Under review as a conference paper at ICLR 2026

CoOACT-1: COMPUTER-USING MULTI-AGENT SYSTEM
WITH CODING ACTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Autonomous agents that operate computers via Graphical User Interfaces (GUIs)
often struggle with efficiency and reliability on complex, long-horizon tasks. While
augmenting these agents with planners can improve task decomposition, they re-
main constrained by the inherent limitations of performing all actions through GUI
manipulation, leading to brittleness and inefficiency. In this work, we introduce
a more robust and flexible paradigm: enabling agents to use coding as an en-
hanced action. We present CoAct-1, a novel multi-agent system that synergistically
combines GUI-based control with direct programmatic execution. CoAct-1 fea-
tures an Orchestrator that dynamically delegates subtasks to either a conventional
GUI Operator or a specialized Programmer agent, which can write and execute
Python or Bash scripts. This hybrid approach allows the agent to bypass ineffi-
cient GUI action sequences for tasks like file management and data processing,
while still utilizing visual interaction when necessary. We evaluate our system on
the challenging OSWorld and WindowsAgentArena benchmark, where CoAct-1
achieves a new state-of-the-art success rate of 60.8% on OSWorld and 52.5% on
WindowsAgentArena, significantly outperforming prior methodq'| Furthermore,
our approach dramatically improves efficiency, reducing the average number of
steps required to complete a task to just 10.15 on OSWorld, compared to 15 for
leading GUI agents. Our results demonstrate that integrating coding as a core
action provides a more powerful, efficient, and scalable path toward generalized
computer automation.

1 INTRODUCTION

Recent advancements in computer-using agents have primarily focused on operating through Graphi-
cal User Interfaces (GUIs). While these GUI agents, powered by vision-language (action) models (L1
et al., [2023; |Deepmind,, [2025a3b; |OpenAll [2024; 2025a; |Qin et al., [2025; [Xie et al., [2025a); Yang
et al., 2025), have demonstrated the ability to perform a variety of tasks, they often struggle with
long-horizon planning and interactions in environments with dense GUI elements. For example,
routine tasks in Office productivity software often involve a long and intricate sequence of precise
GUI operations, such as locating a specific table within a multi-sheet spreadsheet, filtering it based
on complex criteria, copying the results, and saving them as a new CSV file. Similarly, tasks like
finding all image files in a nested directory structure, resizing them to specific dimensions, and then
compressing the entire directory into a single archive are brittle and inefficient when solved via
GUI actions such as clicking and dragging. In these scenarios, existing agents often struggle with
visual grounding ambiguity (e.g., mistaking visually similar icons or menu items) and the cumulative
probability of errors over long-term interactions. A single mis-click or misunderstood UI element
can derail the entire task.

To address these challenges, a prominent line of research has focused on augmenting GUI agents
with dedicated high-level planners. Approaches such as GTA-1 (Yang et al.,[2025) and other modular
systems (Yang et al., [2024} |Xu et al., 2024; |Agashe et al.| 2024;2025) utilize powerful language
models like OpenAl 03 (OpenAll 2025b) to decompose a user’s high-level goal into a sequence of
more manageable subtasks. This hierarchical decomposition can improve performance on complex,
multi-step problems by providing a structured plan. However, this paradigm does not fundamentally

lTrajectories of our experiments were submitted through supplemental material.

Under review as a conference paper at ICLR 2026

address the inefficiency and brittleness associated with exclusive reliance on GUI-based execution.
Even with the high-level planning, the agent still needs to navigate menus, click buttons, and type
into fields, even for operations that could be accomplished more directly and reliably through
programmatic means. This leaves the system susceptible to planning uncertainty, visual perception
errors, and the integration challenges between high-level planning and low-level action generation.

In this work, we advocate for and instantiate a more flexible and powerful action space. We propose
a hybrid approach that combines the intuitive, human-like strengths of GUI manipulation with the
precision, reliability, and efficiency of direct system interaction through code. We introduce CoAct-1
(Computer-using Multi-agent System with Coding Actions), a novel multi-agent system composed
of three specialized agents: Orchestrator, Programmer, and GUI Operator. A high-level Orchestrator
serves as the central planner, decomposing the user’s goal and determining the appropriate modality
for each subtask. Based on this analysis, it assigns the task to one of two distinct execution agents: a
Programmer agent, which writes and executes Python or Bash scripts for backend operations like
file management, data processing, or environment configuration; or a GUI Operator, a VLM-based
agent that performs frontend actions like clicking buttons and navigating visual interfaces. This
dynamic delegation allows CoAct-1 to strategically bypass inefficient GUI sequences in favor of
robust, single-shot code execution when appropriate, while still leveraging visual interaction for tasks.

Our experimental analysis provides strong evidence for the advantages of this hybrid design. On the
OSWorld and WindowsAgentArena benchmark, CoAct-1 establishes a new state-of-the-art, achieving
an overall success rate of 60.76% and 52.50%, respectively. This marks a significant improvement
over leading baselines like Agent S2.5 (55.98%) on OSWorld. The performance gains are most
pronounced in categories where programmatic control is highly advantageous. For instance, in Calc
(70.21%), multi-application (47.88%), and VS Code (78.26%) tasks, our Programmer’s ability in
executing precise scripts leads to substantial gains over the strongest GUI-only methods. Beyond
improving success rates, our dual-modality approach dramatically enhances operational efficiency.
By replacing long, error-prone click sequences with concise code, CoAct-1 solves tasks in an average
of just 10.15 steps on OSWorld, a stark contrast to the 15 steps required by agents like GTA-1. This
efficiency underscores the potential of our approach to pave a more robust and scalable path toward
generalized computer automation.

2 RELATED WORK

Screen parsing and visual grounding A first line of work focuses on perceiving and grounding GUI
elements directly from pixels, without relying on DOM or accessibility hooks. OmniParser learns
screen-parsing primitives for pure vision—based understanding (Lu et al., [2024). On the grounding
side, SeeClick (instruction-to-target grounding), Aria-UI (instruction grounding over GUIs), and
UGround (universal GUI grounding) map language to actionable screen locations (Cheng et al., 2024;
Yang et al., 2024} |Gou et al., [2024). OS-Atlas trains a foundation action model to generalize across
diverse interfaces (Wu et al.|[2024). Dedicated grounding evaluations such as ScreenSpot-Pro further
benchmark grounding under professional, high-resolution settings (Li et al.,[2025).

Native end-to-end GUI agents A third thread trains native agents that unify perception, reasoning,
and action in a single model. UI-TARS and OpenCUA exemplifies this approach with a unified action
space for mouse/keyboard operations across apps, eschewing hand-crafted controllers (Qin et al.
2025 [Wang et al.,|2025aib). AGUVIS pushes toward unified, pure-vision GUI agents that generalize
across interfaces (Xu et al.| 2024).

Modular planner-grounder agents A second strand explicitly separates what to do from where/how
to act on screen: a language planner proposes subgoals while a visual model grounds each step.
Representative systems include SeeClick and OS-Atlas (Cheng et al.,[2024; Wu et al}[2024). GTA-1
strengthens this two-stage paradigm via test-time scaling: sampling multiple candidate actions and
using an MLLM judge to select among them, improving robustness on high-resolution, cluttered
Uls (Yang et al.l [2025). Other related open frameworks such as Agent-S / Agent-S2 and AutoGen
provide reusable infrastructures for multi-agent orchestration and tool calling (Agashe et al., 2024;
2025; Song et al., 2025a; |Zhang et al.| 2024; Wu et al., 2023; Zhang et al., 2023 2025b)).

