportion of incoming transitions) surpasses a specified threshold τ . Formally, suppose a
concept Cl+1,β in layer l + 1 has been added to the CFG. Then, for each concept Cl,α in
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layer l, we include the edge (Cl,α, Cl+1,β) and node Cl,α to the CFG if:

(Tl,l+1)αβ
∑N l

γ=1 (Tl,l+1)γβ

> τ. (13)

The resulting CFG is a binary, unidirectional graph. Fig. 9, 10, and 8 illustrate additional exemplary
CFGs for CLIP and DINO. The CFGs were constructed using the same k = 315,770 tokens from the
ImageNet training dataset that were used for concept discovery, with the threshold parameter set to
τ = 0.05. In each image, the “concept” token is highlighted in yellow. The concepts in Fig. 3 of the
main text are human-labeled.

Figure 8: Concept formation graph for a concept in layer 9 of DINO. Each concept is represented by
six randomly sampled images containing a token assigned to that concept (highlighted in a yellow
frame).

Figure 9: Concept formation graph for a concept in layer 12 of CLIP. Each concept is represented by
six randomly sampled images containing a token assigned to that concept (highlighted in a yellow
frame).

E Qualitative comparison against linear and spherical concept discovery

Figure 11 illustrates the concept atlases for four concept discovery methods (PCA, MCD, KMeans,
and NLMCD) in the concept alignment sanity check of Sec. 4.2 in the main paper. For a direct
qualitative comparison, we also show concept atlases at layer six for CLIP SEQ token concepts using
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Figure 10: Concept formation graph for a concept in layer 10 of CLIP. Each concept is represented
by six randomly sampled images containing a token assigned to that concept (highlighted in a yellow
frame).

each method (Fig. 12–15). We segment each atlas into 15 groups via KMeans (indicated by color)
and display random examples of concepts within each group.

Visually, MCD, KMeans, and NLMCD exhibit more coherent concept clusters than PCA. Moreover,
when examining groups of close concepts in each atlas, we find that NLMCD and KMeans yield
more structured organization and greater semantic consistency within concept groups than MCD or
PCA (e.g., note how the bright yellow cluster in the MCD atlas mixes sundown/horizon, fur, and
shiny object concepts). While the difference in semantic consistency is subtle between KMeans and
NLMCD in this example, the results in Sec. 4.2 show that KMeans is on par with NLMCD in half
of the test settings but never outperforms it. Nevertheless, KMeans can still serve as a slightly less
accurate but more computationally cheap alternative to NLMCD.

MCD: Multi-dim.linear PCA: One-dim. linear NLMCD: Non-linearKMeans: Non-linear
spherical

Figure 11: Illustration of the four different concept definitions that are compared for measuring
concept alignment in Sec. 4.2 in the main paper (in three dimensions).

F Concept alignment analysis

F.1 CLS representations

We investigate concept-based alignment within and across models based on the CLS token represen-
tations analogous to the SEQ token analysis in the main paper.

Intra-model alignment We first compare the intra-model alignment heatmaps for CLS repre-
sentations across layers (top row of Fig. 16), measured by CBA, with the same analysis for SEQ
tokens presented in the main paper. For the FS model, the CLS representations exhibit a pattern
very similar to that of the SEQ representations. Likewise, CLIP and MAE show largely comparable
CLS–SEQ alignment profiles, but their earliest layers display noticeably lower alignment for CLS,
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Figure 12: Detailed concept atlas for PCA SEQ token concepts at layer six of CLIP. This is based on a
UMAP embedding constructed from the pairwise distance of concepts measured by dcross(P

α, P β).
Each point in this concept atlas corresponds to a distinct concept Pα. To convey their meaning, we
show four random input tokens from the members of the concept cluster Pα. We dissect the concept
atlas into 15 groups (indicated by color) and show four random concepts for each group.

suggesting that the model might rely less on the CLS token in early layers. With respect to class
label alignment, intrinsic dimensionality, and the number of discovered concepts, the CLS patterns in
Fig. 17 also broadly resemble the SEQ results, except for DINO. In DINO’s CLS tokens, alignment
across layers is substantially lower than in the SEQ tokens, and the concept atlas in layer 11 appears
less semantically organized. One plausible explanation is that the UMAP embeddings for DINO’s
CLS tokens (layers 7–11) exhibit higher NRMSE, indicating reduced faithfulness of the embedding
to the original activations, and thereby less faithful concepts.