Hybrid agentic frameworks Beyond GUI-only interaction, several agentic systems compose tools
and APIs on the fly to extend capabilities at run time. Examples include UFO-2 (Zhang et al.| [2025a)),

Under review as a conference paper at ICLR 2026

PyVision (Zhao et al., [2025), BeyondBrowsing (Song et al.| [2025b) and ALITA (Qiu et al.| [2025),
which, while not restricted to GUI/CUA, share the principle of dynamically constructing and invoking
tools.

3 COMPUTER-USING AGENT WITH CODING AS ACTIONS

Q
‘ ! User ‘
Task
O] Subtask d Subtask | y
@ Programmer Orchestrator gé%% GUI Operato
= ..summary. ..Summary =
Code E — GUI Operation —
= % = R
683 1 J/ Result Screenshot Screeﬁshot Screenshot

</> Operating System

Figure 1: Multi-agent system design for our CoAct-1. This multi-agent system includes a Programmer that
can interact with the operating system through multi-round coding. This multi-agent system includes an
Orchestrator, which serves as the high-level planner that decomposes goals and delegates subtasks to the
appropriate execution agent, a Programmer, which interacts with the operating system through multi-round
coding, and a GUI Operator, which leverages vision-language capabilities to perform visual interface actions.

In this work, we introduce a new system-interactive action: coding, to replace part of the redundant
and brittle GUI actions. Unlike summarizing APIs or SDKs from each application or website, we
focus on enabling agents to perform free-form coding to solve computer-use problems guided by
a strong language model. Specifically, we design a multi-agent system, CoAct-1, that introduces
a new agent, Programmer, capable of interacting with the OS through a coding-observation circle.
An Orchestrator serves as the high-level controller, determining whether to assign the subtask to the
Programmer or the GUI Operator. The overall framework is illustrated in

3.1 PROBLEM DEFINITION

We formalize the problem of general computer control as an interactive decision-making pro-
cess. At each timestep ¢, the agent observes the computer environment (primarily consists of
a screenshot) o, € O, and takes an action a; € A according to a policy w(a;|H;, G). Here,
H, = (01,a4,...,04_1, as_1,0;) represents the historical context, and G is the user’s high-level goal
provided in natural language. Learning an effective policy is particularly challenging when the action
space A is restricted to low-level GUI operations. Complex tasks, such as managing nested files or
processing spreadsheet data, can require long and intricate sequences of GUI actions. This makes the
process inefficient and highly susceptible to error propagation, where a single mis-check can derail
the entire task.

To address this limitation, we introduce a hybrid action space that integrates direct programmatic
control. We augment it to the standard GUI action space, denoted as A = Agy; U Acoge- An
action a; € Agyy involves the direct manipulation of the graphical interface (e.g., mouse clicks,
keyboard typing). In contrast, an action a; € Acyq. consists of a Python or Bash script that interacts
directly with the operating system’s backend. This allows the agent to perform complex operations
like file manipulation or data processing in a single, robust step, effectively bypassing brittle and
inefficient GUI sequences. In CoAct-1, the policy 7 is implemented hierarchically. A high-level
Orchestrator acts as a meta-policy, 7., Which analyzes the current subtask and delegates it to one of
two specialized executor policies: a GUI Operator that implements 7gyy for actions in Agyy, or a
Programmer that implements 7c.q. for actions in Acgge-

3.2 MULTI-AGENT SYSTEM DESIGN FOR COMPUTER USE

Our multi-agent system is the architectural instantiation of the hierarchical policy 7 outlined in the
problem definition. It comprises three specialized agents—the Orchestrator, Programmer, and GUI
Operator that collaboratively generate the action trajectory 7 to solve the user’s goal G. Each agent
establishes a dedicated conversation to perform its role.

Under review as a conference paper at ICLR 2026

Could you help me unzip the downloaded extension file from /home/user/Desktop/ to /nome/user/Desktop/ and configure it in Chrome's extensions?

Programmer ‘“‘Ef Orchestrator GUI Operator

Subtask Round 1 > call_coding_agent Subtask
Unzip the file /home/user/Desktop/ Task: N -
% he\lo’;xtension.zw‘p into /home/us:r"/Deskmp/ Unzip the file /home/user/Desktop/ Configure the Unpacked Extension in Chrome
__________________________________ helloExtension.zip into /home/user/Desktop/ =
**‘code Environment: Navigating to Chrome extensions page
File path: /home/user/Desktop/helloExtension.zi
% #1. Go to Desktop LEte path homefusenDeskiop/nellobxiension 2 eI LeftClick(622, 164)
cd /home/user/Desktop || { echo "Desktop WAIT
directory not found"; exit 1; } » LLM Summary

echo "Current directory: $(pwd)" R em-mm oo m e e oo oo
Round 2 > call_gui_agent

_______________ ') e Task: Configure the Unpacked Extension in Chrome

Code output:

Current directory: /home/user/Desktop
ZIP archive found: helloExtension.zip
Tl Archive: helloExtension.zip

The extension has been successfully added to the chrome
and display correctly.

</ Extraction completed successfully.
TERMINATE

Extraction contents: ...

Figure 2: Illustration of CoAct-1 workflow. Given a user task, Orchestrator can choose either to call Programmer
or GUI Operator to solve a subtask. A programmer can interact with the OS by coding, and a GUI Operator can
interact with the OS by performing GUI operations.

Orchestrator. The Orchestrator embodies the high-level meta-policy, mo,ep. It is responsible for task
decomposition and dynamic planning based on the full history of observations H; and the overall goal
G. The Orchestrator does not interact directly with the OS. Instead, its primary function is to select
the best specialized sub-policy, mcoge OF TGur, to execute the current subtask. Upon completion, the
Orchestrator receives a summary of the execution process and a new observation 0,1 (a screenshot
along with a summary reflecting the current system state) to inform its next decision. If it determines
that the overall goal G is met, it outputs a termination signal.

Programmer. The Programmer implements the specialized policy 7coqe, responsible for generating
actions a; € Acoge. Upon receiving a subtask from the Orchestrator, it initiates a multi-round
conversation with a code interpreter. It generates Python or Bash scripts, which are executed by the
interpreter. The feedback, consisting of the code execution results, allows the Programmer to reflect
and refine their code until the subtask is solved. The Orchestrator provides the Programmer with
sufficient context, such as file paths or window information inferred from H,, to ground its code
generation.

GUI operator. The GUI agent is a vision-language action model that implements the GUI-based
policy mgu; for generating actions a; € Agy;. Similar to the Programmer, the GUI Operator engages
in a multi-round interactive loop to complete its assigned subtasks. In each step of this "perception-
action" loop, the agent takes the current screenshot and the subtask instruction as input to generate
a single GUI action (e.g., a mouse click or keyboard input). A GUI action interpreter executes this
action on the OS, which in turn provides a new screenshot as observational feedback. The GUI
Operator uses this new visual information to decide on its subsequent action, continuing this cycle
until its subtask is complete.

3.3 WORKFLOW AND MEMORY DESIGN

The hierarchical policy implemented by CoAct-1 necessitates a structured workflow and memory
system to manage the flow of information between agents. This design ensures that each agent has
the necessary context without being overwhelmed by irrelevant details from other parts of the task.

The overall workflow is illustrated in

Workflow The workflow begins when the Orchestrator, acting as the meta-policy 7o, delegates a
subtask to an appropriate executor agent: either the Programmer or the GUI Operator. The selected
agent then engages in its own multi-round interactive loop to solve the subtask, generating a detailed
conversational history of its actions and the environment’s responses. Upon completing the subtask,
this detailed history is processed by a dedicated summarizer model. This model condenses the entire
interaction into a concise summary that captures the key actions taken and the final outcome. This
summary, along with the final screenshot representing the new state of the environment, is then

Under review as a conference paper at ICLR 2026

returned to the Orchestrator. This handoff mechanism provides the Orchestrator with a condensed,
high-level update to its overall task history H;.

Memory design for task decomposition CoAct-1 employs a hierarchical and isolated memory
structure:

* Orchestrator Memory: The Orchestrator maintains the long-term, primary memory, which
corresponds to the historical context H,; from our problem definition. It consists of the initial user
goal GG and the sequence of summaries and screenshots received from the executor agents after
each completed subtask. This aggregated history provides the context for all high-level planning
decisions.

* Executor Memory: The Programmer and GUI Operator each maintain a short-term, working
memory that is active only for the duration of their assigned subtask. This memory contains the
"instance conversation history" of their multi-round interaction with the OS.

To ensure modularity and focus, these memories are isolated; the agents do not share their conver-
sational histories directly. Furthermore, once an executor completes its subtask and reports back
to the Orchestrator, its working memory is cleared. This reset mechanism is critical, as it allows
the executor agents to focus entirely on the context of the new subtask they receive without being
influenced by prior, irrelevant interactions.

4 EXPERIMENTS

4.1 BENCHMARK DATASETS

We evaluate CoAct-1 on OSWorld (Xie et al., 2024) and WindowsAgentArena (Bonatti et al.| [2024)).
Both are scalable real-computer testbed that exposes an OS (Windows or Ubuntu) to an agent through
pixel streams and an OS shell interface. OSWorld comprises 369 tasks, while WindowsAgentArena
comprises 154 tasks. These task span common productivity tools, IDEs, browsers, file managers, and
multi-application workflows, thereby challenging both vision—language grounding and long-horizon
planning in heterogeneous GUI environments.

4.2 BASELINES

We compare CoAct-1 with two categories of computer-using agents, the end-to-end models and
agentic methods. These baselines represent the forefront of GUI-based task automation.

End-to-end model An end-to-end model takes user instructions and OS screenshots as input and
outputs corresponding actions by pure inference without any agentic workflow. OpenAl 03 (OpenAl,
2025b) is a cutting-edge reasoning model from OpenAl that excels at multi-step problem-solving and
versatile, context-aware assistance. OpenAl CUA 4o (OpenAl, 2025a)) uses vision and reasoning to
interact with graphical user interfaces, controlling the mouse and keyboard to perform tasks. It is
the technology behind services like Operator and ChatGPT agent. UI-TARS (Qin et al., |2025) UI-
TARS introduces a fully end-to-end, screenshot-only native GUI agent model that unifies perception,
reasoning, memory, and action. OpenCUA(32B) (Wang et al.,[2025b) introduces a fully open-source
framework, including a scalable data collection tool, the first large-scale multi-OS computer-use task
dataset, a reflective chain-of-thought reasoning pipeline, and strong vision-language agent models.

Agentic Method The agentic method encompasses single- and multi-agent systems with diverse
structures, such as planner-grounder, planner-multigrounder, etc. These baselines primarily focus
on enhancing the ground-level ability of a language model to improve computer-based performance.
Jedi-7B w/ 03 (Xie et al., | 2025b) We refer the term Jedi to a Qwen2.5-VL trained on the Jedi
dataset. The author plugs Jedi into an agent stack to translate high-level plans into pixel-perfect
GUI actions, achieving large gains on OSWorld, WindowsAgentArena, and multiple grounding
benchmarks. GTA-1 w/ 03 (Yang et al.| | 2025) The GUI Test-time Scaling Agent (GTA-1) is a GUI
agent that addresses the challenges of planning ambiguity and action grounding in high-resolution
interfaces. To improve accuracy, this agent employs a "test-time scaling” strategy, where it generates
multiple possible actions and utilizes a Judge model to select the optimal one. It also leverages

Under review as a conference paper at ICLR 2026

the GRPO to train a powerful grounder. Agent S2.5 w/ 03 (Agashe et al.| |2025]) Agent S2.5 is a
compositional planner-multigrounder framework in which a planner generates high-level subgoals,
multiple grounders executes them while delegating GUI-element localization to visual, textual, and
structural experts via a Mixture-of-Grounding, and both levels proactively replan after every subgoal
to remain robust to changing screens.

Besides the above powerful baselines, we also add Agent S (Agashe et al., 2024)) and NAVI (Bonatti
et al.| 2024) as baselines for WindowsAgentArena.

4.3 IMPLEMENTATION DETAILS

Environment We test the CoAct-1 on Linux with an extended RESTful server from OSWorld.
Specifically, we implement a remote code interpreter that can take long Python and Bash scripts as
input and return the execution result back to the sender. On the other hand, for each task, OSWorld
will establish an initial state, such as opening a set of apps or specific websites, or downloading the
specified files to a specified location, etc. After the initial state is ready, we will take a screenshot as
the initial input along with a user task to CoAct-1 and baselines.

CoAct-1 settings We implement CoAct-1 using AG2 (Wu et al.}[2023)). In CoAct-1, we adopt OpenAl
03 for Orchestrator and OpenAl 04-mini for Programmer. For the GUI Operator, we use OpenAl
computer-use-preview, a vision-language action model finetuned by OpenAl for computer use, as the
backbone model. We use the o4-mini as the summarizer for summarizing the conversation history
between the Programmer and the Orchestrator. We set the maximum round [for the Programmer to
20, the maximum step K for the GUI Operator to 25, and the maximum round .J for the Orchestrator
to 15. Therefore, the number of system interactions, i.e, the number of steps, for CoAct-1 is upper
bounded to 375 (but in all cases, as shown in[Figure 3d] CoAct-1 will early stop before 150 steps).

More details are in[Appendix C|

Evaluation Protocol We evaluate our method with the rule-based evaluator provided by OSWorld
and WindowsAgentArena. Internally, every evaluator is expressed as a Boolean expression built from
134 atomic, execution-based evaluators that the authors handcrafted for the benchmark. For a given
task, the benchmark composes these atoms with logical AND / OR operators, so a “pass” might
require, for instance, (file exported AND MD35 matches) AND (email sent == True).

4.4 RESULTS

Our experimental results, detailed in [Table 1] and [Table 2] unequivocally establish CoAct-1 as
the new state-of-the-art across two challenging, real-world computer operation benchmarks. The
findings validate our core hypothesis: integrating programmatic actions alongside traditional GUI
manipulation provides a more robust, efficient, and generalizable paradigm for computer automation.

Performance on OSWorld On the comprehensive OSWorld benchmark (Table T)), CoAct-1 demon-
strates superior performance and efficiency. It achieves a final success rate of 60.76% within the
150-step limit, creating a significant margin over the strongest contemporary agentic frameworks,
including Agent S2.5 w/ 03 (55.98%) and GTA-1 w/ 03 (53.07%). The strength of our hybrid
architecture is not only in its peak performance but also in its consistency across different task
complexities. At the 100-step mark, CoAct-1 already leads with a 59.93% success rate, surpassing
the final scores of all other baselines. The advantages of our approach are particularly pronounced in
categories where programmatic control is most effective. CoAct-1 achieves top-tier performance in
tasks requiring complex data or file system interactions, scoring 64.80% in Office, 75.00% in OS, and
47.87% in Multiple Apps. This exceptional performance in domains that are historically brittle for
pure-GUI agents underscores the efficacy of delegating backend operations to the Programmer agent,
which can execute precise and reliable scripts for tasks involving spreadsheets, file manipulation, and
cross-application data flows.