Inter-model alignment Second, we analyze how the CLS representations between two different
models differ and present CBA alignment between all layers and model in the upper part of 18. Like
for the SEQ representations, CLS representations at layers of the first are more aligned than those
of the second half across all models pairs, suggesting that basic foundational features are learned
similarly across models, while later layers diverge as the models specialize to concepts serving their
pre-training task. However, the overall alignment between models is weaker for CLS representations
than for SEQ, also in low layers. Next, we zoom in into the distance dcross(P

α, P β) between concept
pairs from CLS representations of MAE layer 11 and CLIP layer 11 in the right part of 18. Next to
the pairwise distance matrix dcross(P

α, Qβ), we present the distribution of the distances between
nearest matches, and randomly chosen examples of concepts from MAE and their nearest matches
in CLIP. Similar to the comparison of SEQ concepts between MAE and DINO in Sec. 4.3 in the
main paper, we find that 80% of CLS concepts in MAE are similar to only 5 singular concepts in
CLIP. Lastly, among the randomly chosen examples, visual discrepancy is more pronounced for
high-distance concepts than for the other pairs with lower distance.
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Figure 13: Detailed concept atlas for MCD SEQ token concepts at layer six of CLIP. Detailed
concept atlas for PCA SEQ token concepts at layer six of CLIP. This is based on a UMAP embedding
constructed from the pairwise distance of concepts measured by dcross(P

α, P β). Each point in this
concept atlas corresponds to a distinct concept Pα. To convey their meaning, we show four random
input tokens from the members of the concept cluster Pα. We dissect the concept atlas into 15 groups
(indicated by color) and show four random concepts for each group.

F.2 Additional results for SEQ representations

Intra-model To give a more detailed view of the organization of concepts across the layers of one
model, we select the DINO model and show the respective concept atlases at layer one, six and eleven
in 19, 20, and 21, respectively. To give an overview of the structure within a concept atlas, we group
the concepts in the UMAP embedding via KMeans and show four random concepts for each group.
In layer one, many concepts correspond to color, in layer six, they represent mostly textures, and in
layer eleven they correspond to abstract concepts. Moslty, concepts within a group are of similar
nature.

Inter-model In the main paper, we show fine-grained inter-model concept distances between DINO
and MAE at layer ten. Here, we add fine-grained concept distance analysis between DINO and MAE,
as well as between MAE and CLIP in 22. Again, we show the full pairwise distance matrix as well
as how distances between closest matching pairs are distributed. Similar to the comparison of SEQ
concepts between MAE and DINO in Sec. 4.3 in the main paper, we find that in the case of DINO
vs. CLIP, 65% of CLIP concepts most closely match with only 2 singular concepts in DINO; for
MAE vs. CLIP, 86% of MAE concepts match with 4 concepts in CLIP.

Now, we examine differences in concept alignment between pairs of layers. Specifically, we compare
layer 10 in MAE/DINO (see Fig. 6) and the same layer in CLIP/DINO (see Fig. 16), which exhibit the
same overall concept alignment (0.74). To summarize fine-grained differences in concept-alignment,
we group concept nearest-neighbor-pairs into the WordNet categories from Fig. 4 (88% of concept
pairs are in the same category for MAE/DINO, 93% for CLIP/DINO). We then compute the mean
concept distance within each concept category and find that 1) canine and insect concepts have high
distance in both model pairs, while equipment and material concept have low distance in both pairs; 2)
fish concepts are similar in MAE/DINO but have high distance in CLIP/DINO, while sport concepts
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Figure 14: Detailed concept atlas for KMeans SEQ token concepts at layer six of CLIP. Detailed
concept atlas for PCA SEQ token concepts at layer six of CLIP. This is based on a UMAP embedding
constructed from the pairwise distance of concepts measured by dcross(P