Performance on WindowsAgentArena We further evaluated CoAct-1 on the WindowsAgentArena
benchmark (Table 2). The results show that our framework successfully transfers its capabilities
to a different operating system, again achieving state-of-the-art performance by a substantial mar-
gin. CoAct-1 attains an overall success rate of 52.5%, which is a remarkable improvement over
prior leading methods like Agent S2 (29.8%) and NAVI (19.5%). The performance breakdown on

Under review as a conference paper at ICLR 2026

Table 1: Comparison of the state-of-the-art methods on the OSWorld (Xie et al., 2024) verified benchmark.
We split the results by steps and show the approach type in the second column. Office tasks include tasks
from LibreOffice Calc, LibreOffice Impress, and LibreOffice Writer. Daily tasks include tasks from Chrome,
Thunderbird, and VLC. Professional includes tasks from GIMP and VSCode. We report the success rate (%) as
the evaluation metric for each type of task, and mark the best result of each step budget in bold and the best
result overall step budgets in underlined bold.

Agent Model Office (104 tasks) Daily (78 tasks) Professional (48 tasks) OS (24 tasks) Multiple Apps (101 tasks) Avg.
15 steps
OpenAl 03 1.45 8.02 12.29 37.50 11.82 9.09
UI-TARS-1.5 (7B) 27.19 27.99 61.45 34.78 5.38 25.76
OpenAl CUA 4o 22.17 37.65 41.22 45.83 10.75 26.01
OpenCUA 26.69 33.25 51.57 4348 10.41 28.12
Agent S2.5 w/ 03 42.85 44.61 57.10 70.83 17.82 38.98
Jedi-7B w/ 03 45.84 57.49 60.95 50.00 2043 42.37
CoAct-1 47.18 42.30 47.74 66.67 23.82 39.81
50 steps
OpenAl 03 11.50 19.78 30.10 37.50 11.82 17.17
UI-TARS-1.5 (7B) 26.51 31.41 48.91 25.00 9.77 25.08
OpenAl CUA 40 23.56 3843 52.09 70.83 15.86 31.19
OpenCUA 30.06 4231 58.28 47.83 16.79 33.76
GTA-1-7B w/ 03 48.58 52.31 77.84 58.33 37.05 48.59
Jedi-7B w/ 03 50.10 65.25 68.65 54.17 34.97 50.65
Agent S2.5 w/ 03 52.81 55.80 75.42 75.00 39.53 54.21
CoAct-1 62.91 59.43 69.89 70.83 42.37 56.38
100 steps
OpenAl 03 17.23 26.29 38.79 62.50 16.53 23.00
UI-TARS-1.5 (7B) 25.01 31.07 46.99 29.17 8.80 25.41
OpenAl CUA 40 25.04 39.19 55.43 58.33 18.48 31.38
OpenCUA 30.06 38.89 60.70 52.17 18.10 33.84
Jedi-7B w/ 03 47.89 64.37 75.92 50.00 35.27 50.98
GTA-1-7B w/ 03 55.68 64.74 61.20 62.50 38.34 53.07
Agent S2.5 w/ 03 54.23 55.80 75.42 75.00 44.06 55.98
CoAct-1 64.80 61.60 71.82 75.00 47.87 59.93
150 steps
CoAct-1 64.80 66.51 71.82 75.00 47.87 60.76

Table 2: Comparison of the state-of-the-art methods on the WindowsAgentArena (Bonatti et al.| [2024). We
split the results by steps and show the approach type in the second column. Office tasks include tasks from
LibreOffice Calc and LibreOffice Writer. Web tasks include tasks from Chrome, and Microsoft Edge. Windows
System includes tasks from settings and File Explorer. Windows System includes tasks from Settings and File
Explorer. Windows Utils includes tasks from Clock, Windows Calculator, Notepad, and Microsoft Paint. We
report the success rate (%) as the evaluation metric for each type of task and mark the best result in bold.

Method Office(43 tasks) Web(30 tasks) Windows System(24 tasks) VSCode(24 tasks) VLC(21 tasks) Windows Utils(12 tasks) Avg.
Agent S 0.0 13.3 45.8 29.2 19.1 222 182
NAVI 0.0 27.3 333 273 30.3 83 19.5
Agent S2 7.0 16.4 54.2 62.5 28.6 333 29.8
CoAct-1 (15 steps) 8.7 33 50.0 29.2 23.8 44.4 21.4
CoAct-1 (50 steps) 26.1 333 75.0 54.2 42.4 55.6 435
CoAct-1 (100 steps) 304 50.0 83.3 62.5 472 71.7 525

WindowsAgentArena further reinforces our central claim. CoAct-1 shows commanding strength in
system-level and utility-based tasks, achieving standout scores of 83.3% in Windows System and
77.7% in Windows Utils. These categories, which involve interacting with file explorers, system
settings, and other native utilities, are ideally suited for the script-based actions of the Programmer.
Furthermore, CoAct-1’s performance demonstrates clear and effective scaling with an increased step
budget, rising from 21.4% at 15 steps to 52.5% at 100 steps, highlighting its capacity to solve more
complex, long-horizon problems.

In summary, the consistent, state-of-the-art performance across two distinct and challenging bench-
marks confirms that CoAct-1’s hybrid agentic architecture represents a significant advancement
toward creating more capable and reliable autonomous agents for general computer use.

Under review as a conference paper at ICLR 2026

Average Steps in Solved Tasks GUI / Coding Action Steps Overall Tasks
20
c 84 Coding actions
15.22 14.90 S 80 mmm GUI actions
n 15 <
3} Y60 of
7 10.15 @ 5
(])
10 g |
(o)}
o 6.14 o 40
v 9]
> Q
< E 20
=
> 110
o L ES 2lilll-2 111322811 1
0
GTA-1 UI-TARS(7B) OpenAl CUA 40 CoAct-1 25 75 100 125 150
Method TotaI steps per task

(a) Average steps per passed task with 100 step budget, (b) Distribution of tasks by total step count, illustrating
showing CoAct-1 is significantly more efficient than the ratio of coding to GUI actions and showing that

other SOTA agentic frameworks like GTA-1. coding helps reduce the total action steps.
Pass / Fail Ratio Split by Total Steps
/and /Cd Action Step in the Passed Task = 84 Fei

w/ and w/o Coding Action ep in € Passe aSKS =
, 10 = S p— ﬁ 80 m Pass
b == w/ Coding £
20.8 —) 6.
] w/o Codlng X 60
Y w0 5
© 0.6 o]
c -
£04 S 40
8 @ @9
go2 g ,
* 0.0 g 20 Iz

A L o0° 09 e \1\,0 et ee"? O «\9 e = 1110 7

“‘(‘eﬂ\\’\“w O s 2 ix e®" GO ..izﬁi—iisgnligg“u 1
\;\\0(o O eo €< '«\ 0 LIS 3
W \“‘ 0 25 50 75 100 125 150
Domain Total steps per task

(c) Breakdown of passed tasks by application domain, (d) Pass/fail ratio split by total steps, demonstrating
highlighting that coding actions are most frequently ~ that the failure rate is positively correlated with the
applied in complex domains like LibreOffice Calc, = number of actions required.

Multi-Apps, and direct OS interaction.

Figure 3: CoAct-1 Efficiency and Step Modality Analysis.

4.5 DISCUSSION

Efficiency analysis The analysis of CoAct-1’s operational efficiency, illustrated in[Figure 3] reveals
that our hybrid approach is substantially more efficient than leading GUI-only agents. This efficiency
is a key factor in its improved success rate. As shown in[Figure 3al CoAct-1 solves tasks with an
average of 10.15 steps. This represents a significant improvement over other high-performing agents
like GTA-1, which requires 15.22 steps, and UI-TARS, which needs 14.90 steps on average. While
OpenAl CUA 4o averages fewer steps (6.14), its overall success rate is much lower compared to
CoAct-1’s (31.40% v.s. 59.93% on 100 steps). This indicates that CoAct-1’s efficiency is coupled
with greater effectiveness. The source of this efficiency lies in the strategic use of coding actions.
supports this by showing that coding actions help keep the total steps per task relatively
low. This efficiency is crucial for robust performance. shows that coding is particularly
beneficial in complex domains like "LibreOffice Calc", "Multi-apps", and direct OS interactions,
where a large proportion of tasks are solved with code. A single script can replace a long and
error-prone sequence of GUI clicks, streamlining the workflow. [Figure 3d|illustrates a clear trend:
tasks that require more actions are more likely to fail. By reducmg the total number of steps, the
hybrid approach not only accelerates task completion but also minimizes the opportunities for error.
The ability to dynamically select the most appropriate action—either a direct coding command or a
GUI interaction—is fundamental to the enhanced efficiency and reliability of CoAct-1.

CoAct-1 with different backbone We investigated the impact of backbone model selection for
each agentic component of CoAct-1 on the OSWorld benchmark, with results presented in Table 3]
Our analysis reveals that the overall system performance is highly sensitive to the reasoning and

Under review as a conference paper at ICLR 2026

Table 3: Performance of CoAct-1 with different backbone model for each participant agent. Powerful Orchestra-
tor significantly help improve the performance on OSWorld.

GUI Operator Orchestrator Programmer Performance

04-mini 04-mini 43.43
OpenAl CUA 40 03 03 58.72
03 04-mini 60.76

Table 4: Ablation study on the performance of CoAct-1’s components. We compare the full hybrid system
against agents restricted to using only the Programmer (pure coding) and only the GUI Operator (pure GUI).
The results highlight that the integrated CoAct-1 system significantly outperforms either single-modality agent,
demonstrating the effectiveness of its hybrid approach.

CoAct-1 Office Daily Professional OS Multiple Apps Avg. Avg. Steps
w/ Programmer w/ GUI Operator
v 40.88 16.17 53.06 62.50 29.63 35.73 1.14
v 43.50 58.80 69.38 79.16 35.68 50.68 11.20
v v 64.80 66.51 71.82 75.00 47.87 60.76 10.15

instruction-following capabilities of the models chosen for the Orchestrator and Programmer roles.
When utilizing o4-mini for both the Orchestrator and Programmer, alongside the OpenAl CUA 4o
as the GUI Operator, the system achieved a performance of 43.43%. A significant performance
enhancement to 58.72% is observed when a more powerful model, 03, is used for both the Orchestrator
and Programmer. This underscores the critical role of a sophisticated high-level planner and a capable
code generator in the system’s success. The highest performance of 60.76% was achieved with a
heterogeneous configuration: employing o3 for the Orchestrator, 04-mini for the Programmer, and
retaining OpenAl CUA 4o for the GUI Operator. This configuration suggests an optimal balance,
leveraging the powerful reasoning of 03 for task decomposition and delegation, while benefiting from
the specialized capabilities of 04-mini for code generation. These results highlight that enhancing
the capabilities of the Orchestrator and Programmer yields the most substantial performance gains,
validating our modular design and demonstrating the benefits of strategically allocating powerful
models to roles with high reasoning demands.

Pure GUI action VS pure coding action To isolate each agent modality and validate our hybrid
design, we conducted an ablation study comparing the full CoAct-1 system with agents restricted to a
single action type. Results in show the combined approach is superior. A Programmer-only
agent (pure coding) achieved 35.73% success, highlighting that many tasks require GUI interaction
beyond scripting. It was highly efficient, averaging just 1.14 steps per success, confirming the
directness of programmatic actions. A GUI Operator—only agent (pure GUI) achieved a higher 50.68%
success rate, handling more task types, but required 11.20 steps per task. The full CoAct-1 model,
integrating both modalities, achieved 60.76% success with 10.15 steps on average, demonstrating the
synergy of our architecture: the Orchestrator exploits the Programmer’s efficiency for backend tasks
and the GUI Operator’s versatility for visual navigation, yielding a robust system.

5 CONCLUSIONS

In this work, we introduced CoAct-1, a novel multi-agent system designed to address the inherent
inefficiency and brittleness of agents that rely exclusively on GUI manipulation. Our multi-agent
system features an Orchestrator that dynamically delegates subtasks to a GUI Operator or a Program-
mer. Our extensive evaluation on the OSWorld and WindowsAgentArena benchmark confirms the
effectiveness of this approach. CoAct-1 achieves a new state-of-the-art success rate of 60.76% on
OSWorld and 52.5% on WindowsAgentArena, significantly outperforming previous leading methods.
The performance gains were particularly pronounced in categories involving OS-level interactions,
multi-application workflows, and other tasks where the Programmer agent could leverage direct
programmatic execution.

Under review as a conference paper at ICLR 2026

REFERENCES

Saaket Agashe, Jiuzhou Han, Shuyu Gan, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent s: An
open agentic framework that uses computers like a human. arXiv preprint arXiv:2410.08164,
2024.

Saaket Agashe, Kyle Wong, Vincent Tu, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent
s2: A compositional generalist-specialist framework for computer use agents. arXiv preprint
arXiv:2504.00906, 2025.

Rogerio Bonatti, Dan Zhao, Francesco Bonacci, Dillon Dupont, Sara Abdali, Yinheng Li, Yadong Lu,
Justin Wagle, Kazuhito Koishida, Arthur Bucker, Lawrence Jang, and Zack Hui. Windows agent
arena: Evaluating multi-modal os agents at scale, 2024. URL https://arxiv.org/abs/
2409.08264.

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Yantao Li, Jianbing Zhang, and Zhiy-
ong Wu. Seeclick: Harnessing gui grounding for advanced visual gui agents. arXiv preprint
arXiv:2401.10935, 2024.

Deepmind. Introducing gemini 2.0: our new ai model for the agentic era. Technical report,
Deepmind, 2025a. URL https://blog.google/technology/google—-deepmind/
google—-gemini-ai-update-december-2024/#project—-astra.

Deepmind. Gemini 2.5: Our most intelligent ai model. Technical report, Deep-
mind, 2025b. URL https://blog.google/technology/google-deepmind/
gemini-model-thinking-updates-march-2025/.

Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie, Cheng Chang, Yiheng Shu, Huan Sun, and
Yu Su. Navigating the digital world as humans do: Universal visual grounding for gui agents.
arXiv preprint arXiv:2410.05243,2024. URL https://arxiv.org/abs/2410.05243.

Jia He, Mukund Rungta, David Koleczek, Arshdeep Sekhon, Franklin X Wang, and Sadid Hasan.
Does prompt formatting have any impact on llm performance?, 2024. URL https://arxivl
org/abs/2411.10541.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: bootstrapping language-image
pre-training with frozen image encoders and large language models. In International Conference
on Machine Learning, ICML’23. JMLR.org, 2023.