α, P β). Each point in this
concept atlas corresponds to a distinct concept Pα. To convey their meaning, we show four random
input tokens from the members of the concept cluster Pα. We dissect the concept atlas into 15 groups
(indicated by color) and show four random concepts for each group.

show the opposite trend. This exemplifies a scenario where two representations are similarly aligned
by the overall score, but fine-grained concept alignment differs.
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Figure 15: Detailed concept atlas for NLMCD SEQ token concepts at layer six of CLIP. Detailed
concept atlas for PCA SEQ token concepts at layer six of CLIP. This is based on a UMAP embedding
constructed from the pairwise distance of concepts measured by dcross(P

α, P β). Each point in this
concept atlas corresponds to a distinct concept Pα. To convey their meaning, we show four random
input tokens from the members of the concept cluster Pα. We dissect the concept atlas into 15 groups
(indicated by color) and show four random concepts for each group.
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Figure 16: Intra-model relationships based on CLS representations across layers. In the upper
row, we show CBA to visualize how representations are transformed across layers of the models
(darker pixels correspond to higher alignment). In the center and bottom row we zoom into the
representations at layer 6 and 11 of each model and partition the scalar CBA alignment into single
concepts. We show a UMAP embedding constructed from the pairwise distance of concept measured
by dcross(P

α, P β). Each point in this concept atlas corresponds to a distinct concept Pα. To convey
their meaning, we show four random input tokens from the members of the concept cluster Cα

marked by a yellow box in the entire image.

Figure 17: Class label alignment (based on CBA), concept count, and the average intrinsic dimension-
ality (based on [13]) across concepts for CLS representations supplement the intra-model alignment
analysis, by providing insights into how well the model aligns with ImageNet-1k labels, the spatial
organization of tokens, and the complexity of the learned concepts as they evolve through the layers.
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Figure 18: Inter-model relationships based on CLS representations across layers. Right: We show
CBA to visualize how representations differ between the models (darker pixels correspond to higher
alignment). Left: We zoom in into the concept-wise distances dcross(P

α, P β) between the represen-

tation of in MAE and CLIP at layer 11. Alongside the pairwise distance matrix dcross(P
α, Qβ), we

present randomly chosen examples of concepts from MAE and their nearest matches in CLIP, and
the distribution of the distances between nearest matches. We illustrate some random example pairs
with low to high distance (marked by a star in the distance distribution plot).

Figure 19: We zoom into the SEQ representations at DINO layer 1 and show a UMAP embedding
constructed from the pairwise distance of concepts measured by dcross(P

α, P β). Each point in this
concept atlas corresponds to a distinct concept Pα. To convey their meaning, we show four random
input tokens from the members of the concept cluster Pα. We dissect the concept atlas into 7 groups
and show four random concepts for each group. Concepts representing similar colors lie within the
same group, e.g. shades of blue in the blue group or red and orange in the red group.
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Figure 20: We zoom into the SEQ representations at DINO layer 6 and show a UMAP embedding
constructed from the pairwise distance of concepts measured by dcross(P

α, P β). Each point in this
concept atlas corresponds to a distinct concept Pα. To convey their meaning, we show four random
input tokens from the members of the concept cluster Pα. We dissect the concept atlas into 15 groups
and show four random concepts for each group. Most concepts represent a pattern or texture which
are similar within each group.
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Figure 21: We zoom into the SEQ representations at DINO layer 11 and show a UMAP embedding
constructed from the pairwise distance of concepts measured by dcross(P