Kaixin Li, Ziyang Meng, Hongzhan Lin, Ziyang Luo, Yuchen Tian, Jing Ma, Zhiyong Huang, and
Tat-Seng Chua. Screenspot-pro: Gui grounding for professional high-resolution computer use.
arXiv preprint arXiv:2504.07981, 2025.

Yadong Lu, Jianwei Yang, Yelong Shen, and Ahmed Awadallah. Omniparser for pure vision based
gui agent. arXiv preprint arXiv:2408.00203, 2024.

OpenAl. Gpt-4o system card, 2024.

OpenAl. Computer-using agent: Introducing a universal interface for ai to interact with the digital
world. 2025a. URL https://openai.com/index/computer—-using—agent.

OpenAl. Openai 03 and o4-mini system card. Technical report, OpenAl, 2025b. URL
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b—-e7758£3722c1/
03-and-o4-mini-system-card.pdf. System Card.

Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang, Jiahao
Li, Yunxin Li, Shijue Huang, et al. Ui-tars: Pioneering automated gui interaction with native
agents. arXiv preprint arXiv:2501.12326, 2025.

Jiahao Qiu, Xuan Qi, Tongcheng Zhang, Xinzhe Juan, Jiacheng Guo, Yifu Lu, Yimin Wang, Zixin
Yao, Qihan Ren, Xun Jiang, Xing Zhou, Dongrui Liu, Ling Yang, Yue Wu, Kaixuan Huang,
Shilong Liu, Hongru Wang, and Mengdi Wang. Alita: Generalist agent enabling scalable agentic
reasoning with minimal predefinition and maximal self-evolution, 2025. URL https://arxiv,
org/abs/2505.20286.

10

https://arxiv.org/abs/2409.08264
https://arxiv.org/abs/2409.08264
https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/#project-astra
https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/#project-astra
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://arxiv.org/abs/2410.05243
https://arxiv.org/abs/2411.10541
https://arxiv.org/abs/2411.10541
https://openai.com/index/computer-using-agent
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://arxiv.org/abs/2505.20286
https://arxiv.org/abs/2505.20286

Under review as a conference paper at ICLR 2026

Linxin Song, Jiale Liu, Jieyu Zhang, Shaokun Zhang, Ao Luo, Shijian Wang, Qingyun Wu, and
Chi Wang. Adaptive in-conversation team building for language model agents, 2025a. URL
https://arxiv.org/abs/2405.19425.

Yueqi Song, Frank Xu, Shuyan Zhou, and Graham Neubig. Beyond browsing: Api-based web agents,
2025b. URL|https://arxiv.org/abs/2410.16464.

Haoming Wang, Haoyang Zou, Huatong Song, Jiazhan Feng, Junjie Fang, Junting Lu, Longxiang
Liu, Qinyu Luo, Shihao Liang, Shijue Huang, et al. Ui-tars-2 technical report: Advancing gui
agent with multi-turn reinforcement learning. arXiv preprint arXiv:2509.02544, 2025a.

Xinyuan Wang, Bowen Wang, Dunjie Lu, Junlin Yang, Tianbao Xie, Junli Wang, Jiaqi Deng, Xiaole
Guo, Yiheng Xu, Chen Henry Wu, et al. Opencua: Open foundations for computer-use agents.
arXiv preprint arXiv:2508.09123, 2025b.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
Zhang, Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah, Ryen W White, Doug Burger, and
Chi Wang. Autogen: Enabling next-gen llm applications via multi-agent conversation, 2023. URL
https://arxiv.org/abs/2308.08155.

Zhiyong Wu, Zhenyu Wu, Fangzhi Xu, Yian Wang, Qiushi Sun, Chengyou Jia, Kanzhi Cheng, Zichen
Ding, Liheng Chen, Paul Pu Liang, et al. Os-atlas: A foundation action model for generalist gui
agents. arXiv preprint arXiv:2410.23218, 2024.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan Zhou, Silvio
Savarese, Caiming Xiong, Victor Zhong, and Tao Yu. Osworld: Benchmarking multimodal agents
for open-ended tasks in real computer environments, 2024. URL https://arxiv.org/abs/
2404.07972.

Tianbao Xie, Jiaqi Deng, Xiaochuan Li, Junlin Yang, Haoyuan Wu, Jixuan Chen, Wenjing Hu,
Xinyuan Wang, Yuhui Xu, Zekun Wang, Yiheng Xu, Junli Wang, Doyen Sahoo, Tao Yu, and
Caiming Xiong. Scaling computer-use grounding via user interface decomposition and synthesis,
2025a. URL https://arxiv.org/abs/2505.13227.

Tianbao Xie, Jiaqi Deng, Xiaochuan Li, Junlin Yang, Haoyuan Wu, Jixuan Chen, Wenjing Hu,
Xinyuan Wang, Yuhui Xu, Zekun Wang, et al. Scaling computer-use grounding via user interface
decomposition and synthesis. arXiv preprint arXiv:2505.13227, 2025b.

Yiheng Xu, Zekun Wang, Junli Wang, Dunjie Lu, Tianbao Xie, Amrita Saha, Doyen Sahoo, Tao Yu,
and Caiming Xiong. Aguvis: Unified pure vision agents for autonomous gui interaction. arXiv
preprint arXiv:2412.04454, 2024.

Yan Yang, Dongxu Li, Yutong Dai, Yuhao Yang, Ziyang Luo, Zirui Zhao, Zhiyuan Hu, Junzhe Huang,
Amrita Saha, Zeyuan Chen, Ran Xu, Liyuan Pan, Caiming Xiong, and Junnan Li. Gtal: Gui
test-time scaling agent, 2025. URL https://arxiv.org/abs/2507.05791.

Yuhao Yang, Yue Wang, Dongxu Li, Ziyang Luo, Bei Chen, Chao Huang, and Junnan Li. Aria-ui:
Visual grounding for gui instructions. arXiv preprint arXiv:2412.16256, 2024.

Chaoyun Zhang, He Huang, Chiming Ni, Jian Mu, Si Qin, Shilin He, Lu Wang, Fangkai Yang,
Pu Zhao, Chao Du, Liqun Li, Yu Kang, Zhao Jiang, Suzhen Zheng, Rujia Wang, Jiaxu Qian,
Minghua Ma, Jian-Guang Lou, Qingwei Lin, Saravan Rajmohan, and Dongmei Zhang. Ufo2: The
desktop agentos, 2025a. URL https://arxiv.org/abs/2504.14603.

Jieyu Zhang, Ranjay Krishna, Ahmed H. Awadallah, and Chi Wang. Ecoassistant: Using llm assistant
more affordably and accurately, 2023. URL https://arxiv.org/abs/2310.03046.

Shaokun Zhang, Jieyu Zhang, Jiale Liu, Linxin Song, Chi Wang, Ranjay Krishna, and Qingyun

Wu. Offline training of language model agents with functions as learnable weights, 2024. URL
https://arxiv.org/abs/2402.11359.