α, P β). Each point in this
concept atlas corresponds to a distinct concept Pα. To convey their meaning, we show four random
input tokens from the members of the concept cluster Pα. We dissect the concept atlas into 30 groups
and show four random concepts for each group. For most groups, these are semantically similar.
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Figure 22: CBA of SEQ concepts across layers of CLIP and DINO, as well as CLIP and MAE (darker
pixels correspond to higher alignment). We zoom in into the concept-wise distances dcross(P

α, P β)
between the representation of layer ten in CLIP and DINO, as well as layer 11 in CLIP and MAE.
Alongside the pairwise distance matrix dcross(P

α, Qβ), we present randomly chosen examples of
concepts from MAE and their nearest matches in DINO/CLIP, and the distribution of the distances
between nearest matches. We illustrate some random example pairs with low to high distance (marked
by a star in the distance distribution plots).
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Category ImageNet-1k class

amphibian European fire salamander axolotl bullfrog common newt eft spotted salamander tailed frog tree frog

artifacts Afghan hound Band Aid Dutch oven Petri dish abacus ashcan backpack ballpoint bannister barrel bath towel bathtub beacon beaker beer bottle beer glass bell cote binder birdhouse

book jacket bottlecap brass breakwater breastplate broom bucket cannon carousel carton cassette chain mail chainlink fence chiffonier cleaver cliff dwelling cloak clog cocktail

shaker coffee mug comic book cowboy boot crate crib crutch cuirass cup diaper dishwasher dock envelope espresso maker face powder fig fire screen flagpole fountain fountain pen

gasmask goblet grasshopper grille grocery store guillotine hair spray hand blower holster honeycomb iron "jack-o-lantern" joystick ladle lampshade lens cap library lipstick lotion

mailbag mailbox manhole cover mask matchstick maze measuring cup megalith menu microwave minibus mixing bowl mobile home mortar mortarboard mosquito net mountain

tent muzzle necklace obelisk packet paddle patio pedestal pencil box pencil sharpener perfume pickelhaube picket fence pier piggy bank pill bottle pillow pitcher plastic bag plate

rack pole pop bottle pot prayer rug purse quill quilt racket radio rain barrel refrigerator rotisserie rubber eraser running shoe safe saltshaker scabbard school bus schooner scoreboard

shield shoji shopping basket shower curtain ski mask sleeping bag sliding door soap dispenser soup bowl space bar spotlight steel arch bridge stone wall stove street sign stretcher

sunscreen suspension bridge swab swing teddy television thatch theater curtain thimble tile roof totem pole traffic light tray triumphal arch trolleybus tub turnstile umbrella vacuum

vase viaduct waffle iron washbasin washer water bottle water jug water tower web site whiskey jug window screen window shade wine bottle worm fence wreck yurt

bird African grey American coot American egret European gallinule albatross bald eagle bee eater bittern black grouse black stork black swan brambling bulbul bustard chickadee cock

coucal crane dowitcher drake flamingo goldfinch goose great grey owl hen hornbill house finch hummingbird indigo bunting jacamar jay junco king penguin kite limpkin little blue

heron lorikeet macaw magpie ostrich oystercatcher partridge pelican prairie chicken ptarmigan quail red-backed sandpiper red-breasted merganser redshank robin ruddy turnstone

ruffed grouse spoonbill sulphur-crested cockatoo toucan vulture water ouzel white stork

building apiary barn boathouse castle church cinema greenhouse home theater monastery mosque palace planetarium prison restaurant stage stupa vault

canine African hunting dog Airedale American Staffordshire terrier Appenzeller Arctic fox Australian terrier Bedlington terrier Bernese mountain dog Blenheim spaniel Border collie

Border terrier Boston bull Bouvier des Flandres Brabancon griffon Brittany spaniel Cardigan Chesapeake Bay retriever Chihuahua Dandie Dinmont Doberman English foxhound

English setter English springer EntleBucher Eskimo dog French bulldog German short-haired pointer Gordon setter Great Dane Great Pyrenees Greater Swiss Mountain dog Ibizan

hound Irish setter Irish terrier Irish water spaniel Irish wolfhound Italian greyhound Japanese spaniel Kerry blue terrier Labrador retriever Lakeland terrier Leonberg Lhasa Maltese

dog Mexican hairless Newfoundland Norfolk terrier Norwegian elkhound Norwich terrier Pekinese Pembroke Pomeranian Rhodesian ridgeback Rottweiler Saint Bernard Saluki

Samoyed Scotch terrier Scottish deerhound Sealyham terrier Shetland sheepdog Shih-Tzu Siberian husky Staffordshire bullterrier Sussex spaniel Tibetan mastiff Tibetan terrier

Walker hound Weimaraner Welsh springer spaniel West Highland white terrier Yorkshire terrier affenpinscher basenji basset beagle black-and-tan coonhound bloodhound bluetick

borzoi briard bull mastiff cairn chow clumber cocker spaniel collie coyote curly-coated retriever dalmatian dhole dingo flat-coated retriever giant schnauzer golden retriever grey fox

groenendael hyena keeshond kelpie kit fox komondor kuvasz malamute malinois miniature pinscher miniature poodle miniature schnauzer otterhound papillon pug red fox red wolf

redbone schipperke silky terrier soft-coated wheaten terrier standard poodle standard schnauzer timber wolf toy poodle toy terrier vizsla whippet white wolf wire-haired fox terrier

clothing Christmas stocking Loafer Old English sheepdog Windsor tie abaya academic gown apron bathing cap bearskin bib bikini bolo tie bonnet bow tie brassiere bulletproof vest cardigan

chest cowboy hat crash helmet dishrag feather boa fur coat gown handkerchief hook hoopskirt jean jersey kimono knee pad lab coat maillot military uniform miniskirt mitten

overskirt pajama paper towel poncho sandal sarong seat belt shower cap sock sombrero stole suit sweatshirt swimming trunks trench coat velvet vestment wallet wig wool

device accordion acoustic guitar analog clock assault rifle banjo barometer bassoon binoculars bow buckle bullet train candle car mirror car wheel cash machine cello chime combination

lock desktop computer digital clock digital watch disk brake drum drumstick electric fan electric guitar flute gas pump gong hair slide hammer hamper hand-held computer hard disc

harmonica harp hatchet horn hourglass laptop lighter loudspeaker loupe magnetic compass maraca marimba maypole microphone missile monitor mouse mousetrap neck brace

notebook oboe odometer oil filter organ oxygen mask paddlewheel padlock paintbrush panpipe parking meter pick "potters wheel" projector puck radiator radio telescope remote

control revolver rifle safety pin sax scale screen sewing machine ski slide rule slot slug snorkel solar dish space heater spider web steel drum stethoscope stopwatch strainer sundial

sunglass sunglasses switch syringe thresher toaster torch tripod trombone typewriter keyboard upright vending machine violin wall clock whistle

equipment CD player Polaroid camera balance beam barbell "carpenters kit" cassette player cellular telephone computer keyboard croquet ball crossword puzzle dial telephone drilling platform

dumbbell golf ball golfcart horizontal bar iPod jigsaw puzzle modem oscilloscope parachute parallel bars pay-phone photocopier ping-pong ball plate punching bag reel reflex

camera soccer ball tape player

establishment bakery barbershop bookshop butcher shop confectionery shoe shop tobacco shop toyshop

feline Egyptian cat Persian cat Siamese cat catamount cheetah coil cougar leopard lion panther snow leopard tabby tiger tiger cat

fish anemone fish barracouta coho eel electric ray gar goldfish great white shark hammerhead lionfish puffer rock beauty stingray sturgeon tench tiger shark

food French loaf bagel burrito carbonara cheeseburger chocolate sauce consomme cucumber dough eggnog espresso guacamole hay hot pot hotdog ice cream ice lolly mashed potato