11

https://arxiv.org/abs/2405.19425
https://arxiv.org/abs/2410.16464
https://arxiv.org/abs/2308.08155
https://arxiv.org/abs/2404.07972
https://arxiv.org/abs/2404.07972
https://arxiv.org/abs/2505.13227
https://arxiv.org/abs/2507.05791
https://arxiv.org/abs/2504.14603
https://arxiv.org/abs/2310.03046
https://arxiv.org/abs/2402.11359

Under review as a conference paper at ICLR 2026

Shaokun Zhang, Ming Yin, Jieyu Zhang, Jiale Liu, Zhiguang Han, Jingyang Zhang, Beibin Li,
Chi Wang, Huazheng Wang, Yiran Chen, and Qingyun Wu. Which agent causes task failures
and when? on automated failure attribution of 1lm multi-agent systems, 2025b. URL https:
//arxiv.org/abs/2505.00212.

Shitian Zhao, Haoquan Zhang, Shaoheng Lin, Ming Li, Qilong Wu, Kaipeng Zhang, and Chen
Wei. Pyvision: Agentic vision with dynamic tooling, 2025. URL https://arxiv.org/abs/
2507.07998.

A LLM USAGE STATEMENT

We used a large language model (OpenATI’s 03 and GPT-5) as a general-purpose writing assistance
tool. Its role was limited to sentence- and paragraph-level polishing, including improving clarity,
grammar, and flow. The authors developed all research ideas, analyses, results, and conclusions.
The model did not generate new content, perform a literature review, or contribute to the conceptual
framing of the paper.

B ETHIC STATEMENT

Our research aims to advance computer automation for beneficial and productive purposes, but we
acknowledge the potential for dual-use and associated risks.

Security and Misuse: An agent with the ability to execute code (Python or Bash) and manipulate
a GUI could be leveraged for malicious activities if not properly constrained. To mitigate this
risk during our research, all experiments were conducted within secure, isolated, and virtualized
benchmark environments (OSWorld and WindowsAgentArena). This ensures that the agent’s actions
are sandboxed and cannot affect real-world systems or data. We advocate that any future deployment
of such agents in live environments must incorporate robust security protocols, strict permission
controls, and mechanisms to prevent the execution of harmful code.

Data Privacy: The agent’s operation relies on observing the screen via screenshots, which in a
real-world scenario could contain sensitive or personal information. In this work, we use only the data
provided within the benchmark tasks, which do not involve real user data. For any future applications,
it is imperative to implement strict data handling policies and privacy-preserving techniques to protect
user confidentiality.

C REPRODUCIBILITY STATEMENT

Reproduction of CoAct-1 requires an accurate use of specific OpenAl models and prompts. Please
review the following details to ensure the accurate performance of our work.

C.1 MODEL USAGE AND ENVIRONMENT SETTING

Model Usage In this work, we use ©3-2025-04-16 for Orchestrator, 04-mini-2025-04-16
for Programmer, and computer-use-preview-2025-03-11 for GUI operator. Any open-
sourced model can also be adopted by CoAct-1 if it meets the following requirements:

* For Orchestrator The Orchestrator requires multi-modality input (image and text) to process all
screenshots from the OS for planning. It also requires a strong reasoning ability across different
modalities (See[Table 3] reasoning ability will largely affect the final performance).

¢ For GUI Operator The GUI Operator can be replaced with any open-sourced vision language
action models (VLA) like UI-TARS (Qin et al., [2025) or OpenCUA (Wang et al [2025b), or
planner-grounder approaches like GTA-1 (Yang et al 2025) and Agent S2 (Agashe et al.,|2025).
CoAct-1 require the GUI Operator to have the following two abilities: (1) instruction following
ability out of the grounding task (like when to terminate), and (2) computer use ability, including
clicking, dragging, typing, and hotkeys. Unfortunately, we have not been allocated enough GPU
resources for testing these models’ performance on CoAct-1 in this work, and you can expect a

12

https://arxiv.org/abs/2505.00212
https://arxiv.org/abs/2505.00212
https://arxiv.org/abs/2507.07998
https://arxiv.org/abs/2507.07998

Under review as a conference paper at ICLR 2026

reduction in average steps and a performance improvement when switching to a stronger model for
the GUI Operator.

* For Programmer Language model for Programmer should have a strong ability to write Python
and Bash (or Powershell in Windows) for solving computing problems. Note that we didn’t provide
any API or SDK for programmers; however, this can be an extension to your approach for better
performance on app-specific tasks, such as Chrome and Thunderbird.

Environment The OS environment is also a significant challenge when evaluating computer-
using agents. To reproduce our experiment results, all input screenshots to the Orchestrator should
accurately reflect the well-initialized system state. Therefore, we recommend waiting 60 seconds
after the VM starts before capturing the OS screenshot to ensure the screenshot includes all necessary
information for Orchestrator to plan.

C.2 PROMPT DESIGN FOR COACT-1

The performance of any modern large language model agent system can be largely affected by its
prompt or template design (He et al.,[2024). In CoAct-1, despite the rules for general behavior like
chain-of-thought and verification, we also design rules based on the model limitations. Specifically,
we notice that the GUI Operator has a significant hallucination rate when performing self-checks,
while the Programmer’s file modifications do not reflect in the OS, so the Orchestrator cannot capture
and plan for the next step. We mitigate these limitations in our prompt design by allowing Orchestrator
to check the result independently and reload the file modified by the Programmer. We put the prompt

used for OSWorld and WindowsAgentArena in[Table 3} [Table 6] [Table 7} [Table 8] and[Table 9]

D WHEN&WHY COACT-1 FAILS? INSIGHT FOR FUTURE WORKS

To better understand the capabilities and limitations of CoAct-1, this section analyzes failure cases
observed during evaluation. Generally, errors in task completion arise from four primary challenges:
high-level, ambiguous queries, reflection errors, and hallucinations.

High-level query A high-level query is one where the user’s instruction does not directly map to
a sequence of actions. Instead, it requires the agent first to infer the user’s underlying intent and
the broader context before it can devise a solution. For instance, one task in the VSCode domain
instructed the agent: "Please help me modify the setting of VSCode to keep my cursor focused on the
debug console when debugging in VSCode, instead of automatically focusing back on the Editor."
In this scenario, the Orchestrator delegated the task to the Programmer. The Programmer attempted
to find the relevant setting by searching for keywords like "debug" and "console". However, it
failed to make the conceptual leap that the debugging process relates to "breakpoints." Consequently,
it overlooked the correct setting, "focusEditorOnBrake," leading to the task’s failure. This case
highlights a limitation in the agent’s ability to reason about concepts that are not explicitly mentioned
in the query.

Ambiguous query An ambiguous query is a user request that is vague or omits critical information
necessary for successful task completion. Resolving ambiguity often requires the agent to correctly
infer the user’s intent, which can also involve safety considerations. An example of this occurred in a
VSCode task with the instruction: "Please help me modify VSCode setting to hide all "__pycache__ "
folders in the explorer view." The Orchestrator assigned this subtask to the Programmer. The
Programmer successfully identified the need to modify a settings file but incorrectly altered the
workspace-specific settings instead of the global user settings. This misinterpretation of the query’s
scope resulted in the task failing. This illustrates the challenge the agent faces in disambiguating the
user’s intent when multiple valid interpretations exist.