meat loaf pizza potpie pretzel red wine trifle

fruit Granny Smith acorn buckeye hip jackfruit lemon orange pineapple rapeseed strawberry

furniture altar barber chair bassinet beaver bookcase china cabinet cradle desk dining table entertainment center file folding chair four-poster medicine chest milk can mink otter park bench

pool table rocking chair studio couch table lamp throne toilet seat wardrobe

geological for-

mation

alp bubble cliff coral reef dome geyser lakeside promontory sandbar seashore valley volcano

insect ant bee cabbage butterfly cicada cricket damselfly dragonfly dung beetle fly ground beetle lacewing ladybug leaf beetle leafhopper long-horned beetle lycaenid mantis monarch

peacock rhinoceros beetle ringlet sulphur butterfly tiger beetle walking stick weevil

mammal African elephant American black bear Angora Arabian camel Indian elephant Madagascar cat Sus scrofa armadillo baboon bighorn bison black-footed ferret brown bear capuchin

chimpanzee colobus dugong echidna fitch fox squirrel gazelle gibbon gorilla grey whale guenon guinea pig hamster hare hartebeest hippopotamus ibex ice bear impala indri killer

whale koala langur lesser panda llama macaque marmoset marmot meerkat mongoose orangutan ox panda patas platypus polecat porcupine proboscis monkey ram sea lion siamang

sloth bear spider monkey squirrel monkey three-toed sloth titi tusker wallaby warthog water buffalo wombat wood rabbit zebra

material chain cornet doormat groom knot spindle toilet tissue

musical grand piano

organism American lobster Dungeness crab German shepherd admiral agaric badger ballplayer barn spider black and gold garden spider black widow bolete boxer brain coral centipede chiton

cockroach conch coral fungus crawfish dam ear earthstar fiddler crab flatworm garden spider gyromitra harvester harvestman hen-of-the-woods hermit crab hog howler monkey

isopod jellyfish king crab mushroom nematode nipple printer rock crab rule scorpion scuba diver sea cucumber sea slug sea urchin snail spiny lobster starfish stinkhorn tarantula tick

trilobite weasel wing wolf spider

plant acorn squash artichoke banana bell pepper broccoli butternut squash cardoon cauliflower corn custard apple daisy head cabbage ocarina pinwheel pomegranate sea anemone sorrel

spaghetti squash "yellow ladys slipper" zucchini

reptile African chameleon African crocodile American alligator American chameleon Gila monster Indian cobra Komodo dragon agama alligator lizard banded gecko boa constrictor box

turtle common iguana diamondback frilled lizard grass snake green lizard green mamba green snake hognose snake king snake leatherback turtle loggerhead mud turtle night snake

ringneck snake rock python sand viper sea snake sidewinder terrapin thunder snake triceratops vine snake water snake whiptail

sport baseball basketball football helmet rugby ball tennis ball volleyball

tool can opener chain saw corkscrew lawn mower letter opener lumbermill nail plane plow plunger power drill screw screwdriver shovel

utensil Crock Pot caldron coffeepot frying pan spatula teapot wok wooden spoon

vehicle Model T aircraft carrier airliner airship ambulance amphibian balloon barrow beach wagon bicycle-built-for-two bobsled cab canoe catamaran chambered nautilus container ship

convertible dogsled electric locomotive fire engine fireboat forklift freight car garbage truck go-kart gondola half track horse cart jeep jinrikisha lifeboat limousine liner minivan

moped motor scooter mountain bike moving van oxcart passenger car pickup pirate racer recreational vehicle shopping cart snowmobile snowplow space shuttle speedboat sports car

steam locomotive streetcar submarine tank tow truck tractor trailer truck tricycle trimaran unicycle wagon warplane yawl

Table 4: Mapping between categories from the WordNet Hierarchy and the ImageNet-1k classes used
for assigning a category to the concept clusters.
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