Reflection error Reflection is a crucial mechanism for verifying the task completion process in
CoAct-1. In our system design, only the final state of the OS will be returned to the orchestrator after
the GUI operator completes the task. This issue yields the final error if the GUI Operator makes some
middle-state errors and the new operation covers them. For example, when performing spreadsheet
operations, the GUI Operator may mistype in a cell (let’s say a cell in row A), then scroll down the
spreadsheet and stop there. In this case, our method will return a screenshot of the OS that excludes

13

Under review as a conference paper at ICLR 2026

the error value in row A. This error cannot be captured by the Orchestrator and will cause the task to
fail due to the unexpected operation

Hallucination As one of the most important topics in the large language model era, hallucination
also appears as a common reasons that cause CoAct-1 failures. All agents in CoAct-1 will hallucinate
when task-solving, and the most significant hallucination comes from the Orchestrator and GUI
Operator. The Orchestrator will provide an error plan, usually including advanced forecasting, that
affects the GUI Operator and Programmer. For example, the Orchestrator may predict the content
of an unopened website and instruct the GUI Operator to work on the non-existing content. The
GUI Operator will also hallucinate the reasoning process and imagine that it has already completed
the assigned task. In this work, we mitigate hallucination from Orchestrator by prompting the
Orchestrator to perform verification more frequently and cross-verify the results between the GUI
Operator and the Programmer.

System Prompt for Orchestrator (Part 1)

Today is {today}.

Your Role

You are responsible for completing a computer-based task, step by step, using the tools
provided.

You are working on a {system_info} system.

#i## Step-by-Step Process
1. Describe the Screenshot
- Carefully review and clearly describe the screenshot’s content.

2. Plan the Task

- Create a detailed, step-by-step plan to solve the task.

- List all user requirements, including exact file names, file paths, and any other specifics in
the output (not in the thinking).

3. Execute the Instructions

- Think carefully and follow the user’s instructions exactly. Do not make any changes not
requested by the user (such as renaming files or changing file content).

- You must apply all the changes to the computer.

- If the task is impossible (e.g., missing files, wrong environment), reply with INFEASIBLE
to end the conversation.

- For file operations (like modifying spreadsheets), you MUST try the Programmer
(call_programmer) first.

- When the user ask you to create a new sheet in spreadsheet, always name it sequencially.
For example, ‘Sheetl°, ‘Sheet2°, etc.

4. Verify the Result

- ALWAYS check the result through the screenshot by yourself. You can let a GUI Operator
to navigate to the correct location for you. After the GUI Operator complete, the screenshot
will automatically be returned to you.

- If you used the Programmer to modify a file, have the GUI Operator reopen the file to see
the updated results.

- Ensure that the result meets all user requirements.

- All the things out of the user’s instructions should not be changed.

Table 5: System Prompt for Orchestrator (part 1).

14

Under review as a conference paper at ICLR 2026

System Prompt for Orchestrator (Part 2)

Tools You Can Use

Programmer (call_programmer)

- Can run Python or Bash code to perform most file or system tasks.

- Needs a clear environment description and detailed task instructions.

- Can use any Python package you specify.

- After modifying a file, ALWAYS verify every change by yourself. You can let a GUI
Operator to navigate to the correct location and check the result by yourself. If something is
wrong, tell the Programmer to fix it.

Programmer will return a summary of its task solving process after completing the task. No
screenshot is provided after the Programmer completes the task.

GUI Operator (call_gui_operator)

- Can interact with the GUI by clicking on a exact position, scrolling, dragging, typing, and
using hotkeys.

- Require a detailed task description.

- The GUI Operator may not able to complete your task in 100% of accuracy and often make
mistakes.

- Have a 25-step limit, each step is a single OS interaction (one click, one hotkey/typing
action, etc.).

- Do not let the GUI Operator to do any result check. You need to do it by checking the
screenshot yourself.

I will return a screenshot that reflect the final state of the computer after completing the task.
You don’t need to prompt the GUI Operator do this.

Note: Only call ONE tool (call_programmer or call_gui_operator) per reply.

Table 6: System Prompt for Orchestrator (part 2).

System Prompt for GUI Operator

Your role
You can control the computer by clicking, scrolling, dragging, and typing. Think carefully
and execute the user’s step-by-step instructions.

Credentials
The user’s password is "{CLIENT_PASSWORD}". Use it when a system password prompt
appears.

Operating rules

- Keep apps open at the end of the task.

- If the UI doesn’t appear, perform a brief, deterministic retry (e.g., refocus and re-click).
- Do not close the window, minimize the window unless told to do so.

Response protocol

When you think the requested task is completed or cannot be completed, reply exactly:
‘TERMINATE: <1. detailed description of what you see currently. As detailed as possible. 2.
What you did to complete the task or why this task cannot be completed.>*

Table 7: System Prompt for GUI Operator.

15

Under review as a conference paper at ICLR 2026

System Prompt for Programmer

Your role

You are the lead programmer. Solve the user’s task step by step using the terminal (supports
Python and Bash).

Your username is ‘user*; the sudo password is ‘CLIENT_PASSWORD".

The terminal streams real-time execution output.

Coding format

Submit one fenced code block only, labeled with its language:
“‘bash

Your Bash script here

To use sudo, follow this pattern:

echo CLIENT_PASSWORD | sudo -S <your commands>

113

or
“‘python

Your Python code here

Do not use: if __name__ =="__main__": (it will suppress output)

1133

Requirements

- File names: Do not rename files or change extensions during any file operation unless the
user explicitly asks.

- Code fence language: Every fenced block must specify the language (‘bash‘ or ‘python°);
otherwise you will receive ‘unknown language unknown".

- Single block: Wrap all code in one code block—do not split your submission across
multiple blocks.

- Spreadsheets: When editing spreadsheets, ensure every value is written to the intended
cell and preserve the original formatting (fonts, colors, sizes, etc.).

- Dependencies: Before importing or using a package, check whether it is installed; if not,
install it in your submission.

- Observability: Print intermediate results to aid debugging, for example, the value you are
modifying.

- Final review: Before completion, carefully inspect your result by writing test cases and
confirm that nothing outside the user’s instructions has changed.

Table 8: System Prompt for Programmer.

16

Under review as a conference paper at ICLR 2026

Prompt for LLM Summarizer

Programmer <-> Terminal Log Summarizer — (No Timeline/Env/Next Actions)

Role: Summarize Programmer <-> Terminal logs for the Orchestrator so they can
decide the next step immediately.

Orchestrator’s task: ‘{task}

Execution history: ‘{chat_history}* (prompts + outputs).

Output

1) Summary (2-4 lines) — task, what was tried, current status, why (cite key log
lines / exit codes).

2) Commands (deduped)
“‘bash
unique commands in run order; annotate repeats (xN)

113

3) Terminal excerpts

“‘text

minimal evidence: head(~10) ... [truncated N lines] ... tail(~10)
always include full error traces and return codes

113

4) Artifacts / Side effects — files/dirs changed (paths + purpose); installs/migrations.
Spreadsheet: list cells/ranges edited and confirm formatting preserved.

5) Errors / Blockers — precise messages + exit codes; likely root cause from logs
(no speculation).

6) Verification — what checks passed (tests, file existence, row counts); what still
needs verification (e.g., reopen file and confirm cell Y).

Rules

- Evidence-first, no speculation.

- Deterministic truncation (head/tail; note omitted lines); always include error stacks.
- Call out deltas (what changed vs intended).

- Keep it tight: bullets > prose.

Table 9: Prompt for LLM Summarizer.

17

	Introduction
	Related Work
	Computer-using Agent with Coding as Actions
	Problem Definition
	Multi-agent System Design for Computer Use
	Workflow and Memory Design

	Experiments
	Benchmark Datasets
	Baselines
	Implementation Details
	Results
	Discussion

	Conclusions
	LLM Usage Statement
	Ethic Statement
	Reproducibility Statement
	Model Usage and Environment Setting
	Prompt Design for CoAct-1

	When&Why CoAct-1 Fails? Insight for Future Works

